

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Institute of Metrology METAS

Best Measurement Practice in VNA Measurements -Hints for the Practitioner

VNA Tools II course Juerg Ruefenacht

- Charlenes

Once upon a time... in a National Metrology Institute...

The HP 8510C was the state of the art in VNA metrology and representing the best accuracy and performance!

New VNAs: S21 measurement ripple of a Type-N 10 dB atten.

New VNA

- cables

standard

VNA Tools II training course

Introducing the systematic connector effects in the calibration standard definitions: The S21 ripple disappeared!

Improved accuracy:

Including the connector effects in the cal standard definitions allows to determine a more accurate reference plane!

This results in a more accurate calculation of the: - tracking terms and - match terms

Error box model of the VNA (one port): *minimize the impacts!*

Best VNA measurement practice topics:

- How to identify the dominant error sources?
- VNA measurement setup (pimp my VNA)
- Accuracy and S-parameter traceability chain
- Mating techniques and connector handling hints
- Practice and experience

1st Topic

How to identify the dominant error sources?

Basic influence parameters with uncertainties

S-parameter data with uncertainties

VNA measurement model

5

GUM compliant VNA uncertainty budget per frequency point

Frequency: 18000.000 MHz, Parameter: S1,1 Mag			Uncertainty bude	aet:
Id Flat Expand All Collapse All Copy Value Std Unc U95 0.027857122 0.004077626 0.008155251			S11 mag (lin) @	18 GHz
Description	Unc Component	Unc Percentage		
🛨 Calibration Standard	0.003991850	95.837		
E Connector Repeatability	0.000750441	3.387		
VNA Drift (correlated)	0.000057534	0.020		
VNA Experiment	0.000342641	0.706		
UNA Linearity	0.000090873	0.050		
VNA Noise Freque	ency: 18000.000 MHz. Para	meter: S2.1 Mag (dB)		
	Elat Evnand All Collar			
Valu [-19.6	e Std Unc 43053515 0.02315	c U95 53010 0.0463	06019	
Desc	ription		Unc Component	Unc Percentage
	Cable Stability		0.021226167	84.048
÷	Calibration Standard		0.005521731	5.688
÷	Connector Repeatability		0.000660716	0.081
÷	VNA Drift (correlated)		0.001998454	0.745
÷	VNA Experiment		0.000042428	0.000
Uncertainty budget:	VNA Linearity		0.007076452	9.341
S21 mag (dB) @ 18 GHz	/NA Noise		0.000716812	0.096

5.688 0.081 0.745 0.000 9.341 0.096

VNA uncertainty budget over all frequencies: no unc. - S11 of a load measured at 8 different connector orientations

DUT showing a good repeatability behaviour when measured at 8 different connector

orientations.

VNA uncertainty budget over all frequencies: with all unc. - S11 of a load measured at 8 different connector orientations

First example: DUT showing a good repeatability behaviour when measured at 8 different connector orientations.

VNA uncertainty budget over all frequencies: with all unc. - S11 of a load measured at 8 different connector orientations

VNA uncertainty budget over all frequencies: with all unc. - S11 normalized to the mean value (all influence parameters)

DUT showing a good repeatability behaviour when measured at 8

First example:

measured at 8 different connector orientations.

VNA uncertainty budget over all frequencies: single unc. S11 normalized to the mean value (connector repeatability unc. only)

© METAS

VNA Tools II training course

VNA uncertainty budget over all frequencies: no unc. - S11 of a load measured at 8 different connector orientations

28. - 30. October 2014 slide 14

VNA Tools II training course

VNA uncertainty budget over all frequencies: single unc. - S11 normalized to the mean value (connector repeatability unc. only)

DUT showing a bad repeatability behaviour when

Second example:

measured at 8 different connector orientations.

VNA measurement setup (pimp my VNA)

VNA architecture, performance and settings

• VNA hardware

- 4 receiver architecture (possible to measure the switch terms).
- VNA errors (note: it is not possible to error correct for all VNA errors)
 - **Systematic** (directivity, tracking terms, match terms, ...),
 - Random (noise floor and trace noise),
 - **Drift** (S-parameters, switch and error terms)

VNA box performance

- Raw match performance, receiver ratio linearity, S21-S12 symmetry (specifications).
- Metrology grade VNA (option): drift, raw performance, symmetry, temperature monitor.
- Additional thermal isolation of the VNA (box mounted in a rack cabinet).

VNA settings

- Source power (receiver compression, DUT effects).
- Frequency resolution (better information using more frequency points).
- Sweep time versus accuracy (sweep types: swept vs. stepped sweep, frequency list).
- VNA accuracy: reduce the IF BW instead of averaging.
- Avoid to stay in the HOLD mode (VNA dependant, VNA Tools II: use measurement series).

Federal Institute of Metrology METAS

VNA test port cables (goal: to minimize the cable effects)

- Test port cable styles
 - Semi-Rigid versus flexible cables.
 - Short versus long test port cables.

Test port cable layout

- Avoid: an unsupported cable setup, cable twisting, minimize any cable movements.
- Commercial breadboard based fixture with clamps and foam pads support.
- Special cable fixtures (most important: mechanically not over-determined \rightarrow flush mating).
- Thermal isolation (thin rescue blanket foil, foam, etc.).

Practical cable handling hints

- Respect the natural bending of the cable (adaptive fixture design).
- Install the cables on the previous evening (time for the thermal and mechanical settling).
- Or if the needed time is not available: first warm up the cold cable connector interface.
- Each cable has a settling time.
- Some cables are showing hysteresis effects (mechanically and thermally).
- Using cables or perform the measurement direct on the VNA test ports (adapters)? (thermal effects: sensitive load designs, change of the dimensional properties \rightarrow phase)
- Cable storage boxes: avoid any stress to the 'cable connector interface' section.

VNA test port cables (fixed port: female or male?)

Black trace : female load measurement (using a fixed port). Red trace : male load measurement (the test port cable was moved).

Optimise the cable layout for minimal cable movements.

Best measurement hints: VNA measurement setup

VNA test port adapters (goal: to improve the repeatability)

- Test port adapter styles
 - Metrology versus lab precision type adapters.
 - Slotless versus slotted type.
- Important features of a best test port adapter
 - Mechanical specification: pin-depth, pin diameter, no eccentricity, surface finish.
 - Select a pin-depth which avoids to provoke the unpredictable near field effects.
 - Shows a good repeatability behaviour \rightarrow low connector orientation sensitivity.
 - Does not change the characteristics of a cal standard or DUT (e.g.: nominal pin diameter).

• Practical test port adapter handling hints

- Always clamp at least one Test Port (TP) side (keep the VNA error box stable). TP clamping: be careful with multistage adapters (centre conductor not from one piece).
- First run a TP repeatability test using a short (the open is less stable) \rightarrow burn in effect.
- Check the repeatability behavior of each possible connection pair.
- Be careful with mechanical compatible connector families: Example: 2.92 mm vs K, 3.5 mm and SMA, etc.
- Cleaning of the connector interfaces \rightarrow most important for the small connectors.
- Use a dielectric disc to control the center conductor position of a beadless airline.

Calculated minimal distances to avoid near field effects based on the Agilent connector blue prints:

- 1.0 mm (slotted) : 5 μm
- 1.85 mm (slotted) : 5 µm
- 2.4 mm (slotless) : 15 µm
- 2.92 mm (slotted) : 10 µm
- 3.5 mm (slotless) : 15 µm
- Type-N (slotless) : 12 μm

General: a slotless design needs more distance!

Tolerance on component side allows a flush pin-depth value

Conclusion: minimal gap must be realised at the test port side!

TP1 mounted with Kapton disc to avoid near field effects and to control a flush centre conductor position

Example: optimal CC pin-depth recession for the 3.5 mm line system = $15 \mu m$

2.4 mm(f) test port adapter repeatability test using a short

raw data normalized to mean

Evaluate the test port repeatability by measuring a Short at different connector orientations!

2.4 mm(f) test port adapter repeatability test using a short

normalized to mean

First:

Evaluate the test port repeatability by measuring a Short at different connector orientations!

3rd Topic

inaccurate: using a non-traceable calibration kit *imprecise* : unstable VNA hardware and set-up

Accuracy and S-parameter traceability chain

- 1. inaccurate and imprecise
- 2. inaccurate but precise
- 3. accurate but imprecise
- 4. accurate and precise

VNA 1

0	\circ

Cal Kit 1 (generic and/or polynomial data)

- Open: polynomial data (C-terms)
- Short: polynomial data (L-terms)
- Load: assumed to be perfect 50+j0 ohm
- Specs: O / S: phase deviation from nominal Load: RL better than 36 dB

VNA 2

Cal Kit 2 (data base data with unc.)

As an example: assumption that we have two identical loads in both calibration kits.

VNA 1	VNA 2	

1st step: Perform a One Port cal and measure directly the used cal load (without a new connection)

2nd step: Re-measure the used cal load (new connection – now including the connector repeatability)

How to further improve the accuracy in VNA metrology?

- Start with traceable calibration kits not with the verification kits!
 - Use the best known standards for the VNA calibration (cal or verification standards).
 - A verification standard must be: appropriate, transferable, repeatable and stable.
- GUM compliant uncertainty calculation process
 - Identify the input quantities with their uncertainty definitions.
 - Define an appropriate VNA measurement model.
 - Uncertainty propagation through the defined VNA measurement model.

Still widely used in VNA metrology

- EURAMET/cg-12/v.01 (formerly: EA10/12): Guidelines on the evaluation of VNA:
- Starts after applying the 'VNA calibration' by analysing the residuals.
- Only for magnitude (no phase information) and uses outdated or wrong assumptions.
- Airline based ripple assessments (ignoring connector effects and line losses).

\rightarrow HF-Circuits (WP5): New guidelines on the evaluation of VNA and the uncertainties

Direct "traceable" VNA calibration approach:

- Primary coaxial calibration standards
 - Beadless airlines
 - Flush Shorts and Offset Shorts
 - Offset Opens? Only accurately calculable using an air dielectric design but issues with small coaxial families:

Near field coupling and the control of the center conductor position (longitudinal and angular).

Accuracy: mechanical characterisation, material knowledge, modelling capabilities, handling. Issues : beadless airlines (position of the CC), determination of the propagation constants.

• Traceable characterized coaxial calibration standards

- Offset Opens
- Offset Shorts
- Loads

Accuracy: quality of the uncertainty information, short and long term stability (design), handling, avoid center conductor coupling effects (use appropriate test ports).
 First selection criteria: showing a good connector orientation repeatability behaviour!

Accurate and traceable calibration kits and methods

- Traceable characterized calibration standards what is important:
 - The systematic connector effects must be included (accurate reference plane definition).
 - Repeatability of the used standards (short and long term stability, connector orientation).
 - S-parameter data format must include the uncertainty and correlation information.
 - Calibration standard definitions: data based versus polynomial data?

- ...

A stable calibration standard is a must for data based def. - S11 of a load measured at 8 different connector orientations

© METAS

A stable calibration standard is a must for data based def. - S11 of a load measured at 8 different connector orientations

Standard definitions: data based versus polynomial data?

Data based versus polynomial data: fitting losses !

© METAS Juerg Ruefenacht

VNA Tools II training course

Accurate and traceable calibration kits and methods

- Traceable characterized calibration standards what is important:
 - The systematic connector effects must be included (accurate reference plane definition).
 - Repeatability of the used standards (short and long term stability, connector orientation).
 - S-parameter data format must include the uncertainty and correlation information.
 - Calibration standard definitions: data based versus polynomial data.

- ...

• Select the most appropriate cal method (SOLT, Unknown Thru, etc.)

- One Port (no cable movements).
- SOLT (insertable test port configuration, Thru connection is assumed to be perfect).
- Unknown Thru (Opens and Shorts are the dominant uncertainty contributors).
- Optimization calibration (over-determined: more cal standards than error terms).

4th Topic

Mating techniques and connector handling hints

Connector cleaning and specifications (preparation)

Consult connector guides

(see the references on the last slide)

Connector cleaning

- Stereo microscope \rightarrow a must for the small coaxial families.
- Use appropriate cleaning tools and solvents.
- Cleaning techniques: \rightarrow avoid any stress to the center conductor and contact fingers.
 - \rightarrow first mating areas, threads, protection caps.
- Check for the connector specifications
 - Mechanical or optical pin-depth measurements (mean pin-depth and compression effect).
- Practical cleaning hints for best measurements
 - Cleaning process just before an electrical measurements (dry air with 23 deg).
 - Special storage boxes (particles from the female connector protection caps).

Best mating techniques (goal: to improve the repeatability)

- Good measurement guides and (old) cal kit operating manuals.
- Use a high quality torque wrench with the right setting and procedure.
 - Avoid to use warm wrenches (from body heat).
 - Minimal thermal impact: alternately use two different wrench sets (load and long DUT).

• Practical handling hints for best mating performance (repeatability):

- Avoid to rotate the coaxial components in respect to the test port (wear and contact).
 For all components: keep the DUT body orientation fixed with a counter wrench.
 Coaxial families with thin contact fingers are very sensitive to rotational stress.
 (1 mm and 2.92 mm: finger bending will result in a change of the contact point.
- First optimize the performance of the test port (see slide 22: test port handling hints).
- Perform at least one test connection (removal of oxide layers and contact finger settling).
- Do not push the DUT connector during the mating process (only for the thread mating).
- Mating speed controlled by the thread lead (slightly pull back the DUT component).
- Always minimize the cal standard and DUT warm up effects from the body heat.
- Avoid a fast loosening process (reduce any impact forces to the center conductors: 'click').
- Cleanliness!

Best mating techniques (S-parameters analysis)

- Monitor and analyze the S-parameter data information
 - Critical connections: check for the direct response on the VNA display (e.g.: beadless airline mating process, sliding load mating process).
 - Measure each component at least at 4 different connector orientations (90 deg).
 - VNA Tools II: use the add measurement series (evaluate the normalized raw data).

VNA Tools II training course

Best mating techniques (S-parameters analysis)

- Monitor and analyze the S-parameter data information
 - Critical connections: check for the direct response on the VNA display (e.g.: beadless airline mating process, sliding load mating process).
 - Measure each component at least at 4 different connector orientations (90 deg).
 - VNA Tools II: use the add measurement series (evaluate the normalized raw data).
- Practical handling hints for best mating performance (accuracy):
 - A fixed test port allows a controlled and more precise mating process.
 - Use finger cots instead of gloves: does offer a better fine motor sensitivity!
 - Use a head loop with the small coaxial line systems: both hands are free!
 - For the initial connection process of a beadless airline:
 - use an outer conductor inner diameter (OCID) alignment tool for the first connection.
 - use an center conductor (CC) alignment tool to control the mating process.

OCID alignment tool (shown example: Type-N)

5th Topic

Practice and experience

Quality management documents, metrology grade hardware and traceable kits are only the first steps towards the best accuracy...

- Evaluate for the best possible performance for each specific VNA:
 - VNA settings (source power, IF-BW, average, sweep time and dwell time).
 - Roll-off characteristic (reliable start frequency not what is written on the VNA!).

Evaluation of the best cal standard measurement data:

- Measure each component at least at 4 different connector orientations (90 deg).
- Identify outliers and select the measurement closest to the mean as reference data. Note: pay attention to the measuremnt order (identify contact or temperature effects).
- Or: use more measurements with the over-determined optimization calibration.

VNA Tools II - best calibration and measurement hints

- Best calibration standard and DUT measurement order:
 - Minimize the drift effects from the VNA setup (try to keep the project time short).
 - One port measurements with the fixed ports: -> best measurement order?
 - Measure similar components together (showing a similar receiver ratio).
 - Use the following measurement order (cal and DUT together): Loads, Opens then Shorts.

• Verification process:

- For long measurement series: periodically re-measure a stable component.
- For 2-port measurements: periodically re-measure the Thru connection (cable & drift).
- A stable and traceable verification standard can also be used for the calibration.
- Create a comparison folder to save the reference data.
- If more cal standards available than needed: compare the different One port cal results.
- For passive devices: reciprocal transmission response (use the display function S/S').
- SOLT: check for the Thru measurement response which was used during the calibration.
- Compare SOLT with an 'Unknown Thru' cal: Check for the Thru measurement response.
- Always re-measure the verification standard at the end of a measurement project.

- ...

Conclusions : "best VNA performance"

- Optimize and characterize the VNA measurement setup.
- Use traceable calibration kits not only verification kits.
- Choose appropriate and stable verification standards.
- Mating techniques and connector handling.
- Determine the main uncertainty contributors (investment).
- No way around more "practice and experience".

© METAS Juerg Ruefenacht

Thank you very much for your attention !

More information: www.metas.ch/hf

www.metas.ch/vnatools

Some connector handling guides:

- Hewlett Packard (now Agilent), "Microwave connector care", Manual Part No. 0851-90064, April 1986
- Hewlett Packard (now Agilent), "Connector care for RF & microwave coaxial connectors", Manual Part No. 0851-90064 Edition 2, 1991
- Hjipieris, G., "RF and Microwave connector care", Technical information, Marconi Instruments publication No. 46889-505, 1997
- Skinner, A.D., "ANAMET connector guide", 3rd edition, August 2007. (available for free, from: http://www.npl.co.uk/anamet-connector-guide)
- http://na.tm.agilent.com/pna/connectorcare/Connector_Care.htm
- http://na.tm.agilent.com/pna/help/latest/Tutorials/Connector_Care.htm

Hewlett Packard (now Agilent) "Microwave connector care" (manual out of print)

Federal Institute of Metrology METAS

- Typical connection
- Pin-depth on both sides

Old dogma: - Mind the pin-gap

- Ideal connection (50 ohm)

Electrical reference plane

Typical coupling effects when measuring beadless air lines

© METAS Juerg Ruefenacht

VNA Tools II training course

1.85 mm connector: S11 with small female chamfer

1.85 mm connector: S11 with big female chamfer

Old paradigm: Test Port Adapters pin-depth set close to zero Advantage: Centre Conductor position can be controlled

New paradigm: TP's recessed to avoid near field effects

Problem: undefined Centre Conductor position

TP1 mounted with Kapton disc to avoid near field effects and to control a flush centre conductor position

Note: optimal CC pin-depth recession for the 3.5 mm line system = $15 \mu m$

Airline model with a mounted Kapton disc

Kapton disc mounted on a 2.4 mm test port male pin

Best measurement hints: Introduction

