RCBus Specification

Version 0.0.001 21-February-2023

¥

3
1
5
7
3
)
2
2
2
2
3
3

Introduction

The documentation describes the Retro Computer Bus (RCBus).

The RCBus is an extended version of the RC2014[™] bus¹.

The RCBus has been created for the following reasons:

- To help distinguish RC2014[™] products from products that are not RC2014[™] but that claim a degree of compatibility with RC2014[™]
- 2. To reduce the chances of trademark infringement
- 3. To help members of the retro computer community share designs and sell products based on the RC2014[™] bus
- 4. To specify a common approach to supporting features not provided by the RC2014[™] bus
- 5. To specify a common approach to supporting processors other than the Z80

Appended A provides some background information which should help explain the above list of reasons for creating the RCBus.

The RCBus has a common backplane but some of the signals are not required for some use cases and some signals have different functions depending on the processor and other factors. Modules connected to the backplane can either work with all other RCBus modules or, more likely, a sub-set of RCBus modules.

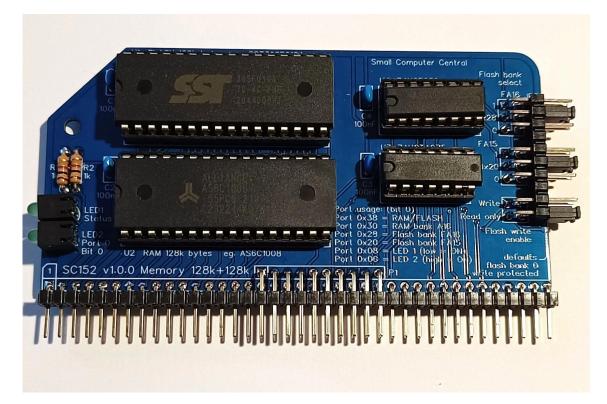
To indicate which modules are compatible with each other, a number of sub-specifications are documented, such as:

- 1. RCBus-2014 This is the RC2014[™] specification (see www.rc2014.co.uk)
 - a) RCBus-2014-s RC2014[™] standard (40-pin) bus
 - b) RCBus-2014-e RC2014[™] enhanced (>40-pin) bus
- 2. RCBus-Z80 Includes extensions to support advanced Z80 features
- 3. RCBus-6800 Includes extensions to support the Motorola 6800 style processors

A module that only requires the RC2014[™] standard 40-pin bus might be compatible with RC2014-2014-s, RCBus-2014-e, and RCBus-Z80. Of course, such a compatibility claim does not mean you can put any two "compatible" modules together and expect them to work. For example, two RC2014[™] serial modules will not work due to address conflicts. What "compatible" means is the physical and electrical bus signals are compatible.

The term RCBus can be used for any design that works with the full RCBus backplane or a sub-set of the RCBus backplane.

¹ RC2014 is a trademark under British law, belonging to RFC2795 Ltd (Spencer Owen's company)


Bus Pin Numbering and Layout

The bus connectors are low cost header pins and sockets, either single or double row with up to 40-pins in each row.

Single row bus socket viewed from above:

Pin 1	Pin 40
Front	Back
Double row bus socket viewed from above:	
Pin 1	Pin 40
Pin 41	Pin 80
Front	Back

Below is an example of an RCBus module which has a partial second row of bus pins.

Bus Pin Assignments

Pin	RCBus	RCBus	RCBus	RCBus	RCBus	Notional
1 st row	backplane	2014	Zx80	68xx	9995	16-bit CPU
1	A15	A15	A15	A15	A15	A15
2	A14	A14	A14	A14	A14	A14
3	A13	A13	A13	A13	A13	A13
4	A12	A12	A12	A12	A12	A12
5	A11	A11	A11	A11	A11	A11
6	A10	A10	A10	A10	A10	A10
7	A9	A9	A9	A9	A9	A9
8	A8	A8	A8	A8	A8	A8
9	A7	A7	A7	A7	A7	A7
10	A6	A6	A6	A6	A6	A6
11	A5	A5	A5	A5	A5	A5
12	A4	A4	A4	A4	A4	A4
13	A3	A3	A3	A3	A3	A3
14	A2	A2	A2	A2	A2	A2
15	A1	A1	A1	A1	A1	A1
16	A0	A0	A0	A0	A0	A0
17	GND	GND	GND	GND	GND	GND
18	+5V	+5V	+5V	+5V	+5V	+5V
19	M1	M1	M1	M1	M1	M1
20	RESET	RESET	RESET	RESET	RESET	RESET
21	CLOCK	CLOCK	CLOCK	CLOCK	CLOCK	CLOCK
22	INT	INT	INT	INT (IRQ)	INT	INT
23	MREQ	MREQ	MREQ	MREQ	MREQ	MREQ
24	WR	WR	WR	WR	WR	WR
25	RD	RD	RD	RD	RD	RD
26	IORQ	IORQ	IORQ	IORQ	IORQ	IORQ
27	D0	D0	D0	D0	D0	D0
28	D1	D1	D1	D1	D1	D1
29	D2	D2	D2	D2	D2	D2
30	D3	D3	D3	D3	D3	D3
31	D4	D4	D4	D4	D4	D4
32	D5	D5	D5	D5	D5	D5
33	D6	D6	D6	D6	D6	D6
34	D7	D7	D7	D7	D7	D7
35	ТХ	ТХ	ТХ	ТХ	ТХ	ТХ
36	RX	RX	RX	RX	RX	RX
37	n37	USER1	INT1	FIRQ	MEMEN	n37
38	n38 ¹	USER2	IEI	E	CRUIN	n38 ¹
39	n39 ¹	USER3	IEO	RW	CRUCLK	n39 ¹
40	n40	USER4	n40	n40	n40	n40

¹ Backplane configurable for direct or cascade (daisy-chain) connections

Pin	RCBus	RCBus	RCBus	RCBus	RCBus	Notional
2 nd row	backplane	2014	Zx80	68xx	9995	16-bit CPU
41	n41 ?	N/A	n41	n41	n41	n41
	3v3					
42	n42 ¹	N/A	BAI	n42	n42	n42
43	n43 ¹	N/A	BAO	n43	n43	n43
44	n44 ?	N/A	n44	n44	n44	n44
	USER#					
45	n45 ?	N/A	n45	n45	n45	n45
	HiLo byte					
46	n46	N/A	n46	n46	n46	n46
47	n47	N/A	n47	n47	n47	n47
48	n48	N/A	n48	n48	n48	n48
49	A23	N/A	A23	A23	A23	A23
50	A22	N/A	A22	A22	A22	A22
51	A21	N/A	A21	A21	A21	A21
52	A20	N/A	A20	A20	A20	A20
53	A19	N/A	A19	A19	A19	A19
54	A18	N/A	A18	A18	A18	A18
55	A17	N/A	A17	A17	A17	A17
56	A16	N/A	A16	A16	A16	A16
57	GND	GND	GND	GND	GND	GND
58	+5V	+5V	+5V	+5V	+5V	+5V
59	RFSH	RFSH	RFSH	RFSH	RFSH	RFSH
60	PAGE	PAGE/RST2	PAGE	PAGE	PAGE	PAGE
61	CLOCK2	CLOCK2	CLOCK2	CLOCK2	CLOCK2	CLOCK2
62	BUSACK	BUSACK	BUSACK	BUSACK	BUSACK	BUSACK
63	HALT	HALT	HALT	HALT	HALT	HALT
64	BUSRQ	BUSRQ	BUSRQ	BUSRQ	BUSRQ	BUSRQ
65	WAIT	WAIT	WAIT	WAIT	WAIT	WAIT
66	NMI	NMI	NMI	NMI	NMI	NMI
67	D8	D8	D8	D8	D8	D8
68	D9	D9	D9	D9	D9	D9
69	D10	D10	D10	D10	D10	D10
70	D11	D11	D11	D11	D11	D11
71	D12	D12	D12	D12	D12	D12
72	D13	D13	D13	D13	D13	D13
73	D14	D14	D14	D14	D14	D14
74	D15	D15	D15	D15	D15	D15
75	TX2	TX2	TX2	TX2	TX2	TX2
76	RX2	RX2	RX2	RX2	RX2	RX2
77	n77	USER5	INT2	n77	n77	n77
78	n78	USER6	n78	n78	n78	n78
79	n79	USER7	n79	n79	n79	n79
80	n80	USER8	n80	n80	n80	n80

¹ Backplane configurable for direct or cascade (daisy-chain) connections

Unresolved Issues

Should the bus even have "user" pins, define them instead: (Tadeusz Pycio) Pin 37 = IRQ1, 38 = IEI, 39 = IEO (Z80 compatible systems) Pin 37 = IRQ or FIRQ, 38 = E, 39 = R/W (Motorola compatible systems) Pin 77 = IRQ2 (Z80 compatible systems) Pin 78/79 = DMA support

Possible additional signals needed: (Alan Cox) No low/high enables to make D15-D8 actually usable Multiple interrupt lines DMA - BUSRQ etc 3v3 power

Specification needed for: (Alan Cox) Clocks Voltages (5V) Signals (74HCT or equivalent)

Are TX2 and RX2 required? (Tadeusz Pycio)

Do we need DREQ and TEND for Z180

Possibly 3v3 supply (but as Tadeusz has pointed out existing backplanes only have thin tracks on the available signal lines)

16-bit data hi/lo byte enable (1 pin or 2)

Some new pins as genuine USER functions!!

Appendix A - Background

To understand what the RCBus is and why it exists, it is necessary to consider what has led us here.

In 2014 Spencer Owen created a modular version of Grant Searle's Z80 computer design, which he called RC2014. He began selling it on Tindie and in 2016 he gave up his job and worked on RC2014 full time.

The RC2014 system attracted a community of enthusiasts, some of which made RC2014 compatible modules, as encouraged by Spencer's website: "If your module may be of use to other RC2014 owners, please consider sharing your design or selling them yourself. I'm happy to help you with this and to spread the word. Note that "RC2014" is a registered trademark, so you are not allowed to call your module "RC2014 [thingy] Module" or use the RC2014 logo. However, feel free to mark your modules as "Designed for RC2014."

Before long there was talk of extensions to the RC2014 bus.

In 2018 the topic "New backplane -wishes ?" led to Spencer posting the following on 17-June-2018:

"I've been musing over enhancements to the backplane for a little while now, and whilst nothing is set in stone, the pin layout would follow this;

Enha	nced	Standard		Enh	anced	Star	ndard
A31	1	1	A15	Clock2	21	21	Clock
A30	2	2	A14	BUSACK	22	22	INT
A29	3	3	A13	HALT	23	23	MREQ
A28	4	4	A12	BUSRQ	24	24	WR
A27	5	5	A11	WAIT	25	25	RD
A26	6	6	A10	NMI	26	26	IORQ
A25	7	7	A9	D8	27	27	D0
A24	8	8	A8	D9	28	28	D1
A23	9	9	A7	D10	29	29	D2
A22	10	10	A6	D11	30	30	D3
A21	11	11	A5	D12	31	31	D4
A20	12	12	A4	D13	32	32	D5
A19	13	13	A3	D14	33	33	D6
A18	14	14	A2	D15	34	34	D7
A17	15	15	A1	Tx2	35	35	Тх
A16	16	16	A0	Rx2	36	36	Rx
Gnd	17	17	Gnd	USR5	37	37	USR1
5v	18	18	5v	12C SDA	38	38	IEI
RFSH	19	19	M1	I2C SCL	39	39	IEO
Page	20	20	Reset	USR8	40	40	USR4

However, on 16-June-2019 Spencer created the topic "Upcoming changes to the RC2014 bus and ecosystem" in which he stated "RC2014 will not be changing" and further clarified this by stating "The RC2014 bus does not support IEI/IEO modules. Through-hole components are used. And the physical bus will not be changing."

This came as a bit of a blow to those who were looking to build on the RC2014 system and led to a discussion about how to move forward. This discussion didn't produce any solid answers.

On 31-Jan-2023 Spencer created the topic "What has an RC2014 and a Hoover got in common?" in which he stated the following:

"RC2014 is a trademark under British law, belonging to RFC2795 Ltd (ie my company)." "All of these kits carry the RC2014 name and RC2014 logo, and are labelled as being RFC2795 Compliant."

"Any other kit is NOT an RC2014."

"All sellers seem to do a very good job of making the distinction in their listings. But I don't think it is doing anybody any favours by calling a non-RC2014 machine an RC2014, least of all to the creators of compatible machines."

This led to another discussion about the future in which it was suggested that a new name be found for products that have a degree of compatibility with RC2014 products but are not made by RFC2795 and are thus not RC2014 products. To this suggestion, Spencer wrote: "RCBus or RC80 Bus sound good to me. It takes the essence of what the bus is without limiting it by what the RC2014 natively supports."

Spencer's official description of an RC2014 remains:

"RC2014 is a simple 8 bit Z80 based modular computer. It is inspired by the home built computers of the late 70s and computer revolution of the early 80s. It is not a clone of anything specific, but there are suggestions of the ZX81, UK101, S100, Superboard II and Apple I in here. It nominally has 8K ROM, 32K RAM, runs at 7.3728MHz and communicates over serial at 115,200 baud."

Much of what some in the retro computer community wish to do with their RC2014 systems does not match this description.

And thus the RCBus project was created.

Appendix B - RC2014[™] USER Pin Usage

The RC2014[™] bus has a number of spare pins, usually called USER pins. These have been used by designers to add functions not provided by the defined bus pins. The RCBus specification attempts to maintain compatibility with the most common uses. The following is a list of some of those uses.

Product	Pin 37	Pin 38	Pin 39	Pin 40	Pin 77	Pin 78	Pin 79	Pin 80
RC2014	USER1	USER2	USER3	USER4	USER5	USER6	USER7	USER8
BP80	USER1	USER2	USER3	IEO	USER5	USER6	USER7	IEI
SC102	BCT3*	IEI*	IEO*		BCT0*	BCT1*	BCT2*	
Z80 CTC								
SC103		IEI*	IEO*					
Z80 PIO								
SC104 Z80		IEI*	IEO*					
SIO/2								
SC110	CTC3*	IEI*	IEO*		CTC0*			
SIO+CTC								
SC111	INT1*							
Z180 CPU								
SC112				IEO				IEI
Backplane								
SC113				IEO				IEI
Backplane								
SC116				IEO				IEI
Backplane								
SC126				IEO		SCL*	SDA*	IEI
Z180 SBC						(I2C)	(I2C)	
SC132		IEI*	IEO*					
Z80 SIO/0								
SC149	BUSAK*	WAIT*	BUSAK*	NMI*				
Z80 CPU				BUSAK*				
Z80 CPU + CTC	CTC3*	IEI*	IEO*		CTC0*			
module (TP)								
Z180 MPU (TP)	INT1*				INT2*			
Z280 MPU (TP)	INTA*				INTC*			
Universal SIO		IEI*	IEO*					
(TP)								
DUART (TP)		IEI*	IEO*					
16450/550 (TP)	IRQ*				IRQ*			
Network	IRQ*							
Controller (TP)								
Basic &	USER1*	IEI*/USE	IEO*/US	USER4	USER5	USER6	USER7	USER8
Modular		R2*	ER3*					
Backplane 4		direct or	direct or					
(TP)		cascade	cascade					
6809E/6309EP	FIRQ*	E*	RW*					
(TP)		<u> </u>					_	
65C02	FIRQ*	E*	RW*					
65C816	(some)							
6803/6303								
6808								
6809/6309								
68HC11								
65C22								
6840								
65C21 (Alan Cox)								
(Alan Cox)								
TMS9995	MEMEN * ?	CRUIN * ?	CRUCLK					

* = jumpered so user can select if the bus pin is connected or not

Product	Pin 37	Pin 38	Pin 39	Pin 40	Pin 77	Pin 78	Pin 79	Pin 80
PPI	LED*	SLT_A*	CASS*	SLT_B*	OUT*			
(Dino)								
Easy-Z80		IEI	IEO					
(Sergey Kiselev)								
Z80Ctrl/CPU/IO	SCL	MISO	MOSI		IOXCS	AUXCS1	AUXCS2	
Х								
(JBLangston)								

* = jumpered so user can select if the bus pin is connected or not

Appendix C - Bus Conventions For Mapping Motorola Busses

Introduction

The Motorola style 8-bit bus differs considerably from the bus expected by the conventional RCBus. It is possible to map from one to the other but it can be useful when integrating Motorola bus devices to make the Motorola bus signals available.

This appendix documents the existing conventions that are used for mapping a Motorola style bus to the RCBus. It is intended to be descriptive not prescriptive.

Mapping The Bus

The following signals are mapped directly onto the RCBus from the Motorola style bus

A15-A0: Address busD0-D7: Data busINT: IRQ (open collector)RESET: RESET (see notes section)CLOCK: (see notes section)

The Motorola bus has two different signals. E is a square wave clocking the bus. During one half of the E cycle the signals change, during the other half of the E cycle the signals are valid. There is no provision for an "idle" cycle, instead an additional read cycle is generated. This is usually targetted at a dummy location such as FFFF but some processors will generate dummy read cycles to other addresses and this can require care and is usually handled in software.

The second signal is RW. This indicates if the cycle is a read or a write using a single line unlike the 8080/Z80 bus where \RD and \RW may both be high to indicate no activity.

The Z80 style \RD and \WR signals are generated by combining the E clock with RW so that \RD or \WR goes low only when the bus state is valid.

As the Motorola bus has no notion of a separate I/O space an I/O window is normally used. By convention this is at 0xFEXX because this address window is suitable for existing operating systems for these platforms and mirrors many historic machines. There is no requirement to use 0xFEXX as the I/O card will generally only decode the low 8-bits of the address bus anyway.

The two signals for controlling the cycle type on the Z80 bus are \MREQ for a memory request and \IORQ for an I/O request. These can be generated by decoding the upper bits of the address generated by the processor when the bus is valid.

The final 40-pin RCBUS signal is /M1. This has no equivalent on Motorola bus processors as it is used as part of the Z80 interrupt decode not just as an indication of instruction start. The current cards pull this high so that the peripheral cards do not decode bus activity as a Z80 interrupt cycle.

Mapping The Extended Bus

The extended bus provides A23-A16, which are directly equivalent to A23-A16 on the 65C816 card.

The extended bus provides several signals that have no easy mapping. These are /BUSRQ /BUSACK and /HALT. None of these signals are used by most peripheral cards except specialist cards such as the Z80 DMA interface.

The other two signals mostly map. The \NMI signal is equivalent to the \NMI signal on Motorola bus systems (called XIRQ on some processors). The /WAIT signal is near enough the same semantics as the Z80 one that it can be provided except on the 6309E/6809E which do not support clock stretching this way as they are intended to run synchronously with a SAM or similar device on the other half of the E cycle.

Additional Signals

Some Motorola bus peripherals are complicated (or near impossible) to operate without the Motorola bus signals. At other times it is just useful to reduce chip count to have access.

Existing Motorola bus processor cards can provide the E RW and \FIRQ signals on bus pins. Jumpers should be used as the lines are intended to be available to the user for other purposes if desired.

37	\FIRQ	Open collector, pull up on CPU card
38	E	E clock
39	RW	RW signal from processor

Using these signals on a peripheral device makes the peripheral card incompatible with the basic RCbus. There is a trade-off between the convenience and simplicity of interfacing and the compatibility.

Notes

Reset

The reset signal on many classic RCbus boards is very poor. The original RC2014[™] systems in particular lack a proper reset controller. The Motorola bus devices that need a clean reset (such as the 68HC11) should include their own reset controller to clean up the reset during power on.

Clock

The conventional RCbus clock was 7.372MHz. This is also conveniently a clock that generates good serial signals and a bit under 2MHz E clock for 63xx/68xx processors. There is no requirement to use this clock, but it does improve compatibility. For slower parts half this clock is similarly convenient.

The 6502 processor clock input and E clock are the same barring skew. This effectively means a 2MHz 6502 has the same timing requirements as the 7.37MHz Z80. Whilst the RCbus can be run with a high speed 65C02 or 65C816 part it will be necessary to use 74AHCT parts in general, and even then some of the standard boards such as the 512K/512K memory card will be too slow to go above about 8MHz.

Bus Hold

68xx and 63xx series devices have a bus hold time (the time that signals remain valid on the data and address bus after \WR rises) that is broadly compatible with the Z80 timings used on the bus. The "classic" 6502 and 65C02 parts likewise do. Modern 65C02 and 65C816 parts have almost no bus hold. On a backplane it becomes necessary for the processor card to cut the \WR signal early in order to produce a bus hold, otherwise many RCbus cards will not work.

Signal Bounce and Buffering

Some of the NMOS parts generate significant ground bounce when the address bus changes if they are driving a load with significant capacitance - such as an RCbus backplane. In these cases it may be wise to buffer the signals. Buffering signals from NMOS parts also improves compatibility with standard RCbus cards. This is not normally a problem when driving 74HCT series parts, but can be for driving other things directly (such as the CF adapter).

Memory Layout

The 63/68xx and 65xx parts require ROM is present at the top rather than bottom of memory at boot. The classic 512/512K card provides this, whilst the standard 'flat' 512/512K cards have a jumper to switch the RAM/ROM over.