$D \mathrm{M} 2400$
DVAA M5LL
PROGRAMMING,
OPEPATING MANUAL

table of sections

SECTION	1	INSTALLATION
SECTION	2	MECHANICAL and ELECTRICAL OPERATIONS
- SECTION	3	PERIPHERALS and ACCESSORIES
SECTION	4	CONVENTIONS
SECTION	5	BASIC MACHINE OPERATION
SECTION	6	PROGRAMMING WITH PROMPTS
SECTION	7	WRITING A PROGRAM
SECTION	8	AVAILABLE FUNCTIONS
SECTION	9	A USER EXERCISE
SECTION	10	DYNA LANGUAGE ((toor orskis $=10-22$)
SECTION	11	WORKED EXAMPLES (RS-232 pin confor) pllez
SECTION	12	USERS NOTES AND INFORMATION
SECTION	13	
SECTION		APPENDIX (RS 232 INSTRUCTCON FORMAT)
SECTION	15	INDEX

SECTION 1 INSTALLATION

FIGURE 1 DYNA MYTE 2400 OPERATING CONTROLS

SAFETY RULES AND PRECAUTIONS

1. KNOW YOUR MACHINE - Read the Operating Manual CAREFULLY. Learn the machine features, applications, and limitations. Follow all recommended operating procedures.
2. $\frac{\text { GROUND }}{\text { described }} \frac{\text { MACHINE - Follow instructions for grounding as }}{\text { in the }}$
3. KEEP WORK AREA CLEAN - Cluttered areas and benches invite accidents.
4. AVOID DANGEROUS ENVIRONMENTS - DO not use this machine in damp, wet, gaseous or explosive locations. Keep work area well lighted.
5. KEEP SMALL CHILDREN AWAY - Small visitors should be kept away from the work area.
6. DO NOT FORCE THE TOOL - It will do a better and faster job in removing material.
7. USE THE RIGHT TOOL - It will do a better and faster job in removing material.
8. WEAR $\frac{\text { PROPER }}{\text { CLOt }}$ CLOTHES - Loose clothing and ties can
9. USE SAFETY GLASSES - Most cutting tools can throw dangerous and hot chips. Wear a face and dust mask if the cutting operation creates dust.
10. SECURE WORK - Use a clamp or vise to hold work. It is safer than using ye ur hands and it frees both hands to operate the machine. JEVFR Hots work W HANS
11. MAINTAIN TOOLS WITH CARE - Keep tools sharp and clean at all times for best and safer prformance.
12. DISCONNECT MACHINE - When not in use. (owondo Remelmang
13. REMOVE ADJUSTING KEYS AND WRENCHES - Form a habit of removing adjusting wrenches and keys before operating the machine. Do not leave parts or tools on the table.
*14. KEEP HANDS AWAY FROM CUTTING EDGES AND MOVING PARTS.
 into the electronics... VACUUM OR BRUSH ONLY.
14. NEVER RUN SPINDLE WITH COVER REMOVED - Exposed belts and pulleys are dangerous.

Unpack and inspect the machine as soon as possible after receipt. Save all packing materials until inspection is complete. These materials may be required for re-shipment should you find any damage.

The machine is bolted to a wooden pallet by four bolts. The cover is bolted to the pallet by twelwe screw bolts around the base of the cover. These should be removed first and the cover raised up and over the machine. The four bolts that hold the machine to the pallet can now be removed by partially sliding. the pallet over the edge of the table to expose the bolt heads from underneath. The machine can then be placed where desired (two people required). Save the bolts as they might be useful in permanently attaching the machine to a bench.

Inspect the machine for signs of damage. If there is any indication of damage, file a claim with thecarrier. For other damages refer to the WARRANTY Section of this manual.

STANDARD ACCESORIES
Open the tool box and shipping box containing the machine accessories. They should contain the following items:

ITEM DESCRIPTION QUANTITY

| 1. Wrench for collet nut | 1 |
| :--- | :--- | :--- |
| 2. Wrench for spindle | 1 |
| 3. Hex wrench keys | 8 |
| 4. Double ended wrenches | 4 |
| 5. Screw drivers | 2 |
| 6. Oilcan | 1 |
| 7. RS232 Cable | 1 |
| 8. Drain hose (2400) | 1 |
| 9. Protectivecover (2400) | 1 |
| 10. T-handlehex wrench | |
| 11. Leveling Bolts (2400) | 1 |

These accessories are used for adjustment, operation, and routine maintenance of the machine.

OPTIONAL ACCESSORIES

Optional accessories and the machine controller are packaged separately. Operation and assembly instructions for the optional accessories are included in their own shipping cartons. Operating instructions for the controller are containedin this manual.

PREPARATION FOR INSTALLATION
Refer to figure 1 for identification and location of the various operating controls and features of the machine.

For shipment the sliding tables and the power head are positioned in their most compact position and are locked in place with the slide locking levers. Unlock these levers by turning them counter clockwise half a tura.

Remove the shipping spacer between the head and the table. Clear off all shipping material debris from the machine using a cloth or a soft brush. Exercise care not to sweep any shipping debris into the table slides. Wipe the anti-rust protective coating from the table and sliding rails using a soft cloth moistened with a light oil or WD-40.

Open the carton containing the machine controller. Remove th packing material. Inspect for physical damage and dust off art packing debris from the surface of the controller using a clean soft cloth. Do not rub the display window excessively, as it can be easily scratched.

ASSEMBLY

Position the controller mounting bracket by loosening the four bolts at the rear and bottom of the machine base. Slide the bracket out until it is approximately $2-4$ inches away from the right side of the power supply. Re-tighten the boits after the bracket is so positioned. Place the controller into the mounting bracket.

The controller is plugged into the polarized connector that is J attached to the cable going into the top right hand side of the power supply module at the back of the machine.

Adjust the angle of the bracket by loosening the single bolt behind the bracket which permits the bracket to be swiveled.

Adjust the angle of the bracket for best visibility of the display and convenient operation of the keyboard and re-tighten the bolt.

INSTALLATION

The DYNA $2200 / 2400$ is a light (200 lb. $/ 290$ lb.) bench top type machine. It can be installed on any bench top capable of carrying its weight. It can be either permanently bolted down or left to stand freely on its base or leveling bolts. For a bolted installation, a hole pattern as shown in figure 2 should be drilled in the bench top, and the machine attached to it by using the four shipping bolts.

DM2200

DM 2400

Figure 2-Mounting Hole Pattern
The bolts are installed from the underside of the bench top into the threaded holes provided in che bottom surface of the machine base. Use a rubber washer (about 2 inches 0.D., 0.625 inch I.D. and $1 / 8$ inch thick) at each bolt location and between the machine base and the bench top. DO NOT tighten the bolts severely. Excessive tightening will distort the base and cause binding in the sliding tables.

POWER REQUIREMENTS

The machine requires a single phase power source of 120 VAC (220 VAC with optional power package), $50 / 60 \mathrm{~Hz}$. power requirements are $350 / 500$ watts for the 2200 and 2400 , respectively. If the voltage drops below 108 volts due to startup of other machines, the machine will performerratically during this "brown-out" period. To protect operating personnel the machine power cord is equippej witn three conductors and a rhree prong plug. When the machine is plugged into an appropriate three prong grounded receptacle, it is safeiy grounded.

```
CAUTION
The power receptacle supplying the power to the machine MUST BE a
three prong grounded type. DO NOT CUT THE ROUND GROUNDING PRONG
OFF THE MACHINE FOWER FiUG. Doing so is UNSAFE and voids all
warranty. The wiring polarity to the receptacal must also be
correct, (i.e. white wire to the SILVER terminal). If it is not
the machine keyboard operation will be erratic. To preserve the
protection feature when operating the machine irom a two prong
outlet, use a chree prong to two prong adaptor permanently
connected to a known gra|nd DO NOT attach the pigtail of the
adaptor to the cover mounting screw since these are not always
connected to a ground.
If an extension cord is used between the machine power cord and
the power receptacle, the extension cord MUST BE a 3-wire cord to
permit proper grounding of the machine. The wire size of the
extension cord should be NOT LESS than tinat Indicated in the
following table:
LENGTH UF EXTENSION CORD
WIRE SIZE
\begin{tabular}{ll}
25 to 75 foot & 18 AWG \\
100 foot & 16 AWG \\
200 foot & 14 AWG
\end{tabular}
If a transtormer is to be used, ensure it is of adequate wattage, and grounds connected on either side. .
```


Before plugging the machine intonthe porer receptacle, check the Following:

1. The main power switch on the left side of the rear housing is in the OFF (unpressed) position.
2. Rotate the spindle by hand to assure that it is free and there is no excessive friction.
/ 3 . The controller is plugged into the power supply.
3. The cord from the spindiehead is plugged into the power supply.
ك. The \bar{X}, Y, and Z cables are plugged into the power supply.
4. The locking levers on the three slides are unlocked (positioned fully counter clockwise).
5. The Quill is free to move up ana down by the use of the Quill lever. Position it in the uppermost position.
6. The spindle head can slide up ard down on the head elevate $=0$ i post. To do this, support tire head firmly at its bottom surface, unlock the head locking wheel/ lever by rotating it counter clockwise and move che head up and down. Position it at convenient locacion in the vertical position and align it so that it is perpendicular to the X axis table. Tighten the head locking wheel/lever so that the head position is firm.
7. Rotate the spindle speed dial through 3 fo degrees Le assure that it is free and position it at the lowest speed Resit: F
8. Lift the cover off the head and make sure the driving belt is mounted on the pulleys.

After the above checks have been made, plug the power cord into the power receptacle. You are now ready to machine as described in the next section.

$$
(O V \in R)
$$

DY/I/A

$$
\sqrt[A V C l]{d a}
$$

1234 Elmo Drive
Sunnyvale. CA 94089
(408) 734-0270

Twx: 9103399526 SUV

$$
\left(\sin t \text { UP cont }{ }^{\prime} D\right)
$$

[\sec PG 1-7 firs)
first connect, POWER ON PROCEDURE
theybend tr call

1. Turn power ON
2. Display \rightarrow "READY" \rightarrow answer "NO"
3. Emergency move \rightarrow "AXIS $\boldsymbol{7}^{\text {" }}$ select Z axis
4. With the up jogging button, move Z axis up allowing wood block to be removed. Remove wood block.
5. Touch the same up jogging button, Z axis will stop
6. Press the "NEXT" key -display "READY $7^{\prime \prime}$

SECTION 2
 MECHANICAL and
 ELECTRICAL OPERATION

The machine is generally operated from the controller keybcard. However, there are several mechanical adjustments and operations which must be done manually. These adjustments are describedin this section.

SPINDLE SPEED ADJUSTMENT

The range of the spindle speed is $0-10,000$ RPM. This is achieved in two steps by a change in the position of the spindle drive belt as shown in figure 3 .

Within each step the speed is continuously adjustable with the Variable Spindle Speed Control. This control is calibrated from 0 to 9 and the relationship between the calibration points and spindle speed are shown in Figure 4.

Figure 4 Spindle Speed Control Setings

The Spindle can be turned $O N$ and $O F F$ either manually or by an instruction in the program. For MANUAL control the Spindle ON/OFF control switch, which is located on the left side of the power supply must be in the LOCAL position. The spindle can be turned $O N / O F F$ by the $s w i t c h$ on the side of the spindle head.
With the spindle switch in PROGRAM position the Spindle will be turned on when the program encounters the SPINDLE ON instruction and off when the program encounters the SPINDLE OFF instruction.

The switch at the spindle head should be turned on in this mode before running the program. The program on command may be by passed during a program run by turning this switch off.

The entire spindle head can be lowered, elevated, and rotated on the head post. This is used to accomodate different tool heights and to provide greater access to the workpiece on the table. The head is adjusted by loosening the head adjusting wheel/lever on the right side of the head. CAUTION--hold the head firmly at the bottom when it is loosened otherwise the head will drop under its own weight. Adjust the height and position of the head as desired and tighten it. MAKE SURE THAT THE WHEEL/LEVER IS tightened firmly, otherwise the head will rotate under the load ON THE SPINDLE DURING THE CUTTING OPERATION. AS will be described later, the controller will be informed as to the actual position of the spindle relative to the table so the initial rotary position of the head is NOT IMPORTANT. However, if this position shifts during machining due to the machining forces on the tool and spindle then position accuracy will be lost. The head tightening wheel/lever must be tight enough to assure that the head does not rotate during machining.

QUILL ADJUSTMENT

The Quill can be lowered and elevated using the quill lever on the right side of the head. This permits easy adjustment for tool height during the set-up operation and during manual

- drilling. To adjust the quill position, the quill locking lever must be unlocked by rotating the lever counterclockwise one half turn. The quill is positioned by the quill lever to the desired height and then the locking lever is tightened by rotating it clockwise until it is tight. The quill travel can be limited at both the top and bottom positions. This control can also be used to obtain fine movement of the quill. This feature is used for control pecking increments in manual drilling.

The spindle nose of the machine is equipped with a tapered nose. This provides high centering accuracy and permits rapid change of tools, collets and accessories. The geometries and dimensions of the nose are shown below. Special tool holders for a variety of tools and a range of precision collets from $1-10 \mathrm{Mm}$ in diameter are available as optional accessories. Mounting of these are shown on the next page.

SPINDLE NOSE DIMENSIONS

```
secmpg
1) Insert the collet into the nut at an angle and engage the extraction tongue in the groove of the collet.
2) Screw the nut onto the collet holder (with the collet held in the nut).
3) Insert the tool to be gripped and then lock the nut using the two wrenches provided as standard accessories. One wrench is used to hold the spindle and the other to tighten the collet nut.
```


TOOL MOUNTING DIAGRAMS

ELECTRICAL OPERATIONS

Turn emergency stop button to the right to ensure it is disengaged. Turn on the machine by pushing the main power switch. The indicator light within the switch will light and the machine will automatically perform the following operations:

1. The display will ask READY? Press YES (pressing No will allow the user to move each axis. See machine halting in the next section.
2. The X and Y tables and the Z axis head will go to the home position, $\underbrace{\text { first }}$ then $X \&$.
3. The machine will measure the backlash on all three axes and will show the value of each (in MM) sequentially in the display.
4. The display will indicate:

MODE?

This is a prompt (ie. a request) to the user asking him to select the desired operating MODE. All operations of the machine are done from the keyboard of the controller.

BACKLASH MEASUREMENT

This measurement is very important for the correct operation of this machine. The user should switch the machine off and on several times to ensure that the values are consistent. They should range within .005 mm each time. This measurement is made on each axis electronically at switch-on by means of a special contact/pogo switch. These should be kept scrupulously clean. Both the $X \& Y$ axis have covers over these switches.

If the backlash measurements are erratic, this is usually a very good indication of particle or oil contamination. These contacts should then be cleaned with a light cloth. of am etches

If the backlash measurement is too large (the display will show this) it is an indication of either oil dry-out on the slides er the slide adjustment is too tight, (check the slide lock first). The user should only adjust the tapered slide screws as a last resort. (For the 2400 , the wiper holders mut be removed first).

If the axis does not move, please check the service manual.

SECTION 3 PERIPHERALS and ACCESSORIES

MACHINE ACCESSORIES

1. MECHANICAL

On the next page is a drawing of the tooling for the machine series. Further accessories are covered in the accessory brochure.

The ESX 16 collets are ideal for operations requiring only one tool. However the tool height is not repeatable for production use. For multi-tool operations in production, tool holders are required. Built into the language is the capability for Tool CHANGE under a variety of circumstances.

2. ELECTRICAL

1. ELECTRONIC PROBE

Opposite is an optional accessory called Electronic Probe that plugs into the power pack at the side. It is very useful for setup operations and is necessary for tool calibration if the user intends to use preset tool holders. Each one has slight variations in height (measured from the base to the top of the button) and the user enters this
 value into the controller under TOOL CALIBPROBE in millimeters.
2. FOURTH AXIS

This is an optional-stepper controlled rotary table accessory which plugs into the power section at the back. It is also built into the language as the U-axis.

The user may have an optional desktop interface console. It is shown on the next page. The basic unit without the printer or cassette option allows the user to enter programs at his desk directly into the cmos memory of the controller. He can then unplug the controller and replug it into the machine lo run his progran. He may also run his program at the desk for time estimation.

After entering the program, press the program run key, answer yes to NONSTOP? It will halt at SET UP. The user will have to go through this set up procedure to position the REF codDS correctly. Pressing the NEXT will restart the program run.

With the interface console, the user may add a 16 column alphanumeric printer and/or digital micro-cassettefor offline storage.

1. 16 CHARACTER ALPHANUMERIC PRINTER

Simply plug the unit into the back of the interface console, push \& the paper feed switch, and the paper will feed through the printer. To print out a program, go to LINE MODE and position the display at the PROGRAM START line then press the shift and READ/WRITE keys. The display willask

PRINTER ?

Answering YES will start the printer to print line by line, automatically. It will halt by itself when it comes to the END statement. It may be restarted by pressing the shift and READ/WRITE keys in the LINE MODE again. Pressing HALJ will stop the printer, pressing NEXT will restartit. Pressing a mode key will exit the controller from the printer.

The user will need to push the paper feed key manually if he wishes blank space beneath his program. Loading a new roll of paper is done by feeding the paper through the roller and pushing the paper feed key.

INTERFACE ACCESSORIES
4. THE MICRO-DIGITAL CASSETTE

Plug this in at the back of the interface console. The red light will come on to indicate power when the power switch is turned on. Now a word of explanation about how the data is organized. The controller holds 201 instruction lines, this is the line number amount available to the user. We call this afile. The FILE may contain a program of only 2 lines in length or it may be filled completely with a 901 line program.

of gol limen such

One micro-cassette will store 40 EILES. The user may choose to have 1 program per FILE per micro-cassette or he may choose to put several programs in each File with 40 files per cassette. If there exists a strong probability of cassette loss or damage, then the former situation may be preferable to the latter.

Each FILE has a number. It is up to the user to remember which program resides in which FILE. When the user wishes to store his current program onforgrams in the controler, he switches to LINE MODE The controllé will ask him WRITE?, he answers "YES." The controller will then ask for the file No. assignment. The user enters the FILE NO, hits NEXT key, and then the whole controller memory will be moved into the cassette. If the user has a file in tape, which is no longer used or required, it is necessary to clear the FILE NO. first with the clear' instruction (answer "No" to WRITE?, "NO" to READ?, "NO" to CLEAR ALL?. Enter the FILE NO. to be cleared and press the NEXT key.

A visual picture of the cassette would be a row of shelves with numbers on them. You may put in or take out one controller memory (file) at a time.

To read back, the user ("No" to WRITE?, "YES" to READ?) enters the required FILE NO. and it will be automatically transferred across. It will destroy any program currently residing in program memory. If the requested file cannot be found, the controller will so tell the user with a TAPE END message.
On the next page is the flow diagram for the printer and cassette.

天
11)STRUCTWMS
(1) GO TO LINE NO. MODE SELECT THE LINE WHERE THE PROGRAM STARTS
(2) TOUCH THE READNRITE KEY
(3) FOLLOW THE FLOW CHART

SECTION 4 CONVENTIONS

In operating and programming the machine there are certain rules and conventions which MUST BE FOLLOWED EXACTLY as they are defined. All machine moves are controlled by micro-computers in the controller. These micro-computers will recognize instructions only if they are entered in a certain way and in a specific sequence. All moves are executed by either the program in the controller or by pressing certain keys on the membrane keyboard of the controller.

Some of the general purpose rules and conventions are described in this section. Others, particularly those that affect programming, are described in other sections of the manual.

1. AXIS CONVENTION

Although the X and Y tables and the $s p i n d l e h e a d$ (Z axis) are the ones that actually move, it is conyenient to always view any movement as a MOVEMENT OF THE TOOL TIP', since this is the point that will be doing the actual cutting on the surface of the workpiece.

The diagram below shows the axis convention which has been adopted to describe the position and motion of the tool tip.

The three axes X, Y, and Z are always orthogonal or mutually perpendicular to each other. The intersection point of the three axes is defined as the Zero coordinate point and is expressed as ($0,0,0$). The tool tip position is always expressed in terms of its coordinate point in the following order (X,Y, Z). The numeric value and sign of each coordinate point is always relative to the Zero coordinate point. The signs of the coordinates are positive if the tool tip is positioned in the positive space and negative if it is positioned in the negative space as defined in the above diagram.

For example, if the tool tip is positioned two units to the right of zero the coordinate point is (2,0,0). If it is positioned 1 unit down along the Z axis and two units to the leftalong the X axis, its coordinate point is (-2, $0,-1)$.

The zero coordinate point can be placed anywhere want it to be. Later in the manual we will show why it is adyantageous to be able to place the 2ero coordinate at different locations. For now we will simply define and describe three positions of the zero coordinate which are often used in machining and programming. These positions are defined as the HoME Zerg, the REFERENCE Zero and the LOCAL Zero. Their relationship to each other is shown in the diagram below:

The HOME zero (point A) is defined as the position when the X, Y, and Z axes are physically at their limit suitches. When the machine is first turned on, it always goes to the HoME posifion.

The REF zero (point B) is programmed into the machine either in the $S E T$ UP instruction or by the PROGBEF instruction. It is the point to which all programmed FUNCTIONS are referenced.

The LOCAL zeto (point C) is specified by the user within a program. In programming, the user can set-up a local zero, do the operation relative to that point and then switch back to the REF zero or to another LOCAL zero.

Each of these special Zero positions is further discussed below.
2. The HOME 2ERO Position

The machine, as shown in the diagram below, consists of able which can move in X and Y axes and a spindle head which moves in the Z axis.

1. HOME POSITION

When facing the front of the machine, the movements are as follows:

| X | slide moves |
| :--- | :--- | :--- |
| Y | Lidet \longrightarrow RIGHT |
| Z slide moves | OUT |

The maximum travel in the three axes are:

$$
\begin{aligned}
& X=6.2 \text { inches } \\
& Y=5.0 \text { inches } \\
& Z=4.0 \text { inches }
\end{aligned}
$$

The HOME zero is defined as the position of the slides when they are at their limit switches. This occurs when:

$$
\begin{aligned}
& \text { The X slide is fully to the right. } \\
& \text { The Y slide is fully in. } \\
& \text { The Z slide is fully up. }
\end{aligned}
$$

The HOME zero is built into the machine. The user can not change it.
3. The REFERENCE ZERO Position

The REF Zero must be entered into the program-by the user. It can be placed anywhere within the working space of the machine. However it is advisable to place it so that it coincides with a point on the workpiece to be machined; preferably one to which all the dimensions of the part's machining geometry are referenced. This simplifies workpiece placement on the table during set-up and permits using most of the part's drawing dimensions directly in the program.

For example, most drawings, which show the geometry of a part to be machined, are dimensioned from the left and bottom edge of the part. If we made the intersection of these edges the machine's X \& Y REF Zero then we can use the dimensions given on the drawing directly, without doing any recalculation, as an input to the program. Likewise the depth of cuts on the drawings of the part are usually referenced to the top surface of the part. By using the machine's Z REF Zero we can also use all the given dimensions directly.

When a workpiece is first placed on the machine, we have to tell the machine where it is. A simple way to do this is to define some point on the workpiece as the REE Zeropoint, and then to tell the machine where that point is. The machine makes this operation easy by having a pre-programmed SET lle instruction. When the contreller comes to this instruction in the Rrogram it will step and allow the user to manually position the center of the tool tip at the desired reference point on the workpiece. This position of the X, Y tables and the spindle head is defined as the REFERENCE COORDINATE point. By entering this position of the table and head into the program, the machine then knows where that point is on the workpiece. Further details on the procedure used in $S E T U P$ are given in a later section of the manual.

If the part to be machined already posses a reference edge, then this edge must be precisely aligned parallel to the X or Y axis of the table when the part is clamped in place. The center of the tool tip must also be precisely positioned at the required point on the workpiece. If the part is to be machined out of a larger block then the block need not be precisely located since the edges of the part will be defined by the machine.

The machine controller has been preprogrammed to cut several commonly-used machining shapes. We call these functions. These consist of: Mill, Rect Pocket, Rect Frame, Circle Pocket, Arc Frame, Bolt Circle and Drill. All of these functions are referenced to the REF Zero.

4. The LOCAL ZERO Position

In machining several geometries on the same part, it is often not convenient to use the REF Zero point for all of them'. For example, in the geometry shown below if we were to machine the rectangle

by using the REF 2ERO we would have to do some calculations to find the coordinate points of the corners of the rectangle referenced to the REF Zero. On the other hand, if we define a LOCAL $2 E R O$ as shown, then we can cut the rectangle by referencing our moves to this point and using the dimensions as given in the drawing.

A LOCAL Zero can be set up by the user anywhere in the X, Y, Z space and anywhere in the program. It is used mainly to simplify programming and to avoid unnecessary calculations of coordinate points.

A LOCAL Zero is set up by using either the ZERO AT or the ZERO CoodS instructions within the program. Both of these instructions are fully described in the Programming section. For now we will simply say that the ZERO AT instruction tells the machine to set-up a LOCAL Zero at a specific coordinate point. The $2 E R O$ COODS instruction tells the machine to set-up a LOCAL zero at the point where the tool is at that time.

When the controller encounters these instructions in the program it will make all moves in the programbelowit as relative to this new LOCAL ZERO coordinate point. It will continue this until it encounters a REF COODS instruction which tells the machine to go back to the REF ZERO Or until it encounters another LOCAL ZERO coordinate instruction. It is possible to go from one LOCAL ZERO coordinate point to another or to return to the REFERENCE COORDINATES after each one.

Polar Coordinate Convention
The user may also represent a point in $X Y$ plane by means of polar coordinates.

$$
\text { Where } r=\sqrt{\left(X 1^{2}+Y 1^{2}\right)} \quad a=\tan ^{-1}(Y 1 / X 1)
$$

We follow the normal convention.
A clockwise movement to decrease "a" is defined negative in a Go RELATIVE angle move.

A counter clockwise movement to increase "a" is defined positive in a GO RELATIVE angle move.

Likewise, go relative positive will increaser. go relative regative will decreaser.

Default Convention

The controller must have a "zero" around which it can make the moves.

If a local zero is not set, then the controller defaults to the REF ZERO. If the TEF ZERO is not set, then it will default to the HOME ZERO.

SECTION 5 BASIC MACHINE OPERATION

The machine has four operating modes. The desired MODE is selected by pressing any one of these four keys:
MANUAL

PROGRAM
ENTER

ANTMARC
PROGRAM
RUN
When one of these keys is pressed the indicator next to it will light and will stay lit throughout the time the controller is in that mode. To exit a particular mode, press that mode key again.

The MANUAL Mode-is used for tool calibration and for manual operation of the machine. (and also certain diagnostics).

The LINE NO.MODE-is used for review of programs stored in the controller and for editing these programs.

The PROGRAM ENTER Mode-is used for entering a program into the contioller.

The PROGRAM RUN Mode-is used for operating the machine under program control.

The capabilities of all four modes will be briefly introduced in the following section.

MANUAL MODE
This mode is used tor
a. Calibrate the height of tools which are mounted in tool holders.
b. Calibrate the electronic probe.
c. Moye the machines X, Y, and Z axes, for manual operation (i.e. nonprogrammed machining).
d. Call up machine diagnostics.
e. Demonstrate the machine using a stored program.?

When the "MANUAL" key is pressed the controller will go into a sequence of pre-programmed prompts which will guide the user in selecting what he wants to do in this mode. A prompt is a question which appears on the controller display and which asks the user whether he wants to execute that particular operation. The user MUST respond by pressing either the YES or NO key. Depending on the user's response, the control $\overline{\mathrm{ler}}$ will either ask another question or it will exit the MANUAL mode by displaying MODE?, which is a prompt asking the user to select another mode. A flow chart of the MANUAL mode prompts is shown on the next page.

These are used to facilitate production runs where each part may involve several tools. The height of the tool is fixed with respect to the fpindle head and not sliding up and down as with a collet. The blesets measured for tools 2 to 8 are all with respect to toel. In the program, tool 1 must be used during setup. Any subsequent tool change will thus be referenced to tool 1 and the offsets will be corrected in tools 2 to 8 to make the height of the tool the same as tool 1. To calibrate the tools, the user must place tool i into the spindle and position the electronic probe directly below the tool tip on a flat surface of the workpiece table. The user must then press the NEXT key. The 2 axis will automatically descend until the tool tip touches the electronic probe whereupon the 2 axis motion will fitopand display tool 2. The user must now press the NEXT key againd this tells the machine that Tool 1 has been calibrated. The machine will respond by moving the 2 axis to the home position and display tool 2 .

The user must now put tool no. 2 into the spindle, place the electronic probe below its tip and press NEXT. The Z axis will again descend to touch the probe. Pressing the NEXT key again will result in the tool Z displayed and Z axis going up and the display will show tool 3. This sequence can be repeated for a maximum of 8 tools.

If fewer than 8 tools arecalibrated, the user can simply thit the HALDkey, and the controller will exit the sequence by displaying MODE?

MANUAL?
The purpose of this "sub mode" is to give the user a feel for the machine. It is exactly like a hand operated milling machine with a digital display on each axis, but the machine moves the handles for you. In some cases, it is much easier just to go to the manual mode, do some operations, and exit, rather than going through the program mode, especially if the user just wishes to drilla few holes.ete

The flow chart for this prompt is shown below. In this mode the user can operate the machine manually by moving the X, Y, and Z axes, one at a time, from the keyboard. Before he can do this however, he must respond to some prompts as shown in the flow Chart so that the machine knows at what rate to make the move and which dimensional system (ie. English or Metric) to use.

FLOWCHART FOR MANUAL?


```
On a YES IESponse to the MANUAL? prompt the display will show
EITHER..
INCHES? Or MM?
```

If the machine had been previously used in the English units, then- INCHES? will be displayed. If it had been used in the metric units then MM? will be displayed. In either case, a YES response by the user will put the machine into the next sequence of prompts. If the user response is No the display will then temporarily show the alternate selection of units and then will continue with the next sequence of prompts.

This sequence of prompts guides the user in specifying what $F E E D$ RATES will be used oneach axis and which axis will be moved. When the first $F R X X X X X \quad X \quad$ Promptappearsitwill display the value of the previously used feed Rate on the X axis. If the user wants to use this feed rate he simply responds by pressing NEXT. If he wants to change it, he responds by..

```
Pressing Cntering the new Feed Rate using the numeric keys, and
Pressing NEXT
```

After the X feed rate entry is completed, the controller will prompt the user through the \bar{Y} and Z axes and will. then display.

AXIS ?
The user has to enter the axis which he wants to move by pressing either X, Y, or Z keys. The display will then show the current position of that axis, i.e. If the user selects the X axis, the display will show:
$X=1.1605$ for example
This indicates the present position of the X axis. To move the X axis to another position, the user CAN

Press CLEAR.
Enter the desired position, then press the NEXF
key to move the axis to the new location.
The 4 ON/OFF and $\not \subset$ ON/OFF keys will move the axis continuously at the fixed feed rate of $\mathcal{l i n c h e s}^{2}$ perminute. One may clear the previous value and enter new dimension of axis and press NEXT key, the machine will move at the feed rate previously entered. The 0 insipe of 0.001 inches. In all cases, the axis movement will stop automatically when the above newly entered position is reached.

In this mode, the user can also perform the following manual operations from the keyboard.

DIAGNOSTIC

The flow chart for this prompt is shown below. As can be seen from this flow chart, the DIAGNOSTIC prompt has several branches which permit a variety of checks to be performed on the machine and controller to verify if it is operating correctly.

SUMMARY OF DIAGNOSTICS
CHECKSUM OF ROM This value should agree with the value on the back of thecontroller.

It is the software release number.
CMOS MEMORY CHECK This checks the CMOS memory. If bad, location and chip number will be indicated.

MOTOR CHECK At axis test? press any combination of X, Y, Z to be tested, then press the MEXT key. The axis will trayel to its maximum distance and return to its home position. This is very usefulin checking axis operation and in lubrication of slides.

DEMO See the next page.
\therefore montrent
DISTRIBUTION BOARD CHECK This is the board that the axis connectors plug into at the back side of the machine. When doing this test, the display will ask change connectors? The usex must doseomiegt the axis connectors and insert dummy plugs. Pressing the YES key will initiate the test. If the test fails, the bad chip will be indicated and the buzzer will sound. This test is used to isolate a fault, either in the motor driver board or the distribution board. For further information please see the maintenance manual.

This sequence also contains a DEMO program which cuts the following geometry.

This Demo program is written for use with a . 125 dian end mill and a $1 / 4$ inch thick 6×6 inch acrylic, plexiglass or aluminum sheet. The sheet must be placed and clamped in the center of the table. This program is automatically dumped into program location 700 to 830 and will start automatically as well. It will stop at set-up to allow the user to position the tool. If called, it will destroy any programs residing in this space.

NOTE: If cutting harder materials, the feed rate will have to be decreased.

This mode is used to select a line number for entering the program or for reviewing a current program line by lineguledine numbers range from 000 to 900 . Any line number can be f selected by pressing three number keys. When this is done the program instructions residing at that line number will appear in the display and can be reviewed. modification of a program statemont is possible in this mode. However, this mode has some editing features, which are described below:

INCREMENTING AND DECREMENTING LINE NOS.
Kine numbers can be incremented a line at a time by pressing the pressing the "RREVIOUS" key.

CLEARING THE MEMORY OI SECTIONS OF THE MEMORY
Press the CLEAR key. The display will read
CLEAR MEMORY?. Press the YES key and the display will read.

START LINE $\rightarrow n n n$

Enter the line number and press the Next key. The display will then show.

$$
\text { END LINE } \longrightarrow \pi n n-
$$

Enter the line number and press the NEXT key. The display will then ask.

Press YES and line numbers mn, to in will be cleared. Entering Q00 to 200 will clear the entire memory.

STORING/PRINTING PROGRAMS

The READ MRITE key is actinal in the LINE NO. MODE, only when the controller is connected to the interface console to permit printing and storage of programs. This is describedingreater detail in the PERIPHERALS section.

INSERT AND DELETE

The line mode allows the user to insert or delete a program line. Pressing INSERT (shift, \& previous) will automatically push the program down one line. Thus, for example if the program is as shown:

On pressing INSERT at line Q 02 , the user can then switch to program enter mode to insert an additional instruction.

Insertion can only be done if there are blank lines between the program end and the program start of the next program.
\rightarrow Noir ALWAys LEAVR SOMA BLANK LuIs
Deletion operates similarly so. FuR THis pun pare

Care must be exercised when using these instructions if skipping is used in the program.

PROGRAM ENTER MODE

In this mode the user can enter the program at the given in e number. Pres ing the "NEXI" key of the "PREVIOUS" key will confirm the entry. Program lines cant erased with the "CLEAB" key. Maximum program entry is 901 lines. For insertion or deletion of lines the user must switch to LINE NO. MODE. Programs must begin with a "START" instruction and must end with an "END" instruction. A blank is treated as no operation instruction and will be ignored during execution. Details on how to enter a program are given in Section 3 .

PROGRAM RUN MODE
Pressing this key initiates the program run mode. The user should position the display at the PROGRAM START either via the LINE MODE (enter the line number) or by backstepping through the program to the beginning of the program.

The controller goes into a recheck sequence to determine the following:

1. Does the program have ametartandanemid or END NEW PABT or END NEW REF)?
2. Do all REPEATS have REPEAT ENDS?
3. Do all SUBROUIINE calls have SUBROUTINES existing somewhere in the memory space?
4. Do all SUBROUTINES have SUB RETURNS?

The controller will stop in precheck at the line number in question if it can to flag the error, if not, it will indicate on the display the error. It does not check for going too far on the table, that is a run time error. If the precheck is correct the display will ask:

Pressing YES will start the program running. If No then the display will ask:

SINGLE STEP?
Pressing yES will cause the program to be run single stepped. Each move must be activated by the NEXT key. If NO then the display will return to:

MODE?

During the program run, the controller will stop at the SET up instruction. This allows the user to set the reference coordinates and has been explained in the programentry section. If not set, the instant the user presses the "NEXT" key, the UNSET coordinates will become SET at the machine home point and the program continues running.

The line display will indicate the current instruction being executed.

The controller recognises two kinds of halts.

1. PROGRAMMED HALT

This the user enters during programentry. The controller will halt at this instruction and will continue on the NEXT key.

During halt the user can exit, and iatact run another program elsewhere, (providing there is no alteration of fixed parameters like SETUP, TOOL DIAMETER, etc.) then RE-ENTER this program at the same halt location and continue running by pressing program run exactly as if it were at the start.

2. PRESSING HALT DURING PROGRAM RUNNING

This is not an instantaneous halt. The controller will halt at the end of the current moye and can be re-started by pressing the NEXT key. As in Programmed Halt, the user can do exactly the same moyes, however, if the halt occurs in the middie of a FUNCTION, re-entry is impossible, and the user has to back track to the beginning of the function to re-start."pochat" oyele Gumetrete In general, this exit re-entry has to be done with care, especially in the middle of loops.

Program execution will also be halted during the TOOL CHANGE Instruction. Depending on the type of "END" instructions the controller may automatically restart the program, recycle or simply go home. At any stage the user can push the ON/OFF switch (or emergency stop) to abort the operation. In this event, the user will have to re-start the profram from the beginning. Also at any stage the user can start or halt (go to another mode e.g. do a program change) and then restart.

TOOL BREAKAGE
The tables can generate a thrust of 80 lbs. This is sufficient to easily break 0.25 inch end mills. The best way to handle this is to touch the HALT key then unlock the spindle lock and raise the spindle. Recovery may or may not be possible. Since Z ref is lost, this will have to be reset with a new end mill.

The user can restart the program at the beginning and go through SET UP to adjust Z and clear 2 , then jump through the program to the last position and continue. If a function is involved, it has to be at the beginning for restart.

JAMMING

Sometimes a program move is made that hits the clamp, some jig, or the feed rate is too fast. THE USER SHOULD HIT THE EMERGENCY STOP SWITCH, free the spindle lock, clear the obstruction then restart. It is not possible to recover from such a situation.

If the spindle is jammed for an excessive length of time, the circuit breaker will pop. This has to be reset. It is located under the belt cover next to the motor.

If the user has so jammed the machine up that re-initialisation is impossible (egg., a saw blade locked in horizontally so that the Z initialisation is inhibited) the user should answer NO to the READY? at switch on. The user can then select the $X, Y, 0 r Z$ axis and use the \square or \square keys to move the table to free the obstruction. Touching the NEXT key and answering YES to READY? WIT automatically -reinitialise the machine. These moves should be used with extreme caution.

SECTION 6 PROGRAMMING WITH PROMPTS

To simplify the entry of programs and to assure that all the data required to execute a program is entered, the machine controller has been preprogramme to guide the user in making data and programming entries wherever possible This is done by displaying a "prompt" on the controller display. The user MUST respond to the prompt. If he does not respond, or if he responds incorrectly, the controller will halt and will not go on to the next step or accept any other entry. There are two kinds of prompts. One is a question prompt. The other is a data entry prompt.

$$
\begin{aligned}
& \text { data eating }
\end{aligned}
$$

This prompt asks the user whether the dimensions for this program are in inches. The user must respond by touching either a Yes or a No key. If the user response is a YES, the controller will then display:

$$
000 \text { START INS AN }
$$

By removing the question mark after "inch" in the display, the controller indicates that it has accepted the instruction and is ready to go on. If the response had been a No, the prompt will change to:

000 START MM?

Since there are only two choices, inches or millimeters, the response this time must obviously be YES. All question prompts must end up with a YES before the controller will continue to the next step. If the response to the above had been No the controllet will simply cycle back to:

$$
000 \text { START INCH? }
$$

An example of a data entry prompt is:

$$
002 \mathrm{TD}=?
$$

This prompt requests the entry of numeric data, in this case, the desired tool diameter for the program. The user must enter the desired value using the numeric keys. Since the machine does not know when the entry of numeric data has been completed, the user must tell it. This is done by pressing the NEXT key after the last number has been entered. If the NEXT key is not pressed to terminate the data entry, the controller will not go on to the next step.

DEFINITION AND REQUIRED USER RESPONSE

Requests an entry of a number between 0 and 99. A single digit entry must be entered as 0n. Example 5 inches is entered as 05 .

Asks if a finish cut is required. Response is YES or No. If a finish cut is specified, the tool will be offset by .0064 inches from the final dimension in making the first cut in the $X, Y, Y_{\text {\& }}$ Z axes. After completion of the operation the tool will return to remove the extra. 0064 inches of material from the sides (X \& Y) and bottom (Z).
fotal depth ef etin the Z axis relative to the reference Z plane. Requires a numeric entry.

This is a vector value that defines a new surface height from the original Z reference. It is used when the surfaces to be cut are nested as illustrated below: Observe $2 H$ is negative in this case. $2 H$ is zero when the operation occurs at Z Ref. NOTE that the depth of the first operation becomes the $2 H$ for the second operation.
$Z+$

The distance the Z axis is lowered on each pass a the dise a multipass milling operation. Always expressed as the moled a percentage of the tool diameter. FOR EXAMPLE: If the tool diameter is $0.25^{\prime \prime}$ then... $2 \% 050$ will lower the tool $0.125^{\prime \prime}$ on each pass. $2 \% 100$ will lower the tool. $250^{\prime \prime}$ on each pass. $2 \% 200$ will lower the tool 0.5" on each pass. As 2% decreases, the number of passes will increase.

XY CUT \%nn
Specifies the amount of cut that is made in the $X Y$ plane on each pass in a pocket mill operation. Always expressed as a percentage of the tool diameter. FOR EXAMPLE: XY CUT \% 050 means that half the tool diameter will be in the work in the XY plane.

FR AXIS ?
FEEDRATE on the X, Y, and Z axes. The range of permissable values is 10 to 32 inchesfminof .25 to $80 \mathrm{CM} / \mathrm{min}$. The user can specify the same feed rate on all axes or a different one for each axis.

Any of the following three entries are acceptable:

Asks if the cut is to be made on the inside of the pattern outline. The response must be YES or NO. If No the prompt will change to 0? This asks if it is to be on the outside of the pattern outline. If the response is still No, the prompt will change to ?. This asks if the cut is to be made on the pattern outline. In this case the response must be YES. If the response is still No, the prompt will cycle back to i?.

Asks the user to enter the value of the diameter of the tool.

TOOL CALIB? Asks if the tool calibration is to be done. Response must be a YES or NO.

Asks if the thickness value of the electronic probe accessory is to be entered into memory. The response must be YES or NO.

Asks in which MODE the user wishes to operate the controller. There are four Monk keys on the controller. The response is to press the desired mode key.

Asks for an entry of either X, Y, or Z axis from the keyboard. Response is to press X,Y, or Z keys. In some cases as in the Feed Rate prompt, all three axes can be entered in response to this prompt.

This occurés during the Tool Cali sequence. This is a simple indicator to the user as to which tool is being calibrated.

Asks the user to enter the numeric value of the $K y$ or Z coordinate point. The modifier 1,2 simply identifies the specific point. A and B specify the dimensions on X and Y.

Asks the user to enter the $X \& Y$ coordinates of the geometry used in circles, arcs \& bolt circles.

Asks the user to enter the value of the angle through which the tool will start.

Asks the user to enter the value of the angle through which the tool will move.

SECTION 7
WRITING
A
PROGRAM

ENTERING A PROGRAM

We have to locate the program somewhere in the $000-900$ line space. The user may wish to clear the entire memory or locate an area in memory which is free (LIN EMODE, line number). For simplicity, we shall assume a cleared memory and we are starting at line number 000 . To enter a program simply press the "PROGRAM ENTER" key. We go down the left most column of keys.

Pressing this key
Results in this display

1. START
000 START INCH?

The display is asking the user to specify whether the dimensions of the geometry that will be machined by the program are in inches. The user must respond by pressing either the YES or No key. When either one is pressed the display will change to either one of the two examples shown below, depending on whether the answer was YES or NO.

Pressing this key
Results in this display

NO

000 START INS nn ?
000 START mm?

which must be confirmed by pressing the YES key and the display will show

| 000 | START $\mathrm{mm} \quad \mathrm{nn}$ |
| :--- | :--- | :--- | :--- |

The controller has now been programmed to recognize all subsetquant dimension data entries in this program as being either inches (case 1) or millimeters (case 2). Other programs which are stored in the controller memory can be in either inches or millimeters. To insure that the user remembers which system he is in, all subsequent prompts for data entry in a program that was set-up for inches will have four digits after the decimal point. A program which was set-up formititeters will have data entry prompts with thee digits after the decimal point.

The display has also shown a new prompt no. This is a request to enter the Program Identification Number This number can be any number from 00 to 99 . Single digit numbers must be entered as "On". Example, 5 is entered as 05 . It is simply a user convenience.

To enter the number, the user must touch the corresponding numeric keys and the NEXT key.
2. The fallowing (which may be required) is...

Resulting in this display..
the TOOL DIAMETER hay
$001 \quad \mathrm{TD}=$? $\longrightarrow 250$ thant
The tool user must enter the numeric value of the diameter of the tool using the numeric keys and touch NEXT. The tool diameter information is used by the controller to compensate for various kinds of cuts. If a tool is changed further in the program, by the use of the TOOL CHANGE statement a new tool diameter must be entered into the program following the TOOL CHANGE line number. If no number is entered for the tool diameter, the controller will assume it is the same as before.

Clearly, if we are only going to drill, then we can skip this key.
3. The text key in this start section is the feedrate. Pressing

FEED RATE

2) This must be followed by a numeric entry

Note that the leading zero must be entered in fractional speeds.
If no feed rate is specified, then the default speed is mid range. (8 ins/min)

The feed rate can be changed anytime, one axis or all at any stage in the program. Thus our feed rate may be specified as for example.

002 FR $\quad X Y Z=10.0 \quad$ or $002 \quad F R \quad X Y=10.0$
003 FR $Z=2.0$
In general. tougher materials require slower speeds. Plastics $(10-16)$, Aluminium $(5-10)$, Steel (0.1-5) inches per minute. TYP FEED RATES A

The next and last line in the START section of the program is: SET UP 003 SET UP $\rightarrow 2$ CXYU This prompt is simply entered into the program by pressing NEXT. When a workpiece to be machined is placed on the table, and the controller is placed into the PROGRAM RUN MODE the program will stop at this promptiand will wait for the entry of the required information.

This prompt asks for the entry of the reference point for the Z, X, Y, and U coordinates. (The U coordinate is used only when an optional rotary table is in use). This is a point in space, or more usually on the workpieee, to which all workpiece cutting geometries and their dimensions are referencedin this program. The information for this point is entered into the program ONLY by physically positioning the center and tip of the tool at this point. This infermation cannot be entered from the keyboard as the machine does not know where the center and tip of the tool is until it is positioned there. During the time this prompt is displayed, the the following keys are activated:

NO
2

SET UP REF	
0	
PROG.	REF

Moving axis at a constant rate. Must be retouched to stop

Jog increments. 001 inches on each touch.

Rotate to select axis to be set.

Set ref. cood here.

CLEAR
Clear this ref.

There are two ways to set the SET UP point in space

1) MANUALLY Or
2) GITH THE PROBE

$$
7-4
$$

1) MANDAY SET UP

The entry of data required by the SET-UP $\rightarrow z c x y u$ Prompt is done in the following way. The arrow in this prompt is always pointting to the axis to be set. In this case, the z axis which is usually the first axis to be set. The Z axis (spindle head) is
 keys or by moving the quill with the quill adjusting lever, until the tip of the tool JUST touches the Z reference plane. This position of the Z slide is now entered into the programas the Z REFERENCE by pressing UET UP REF KEY. The lower case 2 will change to capital 2 , indicating that it has been set. One can clear the entry by pressing CLEAR which case Z will revert to 2.

If the quill is moved manually, it must be locked in this position for the duration of the program.

At this stage having set the Z reference, the display will show:
003 SET UP \longrightarrow Zcxyu

We wish now to set clear (abbreviated to C). Touch the No key.

The display will then rotate to:

and we are ready to set. the clear Z reference. This is the position that the tool tip will be elevated to when the tool moves from one operation to another. It must -be set to clear the highest surface on the workpiece but not ceo high as to minimize useless move time. The spindle head is now moved by pressing
key until the tool tip is visually observed to be in the clear position. Press foN/OFFkey again to stop. This position is entered by pressing the SET UP REF key. The display will show:
\square

If this operation is not performed, the default CLEAR 2 position is the HOME or (Z MAX) position.
 Pressing the NO key will again rotate the display to:
 $$
\text { SET UP } \rightarrow x y u Z C
$$

The x, y, and u axes are now set up following the same procedure.

 position the tool point at the reference point. Simply select, by the N @ key, which axis is required. It will only be set when the user presses the SET UP REF key, and the axis goes from lower case to upper case.

Moving an axis will not affect the SET-UP point on that axis if set.
2) After the reference point is set in all the axis and clear 2 is set, the user presses the NEXT key to continue running the program.
3) If the set up instruction is ont included in the program, the REF point defaults to the hompposition. This may cause error coods because of tool offset when running a program.
4) If the $S E T-u p$ instruction is included in the program, but the user simply presses the NEXT key (essentially bypassing the setUP procedure) the REF point will default to the home position again and will have to the same error code as (3).

The user may execute some go statements from the HoME position before $S E T-u p$ and jog the part to the tool tip. Then the only SET-UP the user requires is Z and clear Z.
5) Once the set up instruction is concluded and the operator has continued on, the letters will revert back to the lower case WITHOUT loss of their set up ref points.
2. PROBE SET UP

For the Z reference, place the probe on the surface to be referenced and touch the toN/OFfkey. The tool tip will descend and stop when the button on the probe is touched. The display will then show:

SET UP $\longrightarrow \mathrm{Zcxyu}$
At this time you may remove the probe and press No to rotate the display to:

SET UP $\longrightarrow \mathrm{cxyuz}$
Press ON/OFFto raise or adjust the tool tip to set clear Z.
Remember to press again to stop.
Press SET UP REF to set clear Z so the display will show:
SET UP \longrightarrow CxyuZ

Press NO to rotate display to:

$$
\text { SET UP } \longrightarrow \text { xyuZC }
$$

To set X the user may have to lower Z further to arrange the following configuration.

The X or Y ref will be taken as TOOL RADIUS + PROBE OFFSET and set at that point.

NOTE:

1) The $S E T$ UP reference points are not stored in the controller when the power is turned off. They are automatically reset to zcxyu (i.e. all references are cleared on power off).
2) There can be more than one SET UP per program.
3) At the $S E T$ UP stage one can display the current location of the axes by this sequence of keys.

DISPLAY

4) If the axis is not set and the user touches the next key, XYZ will default to the home position in space and clear Z set at 2 max.
5) Tool diameter must be entered beforelone can do the set up operation.

All the machine parameters have now been entered and this terminates the START SECTION.

THE MIDDLE SECTION

This section contains the program for machinemores coordinate changes and dimensional data of the geometry to be machined. The program can be entered by using the single keystroke prepregrammed functions (SKIP SYSTEM), or high level DYNALAN language statements or a combination of both.

In this first example, we will use the SKIP SYSTEM. Pregramming iq DYNALAN will be described in a later section.

PROGRAMMING WITH FUNCTION KEYS (SKIP SYSTEM)
In this method, the most often occuring machine geometries have been preprogrammed into the machine controller Rom (Read only Memory) as subroutines. Seven of these are identified below.

These geometries are printed in blue on the botom half of some of the keys. They are accessed by pressing the SHIFT key on the lower left hand side of the keyboard. When the SHIFT key is pressed, the red light next to it will light. After an instruction requiring a shift is executed, the shift mode will automatically reset and the light will go out. The SHIFT key must be pressed EACH TIME a blue instruction is to be entered.

When one of these function keys is pressed, the controller display will respond with a series of prompts which ask the user to enter the information that is required to execute that particular geometry.

We will illustrate this method by using the "CIRCLE POCKET" function as an example.

The geometry of this function is shown below:
This function generates a circular pocket of radius ri with a center
 Rost of radius r2. The materialin the shaded portion will be removed. The center of the geometry is at XC and YC relative to the REFERENCE COORDINATE POINT. If r2 is zero the post disappears. The total depth of the pocket is Zd. Maximum R is 2. 75 inches. r2 should not exceed ri-Tool diameter. When r2 \quad r1-Tool Diameter, we get a Circular Frame Cut.

When the "CIRCLE POCKET" key is pressed the display will respond with the following prompts which will appear in the sequence shown on next page.

The above program constitutes the MIDDLE SECTION of the progratin. Programming with FUNCTIONS requires only simple responses to question or data prompts. The middle section of the program can contain several of these functions and/or DYNALAN statements.

```
Additional functions are described in the AVAILABLE FUNCTIONS
section.
    PG &-1
For this illustration we will stop with just this one geometry
and will now enter the END SECTION of the program.
```


3. The END Section

All programs must be terminated with an END statement, otherwise the machine does not know where one program stops and another one begins. This is done by pressing the END key. Since there are several possible endings to machining program, the END key has been programmed to give the user several choices by using appropriate prompts. A Flow Chart of the END key prompts is shown below.

FLOWCHART OF END STATEMENT

The simplest ending is just END (press No key TWICE). This is used when we wish to machine one part or to debug a more complex ending.

The program can be run again on fresh part but the user has to go through the SET-UP procedure again. This can berexy inconvenient. Hence the user should select the END NEWPART Jending (NO, YES) for repetative machining.

The parts to be machined should be located in a jig. On the first run through, the machine will halt at SET-UP, allowing the user to set the reference point. This reference point is stored. After running the program, the controller will encounter the END NEWPART statement. The following happens:

1) The spindle head is retracted (Z to Zmax) to provide clearancefor removal and insertion of fresh part.
2) An XY move takes place to the home position to check location. This corrects for accumulated error that may occur in very long sequential incremental arc moves.

3) END NEW REF

The program can be replicated on the same workpiece by two ways assuming that Z and clear Z remain constant.

1) ELSEWHERE Here the user enters nathe number of times followed by the nn coordinates of each reference point on the $X Y$ plane.
2) REPEAT The X number and X spacing followed by the Y number and y spacing will replicate the program periodically on the workpiece on the $X Y$ plame.

Upon termination of these programs, the controller effectively sees an END NEGPART instruction and will automatically go into this mode. $=\operatorname{Nof} \theta$
The set up point will still be the original set up point. So the The set up point cycle through additional fresh parts to be machined.

SECTION 8 AVAILABLE FUNCTIONS

MILL
The entry format is:

dostruatiog of To to
 blank

- $2 \mathrm{H}=$
$2 \mathrm{~d}=$
Total depth
XI $=$ START GOODS
$Y_{1}=$
$\mathrm{X} 2=\mathrm{END} \operatorname{COODS}$
$Y 2=$
ELSEWHERE?
(NEW X1Y1, X2Y2 ?)

REPEAT?

This function mills a slot from point (X1,Y1) to point (X2, Y2) on the $X Y$ plane. It will cycle back and forth with each Z increment a percentage (2% nan) of the tool diameter until dis reached. The width is the tool diameter.

NOTE: With the REPEATED capability, angled pocketing is very easy easy, For example, the six milling operations required to achieve the angled pocket as shown below are done by REPEATING the MILL INSTRUCTION and then removing the top and bot om radii via an ELSEWHERE instruction.

$=$

FLOWCHART FOR MILL

EXAMPLE OF MILL

The program using MILL would appear as:

FRAME

The entry format is:

FRAM (F) i 0
blank
$Z H=$ Surface displacement from Z ref

Zd = Total depth

X1 $=$ Coordinates of lower $Y 1=$ LHS of rectangle
$X A=$ Length of rectangle in X direction
$Y B=$ Length of rectangle in Y direction

ELSEWHERE? (New X,Y, XA,YB)

REPEAT?

This will cut a rectangular frame in the XY plane. If the cutting is to be on the rectangle there is no finish cut. The tool offset is increased by .0064" if the finish option is exercised and a second pass is made to remove the .0064" For either inside or outside a climb cut is made (inside: counterclockwise, outside: clockwise).

NOTE: For smaller diameter mills, care must be exercised in specifying the Z feedrate. Too high a rate will produce skitter (i.e. the tool will deflect during entry). Similarly if the mill is extra long, plunge cutting at too high an X, Y feedrate will result in deflection of the tool, or tool breakage.

FLOWCHART FOR RECTANGULAR FRAME

The program using the RECT FRAME would be:

001 START INS
001 TD = . 125
$002 \mathrm{FR} \mathrm{XYZ}=8.0$
003 SET UP $\rightarrow 2 \mathrm{cxyu}$
004 FRAM F i $2 \% 050$
$005 \mathrm{ZH}=0$
$006 \mathrm{Zd}=.128$
$007 \mathrm{X} 1=.2$
$008 \mathrm{Y}_{1}=.2$
$009 \mathrm{XA}=.4$
$010 . Y B=.2$
011 REPEAT X 02
$012 \mathrm{Xi}=.65$
013 REPEAT Y 03
$014 \mathrm{Yi}=.45$
(ELSEWHERE) YES
$015 \mathrm{X} 1=3$
$016 \mathrm{Y} 1=.65$
$017 \mathrm{XA}=.8$
$018 \quad Y A B=.2$
019 REPEAT X 01
$020 \mathrm{Xi}=0.0$
021 REPEAT Y 04
$022 \mathrm{Yi}=0.5$
023 END

RECT POCKET

The entry format is: RECT (F) i

$-2 \mathrm{H}=$
$2 \mathrm{~d}=$
$\mathrm{X} 1=$
$\mathrm{Y} 1=$
$X A=$
$Y B=$

2\% nan (note: inside only)
$X Y$ cut\%nnn

ELSEWHERE? (new X, Y, and $X A, X B$?)

REPEAT?

This function generates a rectangular pocket in the (XY) plane. If a finish cut is done, the tool offset is increased by . $006^{\prime \prime}$ and the 2 d is decreased by $.006^{\prime \prime}$ as well. The finish cut will clear out this additional $.0064^{\prime \prime}$ from the sides and the bottom. The sides will be a climblcut. tied
Do not make id greater than the cutter length or the tool may be damaged.

Each pocket pass will be at 2% of the tool diameter, so if the tool diameter is $0.25^{\prime \prime}$ and 2% is 50% then each pocket pass will be $0.125^{\prime \prime}$ deep. The last pass will. remove the remainder.

NOTE 1: Removal of large corner radii in Pocket cuts is frequently a problem because one wishes to excavate at maximum speed with a large diameter tool while still maintaining small corner radii. The solution is very simple. Use a large diameter tool for the major excavation and the desired radii tool for 4 small pocket excavations at the corners. A TOOL CHANGE will be requried after the major excavation.

The secondary pocket is a simple repeat ($X=2, \quad Y=2$) for each corner. The user must evaluate the time trade off between using a small tool all the way or the sequence of a large tool, a tool change, and a small tool.

Note 2: Surface Milling. For surface preparation it is frequently necessary to face mill the entire surface. Using 2. 5" dia. Face mill cutter, simply treat the entire surface as a pocket cut with a very shallow depth. The depth should not exceed . 010" and observe that the minimum 2 increment (.01\% of 2.5") is . $025^{\prime \prime}$ so the pocket pass would be a remainder cut.

NOTE 3: With small diameter mills it is essential that the feed rate be reduced. Excesive feed rates produce tool bending resulting in inaccurate pocket dimensions.

NOTE 4: The ELSEWHERE? and REPEAT? statements are very powerful. Pocketing is additive, so for irregular shaped geometries formed from lines parallel to the X and Y axis partitioning into subrectangles is always possible.

The trick is to partition the areas into slightly overlapping rectangles to eliminate the radii at the corners. The circles denote the coods which have to be entered sequentially in the ELSEWHERE request.

Alternatively 3 can be entered first, 2 and 1 are Repeats along the Y axis, $(X=1, Y=3)$ and $4,5 \& 6$ can be treated as ELSEWHERES. This will clearly hold for island posts within the rectangles as well.

FLOWCHART FOR RECTANGULAR POCKET

CIRCLE POCKET

The entry format is:

FLOWCHART FOR CIRCULAR POCKET

CENTER OF CIRCLE
outside radius
inside radius

The program would be:

```
000 START INS 01
001 TD = . 125
002 FR XYZ = 10
003 SETUP->zCXyU
004 CIRC F Z% 050
005 XY CUT % 050
006 ZH=0
007 Zd = . 25
008 XC = 1
009 YC = 1
010 r1 = . 5
011 r2 = . 125
    (ELSEWHERE)
012 XC = 2.25
013 YC = 1
014 r1 = 1
015 r2 = . 125
016 END
```


FLOWCHART FOR ARC FRAME

ARC EXAMPLE

Program becomes:
000 START INS 01
001 TD $=.125$
$002 \mathrm{FR} X Y Z=10$
003 SET UP $\rightarrow 2$ cxyu
004 ARC o 2\% 050
$005 \quad 2 \mathrm{ZH}=0$
006 2d $=150$
$007 \overline{\mathrm{XC}}=2.0$
$008 \mathrm{YC}=-13.0$
009 A1 $=81.787$
010 \&2 $=16.426$
$011 \quad \underline{r}=\underline{\underline{r}}$
012 END
8-18

DRILL

The entry format is: \quad RRIL PECK $=n n$

Peck = nn are the number of pecks required, nn=00-99. The total number of pecks $=$ n \boldsymbol{T}, where the extra 1 is the remainder. These pecks are bigpecks. (i.e. the tool will return at maximum speed to the surface to completely clear the drill. On the way back in, it will go at maximum speed within . $005^{\prime \prime}$ of the last depth, then continue at the specified feed rate for the peck amount.

NOTE:

1. If tapping, there must be no pecking, so $n=0$.
2. The COODS for subsequent holes (as in ELSEWHERE \& REPEAT) Must be consistent with the first. (i.e. all referenced from the same COODS).
3. For REPEAT the following rules must be observed: For an array of holes, enter the number required along the X axis with the interval Xi, then the number required along the Y axis with the interval Yi.

REPEAT X nn from $00-99$
$X_{i}=$
REPEAT Y nn from 00-99
$Y_{i}=$

The program would be:
000 START INS 01
001 FR XY 16
002 FR 210
003 SET UP $\rightarrow 2 \mathrm{Cxyu}$
004 DRIL PECK=02
$005 \mathrm{ZH}=0$
$006 \mathrm{Zd}=.25$
$007 \quad X=.4$
$008 \quad Y=1$
009 REPEAT X 04
$010 \mathrm{Xi}=.150$
011 REPEAT Y 05
$012 \mathrm{Yi}=.150$

(ELSEWHERE)		(ELSEWHERE)		
013	$X=1.4$	019	$\mathrm{X}=2.4$	
014	$Y=.8$	020	$Y=.3$	
015	REPEAT X 05	021	Repeat	X 01
016	$\mathrm{Xi}=.150$	022	$\mathrm{Xi}_{\mathrm{i}}=0$	
017	REPEAT Y 09	023	REpEAT	Y 14
018	$Y \mathrm{Y}=.150$	024	$\mathrm{Yi}=.1$	
		025	END	

FLOWCHART FOR DRILL

The entry format is: BOLT PECK=nn innonofof pecks

This function generates up to 99 drill holes each pecked na times to a depth $Z d$ on a circle of radius rat center (XC,YC).

If a greater aumber of holes aredesired, as for example in encoders, simply use another boLT CIRCLE in the same place, adjusting al the starting offset appropriately. For example, if we require 100 holes each at 3.6 degrees, do 50 at al $=1.8$, then 50 at a $1=3.6$ degrees.

FLOWCHART FOR BOLT CIRCLE

BOLT HOLE EXAMPLE

The program would be:
000 START INS 01
001 FR XY = 16
002 FR $Z=8$
003 SET UP \rightarrow zCXYu
004 BOLT PECK $=0$
$005 \quad 2 \mathrm{H}=0$
$006 \mathrm{Zd}=.1$
$007 \mathrm{XC}=2.0$
$008 \mathrm{YC}=2.0$
009 a1 $=1.8 \mathrm{deg}$
$010 \quad N=50$

$$
\begin{aligned}
& 012 \text { BOLT PECK = } 0 \\
& 013 \mathrm{ZH}=0 \\
& 014 \quad 2 \mathrm{~d}=.1 \\
& 015 \mathrm{XC}=2.0 \\
& 016 \quad \mathrm{YC}=2.0 \\
& 017 \text { a1 }=3.6 \\
& 018 \quad \mathrm{~N}=50 \\
& 019 \text { r }=.75 \\
& 020 \text { END }
\end{aligned}
$$

SECTION 9 A USER EXERCISE

A US AR EXERCISE

The best way to learn anything is to do it. We are now at t stage in the manual where some "hands on" experience is the be way too learn the features and capabilities of the machine. Th exercise will take you step-by-step through simple programming a machine operation under program control. However, if you wish y can skip this section and go on to the programming principles.

Users who have never operated a computer -controlled machine, but are familiar with hand operated machines are forewarned. There are mandes on this machine. You cannot start machining at random and sneak up on the final geometry. You must know prescisely what you want to machine and all the dimensions of the geometry. Once this is understood and you have done a few machining exercises you will realize that this is the only way to go.

Users who have never machined anything before will, after a few exercises, realize that they can turn out parts with a precision and repeatability that would have required years of machining.

It is recommended that users do atrial run in plastic to get the feel of the machine. Acrylic or plexiglass, and delia are excellent materials. Cast resins are terrible as the material melts and sticks to the tool. Since there is no mechanism built into the machine to prevent the user from milling or drilling the cast iron table inadvertently, we recommend that initially thickness of the workpiece be at least $1 / 2$ inch. This provide enough time to hit the emergency stop button when the 2 axis does not stop where you thought you programmed it to stop. The size of the piece should be about $5 \times 6^{\prime \prime}$. This workpiece should be adequately clamped to the table.

Put a $1 / 8$ inch diameter mill with a $3 / 8$ shank into the $3 / 8$ diameter collet and lock tightly. Make sure the mill is a plunge cutter (i.e. the cutters go to the center of the tool). Some cutters are used only for edging and are not designed for plumging. Lower the head as far as it will go on a vertical shaft and lock tightly. Extend thequill_3/4" approximately to give room for adjustment in height. Put the spindle motor mode switch in the MANUAL MODE. This switch is directly below the main ON/OFF s witch. Switch the machine on and after it has figured

At this stage let us clear all the memory. Press the LINE MODE key and then press the Clear key. Enter 000 , then 900 , and answer YES to "are you sure?"

Answer

At this stage we are free to select the stating in us keep it at 000 for now. Press the PROGRAMENTER key, the ref light next to this key will come on. We are now ready to enter the program. Let us make a pocket rectangle as shown below:

Remember, we are entering the start section of the program, so we will have to enter all the machine parameters by pressing start, TOOL DIA, FEED RATE and SET-UP keys in that order. Press the START key. The display will show:

$$
000 \text { START INCH? }
$$

Press the YES key. The display will show:

$$
000 \text { START INS } \mathrm{nn}
$$

This is the program Identification Number. Enter 0, 1 . The display will show:

```
000 START INS 01
```

Press the NEXT key and the display will show the next line 001

Press the TOOL DIA key and the display will show:

```
001 TD = ?
```

Enter . 125. The display will show:
001 TD $=.125$
Press the NEXT key and then the FEED RATE key. The display will show:

```
002(FR)Axis=?
```

We will use the same feed rate of 10 inches/millimeter on all axes so touch X, Y and then enter 10. The display will show:

$$
002 \mathrm{FR} \mathrm{XYZ}=10.0
$$

Press the NEXT key and then the SET-UP key. The display will show:

The machine is asking what width of cut we want to use in the $X Y$ plane. We will use the same 50\% for the XY cut, so enter 050 . The display will show:

$$
005 \text { XY Cut\% } 050
$$

Press the NEXT key, the display will show:

This is the offset, which in this case is 0. Enter 0, display will be:

$$
006 \mathrm{ZH}=0
$$

and press the NEXT key. The display will show:

$$
007 \mathrm{Zd}=\text { ? }
$$

This is the total depth of the pocket. The drawing calls for 0.1 inch, so enter .1, displaywillbe:

```
007 2d=. 1
```

and press the NEXT key. The display will show:

```
008 X1 = ?
```

This is the X coordinate of the lower left hand corner of the rectangle. From the drawing, the value is 1 . Enter 1 and press the NEXT key. The display will show:

$$
009 \mathrm{YI}=\text { ? }
$$

This value is also 1. Enter 1 and press the NEXT key. The display will show:

$010 \mathrm{XA}=$?
This is the length of the rectangle along the drawing, the value is . 5. Enter 0.5 and press the NEXT key. The display will show:
show: $\operatorname{lowg} \boldsymbol{n}$
$011 Y B=?$

This is the length of the rectangle along the Y axis. Enter 0.5 as above and press the NEXT key. The display will ask?

$$
011 Y B=\text { ? }
$$

012 ELSEWHERE?
Since we want to cut only one rectangle, then press No. The display will show:

012 REPEAT?

The answer again is no, Press the No key. We have just finished programming the middle section of the machine. The next step is to program the END section of the program. To do this press the END key. The display will show:

012 END NEW REF? Th that s meme θ fre-apecte pat Pym! n
Since we only want to machine one part the answer is No. Press the No key and the display will show:

$$
012 \text { END }
$$

Press the NEXT key to end the program.
and Agr -

The above example has gone into great detail of how to enter a program. This is necessary for the first time. Since you are now familiar with the individual keystrokes then in the future we will skip all the keystrokes in the text and will show only the final program.

This program can be Leyiewed by pressing the PREviOUS key. We can go back to the start of the program by pressing this key until we get to the line number 000 we can switch to liNE mode and enter 000. If an entry error is made, simply press the year key in the PROGRAM ENTER MODE. One can change the parameters at any time. However, during the ENTRY OF ACUNCTION, one cannot change one mind half way through the entries. If this function is not desired, the user must enter zeros for all prompts until the end of the function is reached and then go back to the start of the function.

One can erase the function at the beginning line by pressing the CLEAR twice. A prompt will then ask ARE YOU SURE? Pressing YES will erase the function from memory. During the entry of a function, one cannot use the PREVIOUS key half way through. There is no deviating from the entry format in programming a function.

Let us review the program we have just entered. To do this press any mode key. The display will show:

MODE?
Press LINE NO key and then enter 000 . This will put us at the first line of the program.

$$
000 \text { START IN } 01
$$

This shows that we are in the start of the program, and that the program is written in inches and that its label is oi. Stepping through the program can now be done by touching the NEXT key successively till we reach the end. If this is done, the program should read as follows:

000	START INS	01
001	TD	$=0.1250$
002	FR XYZ	$=10.0$
003	SET UP	2CXYU
004	RECT FiR\%	050
005	XI CUT $\%$	050
006	ZR $=0.0000$	
007	Ld $=0.1000$	
008	XI $=1.0000$	
009	YD $=1.0000$	
010	XI $=0.5000$	
011	YB $=0.5000$	

We are now ready to run the program. Go to: Line number 000. by entering 000 while in the LINE NO mode and then switch to PROGRAM RUN mode the program will start ranging and show PRE-CHECKING on display, then the display will ask:

NONSTOP?

The program can be run a<stepata time or continuously, If we choose a step at a tine then press the No key. otherwise answer YES to NONSTOP?. The display will ask:

SINGLE STEP?

If you answer YES, the program must be singled stepped until it encounters the SET UP instruction. Stop at this instruction and the display will show:

This is the point at which the user must tell the machine where the reference zero point is on the workpiece. $\operatorname{con}^{\text {The value for this }}$ point can not be entered from the keyboardronlyset into memory by the "set up ref" key. IT MUST BE DONE BY ACTUALLY POSITIONING THE TIP OF THE TOOL at that point. it also permits the user to manually move the X,Y, \& Z axes of the machine with the continuous motion keys and the jog keys.

In addition, the user can also use the optional electronic probe to greatly simplify the mechanical positioning of the tool tip.

In the SET UP prompt the user is asked to enter into the machine the actual X, Y, Z and U location of the reference zero point. (The U is used only with an optional rotary table accessory). The prompt does this as follows. At the start the SET UP display looks like this:

$$
003 \text { SET UP } \rightarrow 2 \mathrm{cxyu}
$$

The arrow in the display is pointing at the coordinate petit to be set. All the letters are lower case indicating that the coordinate points have not yet been set. The first coordinate point is the Z coordinate. After this point has been set, as will be demonstrated shortly, the lower case will change to upper case Z indicating that it has been set. Pressing NQ will rotate the coordinates so the user can select the required axis. At any time the user can tell which coordinate points have been set by looking at the prompt. The coordinate points that have been set are in upper case. Those that have Not been set are in lower case.

Now we will demonstrate how the SET UP is executed. There are two ways to do it. One is with the aid of the electronjerobe. The other way is manually. We will first illustrate the manual

method. First install the end mill into the collet on re

 spindle. Since the first coordinate point is z, we lower z axis the tool is approximately $1^{\prime \prime}$ above the work surface, move the quill lever until the tool tip just touches the top surface of the workpiece and lock the quill in place. When the tool tip is so positioned press the SET UP REF Key. The lower case z in the display will change to the upperfase 2 and the display will now look like this:

003 SET UP $\rightarrow 2 \mathrm{CXYu}$

NOT "SET-UP" Krár O
ぬ kay
Since Z has been set and we want to go on to setting c, we must tell the machine to shift to it. This is done by pressing the NO key to the above display. Press NO and the display will show:

$$
003 \text { SET UP } \longrightarrow \mathrm{cxyuz}
$$

We are now ready to set. The symbol c stands for clearance of 2. This prompt asks the user to set the Z axis to a position where the tip of the tool will clear the highest plane on the workpiece when the tool moves. from one location to another. This is done by positioning the Z axis (spindle head) using the \square and $\Delta 4$ keys to the position where the tool tip will physically clear the highest obstruction on thogerorkpiece. When this has been done, then pressing the SET UPGtey will set the z clearance position and the display will strange to:

$$
003 \text { SET UP } \rightarrow \text { CxyuZ }
$$

indicating that Z-clearance has been set.

The rest of the coordinate axes ie. X \& Y are set up in a similar manner.

An alternate and far easier procedure for performing set up is to use the optional electronic probe accessory. To do this, position the electronic probe on the surface of the workpiece and directly below the tool center. Lower the Z axis by pressing the key. When the tip of the tool touches the button on the alectronic probe, the Z coordinate will be automatically set. There is no need to press the SET UP key or to accurately press the reference surface with the tool tip.

In the case of the X \& reference set up, the probe can be positioned so that it's bottom surface touches the sides of the workpiece. The Z axis is lowered so that the tool tip goes past the Z reference plane. The Z or Y axis table is manually positioned using the 4 or \square keys until the side of the tool touches the button on the electronic probe. When this happens, the X or Y reference is set automatically by factoring in the thickness of the probe and the diameter of the tool.

After che above procedure has been performed，the machine is ready to cut the geometry that has been programmed into the controller．This is done by turing the spindle $O N$ ，setting the spindle speed at about position 5 and pressing the NEXT key．

When the pocket is machined the controller will come to the END statement．At this statement，the tool tip will automatically elevate to the Z home position．\ddagger qu th $X Q \quad y Q$－
The above exercise has provided a detailed demonstration of how the machine operates．The user may wish to program and machine some additional functions such as DRILL，MILL，CIRCLE，BOLT CIRCLE，etc．to better familiarize himself with the machine．

$$
\Delta z=20^{2}
$$

\＄if you user＂Ene winpmez＂ IT Win stop on sot UP intiRstod 1 wanton nw part Runs to zoa
 notate part if you prat：who－

$$
\begin{aligned}
& \rightarrow \underset{\sim}{\rightarrow} \\
& \text { \& } 4 \text { ك安。 }
\end{aligned}
$$

SECTION 10

THE DYNA LANGUAGE

The DYNALAN consists of few very powerful instructions whic are designed to siaplify machine move programming. These instru ctions are printed in white on the top half of some of the key

The following section will describe each of the DYNALAN in structions, what they do, and how they are used, by using a appropriate example.

GO REL INSTRUCTION

This key enters the GO RELATIVE instruction into the program where it will appear as an abbreviation GR. This instructio applies to any $X, Y, 2$ radius (r) or angle (a) moves. This instruc tion will move the tool fram its oresent position to a net position which is stated relative to the tool's present position For example, in the diagramberow tre position X1, Y1. If we wish to move the tool to the new positiol X2,Y2, we can do so with the GR instruction by entering

$$
\begin{array}{llll}
004 & G R & X & 3.0 \\
00! & & Y & 1.0
\end{array}
$$

This instruction tells the machine to move the tool 3 units in the X direction and +1 unitin the Y direction relative to its present position which is Xi, Y1. Likewise, if we then wanted to do another move from the X2,Y2 position to X3,Y3 position we would program:

006	GR	X	-2.0
007		Y	-2.0

This statement instructs the machine to move the tool minus 2 units in the X ditection and minus 2 unts in the \quad direction relative to its current position which is X2,Y2.

The GR instruction can also be applied in the same way to move the tool in the Z axis. The convention for the Z axis is that all moves down or into the workpiece are aegative and all moves up or out of the workpiece are positive. If the tool's tip is presently resting on the surface of the workpiece, then a move INTO the workpiece of 0.1 units is programmed as:

$$
008 \quad \text { GR } \quad 2 \quad .1
$$

and a subsequeat move out of the workpiece and back to the surface is programmed as

$$
009 \quad \text { GR } \quad 2 \quad .1
$$

The GR instruction can also be applied to any moves in the polar coordinate system using radius (r) and angle (a) moves. For example, in the diagram below the successive moves from points A to point B, C, D and E, are programmed as follows:

Note that in moving from B to C for example, we need not specify a radius because the tool is already at a radius of 2 . Likewise from C to D we need not specify an angle. Also note that angle moves in counterclockwise direction are positive and clockwise direction are negative.

GO ABS INSTRUCTION

This key enters the GO ABSOLUTE instruction into the program,
applies to any X, Y, Z radius (r) and angle (a) moves. This alit struction will move the tool from its present position to a mef
 point. I the LOCAL ZERO coordinate had not been specified = < get) then tre wove will be relative to the REF Zero coordinates IF the REF Zero coordinaces had not been specified (or set) thé the move vill be relative to the Home coordinate.

For example, tefering to our previous diagramif we wanted itó move from point X1,Y1, to point X2, Y2, using the GO statementiand a previously sec local zero 2 as shown we would program as fody 10W5:

014	GO	X	5
015		Y	2

This instruction cells the machine to move the tool from whereite is at present, which is Xi,Y1, to a point X2, Y2 which is 5 unfta in the X direction and 2 units in the Y direction relative to fié LOCAL ZERO 2 reference. lf the LOCAL 2ERO coordinate point had not been set but the REF ZERO had been set, then we can make the move to the same $\mathrm{X} 2, \mathrm{Y} 2$ point but the instruction will now have to be:

Another useful illustration of the Goinstruction as it.ifsomat applied to rectangular or polar ceordigates is given belou. Here fot Point A is set as tha REF Zero point.

This Command Moves Tool 005 GO Y 2.5 A B

Mun,
 Thin is the atemantive
 ∞

ARC FRAME

The ARC frame canned cycle consists of a combination of oynalan face. and canned cycle programming.

The entry format is

l) Position tool at starting location including starting depth. using Dynalan programming.
2) Call the ARC frame cycle.

ARC:
$X C=$ Center of $A R C$, measured from
YC reference zero. traveling angle

This function mills a direct ARC from hour established starting point, through a displacement angle, a, in the XY plane. The center of the $A R C$ is at $X C, Y C$ and the radius ${ }^{p}$ is determined by the distance from the starting point to the center. The tool will remain at this end point until it recieves the next Dynalan command. (a) is minus (-) in a clockwise direction and (+) in a counter clockwise direction (conventional axis notation).

[^0]
ARC EXAMPLE

NOTE: This cycle allows uninterrupted machining of complex contours.

* Denotes Dynalan Command


```
006 GO
007
I 3.0
a 60
A\longrightarrowB
```


$\begin{array}{llll}008 & \text { GO } & \text { r } & 1.0 \\ 009 & & \mathbf{a} & -45\end{array}$


```
010 GO
I 1.5
011 a 225
```

C


```
NOTE: 1. Entering the 2nd axis (or 3rd axis) in this instruction
On the next line requires the user to press the axis key TWICE to
confirmentry.
```

2. Do not mix polar with rectaggular in multi axis moves. The
correct configurations are:
Single axis: $\begin{aligned} & \text { GO } X \\ & G R X\end{aligned}$
GO Y GO Z
$\begin{array}{ll}G R & 2 \\ & \end{array}$
GO U

2 Axis move: GO X
GO Y
$\begin{array}{ll}\mathrm{GO} & \mathrm{z} \\ \mathrm{y}\end{array}$
$G O \quad \begin{array}{r}\text { r } \\ \\ \\ a\end{array}$
GO
GO a

GR X
GR Y
$\begin{array}{ll}G R \quad Z \\ & y\end{array}$
GR
GR r - R a

3 Axis move: GO | X | $G R$ | X |
| ---: | ---: | ---: |
| Y | | |
| Z | Z | |

```
Use of GO and GR Instruction
These two instructions \(G R\) and Go are extremely powerful and provide a tremendous flexibility in programming complicated tool paths as we will demonstrate further on. However, care must be exercised in their use. The user must always remember that the Go instruction will always be executed with respect to the last LOCAL ZERO that had been set in the program. Therefore, one should always check the program to see if a LOCAL ZERO had been set or conversely one can set a LOCAL ZERO relative to which the next GO instructions are programmed.
The Go and GR instructions can be used to move to the same new point from the same previous point. Which one the user chooses to use depends on the geometry, the given dimensions and desired simplicity of the program. In other words, GO and GR can be used to achieve the same end but by different means. To illustrate this, let us move the tool tip around from point A, around the rectangle as shown in the diagram below.
```



```
Assume that the tool is at point A which is also the REF \(2 E R O\) in the program. Then instructions..
GO X 2.0 or GR X 2.0
will move the tool from \(A\) to \(B\)
GO Y 1.0 OI GR Y 1.0
will move the tool from \(B\) to \(C\)
GO \(X \quad 0.0\) or \(\quad\) GR \(X \quad-2.0\)
will move the tool from C to D
GO \(\quad \mathrm{Y} \quad 0,0\) or \(\quad\) GR \(\quad \mathrm{Y} \quad-1.00\)
will move the tool back to A.
```

The differeace between $G O$ and $G R$ is quite simple. The Go assumes one knows the coordinate points. The GR assumes one knows the length one has to move and the direction. Use whatever is appropriate. In this case the Go instruction is appropriate. The program which will make the above moves is then written as:

Let us factor in the Z axis so we can lower the tool, cut the rectangle and then raise the tool. Remember that 2 reference should be set on the surface of the workpiece. A move downard in the Z axis is always negative. Let ub go.l of an inch into the workpiece.
The program becomes:

004	GO	Z	-.1
005	GO	X	2
006	GO	Y	1
007	GO	X	0
$00-$	GO	Y	0
009	GO	2	0
010	END		

and this will cut the rectangle.
The GO and GR instructions apply equally to radius (r) and angle (a) moves in the $X Y$ plane. Consider the following pie slice:

The moves from A to B, C and back to A can be achieved by either GO or GR moves,i.e.

$\mathrm{A} \rightarrow \mathrm{B}:$	GO	r	1	Or	GR	r	1
$\mathrm{~B} \longrightarrow \mathrm{C}:$	GO	a	45	or	GR	a	45
$\mathrm{C} \rightarrow \mathrm{A}:$	GO	r	0	Or	-R	r	-1

Either of the above sot will move the tool around the pie. The GO and GR statements cau be medified by the use of qualifiers. The generalized fornat for Gatand $G R$ is:

$$
80^{\text {ren }} \rightarrow
$$

GR qualifier, ${ }^{\text {qu }}$ axis choice ($\left.X, Y, Z, U, r, a\right)$ and nn.nnn is the number (displayed in inches for this example).

The qualifier (q) is optional an- if entered it may be
$i \neq$ inside
of outside
$=$ comeback?
$=\mathrm{fast}$
The i or o qualifiers subtract or add the current tool radius to the entered value. The c qualifier simply causes the tool tip to comebaok to itsoriginal position. The f qualifier makes the move at top speed.

Each qualifier has its own merit. For example:

$$
i \times 2.0 \quad \text { or } \quad \text { GR i } \times 2.0
$$

Will always provide tool compensation, regardless of the tool diameter.

This move will always position the tool circumference at the line $X=2$. Likewise for o on the outside. This makes the move TOOL DLAMETER independent. Consider going round the outside of the unit rectangle with any. tool diameter:

STARTAT O 0

- X $\quad .5$ $\begin{array}{lllll}\text { B } & G O & \circ & Y & .5 \\ C & G O & 0 & X & -.5 \\ D & G O & 0 & Y & -.5 \\ E & G O & 0 & X & .5 \\ A & G O & Y & 0.0\end{array}$

The qualifier c for comeback is useful for drilling, sawing etc. For example:

$$
\text { GO c } z-.125
$$

will lower the tool. 125 into the workpiece and return. To sped this up we can use the f qualifier.

$$
\begin{aligned}
& \text { GO } z^{2}-.125 \\
& \text { GO } f^{2}+.005
\end{aligned}
$$

drill in . 125 at current feed rate, return at max speed to. 005 above ref.

The GO and GR instructions can be used in multi axis moves.

$$
60 * 1+/-n n \cdot n n n n
$$

GR

$$
\begin{aligned}
& * 2+1-\operatorname{nn} \cdot n n n n \\
& +3+\text { nn.nnnn }
\end{aligned}
$$

where * \quad may be any one of $x, y, \frac{1}{z}, u$.

There are NO qualifiers and the maximum number of axes to be moved at one time is three. This maximum is set simply by power supply considerations.

For example: | 004 | GO | X | 2.0 |
| :--- | :--- | :--- | :--- |
| | 005 | | Y |
| | 1.0 | | |
| | 006 | | Z |
| | .3 | | |

will move the tool tip to (2, 1, 3) in space and if followed by

007	$G R$	X	-.5
008		Y	-.2

will move the tool tip to (1.5,.8,.3)

In the $X Y$ plane, this example will cut a D hole on the in e.

NOTE: Qualifiers will only function with single axis movement.

10-9

POLAR MOVES
These operate only on the XY plane around a local zero. Here is a summary of the (radius) and a (angle) moves.

MOVES TOOL ALONG RADIUS TO $r=n n . . . n n n$. This defines a new radius. A negative value is not allowed.
Qualifiers allowed: 1) Inside (subtracts off Tool radius).
2) Outside (adds on Tool radius).
3) Comeback

NOTE FAST f. is not allowed.

MOVES TOOL INCREMENTALLY (POSITIVE OR NEGATIVE) ALONG RADIUS BY AMOUNT + nn.annn from Current radius position. A negative final value will create a new radius 180 degrees from current. Qualifiers similar to above.
(DEGREES)
MOVE TOOL IN AN ARC TO THIS ABSOLUTE ANGLE AT FIXED RADIUS. Qualifiers are similar to above except inside and outside. Tool compensation is.
$\alpha C=\operatorname{SiNG}_{r=2}\left(\frac{\text { Tool RAD }}{r}\right)$
which is subtracted
or added to the angle.

ZERO
GO P 3 (MOVE $A \rightarrow B$)

GO a $600(A \rightarrow B)$
(USEFUL FOR PIE CUT)

```
GR a + nan.nn.. (DEGREES)
```

MOVES TOOL INCREMENTALLY IN AN ARC BY THIS AMOUNT OF DEGREES AT FIXED RADIUS. Qualifiers operate like GO a. Observe that: + move tool counter clockwise. - moves tool clockwise. USEFUL IN GOING ROUND CONTOURS.


```
MOVES TOOL IN A STRAIGHT LINE TO THIS
POINT. ON ENTRY I AND a MAY BE
INTERCHANGED. Only 2 qualifiers allowed,
i and o.
i will subtract off TOOL RADIUS from r.
O will add on TOOL RADIUS to r.
USE OF i AND O MAKES POSITION,
INDEPENDENT OF TOOL DIAMETER.
USEFUL IN GOING ROUND CONTOURS. USE OF i AND O MAKES POSITION, USEFUL IN GOING ROUND CONTOURS.
```


MOVES INCREMENTALLY IN A STRAIGHT LINE TO THIS POINT.
Qualifiersias GOr,a. USEFUL IN CAM CUTTING.

Once the generalized polar cood has been entered, we can use the simplified version (treating r and a as one axis each) to move the tool tip. In essence a Go/GR rinstruction assumes the value of the angle previously used, likewise a GO/GR a assume, the value of an angle previously used.

For example let us do a piepie cut out.

The cifical ingredient in doing polar coods is the setting up of a LOCAL ZERO around which these instructions operate. To do this we will explain the ZERO COOS and the ZERO AT instructions.
"ZERO COODS" INSTRUCTION
This key enters a LOCAL Zero instruction which instructs the machine to creates a LOCAL ZERO for a set of specified axes at a point where the center and tip of the tool is presently positioned.

To euter this instruction, one must press the ZERO COODS
key. The display will prompt with:
007 ZERO AXIS ?
which is a request to specify which axes are to be zeroed at this point. The user can specify any one to zero at this point by pressing any combination of the X, Y, Z or U keys. For example if the user wants to zero X \& Y he has to press the X and Y key and the display will respond with:

$$
017 \text { ZERO X Y }
$$

This procedure will have set a LOCAL ZERO at the present center position of the tool.

Another method of setting a LOCAL ZERO is to use the ZERO AT instruction.

ZERO AT" INSTRUCTION
This key enters a LOCAL ZERO instruction which instructs the machine to create a LOCAL ZERO at a point that is specified by the user, within this instruction. For example, pressing the ZERO AT key will tesult in the following display:

$$
18 \text { ZERO AT }
$$

The user then hes to press the NEXT key to enter this instruction into the program and then specify the axis and their value at which he desires to create a LOCAL zero. The new LOCAl zerowill be set up relative to a previous LOCAL ZERO if one had been setup or relative to the REF. The entry format is:

2ERO AT

X nn.nnnn

Y nn.nnan

2 nn.nnna

U nnn.nn

The entry of selected axis and coordinate value permits the setting up of a LOCAL ZERO without moving the tool tip. The following example will illustrate the use of these instructions, given the geometry and the dimensions, as shown in the diagram below, it is very easy to write the program using the ZERO COODS instructions.

004	$G O$	X	1.2
005		Y	1.2
006	ZERO	XY	
007	GO	Z	-.1
008	$G R$	X	1
009	$G R$	Y	.5
010	$G R$	X	-1
011	$G R$	Y	-.5
012	$Z \longrightarrow$	MAX	

This great l, simplifies the writing of programs from very simple drawings or even sketches. The drawings need not specify the coordinates for each corner-just the dimensions of the geometry and a location of one of its corners relative to the REF zero.

Any LOCAL Zero setup by the ZERO AT or ZERO COODS instruction can be cleared by using the REF COODS instruction.

REF GOODS INSTRUCTION

This key is an instruction which restores the REF ZEROCoordinates in the program. It is usually usedin returning from local zero to the Ref ZERO coordinates which was setup during the SET UP instruction. The diagram below illustrates its use.

At any place in the program, the next operation may be referenced from the REF coordinates or it may be referenced from the prevviols operation's local zero. In the first case any change in the zero location is easy to change and the operation is independent of the other operations. In the second case any change in the zero location of operation 1 , propagates through to the other operations so the whole block will be repositioned. Depending on the application this may or may not be advantageous.

The user can use the ZERO AT, ZERO COODS and REF COODS instruction in any sequence he desires and in any location. He can go from one LOCAL zero to another or back to REF ZERO in between each LOCAL zero.

As an illustration of how REF COODS, ZERO AT, and ZERO COODS Instructions work, let us program a frame rectangle cut with a radius at each corner Remember that for an arc (or circle), we must set a local zero at the center and then move through an angle.


```
004 GO }\begin{array}{lll}{X}&{.4}\\{Y}&{.2}
006 GO 2-.050
007 GR X
008 ZERO X
00, ZERO A
010 Y . 65
011 GR a 90
#12 GR Y 1
013 ZERO Y
014 GR a 90
015 GR X - 2
016 ZERO X
017 GR a 90
018 GR Y-1
019 2ERO Y
020 GR a }9
021 END
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{004} & \multirow[t]{2}{*}{GO} & X & . 4 \\
\hline & & Y & . 2 \\
\hline 006 & G0 & 2 & -. 050 \\
\hline 007 & GR & X & \\
\hline 008 & 2ERO & & X \\
\hline 00 , & 2ERO & A & \\
\hline 010 & & Y & . 65 \\
\hline 011 & GR & a & 90 \\
\hline \(\because 12\) & GR & \(Y\) & 1 \\
\hline 013 & ZERO & Y & \\
\hline 014 & GR & a & 90 \\
\hline 015 & GR & X & \\
\hline 016 & ZERO & X & \\
\hline 017 & GR & a & 90 \\
\hline 018 & GR & Y & -1 \\
\hline 019 & 2ERO & & Y \\
\hline 020 & GR & a & 90 \\
\hline 021 & END & & \\
\hline
\end{tabular}
```

Move tool to A
Lower it . 05 into the work.
Move to B
Zero X then 2ERO Y AT . 65
(the ARC center)
こut ARC B to C
With same 2ERO, go from C to D
2ERO Y at ARC center
Cut ARC D to E

Suppose we want to cut a path as shown in the drawing below. With the tool center runging on the path. We will assume that the tool starts from any arbitrary position. We program as follows:

LINE NO. PROGRAM STATEMENT WHAT THIS STATEMENT DOES

004	GO	X	1.5
005		Y	1.5

006 GO 2-.05

008

009

010

ZERO Y

Y

. 5

GR a-90

007

Moves the tool from any position to point A referenced to the REF ZERO.

Lowers the tool . 05 units from the REF 2 position (Z is workpiece surface)

To cut the arc A to B with C1 as center we create a LOCAL ZERO at C1. Since the tool is already at A, which Y location is the same as C1, we zero Y using the ZERO COODS instruction.

We then zero X using the ZERO AT instruction.

To go from point B to C in a straight line we use the GR instruction again for an X move only since the tool is already at the required y coordinate.

To cut the arc from C to D we set up a new LOCAL ZERO at C1 We need only to ZERO X since the Y coordinate of $C 2$ is the same as C1.

We now cut the arc using the GR statement.

Note 1 -Notice that the REF coordinate had been set up in such a way that some areas of the workpiece are in the -X, - , plane. This illustrates that REF coordinate point can be set up anywhere. If it had been set up as the lower left hand corner of the workpiece, then all of the above GO statements would have positive direction.

XX- REF O INSTRUCTION
This key is an instruction which simply moves the center of the tool to the REF Zero point. It can be used to automatically position the tool at the end of the program so that it will be in the right position when a new part is to be clamped on the table and positioned to the program REF. coordinate.

The move actually goes via the home position for verification of the position of REF ZERO point, and is analogous to the END NEW PART instruction in this manner of movement. Thus it can be used as well in very very complex go relative angle sequential moves as an additional verification on accuracy on exit from them.

CS INSTRUCTION (Change Sign)

This is an instruction which simply reverses the sign of the current tool tip position. It can be used with any axis ie. X, Y, or Z .

For example if the tool tip is at $X=2$, CS X will move the tool to $X=-2$.

Many machining geometries exhibit symmetry and by exploiting it one can greatly simplify the programming and minimize entry of coordinate points.

To illustrate it's use, let us do a rectangle frame cut (1" x $\left.0.5^{\prime \prime}\right)$ centered at (2,1.5).
To program this we need only to compute one corner A (1.5,1.25).

The program 1 then witten as follows:

005	ZER	0	AT	Sets up local zero at ($2,1,5$)
006		x	2	
007		Y	1.5	
008	60		- . 5	Moves the tool to point A
009			-. 25	
010	60	2	-. 05	Lover tool into workpiece to a depth of . 05 units
011	cs	X		Will move the tool from point A to B C to D to A

012 CS Y
023 CS X
014 CS Y
Alternatively the instructions could be:
CSY
CSX
csy
CSX

CYCLE XY INSTRUCTION

This key is an instraction which combines the previous four cs instructions into one. Thus after zeroing at the center of the rectangle and moying to one corner, CYCLE XY will cut the frame. Depending on thich cornet the tool starts at, it will go clockvise or counterclockwise round. If one slides doun the diagonal after each cycle we will generate a pocket cut.

Thus the previous example reduces to:
ZERO AT
X 2
Y 1.5
$60 \quad X \quad 1.5$
$Y-.25$
CYCLE XOT
This will cut $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$

DWELL INSTRUCTION

This key is an instruction which will cause a elay of na seconds in the program. Thus DWELL 06 will cause a program delay of 6 seconds.

DISPLAY INSTRUCTION

This key is an instruction which will display the current value of X, Y, $Q \quad Z$ position of the tool. One can enter this instruction into the programanywhere and as many times as desired. During execution, the controller will stop and display the current value at the axis selected. All of the examples below are valid entries for this instruction.

DISPLAY	XYZ	
DISPLAY	X	
DISPLAY	r	
DISPLAY	a	Z

This instruction is very useful for debugging programs.

CONTROL INSTRUCTION

This key is an instruction to activate peripherial devices.
CONTROL 1 activates a buzzer.The buzzer will sound for 5 seconds. Combined with a dwell instruction various sounds may be generated CONTROL 2-9 are un-assigned at the present.

SPINDLE ON/OFF INSTRUCTION

This key is an instruction to activate or deactivate the spindle. When pressed it will display:

```
SPINDLE OFF
```

Pressing the $+/-$ key will rotate OFF to ON for the user to select what he wants.

USE THIS WITH CARE and insert only after the program has been debugged and is working. The switch underneath the main on/OFF switch should be switched from LOCAL to PROGRAM. The spindle ON/OFF should be switched to ON (the spindle motor will remain stationary) the speed dial should be set the desired speed. During program execution this instruction will turn the spindle $O N$. The user may still override this with the spindle OFF/ON switch (i.e. it may be turned OFF then ON for tool change).

Alternatively, we can program spindle off before a tool change and spindle on after. Just before the end, SPINDLE OFF should be inserted. This instruction is very useful for running a program overnight.

TOOL CHANGE INSTRUCTION

This key is an instruction which permits the user to change tools which are required by the program and the geometry of the part. There are three ways to change a tool in the middle of a program.

(1.) THE SIMPLEST WAY

During program entry simply put in this sequence in instructions:

$$
\begin{aligned}
& \text {... } Z \longrightarrow 2 \text { MAX (} \because \text { UP } t+\operatorname{mi} \text {) } \\
& \text {... HALT } \\
& \text {...GO Z } 0 \\
& \text {... HALT } \\
& \ldots \quad Z \longrightarrow C L E A R Z
\end{aligned}
$$

During execution the controller will raise the spindle to it maximum height then halt. Insert the new tool and raise the quill. Press the NEXT key and the tool tip will descend to the Z REF position. Adjust the quill so the tip of the new tool touches the surface. Lock the quill and press the NEXT key to continue. The tool is rezeroed manually To do this, the first tool must be the longest one. - or of host the roma que mut he
Sometimes the old Z REF position may have been machined away. In this case some GO statements are necessary before this section to position the tool over a Z ref area.

Observe that this little program block may be written as a subroutine and used many times in the program.
2. USING THE TOOL CHANGE INSTRUCTION WITH NO OFFSET STORAGE

Pressing the TOOL CHANGE key, the user will be asked.
TOOL n?

Press the NO key and the display will ask:

```
TC NEW COOD ?
```

Here the controller wants to know if the user wishes to reference the new tool tip at a different location. If the answer is No then the tool change operation will take place at the REF COODS. During execution, the controller will raise the tool ($Z \rightarrow Z M A X)$. The user changes the tool, \bar{y} places the probe at the REF COODS, then by pressing the Next key, the controller lowers the tool tip until the probe is touched. Thus the TOOL is ZEROED at $Z=0$. Z -Clear remains as previous and the tool goes to this point.

However, had the user requested new coordinates, the display entry would show:
TC NEW GOOD
and the user would be prompted for:
$T X=$
$T Y=$
the tool change coordinate points. The sequence is exactly as before except the re-zeroing is done over these new pods. The tool tip will be positioned to these cools, the tool changed, and then repositioned back, viazclear \boldsymbol{F}.
3. USING THE TOOL CHANGE INSTRUCTIONS WITH OFFSET STORAGE

This time after pressing the TOOL CHANGE key, the user answers YES to
TOOL n?

The display becomes $T O O L N$ then the $u s e r$ enters the desired tool number, ($1 \leqslant n \leqslant 8$)

1 there 8
The user must employ tool holders where the length of the tool tip from the spindle is. fixed either by set screws in the tool holder or pre-clamped in a jacobs chuck. There is no guarantee that the collet will hold the tool at the same height since they have no end stop. The tool offsets (from Z REF) are entered sequentially before starting the program via the TOOL CALIBRATION in the MANUAL MODE. (see Manual Mode section for further details)

Thus when programing the user simply enters the tool number AND immediately afterwards the TOOL DIAMETER.

For example:

$$
\begin{aligned}
& \ldots \text { GO X } 2.4 \\
& \cdots \text { TOOL } 6 \\
& \cdots \text { TD }=1.358 \\
& \cdots \text { GO } 21.6
\end{aligned}
$$

would put in $T O O L 6$ (dias. 1.358) at this point in the program.
During execution, the program stops, the spindle is raised and the user inserts the $T O O L$ with the correct number. Pressing the NEXT key activates the program again.

HALT INSTRUCTION

This key is an instruction which halts the running of a rograi It may be put anywhere in the program. It is extremery wsef: initially to incorporate these (for example between functions to check progress, do a simple tool change and to have in a infinite loop. When the controller comes to this instruction, halts. Pressing the NEXT key will continue program executior The user may also exit via a mode key (to abort the program a this point or change some instruction) then re-enter and contint

SKIP INSTRUCTION

This key is an instruction which tells the program to go to specific line number and continue the program from that lit number. It is an unconditional jump either forwards or backwarc within a program. This instruction is useful in repeating cer tain parts of a program automatically. For example, the followir program is a perpetual hole drillef

```
000 PROG START INS
01
```

001 TOOL DIA
$002 \mathrm{FRXYZ}=10.0$
003 SET UP—zcxyu (put partin jig and set up)
004

HOLE DRILL
ANY
ROUTINE
OPERATION

016
017 Halt (take out part-press
018 SKIP 0
NEXT to continue)
019 END

After the routine has been executed, it will halt at 017 . user can remoye the part, put a newone in, press the NEXT kt and the program will jump to 004 and continue ad infinitem. Tf ONLY operations the user has to do is load in the new part a: then press the NEXT key at each halt.

SUBROUTINE
SUB RETURN INSTRUCTIONS
These two keys are iastructions which tell the program to go to specific section of the program, execute that section and th. return to continue the program.

Very often in long programs a particular operation is repeated many times. For example, the user might wish to write his own drill and peck routine, a set up routine, a tool change routine or some particular geometry that is to be repeated elsewhere. It is a severe imposition to have to repeat these instructions throughout the program, hence subroutines:
This section is written as:

```
z-00
- - -
- - - LITTLE SECTION
- - - -
SUB RETURN
```

and can be put anywhere in the program space 000-900 ine number. Subroutines are usually placed at the end of the program space. When the user wishes to call this subroutine in his main program he puts in:

$$
\text { CALL SUB } n \text { n }
$$

The controller will branch to this subroutine during execution, execute it, then return to begin executing the next statement of the program.

There is no restriction on the number of nesting levels i.e. subroutines can call other subroutines.

Here is an example of how they are used. Suppose the user wanted to mill characters (A,B,C, etc.). Let us use a 1/16" DIA MILL (a lot depends on how small a diameter mill is used) and let us make the characters . $3^{\prime \prime}$ high by $.23^{\prime \prime}$ wide. If the user is not happy with the aesthetics he may compose his own. We have scaled up the characters (X10) to illustrate the moves per character. By inspection one can enter the move coordinates.

SUB 01	
2ERO	0 XY
GO	$X \quad .04$
	Y . 05
GO	$2-.05$
GR	X .05
	Y .24
GR	X .03
GR	X .025
	Y - . 12
GR	c $\mathrm{X}-.08$
GO	X . 13
	Y . 05
$2 \longrightarrow C$	
GO	X 0
	Y 0
$\longrightarrow 1$	REF COODS
SUB RETURN	

SUB 02	SUB 03
ZERO XY	ZERO XY
G0 X . 05	GO X . 05
Y . 05	Y . 12
G0 $\mathrm{Z}-.05$	GO Z -. 05
GR c X . 07	GR Y . 1
GR Y . 12	ZERO AT
GR c X . 07	X 0.12
GR Y . 12	$Y \quad 0.22$
GR X . 07	GR a -135 deg.
ZERO AT	$2 \longrightarrow C$
X .07	ZERO AT
Y . 24	Y -. 1
GR a - 180	GO r . 07
ZERO AT	a -45 deg.
Y-. 12	GO $2-.05$
GR a - 180	GR a -135 deg.
$Z \longrightarrow C$	$2 \longrightarrow C$
GO X - . 12	
Y -. 11	GO X -. 12
\rightarrow REF COODS	Y -. 12
SUB RETURN	\rightarrow REF COODS
	SUB RETURN

Each of the above subroutines will mill a specific character. If we now wish to lay out the characters as shown in the example below, then the main program would look like this.

```
000 START INS 04
001 TD = .0625
002 FR XYZ = 10
003 SET UP->zcxyu
004 GO X . 1 Go to botton LH side of
005 Y .05 1st character
006 CALL SUB 01 Do the "A"
007 GR X . 23
008 CALL SUB 02 Do the "B"
009 GR X . 23
010 CALL SUB 03 Do the "C"
011 GR X . 46 SPACE
012 CALL SUB 01 Do the "A"
013 GR X . 23
014 CALL SUB 02 Do the "B"
015 END
The subroutines can be located arbitrarily from 300 onwards (in any order). Observe that in each subroutine we immediately set a local zero and do all moves with respect to it. When we exit we go to the local zero then switch back to the REF COODS so the main program can locate che characters where it pleases.
```


looping

REPEAT
REPEAT END INSTRUCTIONS
Tinese keys are instructions which permit the program to repeat any section of a program a specified number of times. From 1 to 99. This is done by enclosing the section of the program by REPEAT

REPEAT
20

OPERATIONS

REPEAT END
will repeat the operation 20 times.
These REPEATS can be nested to any level, providing there is aIways a REPEAT END for each REPEAT nn. For example all of these are valid.

In this example, the operations in the center are repeated $60 \quad x$ 20×10 ($=12000$) times. This instruction is extremely useful in many applications. For exampie in pocketing and framing, we repeat the operation each time incrementing Z which in turn is repeated in the $X \& Y$ axis.

Here is one example. Suppose the user wishes to write his own drill routine with small pecks. We shall write it as a subroutine with a REPEAT in it. The main program would be...

In this example the A total depth is . $025+9 \mathrm{X} .025=.25^{\prime \prime}$

Now suppose we wish to use this in a 20 X 20 hole pattern in the XY plane. The program would be:

000 START INS 05
$001 \mathrm{TD}=.0625$
002 FR XYZ $=15$
003 SET UP $\rightarrow 2 \mathrm{cxyu}$
004 GO X . 1
005 Y . 1
006 REPEAT 20
007 REPEAT 20
008 CALL SUB 99
OOG GK X . 1
010 REPEAT END
011 GO X . 1
012 GR Y . 1
013 REPEAT END

014 END

Another example is the use of REPEAT/REPEAT END in Frame cuts.
It is usualiy difficult to frame cut in one pass, particularly when the material is thick. It is necessary to make several passes.

Here is an example of a simple rectangular frame cut. The material is . $25^{\prime \prime}$ thick and the tool is . $125^{\prime \prime}$ in diameter. Each pass we lower Z the desired increment.

000 START INS 06
$001 \mathrm{TD}=.125$
002 FR XYZ $=10$
003 SET UP $\rightarrow z \mathrm{zXyu}$
004 ZERO AT Zero at center
$005 \quad \mathrm{X} \quad 1.5$ of rectangle
$006 \quad \mathrm{Y} \quad 1.0$
007 GO o X -1.0
008 GO o Y - 0.5 Go outside of rectangle-Lower LHS
009 GO 0 Lower tool to surface
010 REPEAT 5 Do 5 passes
U11 GK 2 -.05 each of 50 thousands
012 CYCLE XY Cut rectangle
013 REPEAT END
014 END

This is exactly how the FRAME function works. For more complex geometries the cycle X in instruction (line 012) is replaced by the move statemencs necessary tu cut the required geometry.

Observe that the END statement will automatically home the Z axis first, then X and Y.

Pockets can be made by doing successive frame cuts. Each frame is made smaller until the cencer is reached. This is an ideal situation for a REPEAT instruction.

Here is an example:
Suppose we wish to mill out a pocket $1^{\prime \prime} x .5^{\prime \prime}$ to a depth of . $1^{\prime \prime}$ with a . 125 dia tool as shown below

000 START INS 00
$001 \mathrm{TD}=.125$
$002 \mathrm{FR} \mathrm{XYZ}=10$
003 SET UP \rightarrow zcxyu
004 ZERO AT
UOO X . 7
006 Y . 45
Zero at center
(of rectanle)
007 GO i X -. 5
008 GO i Y-. 25 Go to lower LilS side
009 GU Z -. 1
010 REPEAT 3
011 CYCLE XY
012 GR X . 1
013 Y . 1
014 REPEAT END

015 END

How did we set the repeat at 3? This hinges on the size of the frame reduction (lines 012 and 013) and hence the size of the XY cut. It is usual to allow some of the tool diameter to be outside the cut to clean up the previous cut so we moved the tool in. $1^{\prime \prime}$ (not.125). Now the critical dimension is . 25, the distance from the X edge of the rectangie ro the center. This is the shortest, so 3 frames of. 1 will cover 2.5 .

In the previous example the depth is . $1^{\prime \prime}$, suppose we had wanted a depth of. $3^{\prime \prime}$. We simply repeat on the Z increment. The program becomes:

000 START INS 06
$001 \mathrm{TD}=.125$
002 FR XYZ $=10$
003 SET $\longrightarrow \mathrm{zcxyu}$
004 ZERO AT
005 X . 7
006 Y . 45
007 GO i X -.5
008 GO i Y -. 25
009 GO Z 0.0 Drop tool to surface
010 REEEAT 3
011 GR 2-. Inctement 2 into work
012 REPEAT 3 on each pass
013 CYCLE XY
014 GR X-. 1 passes
$015 \quad Y \quad-1$
016 REPEAT END
017 GO i X -. 5 Go back to start
018 GO i Y -. 25
019 REPEAT END
020 END
The function pocket mill does essentially the above program. It calculates the repeat $n^{\prime} s$ based on 2% and $X Y \%$.

Arc pocketing is done similarly. Suppose we wished to pocket an arc 90 Deg on a radius of. 60 ", with a $1 / 8$ inch dia mill, to a depth of . $1^{\prime \prime}$. We snall move the tooi aiong the radii to clean up the tool cuts.

000 START INS 07
$001 \mathrm{TD}=.125$
002 FR $X Y Z=10$
003 SET UP $\rightarrow z c x y u$
004 GO X . 8
$005 \quad Y \quad .25$
006 ZERO XY
007 GO $2 \quad-.1$
008 GO r . 5375
009 GO a 90


```
        010 G0 r 0
        011 GO I . 5
        012. REPEAT 2
        013 GR a 90
        014 GR r -. 1
        015 GO a O
        016 GR r -. 2
        017 REPEAT END
        018 END
    PROG REF. INSTRUCTION
    This key is an instruction which takes the current position of
        the tool center and makes that position the Beference coordinate
        point. Up until now the only mechanism to set thereference has
        been through the SET UP key. This involves manual intervention
        by the operator which in some cases may be good while in others
        onerous. For example, it allows the user to do this:
    000 START INS 02
    001 TD = . 125
    002 FR XYZ = 10
    003 GO X . 1
    004 Y . 1
    005 GO Z 2.0
    006 HALT
    007 PROG REF SET REF point at (.1,.1) in space
    008 .......
    The user MOVES the part to this location point for his reference,
    then clamps it in the jig. The halt can be removed later. The
    next time the program is run, it will go non-stop. This pre-
    supposes tool length etc. remain invariant.
    It also allows the user global program repeats. Just before the
    end tool is moved to the new reference and is set by PROG REF, we
    then REPEAT the whole program.
    NOTE: Prog Ref is only good for X and Y set up.
```


SECTION 11 WORKED EXAMPLES

EXAMPLE 1

The object is to cut a polygon with 17 sides and radius 1 inch. It illustrates the use of the instruction.

GR	r
	a

The program becomes:
000 START INS 01
001 TD = . 125
002 FR XY = 10
003 FR $Z=6$
004 SET UP $\rightarrow 2 \mathrm{cxyu}$
005 GO X Zero at center
$006 \quad y \quad 2$ 2, from ref.point
007 ZERO XY
008 GO X 1 Go to start of polygon
009 GO Z -. 050 drop tool
010 REPEAT 17
011 GR I 0.000
012 a 21.176
013 REPEAT END
$014 \mathrm{Z} \rightarrow \mathrm{clear} \mathrm{Z}$
015 END
NOTE:
Observe that a Go relative (r,a) instruction will move the tool in a straight line from the current position to the next.
2. In the above example, ras kept zero so there was no increment in r, but "a" was incremented by 21.176 degrees each time through the loop. The 21.176 degrees is simply $360 \mathrm{deg} / 17$.
3. By changing reach time, one can easily generate cams or spirals.

EXAMPLE 2

The object is to cut a cam. The radius of the cam is 1 inch at 0 degrees going to 0.9 inches at 180 degrees.

Therefore the radius is reduced by 0.1 inch over 180 degrees. We have to decide on the decrement for r. Fix it at 0.0004 and find the angle.

```
No. of steps is (.1)/(0.0004) = 250
So the angle increment is 180/250=0.72 degrees
```

Thus we take 250 steps increasing "a" by 0.72 degrees and decreasing r by . 0004 each time.

The program becomes:

```
000 START INS 01
```

$001 \mathrm{TD}=.125$
002 FR XYZ $=10$
003 SET UP $\longrightarrow z \mathrm{cxyu}$
004 GO X 1.0625
005 GO Z -. 050
006 REPEAT 10
007 REPEAT 25
008 GR r -. 0004
009 a . 72
010 REPEAT END
011 REPEAT END
$012 \quad 2 \longrightarrow \mathrm{Clear}^{2}$
013 END

NOTE

1. We can cycle round to form a spiral.
2. Within the loop one can change Z, for example GR \quad. 001
So the tool will rise as it cuts the cam or spiral.

EXAMPLE 3

Here are two examples that illustrate the generation of 3 D shapes by little vector moves.

1. To generate a Pyramid

The program becomes:
000 START INS 01
$001 \mathrm{TD}=.125$
$002 \mathrm{FR} \quad X Y Z=10.0$
003 SET UP $\rightarrow 2 \mathrm{CXyu}$
004 GO X 0.135
005 a -30
006 REPEAT 42
007 GR Z -. 0005
008 GR r . 005
009 REPEAT 03
010 GR r 0.0
011 a 120.0

012 REPEAT END
013 REPEAT END
014 END
Note Lines 9-12 generate a triangle. This could be replaced by any $n-g o n$. (See exampie 1)
2. To generate a Cone

The program is:
000 START INS 01
$001 \mathrm{TD}=.125$
002 FR XYZ $=6.0$
003 SET UP $\rightarrow 2 \mathrm{zxyu}$
004 GO X 0.0625
005 GO 20.0
006 REPEAT 42
007 GR Z -0.0005
008 X 0.005
009 GO a 360.00
010 REPEAT END
011 END
NOTE: The user should use a ball cutter.

The next example illustrates the flexibility in switching between rectangular coordinates and polar coordinates.

Wherever you are in XY space and wherever you are referenced to, the tool can be moved to another point (expressed in polar or rectangular) provided you create another local zero to reference it to, before moving.

Thus to go from A to b where A is your current position and b is expressed in polar coordinates at local zero 2 , we
simply \longrightarrow REF COODS Insert if Local Zero 2 is referenced to main reference and
ZERO AT
X 3
Y $\quad 1.5$

GO r 0.5
a 115
will move the tool to B
If you wish to swing round on a radius of 0.5

GR a - 115
will swing the tool around clockwise until the radius is parallel to the X axis.

This concept is very powerful in contouring applications as will be seen in the next example.

EXAMPLE 4

The object is to make an outside frame cut with large rounded corners. The tool diameter is specified as 0.125 inch. It illustrates the use of the $Z E R O$ AT instruction and GR a (godeg).

EXAMPLE 5

The object is to go round a sharp angle on an outside cut. If we used XY coordinates for all moves we would need to calculate the tool offsets in $X Y$ coordinates. This is very tedious. We can eliminate these calculations by using polar coordinate moves. The tool diameter is . 25 inches the sharpangle is opposite.

The program would be:
000 START INS 01
$001 \mathrm{TD}=.25$
002 FR XYZ $=10$
003 SET UP $\rightarrow z c x y u$
004 ZERO AT
005 X 1
$006 \quad Y \quad 2$
007 GO a $31+90=121$ Tool is at A
008 r Tool Radius $=.125$
009 GO Z -. 050 Drop tool
$010 \longrightarrow$ REF COODS
011 ZERO AT
012 X 2.697
$013 \quad Y \quad 3.02$
14 GO r . 125 Tool is at B
015 a 121
016 GR a - 135
$017 \longrightarrow$ REF COODS
018 ZERO AT
019 X 2.273
$020 \quad Y \quad 1.322$
021 GO r -125
022 a - 14
Tool is at D
023 END

NOTE:

1. On line 16 , total angle move is $121 \mathrm{deg}+90 \mathrm{deg}-76 \mathrm{deg}=135 \mathrm{deg}$.
2. THE TOOL IS ROTATED ROUND THE POINT OF INTERSECTION.

EXAMPLE 6

```
Outside contour this part. The tool diameter is . 25 inches, part rri
``` is. . 1 inches thick.

Observe that there is NO calculation
of tool path in space off the part.
Only the starting point is reguired.

The program becomes:
000 START INS 01
001 TD \(=0.25\)
002 FR XY = 10
003 FR \(2=4\)
004 SET UP \(\rightarrow 2 C x y u\)
005 GO \(\mathrm{Y} \quad-.625 \quad(\) Ref. \(\rightarrow \mathrm{A})\)
\(\begin{array}{lllll}006 & \text { GO } & Z & -.120^{\circ} \\ 007 & \text { GR } & \text { a } & -180^{\circ} & (A \longrightarrow B)\end{array}\)
008 ZERO AT
009 X . 634
010 Y . 5
011 GO r . \(125 \quad(\mathrm{~B} \longrightarrow \mathrm{C})\)
\(\begin{array}{lllll}012 & & \text { a } & 90 \\ 013\end{array} \quad G R \quad \begin{array}{lll}\text { a } & -30 & (C \longrightarrow D)\end{array}\)

015 ZERO AT
016 X 1.50
017 Y 0
018 GO r . \(125 \quad(\mathrm{D} \longrightarrow \mathrm{E})\)
019 a 60
020 GR a \(-60 \quad(E \longrightarrow F)\)

EXAMPLE 7

NOTE:
This example is relatively easy because one line (AB) was horizontal. The next example gives the general case with the center of the arc given, but the two lines are at angle \& respectively to the \(X\) axis.

EXAMPLE 8
We are given two lines with an arc of radius R between them. The tool has to go round the outside.

Line 1 starts at X1, Yi and has angle Line 2 ends at \(X 2, Y 2\) and has angle We are given XC, YC the center of the arc. This we can do very easily. Suppose the tool radius is ri. Start at A.

```

006 2ERO AT (Set local zero at first point)
007 X X1
008 Y Y1
009 GO r ri (Tool is moved to A) r = Tool Radius
010 a < +90
011 GO Z - .05 (Drop tool)
012 \longrightarrowREF COODS
013 2ERO AT (Reset local zero at center of arc)
014 X XC
015 Y YC
016 GO r R+r1 (Express B as a polar cood with respect
017 a < +90 to the center of the circle and move to B)
018 GR a - (180 + \dot{\alpha - \beta ) (Go round the arc, arcangle}
019 \longrightarrow REF COODS is -(180 + 人 - \beta)
020 ZERO AT (Reset local zero at end point)
021 X X2
022 Y Y2
023 GO r ri (Express D as a polar cood with respect
024 a ( }\beta=90deg). to the end point and move to D

```
The critical information is the center of the arc.

\section*{EXAMPLE 9 (math note)}

EXAMPLE 10
Here is a worked example of the previous calculations. The data is given opposite, is . 25 inches.

First calculate \(q\), the length along the first line to the arc intersection.
\[
\begin{gathered}
q=\frac{25}{\tan \left(\frac{105-45}{2}\right)}=433 \\
\text { So } \quad \begin{array}{l}
X 3=1.204-.433 \cos 45=.898 \\
Y 3=1.304-.433 \sin 45=.998
\end{array}
\end{gathered}
\]

Thus XC \(=.898+.25 \cos 45=1.075\)
\[
Y C=.998-.25 \operatorname{Sin} 45=.821
\]
and swing angle is
\[
180+45-105=120
\]

Note: A perceptive observer will note a redundancy of information. Not only do we have the intersection of the two lines, but we arso have their angles. Rarely is this supplied together. The user will have to calculate one or the other if not given. The next math note example shows how.

\section*{EXAMPLE 11 (math note)}

The angles are simply given as:
\[
\begin{aligned}
& \alpha=\tan ^{-1} \frac{Y 1-Y 1}{X 1-X 1} \\
& B=\tan ^{-1} \quad \frac{Y 1-Y 2}{X 1-Y 2}
\end{aligned}
\]

In the previous example:
\[
\begin{aligned}
& \alpha=\tan ^{-1} \frac{1.304-.3}{1.204-.2}=\tan ^{-1} \quad 1=45^{\circ} \\
& \beta=\tan ^{-1} \quad \frac{1.304-.3}{1.204-1.5} \quad \tan ^{-1}(.373)=105^{\circ}
\end{aligned}
\]

The intersection point is given as:
\[
\begin{aligned}
& X I=\frac{Y 2-Y 1+X 1 \tan \alpha-X 2 \tan \beta}{\tan \alpha-\tan \beta} \\
& Y 1=(X 1-X 1) \tan +Y 1
\end{aligned}
\]

In the previous example:
\[
x \left\lvert\,=\frac{2-3+2 \tan 45^{\circ}-1.5 \tan 105^{\circ}}{\tan 45^{\circ}-\tan 105^{\circ}}\right.
\]
\[
\begin{aligned}
Y I & =(1.204-2) \tan 45^{\circ}+3 \\
& =1.304
\end{aligned}
\]

NOW CALCULATED

\section*{EXAMPLE 12}

Intersection of 2 arcs, radii and centers given. This is very easy with polar coordinates. The only piece of information the user has to calculate is the angle i.e. how far to swing round the arc. The radius is easy, either add add or subtract the tool radius to R1 or R2. Simply swing round the first arc, to the intersection point then re-zero at the center of the second arc and swing round the required amount.
\[
\left(\alpha=\tan ^{-1} \frac{Y_{2}-Y_{1}}{X_{2}-X_{1}}\right)
\]
and watch the signs.

SCALE
OBTAINED BY: Touching the FUNCTION key and entering 00 to na. Scale is function 00 .

WHAT IT DOES: It is a linear scaling on \(X, Y, z\) or any combination there of, either up or down. It is used as a switch for example.
SCALE ON

\section*{YT.Y2}

analogous to SPINDLE ON/OFF. All move statements between scale on and scale off will be scaled.

FORMAT: The exact format is:
TO SET
\begin{tabular}{|ll|}
\hline SCALE & ON \\
\hline\((X\) & \(x . x x x x)\) \\
\hline\((Y\) & \(y \cdot y y y y)\) \\
\hline\((Z\) & \(z . z z z z)\) \\
\hline
\end{tabular}

TO CLEAR
\[
\underset{\text { SCALE OFF }(X)(Y)(Z)}{\text { Select scale off }}
\]

The value entered after the axis is the scale factor. If fractional then the moves are scaled down, if greater that 1 then moves are scaled up. Thus
\[
\begin{array}{ll}
\mathrm{X} \quad 0.5 \text { will halfall } \mathrm{x} \text { toves } \\
\mathrm{X} \quad 2.0 \quad \text { will double all } \mathrm{m} \text { moves }
\end{array}
\]

Automatically any (\(r, a)\) moves will be scaled on \(r\left(r=\sqrt{x^{2}+Y^{2}}\right)\) but not on (they remain the same).

\section*{RESTRICTIONS}

One can only scale down from maximum axis move or scale up to the maximum axis move. For example, any scaled up move that results
in \(X\) exceeding 6.2 inches will be flagged as an error and any entry that exceeds 6.2 inches to be scaled down will be flagged. EXAMPLE

Make an ellipsoidal pocket with ellipsoidal bolt hole pattern round the outside. Major axis is 2 inch, minor axis is 1.75 inches, depth is. inch and tool diameter is. 125.

```

What we do is to write a program for a circle pocket + bolt hole
circle, in between a scale down of Y of . 875.
000 START INS 22
001 TD = . 125
002 FR XYZ = 10.0
003 SET UP->zcxyu
004 ZERO-AT
005 X = 2.0
006 Y = 1.0
007 SCALE ON
008 Y .875
0 0 9 ~ C I R C ~ Z \% ~ 0 5 0 ~ 0 1 7 ~ B O L T ~ P E C K ~ 0 1 ~
010 XY CUT % 050 018 ZH}0.
011 ZH 0.0 019 XC 0.0
012 2d .1 020 YC 0.0
013 XC 0.0 021 a 1 0.0
014 YC 0.0 022 N 8
015 r1 1.0 023 r 1.15
016 工2 0.0 024 SCALE OFF Y
025 END

```

NOTE: The user should be aware of scale round off. Thus 2.4576 scaled down by 10 results in 0.2457 , which when scaled up by 10 , results in 2.4570 .

Control 2/Control 3
How Obtained From CONTROL \(n=2\) or 3

What it Does These are for external event operation or synchronization.

Control 2 sends an active low pulse out of length 100 msecs . and continues on in the program.

Control \(\frac{3}{}\) expects to receive a low signal. (The high value can range from 5 to 24 v as it is interamly current limited) The program will wait at control 3 until it sees a low signal, then it will continue. The signal must remain low for at least 30 msecs. It is sampled 3 times at 10 msecs intervals.

How Interfaced
At the right hand side of the power pack the user will find this connector. It is a standard female miniature audio one with 5 pins from Switchcraft.

The cable length should not exceed 15 feet.

Internally we have the following optocoupled circuits.

PIN ASSIGNMENT
1. STROBE +
2. STROBE -
3. ENABLE +
4. enable -
5. NOT USED

HOW USED EXAMPLES
1. AUTO CLAMPING

NOTE: The signal can toggle a fip flop
so the first time the signal is sent it is "clamp" and the second time it is "unclamp". \(\$\) THRD \(=\) ROROT UN LOAD FTC
2. AUTO LOADING

\section*{COORDINATE \(\bar{\Phi}\)}

OBTAINED BY \(\Phi\) key
WHAT IT DOES:

It allows the user to generate circular arcs at right angles to the XY plane. A point \(P\) in space (see opposite) is given by coordinates (X1,Y1,Z1). It is at a height \(Z 1\), vertically above the point \(Q\) (X1, Y1) on the XY plane. The angle QOP is \(\Phi\). If we keep \(O P \quad(=R)\) fixed in length, and vary \(\Phi\), then \(p\) will describe a circular arc in the plane QOP at right angles to the \(X Y\) plane. The point \(Q\) is of course (r,a) in polar coordinates. If we vary a (0 to 360) P will trace out a circle (a height Z1) above the XY plane of radius r. (R,a, \(\Phi\)) are called spherical coordinates of the point \(P\). By keeping \(R\) fixed and varying a and \(\Phi\), P will generate a sphere.

NOTE: If Phas coordinates (X,Y, \(Z\)) then the relationship to a and o is:
\(X=R \cos \Phi \cos a\)
\(Y=R \cos \Phi \sin a\)
where
\(R=\sqrt{x^{2}+y^{2}+Z^{2}}\)
\(a=\tan ^{-1} Y / X\)

\section*{QUALIFIERS ON \(\Phi\)}
the usual qualifiers apply to the \(\Phi\) move:
\[
\begin{aligned}
& \text { f........fast } \\
& \text { c........comeback }
\end{aligned}
\]

However \(\quad\) (inside) and o (outside) are different. Built in is automatic compensation for a square end mill.

For outside compensation the tool path is:
\(X=R \cos \Phi \cos a+\frac{T d}{2} \cos a\)
\(Y=R \cos \Phi \sin a+\frac{T d}{2} \sin a\)
\(Z=R \sin \Phi\)

For Inside compensation the tool path is:
\[
\begin{aligned}
& X=R \cos \Phi \cos a-\frac{T d}{2} \cos a \\
& Y=R \cos \Phi \sin a-\frac{T d}{2} \sin a \\
& Z=R \sin \Phi
\end{aligned}
\]

Where \(T\) is tool diameter.
For a ball end ail the user must compensate for the staring position of the radius of the ball cutter.

\section*{FORMAT}

The instructions are
\begin{tabular}{|c|}
\hline\(G 0 \Phi+\mathrm{ddd} . \mathrm{ddd}\) \\
\hline\(G R \Phi+\mathrm{ddd} . \mathrm{ddd}\) \\
\hline\(\quad\) Go to this absolute angle \(\Phi\) degrees \\
\hline
\end{tabular}

There is only one major restriction on \(\boldsymbol{I}^{\prime}\). The \(\Phi\) move can only operate in one of the following two range
\[
0^{\circ}<\Phi \leqslant 180^{\circ} \quad \text { AND } 180^{\circ} \leqslant \Phi \leqslant 360^{\circ}
\]
corresponding to operation \(A B O V E\) the \(X Y\) plane and \(\boldsymbol{I}^{\boldsymbol{I}}\) operations BELOW the XY plane. This is to allow different tool compensation for above and below the plane.

\(\Phi\)range above the \(X Y\) plane I range below the XY plane
To go from \(\Phi=90^{\circ}\) to \(\Phi=270^{\circ}\), the user must make two \(\Phi\) moves, either \(\Phi \rightarrow 0^{\circ}\) or \(\Phi \rightarrow 180^{\circ}\) then \(\Phi \rightarrow 270^{\circ}\) depending whether the move is clockwise or counter clockwise. one cannot do this in one move.

\section*{TRO}
a
2ny
\({ }^{1} \mathrm{I}\)
Ig:
○g
xd
\(-9{ }^{-1}\)
\(g\)
at
: 1 s \(\because:\) \(\therefore 0\) I
\[
\mathrm{s}
\]

HOW TO USE \(\Phi\)
1. The user must first decide on a ball end mill cutter or a flat end mill cutter. If a flat end mill cutter, then all moves on \(\Phi\) must be qualified by inside or outside.
2. The tool must be positioned in space correctly. Examples are given, on the following pages.
3. The zero around which \(\Phi\) operates then must be set correctly, to correspond with the desired radius and angle.
4. Then the moves are generated with a combination of \(\Phi, \quad x, y\) or (r,a) to cut the required surface.
1. BALL CUTTER

Suppose we wished to cut a 30 down hemisphere with a ball cutter. The radius \(R\) of the hemisphere is 1 inch. The ball radius is . 125 inches. The zero point for \(Z\) is
\(R \cos \Phi=1 * \cos 30\)
\(=.866\)

This is the point around which \(\Phi\)
moves.
\(Z^{\prime} B=R \sin \Phi=1 t \sin 30=0.5^{\prime \prime}\) is the surface radius of the hemisphere. As can be seen we have to raise the tool by the amount \(A C\) and shorten the radius by \(A B\) in order to position the ball end mill tangentially to the surface of the hemisphere.

Hence \(A C=B C \cos 30=.0541\) \(A B=B C \sin 30=.03125 \quad(B C=.125)\)

So the correct initial move is
\begin{tabular}{lll}
GO & 2 & .0541 \\
GO & r & .4687 \\
& a & 0
\end{tabular}\(\quad(.5-.03125)\)

NOTE: This is correct if the ball cutter is zereod correctly. Remember that the ball center is not zeroed at the surface, it is TD/2 up 2. The way to do it is as follows:
\begin{tabular}{ll}
SET UP \(\rightarrow\) ZCXYu & 2ERO BALL TIF ON SURFACE \\
GO 2 & TD/2 \\
HALT & \\
& \\
& \\
& LOLLER SPINDLE SO BALL \\
& TOUGHES SURFACE
\end{tabular}

This corrects for the zero point. Make sure that the clearance height is greater than \(T D / 2\).

The following examples have assumed that the ball cutter is zereod correctly.
2. SQUARE END MILL

\section*{OUTSIDE COMPENSATION}

The user must position the square end mill such that the edge of the tool touches the hemisphere at the required radius. The controller will then move the tool as indicated i.e. compensating for the tool offset as a function of the \(\Phi\) angle.

Suppose \(\Phi=40, R=1, T D=.125\)

Then \(\quad Z=R \sin 40^{\circ}=0.6428\)
\[
r=R \cos 40^{\circ}=0.7660
\]

So the tool center is positioned at (2, r1)
\[
\begin{aligned}
& Z=0.6428 \\
& \underline{R 1}=0.766+\frac{T D}{2}=\underline{0.8285} \text { (Add on the tool radius) }
\end{aligned}
\]

INSIDE COMPENSATION
The center of the tool must be positioned at \(B^{\prime}\), on the inside of the hemisphere Suppose \(\Phi=320, R=1, T D=.125\)
Then \(\quad Z=1 * \sin (-40)=-.6428\)
\(r=1 * \cos (-40)=.7660\)
So \(r 2=.7660-\frac{T D}{2}=.7035\)
So the tool is positioned at (2, r2) = (-.6428, . 7035)

Thus we subtract off the tool radius.

EXAMPLE 1 SQUARE END MILL
Mill an up 45 hemisphere ball.
\(R=1\) inch, \(T D=.125\) inches With a square end mill and with outside compensation.
A) Starting at the Top

000 START INS 01
001 TD \(=0.125\)
002 FR XY \(=16\)
003 FR Z \(=10\)
004 SETUP \(\longrightarrow \mathrm{ZCXyU}\)
005 SPINDLE ON
006 GO Z 0
007 ZERO AT
008 - 2 Set center 1 inch below surface
\begin{tabular}{|lclrr|}
\hline 009 & REPEAT & \multicolumn{1}{l|}{90} & \\
010 & GR & 0 & \(\Phi\) & -0.5 \\
011 & GR & aa & 360 \\
012 & REPEAT & END & \\
\hline
\end{tabular}

Move \(\Phi\) outside \(1 / 2\) degrees Cutcircle

013 SPINDLE OFF
\(014 \mathrm{Z} \longrightarrow \mathrm{C}\)
015 END
B. Starting at the Bottom

Replace above box by
```

009 GO r 0.7695 (.707 + .0625)
010 GO Z 0.707
011 REPEAT 90
012 GR O \Phi 0.5
013 GR a 360
014 REPEAT END

```


In these examples the cutting pattern is small \(\Phi\) moves followed by a large circuîar "a" move as opposite. We can easily switch this to a large \(\Phi\) move followed by a small "a" move.

The cutting pattern is shown opposite. We arc the tool over, move round slightly then arc back.

C) ARCING BACK AND FORTH (GO/GR \(\Phi\))

The box is replaced by: -
009 REPEAT 90

\section*{016 REPEAT END}

NOTE: This way is much slower than \(A\) or B. There is a good deal of calculation involved in continuous \(\Phi\) moves with compenstation, so it is not recommended.

EXAMPLE 2 (Square End Mill)
Mill down \(30^{\circ}\) hemisphere
\(R=1\) inch, \(T D=.125\) inches.
000 START INS 01
001 TD \(=0.125\)
002 FR KY = 16
003 FR Z \(=10\)
004 SETUP \(\rightarrow 2 \mathrm{cxy}\)
005 SPINDLE ON
006 GO Z 0
007 ZERO AT
\(008 \quad\) Z 0.866
009 GO r \(0.4375(0.5-0.0625)\)
010 a 0

015 SPINDLE OFF

\(016 \mathrm{Z} \longrightarrow \mathrm{C}\)
017 END
the radians of
cut is Dons thun dint le farm. umponteras

\section*{EXAMPLE 3}

The up 45 hemisphere
The center of the hemisphere is 1 inch below the surface. The program becomes:
```

000 START INS 01
001 TD = 0.125 (ball cutter)
002 FR XY = 16
003 FR Z = 10
004 SET UP\longrightarrowzCXyu
005 SPINDLE ON
006 GO Z 0.0
007 ZERO AT
008
009}\mp@code{Repeat 90
011 GR a 360
012 REPEAT END
013 2 }\longrightarrow\textrm{C
014 SPINDLE OFF
015 END

```


The critical program section is in the above rectangle. We move 0 in \(1 / 2\) degree decrements that trace out a circle in the \(Z X\) plane. After each o move, we rotate "a" to generate a circle in the XY plane.

\section*{EXAMPLE 4}
```

The down 30 hemisphere with ball
end mill.
The radiuss R is 1 inch, the tool
diameter is . 125.
The program becomes:
000 START INS 01
001 TD = 0.125
002 FR XY = 16
003 FR Z = 10
004 SET UP\longrightarrowzCXYu
005 SPINDLE ON
006 GO 2.0541 { INITIAL POSITION OF TOOL
007 G0 r . 4687
008 a 0
l}$$
\begin{array}{l}{009}\\{010}\end{array}
$$\mp@code{ZERO AT
011 REPEAT 60
012 GR f \$ -0.5
013 GR a 360
014 REPEAT END
015 2\longrightarrowC
016 SPINDLE OFF
017 END

```

\section*{EXAMPLE 5}
\[
\begin{aligned}
& \text { Cut a citcular slot along the } \\
& \text { X axis. } \\
& \text { R = } 1 \text { inch, ball ead mill } \\
& \text { diameter. } 125 \text { inches. } \\
& \text { The simplest way to do this is } \\
& \text { to move the tool back and forth } \\
& \text { along the } X \text { axis while moving o } \\
& \text { in small inctements. }
\end{aligned}
\]

The key section becomes:-
\(\left.\begin{array}{lll}G O & 2 & 0.0541 \\ G O & 5 & 0.4687\end{array}\right\}\) POSITION TOOL OUT ALONG Y AXIS
\(\left.\begin{array}{ll}\text { a } 90 \\ 0 & \text { AT }\end{array}\right\}\) FIX CENTER HEIGHT
\(\left.\begin{array}{cc}\text { ZERO AT } \\ Z & 366\end{array}\right\}\) FIX CENTER HEIGHT
```

REPEAT 3
REPEAT 40
GR f 重 -0.5
GR C X 2.0
REPEAT END
REPEAT END

```
 MOVE \(\$ 120\) TIMES X 0.5 DEGREES \(=60\) DEGREES
 MOVE \(X\) ALONG 2 INCHES AND COME BACK

Note: We can also do this by incrementing along \(X, \quad\) re-zeroing \(X\) then swinging \(\Phi\) from 240 degrees to 300 degrees.

\section*{EXAMPLE 6}
With a . 125 ball end mill, cut a
degree circular slot at 45
degrees to the \(X\) axis.
Again the simplest way to do this
is to move the tool back and forth
along the slot, then to move 0 in
small increments.
\(\left.\begin{array}{lll}\text { GO } & \mathrm{Z} & 0.0541 \\ \text { GO } & \mathrm{r} & 0.4687\end{array}\right\} \quad\) POSITION TOOL
 a 135
\(\left.\begin{array}{c}\text { ZEROAT } \\ Z \quad .866\end{array}\right\}\) FIX CENTER HEIGHT
REPEAT 3
REPEAT 40
GR f \(\Phi\) - 0.5
GR \(\quad\) X 1.4142
 Y 1.4142
GR \(\quad X-1.4142 \quad\) COME BACK
 Y -1.4142
REPEAT END
REPEAT END

\section*{EXAMPLE 7}

This is an arc frame on the YZ plane uith a ball end mill diameter of . 125 inches. . \(\# 1\)

We have to position the tool correctly at the start of the arc.

First we position the tool
\[
\begin{array}{llll}
\text { Go } & Y & .2813 \\
\text { GO } & Z & .0541
\end{array}
\]

Nextwe zero the axis (about which \(\Phi\) moves)
\[
\begin{aligned}
& \text { ZERO AT } \\
& 2=-.866 \\
& Y-.25
\end{aligned}
\]

Next we generate the moves
```

REPEAT 60
GR £ $\Phi$ - 0.5
GR C X 0.8

```

REPEAT END

Similar arc frames can be generated uith \(\Phi\) above the
 XY plane.

This is the optional rotary table which plugs into the power section at the back. It is the \(U\) axis.

\section*{MECHANICAL}

The rotary table has a 6 inch diameter table, can be mounted horizontally or vertically, and has a maximum variation of +1 minute 20 seconds (+.02 degrees).

Each step of the stepper corresponds to. 004 degrees, or in other words the circular resolution is 1 part in 90,000. The maximum rotation speed is 10 and 20 degrees per second for the 2200 and 2400, respectively.

\section*{BACKLASH}

This is almost negligible. The worm, worm gear spacing is set approximately by the cam actions of the worm bearing assembly, then fine-tuned by a set screw. This should not be tampered with, as it has been set very carefully.

If the user is concerned by this error, all moves should be one direction, any back moves should swing past the desired value then forward again. There is no electronic measurement of the backlash.

ELECTRICAL
The drive is pre-set for a specific machine, therefore a rotary table designated for the DM \(2000 / 2200\) should not be plugged into a DM 2400 or vice versa. They are not machine interchageable.

\section*{DIRECTION}

The table moves clockwise for a positive move, so the tool appears to move counter-clockwise.
```

The commands for U are:

```


\section*{EXAMPLE}

Drill nozzle hole patterns
\(000 \quad\) START INS 11
\(002 \quad\) FR XYU \(=16\)
003 FR Z = 5
\(004 \quad\) SET UP \(\longrightarrow 2 \mathrm{cxyu}\)
005
006
007
008
009
010
011
012
013 REPEAT 3 REPEAT 20 GO \(2-.1\}\) DRILL HOLE \(Z \rightarrow C\)
 GR f U 3.0 EVERY 3 DEGREES REPEAT END GR f U 60 JUMP 60 FOR NEXT BLOCK REPEAT END END

\section*{WHAT IT DOES}

This allows the user to interface to the controller with an external computer or peripheral communication link that can be up to 50 feet away.

The user may: DOWNLOAD a program from the computer to the controller, then executeit

UPLOAD a program from the controller to the computer.
INCREMENTALLY operate the machine (line by line download and execute) where the computer generates the instructions very much like an \(X, Y\) plotter. There is no limit to the number of instructions that can be sent.

The desktop ynit also has the RS232-C interface so the user can download or 4 pload to the controller off line. This link allows the user much greater flexibility in part generation, from font style libraries for inscribing to complex three dimensional shapes via CAD software.

PHYSICAL LINK
At the top right hand side of the machine there is the standard RS232-C connector. Each pin is numbered from 1 to 25 . There will be a similar connector at the back of the computer. The general connections are as follows:


```

Depending on the serial interface, some computers do not have
REQUEST TO SEND and CLEAR TOSEND. In this case, these pins
should be jumped together at the DM2400%in the connector. The
cabling for RS232-C is readily available in a variety of lengths.
Do not exceed 50 feec.

```

```

Data is transmitted and received asynchronously_with the following parameters
Data Rate (speed) = 2400 bits per second (bps)
Parity
= none
Data Size
=8 bits
Number of Stop Bits
=1
in standard ascii.
Appendix 2 contains the ASCII table.

```

\section*{RESTRICTIONS}
```

In upload and download.
O is changed to $Q$ ascii (51) hex
\#is changed to $>$ ascii (3E) hex
Any programs written at the computer should use this nomenclature. Some systems support these symbols others don't, so we have defaulted to $Q$ and $>$.
SETTING UP THE 2400
With the RS232-C cable linking the 2400 with the computer, one can switch on. The user then selects from
LINE MODE
READ/WRITE
what he wishes to do. There are four possible operations (see flow chart). They are
(1) UPLOAD This will transmit the program at the current line number to the computer until an end statement is encountered. This function must be restarted for subroutines as they are treated as programs. Upload therefore provides a means to save a program in the computer memory or provide a printout on a standard RS232 compatibleprinter.

```
(2) LINE EXECUTE This will receive line by line instructions from the computer and execute them directly. This submode is for computer generated instructions or p efing the 900 lines of the controller. Subroutines, lopingand skip are not supported. It is the function of the computer to handle the se program control statements independently.
(3) PROG EXECUTE This will receive the program from the computer (download) until end of file is detected then automatically go to the start and begin execution. It should not exceed 900 lines.
(4) DOWNLOAD This is as above without the automatic begin. The controller can therefore be downloaded with a variety of programs which the user can select to run.
At the desktop unit just UPLOAD and DOWNLOAD modes are supported. \(\therefore\) mefe Concole

 © written the foftwoun will react in a

010 Rem Dina Mete Controller / IBM PC Communications Package
011 REM
020 Width 80
\(\begin{array}{ll}030 & \text { OPEN "COM } \\ 100 & \text { LS } \\ 100\end{array}\)
110 PRINT;PRINT;PRINT
120 PRINT" 1 : Upload (from Controller to IBM PC)"
130 PRINT " 2 : Download (from IBM PC to Controller)"
140 PRINT " 3 : Incremental
150 PRINT " 4 : External "
163 PRINT " 5 : Exit
165 LOCATE 12,24,1
166 PRINT "
167 Locate \(12,1,1\)
170 INPUT "Enter your selection \(=" 2 N \$ \rightarrow V A L \rightarrow\)
180 IF VAL (N \(\$\)) \(=0\) OR VAL \((N \$)>5\) GOT 165
182 IF VAL \((N)=5\) THEN END
(200) INPUT "Enter file name =", FILE

320 ON VAL (N \(\$\)) GOSUB \(400,3000,4000\)
330 GOTO 100
400 REM
401 REM Download Command
402 REM
403 OPEN FILE \(F\) FOR GNPUTAS 42
405 PRINT: PRINT: INPUT Hit retrain key, when ready", BS
: 410 IF EOF (2) GOTO 710

650 PRINT A \(\$\)
\(700:\) GOTO \(410 \quad \because \quad \geqslant\)
710 PRINT \(11, \operatorname{CAR} \$(26) ; \operatorname{CHR} \$(13)\); End-of-file
720 CLOSE \(\# 2\)
1000 RETURN
2:000 REM
2001 REM UPload Command
2002 REM \(\because\)

2003 OPEN FILE FOR OUTPUT AS \(\# 2\)
2050 PRINT: PRINT: INPUT Hit return key, when ready", B\$ 2100 IF LOC(1) < 1 THEN GOTO \(2100^{\prime}\) Wait for character
2200 A \(\$=I N P U T \$\left(L O C(1),{ }^{* 1}\right) K\)
```

2300[FOR I=1 TO LEN(A\$)

```

2400 IF MID \(\$(A \$, \underline{\underline{I}}, \underline{1})=\mathrm{CHR} \$(26)\) THEN KOTO \(2800^{\circ}\) IF EOF THEN done 2500 NEXT I
2620 FOR It TO LEN (A\$)
```

2630 IF MID$(A$,I,1)=CHR$(10) THEN GOTO 2640'FIlter out line
        feeds
    2632 PRINT MID$(A$,I,1);
2634 PRINT #2, MID$(A$,I,1);
2637 IF MID$(A$,I,1)=CHR$(13) THEN PRINT \#2, CHR\$(10);'Add line
2640 NEXT I
2700 GOTO 2100

```
```

        2800 PKINT #2, AS;
        2850 DRINT A &
        2860 CLOSE #2
        2900 RETURN
        3000-REM
        3001 REM Incremental Command
        3002 REM
        3003 OPEN FILE$ FOR INPUT AS #2
        3010 PRINT: PRINT: INPUT "Hit return key, when ready", B $
        3050 IF LOC(1)=0 THEN GOTO 3100
        3060 A$=INPUT$(LOC(1),#1)
        3100 IF EOF (2) THEN GOTO 3800
        3200 LINE INPUT#2,A$
        3250 PRINT A$
        3300 FOR I=1 TO 200:NEXT I: PRINT #1,A$
    ?-3400 LF LOC(1) < THEN GOTO 3400
3410 A $=LEF'T$(INPUT$(LOC(1),#1),8)
    3500 IF MID$(A$,1,2)="NO" THEN GOTO 3050
    3600 IF A$= "Error 01"THEN GOTO 3900
3700 IF A\$= "Error 02" THEN GOTO 39/Q
3800 PRINT "Program finish": CLOSE \#2: RETURN
3900 PRINT: PRINT: PRINT "Over limit": CLOSE \#2: RETURN
3910 PRINT: PRINT: PRINT "Parameter error": CLOSE \#2: RETURN
4000 REM
4001 REM External Command
4002 REM
4003 GOTO 400
3920 PRTNT: PRNT: PRINT" IMPROPER SURRUUTNL, IFPFAT, S*IO EIC
: CCosE\# 2; RETUEN

```

\section*{SECTION 12 USER NOTES and INFORMATION}

USERS NOTES AND INFORMATION SECTION
1. INS/MM?

When the machine is switched on, the controller automatically defaults to mm unless the controller reads a PROGRAM START INS statement at location 000 .

If there is no program start instruction at this address, the controller is in mm until the user passes through with the NEXT key, or line number entry, a program start instruction in inches. That is, the controller tries to make as intelligent a decision as possible as to the ins or mm setting for each program, either when running or entering information. The user can instantly determine the setting by looking at the number of digits behind the decimal place, 3 for mm 4 for inches.

However, it is possible to fool the controller. One example is on switch on to have location 000 blank, then to jump through line mode to the middle of a program or subroutine and start entering data in inches which will be taken by mistake as mm. Because the controller has not received any contrary information, the result will be a scaling down by 25.4 when the program is run.
2. HOW DO I KEEP THE SET UP WHEN SWITCHED OFF?

The set \(u p\) coordinates are not stored in the program and are cleared on each controller switch_on. If the user wishes to store them for example on a production run, with a fixed jig for parts then it is very easy to do this. So when the machine is switched on, it will go automatically to the set up point when the program is run.

Change the program from:
000 START INS 01
\(001 \mathrm{TD}=.125 \mathrm{TO}\)
002 FR XYZ \(=10\)
003 SET UP \(\rightarrow z \mathrm{zcyu}\)

000 START INS 01
001 TD \(=.125\)
002 FR XYZ \(=10\)
003 GO \(\mathrm{X} \quad 0.0\) :
004 GO Y \(0.0=\)
识
During the first SET UP ask the controller (DISPLAY COOD) for the coordinates of \(X, Y, \&\) Z before setting them. Write these down and then enter them as moves in statements 003-005.

When the program is run the second time, the tool will move to the set up point. The user has only to confirm the set up to proceed.

J
3. WHAT DO I DO WHEN THE TOOL BREAKS?

Press the halt key. This will stop the axis at the end of that move, note the line number. Switch to line number mode, then to a tool-break program, which can be at the end of the current program. Run this program. EXAMPLE:

800 START INS 02
\(8012 \longrightarrow 2\) MAX
802 HALT Put in new tool, slacken off spindle lock,
803 GO \(0 \quad\) Go to some point where we can reference the
804 Y 0 new height.

805 GO Z 0 Lower head.
806 HALT Adjust spindle to \(Z \longrightarrow Z\) REF. Lock spindle.
\(807 \mathrm{Z} \longrightarrow\) CLEAR Z
808 HALT
809 END
Exit at 808 to old line number in first program and continue running.

The \(u s e r\) can reenter at any point in the program, but care should be exercised. You cannot reenter in functions, they have to be repeated. Repeat loops can be reentered at the same location if the coordinates are known. These may have to be entered after 807 above. Usually restarting in the middle of repeat loops can only be done if the tool is positioned accurateby or the indexing will be off.

Consul in relent ristinater ember pontoon ta ne
 \& coupe os the insult could bock the thew tool:
```

4. WHAT DO I HAVE TO WATCH FOR ON PRODUCTION RUNS?
When the user is satisfied on a one run operation he can then
switch to a production run mode.
5. Use END NEW PART ending. This has built in verification of
set up position.
6. Insert SPINDLE ON/OFF instructions.
7. Insert pre-SET-UP moves if necessary.
8. Insert PAUSES if necessary to clear work and buzzer to
signal end new part
During running, the user must ensure the slideways are adequately
lubricated. Also try to vacuum the debris out, not blow it out.
This is particularly true of ceramic dust, graphite and metal
parts.
If the set up point abruptly jumps then this is also due to limit
switch contamination.
The set up on Y will drift negative (.0001" per degree C)
initially due to the warm up time on the spindle head. The user
should pre-run the head before starting to preserve the Y set up
point if this is required.
```

\section*{SECTION 13 ERROR CODES}

Certain errors can be checked at run time. Here is a list. The error message format is:

ERROR nn
The user can switch to LINE NO MODE when this is displayed to examine his program and check his entry.
\(00 \mathrm{X}, \mathrm{Y}, 2\) AXIS DESTINATION BEYOND MAXIMUM TRAVEL or GO r too big.
\(01 \mathrm{X}, \mathrm{Y}, 2\) AXIS DESTINATION BEYOND MAXIMUM TRAVEL.Thie occurs most often when doing outside cuts with or without finish option with the part clamped to close to the homposition, the part must be clamped to allow for the tool cadius (+ option of 6.4 thous of finish cut) clear of the home position.
\(02 \mathrm{XA}, \mathrm{XB}\) Too small for inside or on the line cut or tool diaemeter too large.
03 XA,YB Values must be positive.
\(04 \mathrm{X}, \mathrm{Y}\) Axis beyond minimum for finish cut.
06 Tool diameter is zero.
07 2\% is zero.
08 Zd must be positive.
09 G0,r r must be positive.
10 Incircle function ri-r2 too smallfor tool diameter with or without finish option.

```

vNLuRS of }X\&Y\mathrm{ Twus rekod oceves

```

\section*{SOFTWARE}
1. Program missing or parts of program data incorrect.- You are disconnecting controller from machine or desktop unit without first switching off power. This will scramble the memory.
2. Program runs occasionally off at random.- This is due to electrical noise coming down the line from other machines. Try another outlet. Always avoid outlets wired to large machines.
3. Drift in set-up reference zero position.- Occurs when you omit END NEWPART in program or use SKIP TOP before END NEWPART.
4. Inch values changed to metric.- May occur when line number 000 is ignored and program start is on different line number of the memory stack.

\section*{HARDWARE}
1. Sticking axis.- Inadequate lubrication is usually at fault. Run axis test (diagnostics in manual mode) to check axis while lubricating. Only ater exhausting other service procedures, should you adjust gibs.
2. Large variations in backlash measurments.- Contamination of limit switches. They should be free and clear of oil, dirt, grime and other debris. Large inaccurate backlash will produce circles skewed at 0 and 180 or 90 and 270 degrees.
3. Inoperative axis.- Loose axis plug at socket. A loose axis plug can cause intermittent operation or total axis failure.
4. No spindle operation.- Check circuit breaker under spindle belt cover. Check spindle on-off control for proper position. Check 3 amp and 10 amp fuse.
5. Noisy spindle.- Caused by a loose spindle belt. Tighten belt by adjusting position of motor to minimize belt noise.

\section*{SECTION 15 INDEX}


```

RS232-C INSTRUCTION FORMAT COTD

```


Ascii cove in decul fare \(=1 \times 16^{\circ}+M \times 16^{\prime}\)
\[
=\angle+16 M
\]
\[
\begin{aligned}
& \text { ExO: } \\
& \frac{m L}{i} \dot{A}=5 \cup B=10+16=26 \\
& (3) 3 E=P=14+3 \times 16=62 \\
& \text { (3) } 51=Q=1+5 \times 16=81
\end{aligned}
\]
ENTERING A PROGRAM
Start Section 7-2 to 7-7
Middle Section 7-8 to 7-11
End Section 7-12 to 7-13
ERROR CODES
\(00 \quad X, Y, Z\) 13-1
\(01 \quad \mathrm{X}, \mathrm{Y}, \mathrm{Z}\) 13-1
\(02 \mathrm{XA}, \mathrm{XB}\) 13-1
03 XA,YB 13-1
04 X,Y 13-1
05 13-1
06 13-1
07 13-1
08 13-1
09 GO,r 13-1
10 13-1
Exercise Key 9-2 to 9-8
F Fast Key 10-9
Feed Rate Key 9-2
Fourth Axis 3-1
Frame 8-4, 8-5, 10-13, 10-17, 10-18, 10-27
Function Keys 7-8 to 7-14
GO ABS Instruction 10-2
GO and GR Instruction 10-2 to 10-12, 10-14
GO REL Instruction 10-1, 11-1
HALT
Programmed 5-13
During Running 5-13
Instruction Key 10-23
Home Zero Position \(.4-2,4-3,10-5-10-3\)
I lnside Key 5-5, 5-6, 7-4, 10-8
Insert Key 5-11
lnspection 1-2
Installation 1-3 to 1-5
Interface - see RS 232 synchronizationInterface Console3-3
Intersection of Two Arcs 11-13
Jamming 5-14
Line No. Mode 5-10
Local Zero Position \(.4-2,4-5,10-3,10-6,10-12\) to \(10-15\)
Manual Mode 5-1 to 5-9, 9-1
Manual Set-Up 7-5 to 7-6
Mechanical Operation 2-1
Mill 8-2 to 3-3
Modes 5-1 to 5-12
Motor Check 5-8
Mounting 1-4
Multi-Axis Moves 10-9
Next Key 5-3, 5-5
O Outside Key 5-5, 5-6, 7-4, 10-8
Operating Rules \& Conventions 4-1 to 4-6 4-1 to 4-6
Outside Contour Cut Example 11-7
Outside Frame Cut Example 11-5
Phi Function 11-18 to 11-29
Polar Cood Convention. .4-6; 10-2, 5, 7; 10-10 to 10-12; 11-4, 6
Polygon Cutting Example 11-1
Power Requirements 1-5
Preparation 1-3
Previous Key 5-10, 9-5
Printer. 3-3, 3-6
Probe Set-Up
13-2
Problems
12-3
Production Runs
Program Enter Mode 5-12, 9-2
Prog Ref Instruction\(5-12,7-4, \frac{10-30}{9-6}\)
Program Run Mode
Program Structure 7-1
Programming With Dynalan 10-1 to 10-29
Programming With Function Keys 7-8
Programming With Prompts 6-1 to 6-4
Pyramid Cutting Example 11-3
Qualifiers 10-8 to 10-11
Quill Adjustments 2-3
Rect Frame 8-5 to 8-7
8-6 to 8-9, 9-3, 10-22 to 10-28
Rect Pocket 8 to 8-12, 9-3, 10-22 to 10-28
Ref Coods Instruction.... . 4-4, 10-3, 4, 5, 13, 14, 17, 20, 25
Reference Zero Position 4-4, 10-15
Repeat End Instruction 10-26 to 10-30
Repeat Key 8-1, 2, 7, 8, 14, 10-25 to 27
Rotary Table
Safety Rules \& Precautions 1-1, 1-4, 11-15
Scale Function 11-15
Set-Up Key 10-13
Set-Up Retention 12-1
Sharp Corner (around outside) Cut Example 11-6
Shift Key 7-8
Skip Instruction 10-23
Spindle Head Position 2-3
Spindle Nose 2-4
SPINDLE SPEED
Adjustment 2-1 to 2-2
ON/OFF Instruction 10-20
Storing Set-Up Coods 12-1
Sub-routine Sub-return Instruction 5-12, 10-23 to 10-25
Synchronization Interface 11-16
Three-D Shape Cutting Example 11-3
Tool Breakage 5-14, 12-2
Tool Diameter Key 10-21
Tool Change Instruction Simplest \(10-21\)
With No Offset Storage 10-21With Offset Storage
Tool Mounting 10-22
Tooling 2-5
Trouble-Shooting 3-2
U Aux Key
Unpacking -13-2
USER EXERCISES
Entering Program Exercise 9-5
Run Program Exercise 9-7
End Program 9-8
Weight 1-4
Worked Examples 11-1 to 11-13
Writing a Program 7-1 to 7-14
XY Ref Instruction 10-18
Zero At Instruction 10-12, 11-5
Zero Coods Instruction 10-11, 10-12, 10-15
Zero Default 4-6
\(Z \longrightarrow Z M a x\) 5-6, 7-8, 7-13
\(2 \longrightarrow Z\) Clear
\(2 \longrightarrow Z\) Clear 5-14, 7-8

\[
\begin{aligned}
& \text { Ascii cone in decumol five }=1 \times 16^{\circ}+M \times 16^{\prime} \\
& =L+16 M \\
& \text { mL Exp: } \\
& \text { (B) } \mid A=5 U B=10+16=26 \\
& \text { (2) } 3 E=>=14+3 \times 16=62 \\
& \text { (3) } 51=Q=1+5 \times 16=81
\end{aligned}
\]```

[^0]: NOTE: The center may be located off the table. The maximum off table distance is 99 inches or 999 mm .

 * See Chapter 10

