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Abstract
This work is aimed to the effective chemical pretreatment of sawdust hydrolysis for enhanced biogas production. Various
chemical reagents were used for sawdust hydrolysis. NaOH was found to be the best among all in order to produce highest
yield of soluble chemical oxygen demand (sCOD) and phenolic compounds. Therefore, NaOH prospective on delignification
and rupture of cell wall of sawdust was determined experimentally using different approaches (NaOH addition, NaOH-micro-
wave, and NaOH-autoclave). The NaOH-autoclave pretreatment showed pronounced effect on cellulose, hemicellulose, and
lignin content of sawdust. XRD analysis revealed that 10% increase in crystallinity was observed after NaOH-autoclave treat-
ment. SEM micrographs also depicted that cell wall surface was highly affected by NaOH-autoclave pretreatment. Optimum
condition for highest lignin solubilization of 58.6%was found at 10%NaOH concentration and 90-min autoclaving time. Biogas
yield was increased by 50.8% at optimum pretreatment condition in comparison to native sawdust. Rate constant and order of
bioconversion into biogas was also increased after pretreatment. The maximum methane content in biogas for treated sawdust
was found to be 62%.

Keywords Sawdust . Delignification . sCOD . SEM . Crystallinity . Biogas

1 Introduction

Energy and environment are interrelated with each other.
Exploitation of fossil fuels produces greenhouse gases that
contribute to global warming and climate change. An eco-
nomically sustainable energy source, i.e., renewable and en-
vironment friendly is the demand of today world. Hydrogen
energy is the evolution in energy system to combat the harm-
ful effects caused by utilization of conventional fossil fuels.
Biogas produced from low cost or no cost substrate can be
used as an energy source.

Biogas is a mixture of primarily CO2 and CH4 produced
after anaerobic digestion by microorganisms through the de-
composition of organic matter. A variety of substrates from
first generation to fourth generation of biofuels has been re-
ported in literature for biogas production. Lignocellulosic bio-
mass has been revealed out as a potential substrate for biogas

production since past decade. Tectonagrandis (Teak) is a hard-
wood tree species and is extensively used as feedstock for
manufacturing of indoor and outdoor materials due to its du-
rability. Therefore, sawdust from wood processing mill can be
used as a substrate for biogas production. Lignocelluloses ba-
sically are comprised of cellulose, hemicellulose, and lignin in
variable ratios through cross linkages that resulted in complex
cell wall structure from which only cellulose and hemicellu-
lose are utilized for biofuel production, whereas lignin is rare-
ly metabolized by microorganisms [1, 2]. Lignin forms a pro-
tective shield over cellulose and hemicellulose and hence
makes them invulnerable to microorganism. It is responsible
for unproductive binding to the cellulase enzyme, reduce the
swelling of biomass, and hence prevent the accessibility of
enzyme to substrate [3, 4]. Also, lignin can form furan com-
pounds during degradation that can inhibit the microbial
growth and hinder the production [5]. Biogas production from
lignocelluloses is highly dependent on the concentration of
lignin present in them [6–8]. Therefore, pretreatment is a cru-
cial step to break the rigidity and increase the accessibility.

The pretreatment helps to reduce the complexity, provide
large surface area to substrate, and increase porosity with the
key goal of delignification [9–11]. Pretreatments are generally
categorized as physical, mechanical, thermal, chemical,
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biological, and their combinations. Chemical pretreatments
are effective and widely used treatment methods to overcome
the recalcitrance of lignocellulosic biomass and make them
appropriate for bioconversion.

In the literature, various chemical reagents have been used
to break the rigidity of lignocelluloses. Acid pretreatment sol-
ubilizes the cellulose, hemicellulose, and also lignin partially
[12]. Acidic reagents like HCl and H2SO4 have been exten-
sively used along with enzymatic hydrolysis to get increased
monomeric sugars from lignocelluloses for biofuel produc-
tion. Wheat plant treated with dilute H2SO4 at 121 °C resulted
in 15.2% lignin removal, 91.5% xylen degradation, and
15.5% higher methane yield in comparison to untreated wheat
plant [13]. Dilute acid pretreatment (H2SO4) at ambient tem-
perature caused partial solubilization of hemicelluloses,
resulting in increased porosity and ethanol production
(51.8%) from alfalfa stems [14]. Alkali breaks the main ether
bonds, such as α-aryl ether bond, phenol-type α-alkoxy ether
bond, and phenol-type β aryl ether bond present in lignin
through a nucleophilic reaction mechanism that in turn causes
degradation of lignin [15]. NaOH caused dissociation of lignin
and carbohydrate linkages, solubilization of lignin, destruc-
tion of microfibril structures, and increased surface area of
biomass that made it vulnerable to microbial enzymes
[16–18]. In a study of optimization of NaOH pretreatment
by response surface methodology for empty fruit bunches to
get maximum delignification suggested the base concentra-
tion and pretreatment time were significant parameters [19].
Effectiveness of chemical pretreatment can increase with the
implementation of thermal pretreatment. Wheat straw treated
with N-methylmorpholine N-oxide (120 °C for 3 h), ethanol
(180 °C for 1 h), and NaOH (30 °C for 24 h) resulted in 11, 15,
and 15% increase in the cumulative biomethane production
yield, respectively, with the alkaline pretreatment turned out to
be the best to reduce lignin content in substrate [20]. Ca(OH)2
pretreatment combined with hydrothermal treatment on sug-
arcane bagasse resulted in 44% lignin degradation and 69%
increase in methane yield in comparison to untreated sample
[21]. The NaOH (10%)-microwave pretreatment caused the
reduction of 56.7% in weight, 15.3% in hemicellulose, and
4.7% in lignin in the hydrolysis of paddy straws and increased
the biogas yield by 54.7% [22]. The microwave assisted
NaOH and Ca(OH)2 pretreatment done on catalpa sawdust
resulted in high reducing sugar yield and decreased the
amount of hemicellulose and lignin. Ca(OH)2 (2.25%)-micro-
wave (400 W) treatment for 6 min followed by enzymatic
hydrolysis of 96 h was found to be the ideal condition for
increment in reducing sugar yield [23].

The main objective of this work was to increase biogas
yield from Tectona grandis sawdust. The pretreatment effect
of NaOH, HCl, H2SO4, ethanol, aqueous ammonia, and
Ca(OH)2 was evaluated for sawdust hydrolysis. The effect
of varied NaOH concentrations was observed with the

assistance of microwave and autoclave. Moreover, optimiza-
tion of pretreatment was carried out for maximum lignin sol-
ubilization. Presently, there is a lack of research regarding the
use of hardwood sawdust as a substrate for biogas production
and significance of such pretreatment on this substrate.
Therefore, present work makes a great contribution in this
regard.

2 Materials and method

2.1 Preparation and characterization of feedstock

Raw sawdust of T. grandis was procured from a local saw mill
of Varanasi City, India. It was washed with distilled water to
remove impurities like sand, soil, etc., and then dried in an oven
at 80 °C for overnight. It was ground to reduce size and sieved,
and particle size less than 36 mesh was stored for experimental
work. Characterization of saw dust for total solid (TS), volatile
solid (VS), moisture, fixed carbon, ash, carbon, hydrogen, ni-
trogen content, calorific value, cellulose, hemicellulose, and
lignin was done. Inoculum used was sludge, procured from
anaerobic digester of biogas plant situated at BHU, Varanasi.
This plant was running on cow dung slurry. The main charac-
teristics of sawdust and inoculum are given in Table 1.

2.2 Pretreatment of sawdust

2.2.1 Selection of suitable chemical reagent

Sawdust was treated with individual solution of HCl, H2SO4,
ethanol, aqueous ammonia, NaOH, and Ca(OH)2 in order to
determine effective reagent for better hydrolysis. Five grams
of sawdust was added to 2% (50 ml) solutions of above-
mentioned chemical reagents and incubated at 35 °C for
24 h. Experiments were performed in a 250-ml stoppered
conical flask. It was filtered through Whatman filter paper
no. 1, and supernatant was characterized for soluble chemical
oxygen demand (sCOD) and phenolic compounds to compare
the pretreatment effect of various chemical reagents.

2.2.2 NaOH pretreatment with or without thermal assistance

There were three routes of NaOH pretreatment implied in this
work. In first set of experiment, it was done without thermal
assistance; in second set of experiment, sawdust was treated
with NaOH assisted by microwave treatment; and in third set
of experiment, the sawdust was treated with NaOH with the
help of autoclave treatment.

For NaOH addition without thermal treatment, 5 g of saw-
dust was added to the NaOH solution of variable concentration
in the range of 0–12% in 250-ml glass stoppered conical flasks
maintaining the TS concentration 10% and incubating at 35 °C

Biomass Conv. Bioref.



for 24 h. For NaOH addition with thermal treatment, sawdust
samples were soakedwith NaOH solution having concentration
in the range of 0 to 12% in 250-ml glass stoppered conical
flasks with 10% TS concentration and incubated at 35 °C for
24 h. NaOH treated sawdust after 24 h was irradiated by mi-
crowave (Whirlpool MW-30 BC, USA) at 140 °C or followed
by thermal treatment by using autoclave for 15 min.

NaOH-autoclave pretreatment was optimized for time in or-
der to solubilize maximum lignin and better hydrolysis of saw-
dust. The autoclaving time was varied in the range of 15–
120 min at 15 min interval each considering 10% NaOH as
ideal concentration for NaOH-autoclave pretreatment.
Evolution of COD and phenolic content were estimated after
pretreatment. Quantitative estimation of compositional changes
was also observed to determine the best time for autoclaving.

After each pretreatment, pretreated solid and liquid were
separated by filtration with Whatman filter paper no 1.
Figure 1 depicted the methodology of pretreatment implied
for the present work. Hydrolysate of each pretreatment was
stored at 4 °C until to estimate the sCOD and phenolic con-
tents present in it. The pretreated solids were neutralized by
washing with distilled water several times. It was then oven
dried at 105 °C for overnight and used for compositional anal-
ysis. All the measurements were carried out in duplicates, and
average value is reported.

2.3 Anaerobic digestion

Anaerobic digestion of native and treated sawdust was carried
out in glass reactor of 2-L volume, containing two openings
for pH and temperature measurement. The pH probe and a
thermometer were inserted in reactor for pH and temperature
monitoring. The reactor was connected with water displace-
ment column through gas sampling tube. Anaerobic condition
was maintained by tightly sealing the apparatus and sparging

nitrogen for 15 min. The reactor was operated in batch mode
(30 °C) with mesophilic conditions at pH 7.1. Substrate to
inoculum ratio was maintained at 1:2 with the working vol-
ume of 1.4 L. Another identical reactor with only inoculum
was also run as a control. Biogas yield was corrected by
subtracting the biogas produced by control from sample yield.
Experiments were performed in duplicates. The rate constant
and order of bioconversion of sawdust into biogas were also
determined by rate equation. The rate equation has been de-
vised in terms of biogas yield against time as follows:

rbio ¼ k Cn
bio ð1Þ

log rbioð Þ ¼ n log Cbio þ log k ð2Þ
where rbio is the rate of conversion of sawdust into biogas in
mL g−1VS day−1;Cbio is the biogas yield in mL g−1VS; k is the
rate constant; and n is the order.

2.4 Analytical techniques

The TS, VS, ash, and moisture contents of the sample were
estimated by laboratory analytical procedure (LAP) [24].
Fixed carbon was calculated by subtracting the sum of VS,
ash, and moisture from 100. Carbon, hydrogen, and nitrogen
contents in the sample were determined by using automatic
elemental analyzer (Euro Vector EA, Italy). Calorific value of
the sample was calculated with the help of bomb calorimeter
(Rajdhani scientific, NSTTSCo., NewDelhi, India) according
to the standard protocol [25]. sCOD estimation was performed
by the American Public Health Association (APHA) standard
method (APHA 1998) [26]. Phenolic content of hydrolysate
was found by Singleton’s Folin-Ciocalteu reagent method by
taking absorbance at 765 nm using UV-VIS spectrophotome-
ter (ELICO SL 159) [27].

The pretreated solid biomass was characterized for the
presence of cellulose, hemicellulose, and lignin by estimating
neutral detergent fiber (NDF) and acid detergent fiber (ADF)
in accordance with Van Soest method [28]. Fourier-transform
infrared spectroscopy (FTIR) absorbance spectrum was ob-
tained by means of Nicolet 5700 FT-IR spectrometer, USA
using the KBr pellet method. Spectra of native and treated
sawdust were recorded in the range of 4000–400-cm−1 wave-
number. XRD diffraction was measured by X-ray diffractom-
eter (Rigakuminiflex 600, Japan) equipped with goniometer
miniflex 300/600 and detector D/tex Ultra. The diffraction
pattern was obtained in the 2θ range of 5–60° at a scanning
speed of 5° per min and with a step width of 0.02°. Current
and voltage used were 15 mA and 40 kV, respectively. The
crystallinity index (CI) was calculated according to Segal
method [29], as given in equation below:

CI ¼ I002−Imð Þ
I002

� 100 ð3Þ

Table 1 Characterization of native sawdust and inoculum

Parameter Native sawdust Inoculum

Proximate analysis (wt%)

Moisture 3.7 90.0

Total solid 96.3 9.0

Volatile solid 77.1 4.7

Fixed carbon 17.8 1

Ash content 1.4 4.3

Ultimate analysis (wt%)

Carbon 50.6 38

Hydrogen 6.1 –

Nitrogen 0.6 13

Gross calorific value (kCal/kg) 3206.7 –

pH – 7.01

sCOD (mg/L) – 2102.5

Biomass Conv. Bioref.



where CI is the crystallinity index; I002 is the intensity of
highest peak, i.e., peak of crystalline region at 2θ ≈ 22°; and Im
is the lowest intensity peak of amorphous region at 2θ ≈ 18°.
The surface morphological studies were carried out by scan-
ning electron microscope (SEM) (ZEISS EVO 18
RESEARCH, Germany) at varying magnification of ×200–
5000 by using 10-kV voltage.

Measurement of biogas volume was carried out by using
water displacement method, and composition of biogas was
estimated by using gas chromatograph (NUCON 5765)
equipped with thermal conductivity detector (TCD) and nitro-
gen as carrier gas with flow rate 30 ml/ min. Temperature of
injector, oven, and detector was 393, 363, and 393 K, respec-
tively. Column used for analysis was Porapak-Q, 2 m in
length, and 0.25 mm in diameter.

3 Results and discussion

3.1 Physicochemical properties of native sawdust
and inoculum

The important physicochemical characteristics of native saw-
dust and inoculum are represented in Table 1. Moisture con-
tent of sawdust was found to be 3.7%. There was 77.1% vol-
atile matter present in sawdust. Carbon, hydrogen, and nitro-
gen contents were found as 50.6, 6.1, and 0.6%, respectively.
Calorific value of sawdust was found to be 3206.7 kCal/kg.
High moisture of 90% was found in inoculum. The pH and

sCOD values of inoculum were 7.01 and 2102.5 mg/L,
respectively.

3.2 Suitability of chemical reagent

The lignin solubilization is the chief requirement of pretreat-
ment when lignocelluloses are used as a substrate for biogas
production. Therefore, different reagents were used to rupture
the cell wall structure and solubilize the lignin. The sCOD and
phenolic compounds can be good indicators of substrate sol-
ubilization after pretreatment [30]. Disorganization of cell
wall leads to the production of monomeric sugars from cellu-
lose and hemicellulose, whereas break down of lignin forms
phenolic byproducts [8, 31]. Hence, measurement of sCOD
and phenolic compounds was carried out in order to evaluate
the pretreatment effect. The sCOD and phenolic values for
acids were found to be lower than alkali. Ethanol and NaOH
treated samples contained higher values of sCOD, i.e., 9850
and 10,560 mg/L, respectively, whereas phenol concentration
was found to be higher for the hydrolysate obtained from
NaOH treatment (Table 2). NaOH was found to be the best
pretreatment reagent among all in order to solubilize the saw-
dust effectively.

3.3 Effect of NaOH treatment on substrate
solubilization

Potential of NaOH on substrate solubilization was evaluated
as alone and in combination with microwave and autoclave
treatment.

Sawdust 

Incubation at 35 
◦
C 

for 24 h 

NaOH addition 

Microwave 

pretreatment at 140 
◦
C 

for 15 min  

Filtration 

Solid 

Liquid 

Neutralization and drying 

Compositional analysis 
COD, phenolic content 

Autoclave at 121 
◦
C for 15 min 

Fig. 1 Methodology of
pretreatment
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3.3.1 Effect of pretreatment on sCOD

The sCOD values were significantly increased as the concen-
tration of NaOH was increased in all the hydrolysates, as
shown in Fig. 2a. The sCOD for NaOH pretreatment was
observed to increase up to 8% NaOH concentration and after-
wards remained constant, whereas for NaOH-microwave and
NaOH-autoclave pretreatment, it was increased up to 10%
NaOH concentration and then remained almost unaltered.
The autoclave assisted NaOH pretreatment caused highest
yields of sCOD. It was reported previously that increase in
alkali concentration and temperature as well caused solubili-
zation of organic matter and thereby increased sCOD values
[8, 32]. Accordingly, increased value of sCOD could be attrib-
uted to some alteration occurred in the structure of sawdust
due to pretreatment that might be responsible for conversion
of complex compounds (cellulose, hemicellulose, and lignin)
into simpler sugars. Formation of volatile fatty acids (VFA)
from these sugars takes place afterward.

3.3.2 Effect of pretreatment on phenolic compound

Phenolic compound in the liquid samples obtained after pre-
treatment followed an increasing trend as a function of con-
centration as illustrated in Fig. 2b. It was observed that auto-
clave assisted NaOH pretreatment caused a higher production
of phenolic compound than other pretreatments.

3.4 Effect on composition and structure of treated
sawdust

3.4.1 Effect of pretreatment on composition

Cellulose, hemicellulose, and lignin contents were estimated
in native and treated sawdust by using Van Soest method,
and results are represented in Table 3. The native sawdust
was found to contain 49.6% cellulose, 29% lignin, and
13.1% hemicellulose. The cellulose content was slightly in-
creased according to NaOH concentration in all solid yields
after pretreatment. It was found to be in the range of 49–52,
49.9–54.5, and 49.6–60% in NaOH, NaOH-microwave, and
NaOH-autoclave-treated samples, respectively. On the

contrary, hemicellulose and lignin were decreased after pre-
treatment with increasing the NaOH concentration. The
NaOH addition to the native sawdust caused degradation of
esters and glycosidic side chains that resulted in lignin solu-
bilization and swelling of biomass samples. It also
demolished the acetyl and various uronic acid substitutions
on hemicelluloses [33, 34]. A pretreatment is considered to
be ideal that solubilizes the lignin efficiently and recovers the
cellulose simultaneously [35]. From the results of this work,
NaOH-autoclave pretreatment was found to be more effec-
tive in lignin solubilization as compared to other
pretreatments.

3.4.2 FTIR absorption spectroscopy

The chemical composition variation in terms of functional
group of sawdust before and after pretreatment was also in-
vestigated by FTIR analysis. FTIR absorption was recorded in
the range of wavenumber 4000–400 cm−1 for qualitative anal-
ysis of the chemical structure of native and treated sawdust
(Fig. 3). Peaks near band positions 3409, 3379, 3433, 3441,
3339, 3408, 3310, and 3424 cm−1 were observed in native and
treated sawdust (Table 4). These were considered to be asso-
ciated with intermolecular hydrogen bonded O▬H stretching
that indicated the presence of cellulose [36–38]. Peaks in the
range of band position 2869–2924 cm−1 were assigned to
C▬H stretch that indicated the presence of cellulose [39,
40]. A new peak was generated at 2691-cm−1 band position
after NaOH (10%) autoclave pretreatment that denoted CHO
functional group and signified the presence of hemicellulose.
The peak at band position 1739 cm−1 was associated with C〓

O stretching of acetyl or carboxylic acid that represented the
presence of hemicellulose and lignin [37]. A prominent peak
was observed at band position 1628 cm−1. It was attributed to
non-conjugated C〓C stretching and C〓O stretching vibra-
tions of the aromatic ring that signified the presence of lignin
[36, 38, 41]. The intensity of this absorption peak was found
to be decreased in all treated samples; it might be due to
deformation and solubilization of lignin. An absorption peak
for CH2 bending was obtained at 1439 cm

−1 that illustrated the
presence of cellulose [38]. A new peak was appeared near
1353 cm−1 after 8% NaOH and NaOH (8%) microwave pre-
treatment. It was attributed to C-H deformation in cellulose
and hemicellulose [42]. The peak near band position
1249 cm−1 was associated with the syringyl ring and C▬O
stretch in lignin and xylan [42]. Syringyl type of lignin is the
characteristic of hardwood which explains the nature of
T. grandis sawdust. Its intensity was also decreased after pre-
treatment denoting the change in sawdust structure. The peaks
near 1054–1032 cm−1 were assigned to C▬O vibrations of
cellulose/hemicellulose and lignin [39, 40, 42] that described
the lignocellulosic nature of sawdust.

Table 2 Effect of chemical reagents on solubilization of sawdust

Chemical (2% w/v) sCOD (mg/L) Phenol (mg/L)

HCl 2090 330

H2SO4 4340 293

Ethanol 9850 364

NaOH 10,560 1137

Ca(OH)2 5080 450

NH3 9398 724
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3.4.3 Effect of pretreatment on crystallinity

In lignocellulosic biomass, cellulose presents in crystal-
line as well as in amorphous forms, whereas hemicellu-
lose and lignin are considered as amorphous material [43].
XRD measurements were performed for crystallinity anal-
ysis of sawdust samples in terms of CI. XRD pattern is
depicted in Fig. 4, and CI values are given in Table 5. The
peak of the crystalline plane was observed at 2θ ≈ 22°,
and lowest value of amorphous region was found to be

at 2θ ≈ 18°. The intensity of crystalline cellulose was in-
creased after pretreatment as shown in Fig. 4. Crystallinity
pattern of this study was similar to that of the XRD spec-
tra of NaOH-treated Spartina alterniflora [44]. The CI
values were found to increase from 64 (native without
NaOH addition) to 70.2% (with NaOH), 65.2 (microwave
without NaOH) to 71.8% (NaOH microwave), and 66.37
(autoclave without NaOH) to 74.13% (NaOH autoclave).
It might be due to peeling reaction of NaOH affected
amorphous region more than crystalline region. Previous

Fig. 2 Characterization of
hydrolyzed liquid for NaOH with
and without thermal treatment: a
sCOD and b phenolic compound

Table 3 Compositional characterization of sawdust before and after NaOH pretreatment

Concentration of NaOH (%) Pretreatment condition

NaOH NaOH-microwave NaOH-autoclave

Cellulose Hemicellulose Lignin Cellulose Hemicellulose Lignin Cellulose Hemicellulose Lignin

0 49.9 13.1 29.2 49.6 13.0 29.0

2 49.9 13 28.9 50.8 12.8 28.3 52.9 11.8 25.1

4 50.2 12.9 28.5 52.3 12.4 27.1 54.2 11.2 24.3

6 51 12.3 28 53.6 11.8 25.8 56.7 10.3 24.0

8 51.5 12 27.2 54.4 10.6 24.7 58.7 9.5 22.9

10 51.8 11.8 27 54.5 10.4 24.7 60.1 9.0 21.7

12 52 11.5 27 54.5 10.5 24.5 60.0 8.8 21.7

Native sample: cellulose: 49.6; hemicellulose: 13.1; lignin: 29; all data are in wt%
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studies also reported that pretreatment of biomass resulted
in the breakage of lignin-carbohydrate complex, recrystal-
lization of cellulose, and removal of lignin and hemicel-
lulose, which in turn caused high CI values [20, 45–47].
So, accordingly, increased CI values could be associated
with increase in crystallinity and elimination of amor-
phous material from sawdust. Figure 5 signified a positive
correlation of CI and cellulose content.

3.4.4 Effect on surface morphological structure of treated
and native sawdust

The native and treated sawdust samples were scanned
through SEM in the range of 500–5000 magnification
to study the changes in surface morphology before and
after pretreatment and microscopic images are given in
Fig. 6. The SEM micrographs clearly illustrated the
changes in the cell wall structure of native and treated
sawdust. The surface structure of native sawdust was
observed as rigid and compact. It seemed to be highly
ordered and smooth because of lignin coating over cel-
lulose and hemicellulose fibers [48]. Cell bundles were
found to be flaky, brittle, and disaggregated in treated
sawdust in comparison to native sawdust. Thermal

treatment without NaOH, mainly autoclave treatment,
had a minimal effect on cell surface (Fig. 6e).
Whereas, combination of NaOH and thermal treatment
caused significant destruction to cell wall that signified
the importance of NaOH in substrate solubilization
(Fig. 6d, f. As described earlier, NaOH caused distor-
tion of cross-linkages like ester bonds between carbohy-
drate and lignin that solubilized a part of lignin and
hemicelluloses and in turn caused the formation of
cracks and holes in cell structure and exposed the cel-
lulose. Also, its solvating nature was responsible for
swelling of biomass that turned the cell wall structure
disorganized and visually fragile (Fig. 6d) [49].
Therefore, disruption of cell surface could be associated
with breakdown and solubilization of lignin and hemi-
celluloses as compositional analysis of native and treat-
ed sawdust also confirmed that lignin and hemicellulose
content was decreased with increasing concentration of
NaOH. The NaOH and thermal treatment broke the ri-
gidity of sawdust by reducing lignin content, making
sawdust fragile that can be vulnerable to microbial en-
zymes. Increased fragile nature can facilitate the acces-
sibility of microorganisms and result in increased biogas
production [50].

Fig. 3 FTIR spectra: aNaOH and
NaOH-microwave pretreatment.
b NaOH-autoclave pretreatment
of sawdust
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3.5 Optimization of time for NaOH-autoclave
pretreatment

Results illustrated that NaOH autoclave pretreatment has
potential to maximize the lignin solubilization and it is
more effective in sawdust hydrolysis in comparison to
other pretreatment methods used in the experimentation.
Therefore, optimization of autoclaving time for NaOH-
autoclave pretreatment was done for improving hydrolysis
effect on sawdust. The 10% NaOH was selected as ideal
concentration, since it turned out to be the best NaOH
dose for lignin solubilization. The sCOD, phenolic con-
tent, and lignin solubilization were increased with respect
to autoclaving time as illustrated in Fig. 7a. The 10%
NaOH autoclave pretreatment with 90 min of autoclaving
time was found to be the best pretreatment method, which
solubilized 58.6% lignin as compared to native sawdust as
found from Fig. 7b.

3.6 Anaerobic digestion

3.6.1 Biogas production

The effect of best pretreatment condition was examined on
biodegradability and biogas production from treated saw-
dust. The cumulative biogas yield is represented in Fig. 8.
Reactor was used to agitate daily for 1 min manually before
recording the biogas volume in water displacement column.
There was no production of biogas observed in first 5 days of
anaerobic digestion of native sawdust. Afterwards, it was
increased slowly and attained a maximum rate of
7.5 mL g−1 VS day−1 biogas production in 27 days, whereas
biogas production from treated (10% NaOH and 90-min
autoclaving) sawdust attained a maximum rate of
14.5 mL g−1 VS day−1 in 23 days with a lag phase of 2 days.
The cumulative production of biogas from pretreated saw-
dust was 315 mL g−1 VS day−1, which was 50.8% more than

Table 4 FTIR spectroscopic characterization of native and NaOH treated sawdust

Control Microwave
without NaOH

NaOH
treated

NaOH-
microwave

Autoclave
without NaOH

5% NaOH-
autoclave

10% NaOH-
autoclave

Assigned
functional group

Significance

3409 3379 3433 3441 3339 3408, 3310 3424 O▬H stretching Cellulose

2917 2919 2924 2905 2874 2869 – C▬H Stretching Cellulose

– – – – – 2691 CHO Hemicellulose

– – – – 1739 – – C〓O stretching of acetyl
or carboxylic acid

Hemicellulose and
lignin

1628 1623 1623 1623 – 1487 – C〓C aromatic bending Lignin

1435 1439 – – – – – CH2 bending Cellulose

– – 1353 1345 – – – C▬H deformation Cellulose and
hemicellulose

1249 1250 1249 – – – – C▬O stretch Lignin and xylan

1054 1043 1043 1057 1042 – 1032 C▬O stretching vibration Cellulose/hemicellulose
and lignin

The numeral values of wavenumber are expressed in cm−1

Fig. 4 XRD pattern of native and
treated sawdust
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native sawdust in 40 days of digestion period. Pretreatment
solubilized a part of lignin by dissolving the carbohydrate-
lignin linkages present in sawdust. Lignin solubilization
made cellulose accessible to microorganisms and in turn in-
creased the production. Previous researchers have also re-
ported that pretreatment conditions increased the surface ar-
ea of substrate and made it more vulnerable to microbial
enzymes and also enhanced the biodegradability and biogas
production [51]. pH observations were also noted during

anaerobic digestion with the help of inserted pH probe at-
tached with pH meter. The initial pH of digester was 7.1. The
pH was decreased to 5.8 up to the 15th day of digestion.
Accumulation of organic acid might have reduced the pH.
It is previously reported that organic acid formation took
place in earlier days of anaerobic digestion that was respon-
sible for pH drop in digester [52]. Consumption of these
organic acids by methanogens in order to produce biogas
raised the pH of digester slowly afterwards. pH was found

Table 5 Crystallinity index obtained from XRD data of sawdust

Concentration of NaOH (%) Crystallinity index (%)

NaOH NaOH-
microwave

NaOH-
autoclave

0 64.00 65.20 66.37

2 65.44 67.35 69.71

4 66.70 68.70 70.88

6 68.25 69.83 71.34

8 69.60 71.12 73.16

10 70.20 71.80 74.13
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Fig. 5 Crystallinity and cellulose
profile: a NaOH, b NaOH-
microwave, and c NaOH-
autoclave sawdust after
pretreatment
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a b

c d

e f

Fig. 6 SEM images of sawdust
samples: a native, b microwave
without NaOH, c NaOH, d
NaOH-microwave, e autoclave
without NaOH, and f NaOH-
autoclave

Fig. 7 Optimization of
autoclaving time for NaOH-
autoclave pretreatment: a sCOD
and phenolic compound variation
and b compositional changes and
lignin solubilization
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to be 7.5 after 40 days of digestion. Improvement in methane
concentration improves the ignitable properties of biogas
and increases its heating value [53]. Biogas production from
treated sawdust attained a maximum methane concentration
of 62% in 28 days of digestion.

3.6.2 Bioenergy conversion rate

The rate constants for anaerobic digestion of native and treated
sawdust were calculated by using standard rate equation. The
plots of rate vs. concentration of biogas are represented in
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Fig. 8 Effect of pretreatment on
anaerobic digestion for biogas
yield
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Fig. 9. The value of rate constant was calculated as 1.043 mL/
gVS0.592 day−1 for biogas production from native sawdust,
whereas in the biogas production from treated sawdust, it
was found to be 1.066 mL/gVS0.502 day−1. The value of order
of conversion was also increased from 0.408 to 0.498 after
pretreatment. The increased rate constant and order signified
the increase in rate of sawdust conversion into biogas.
Pretreatment condition might have increased the accessibility
of microorganisms to substrate by breaking the recalcitrance
that in turn increased the production rate and yield of biogas.

4 Conclusions

The improved biogas yield was aimed from T. grandis saw-
dust. Pretreatment is the rate determining step when lignocel-
lulosic wastes are used for biogas production through anaero-
bic digestion. Therefore, effect of various chemical reagents
was evaluated on sawdust hydrolysis. NaOH was found to be
most effective chemical reagent. A significant improvement
was achieved in sCOD and phenolic content in all liquids
followed by pretreatment in comparison to native sawdust
sample. Alterations in crystallinity, chemical composition,
and morphological structure for sawdust were also seen after
pretreatment. Moreover, NaOH autoclave observed to be the
best pretreatment among other pretreatments in order to re-
duce lignin content. The 10% NaOH autoclave pretreatment
with 90min of autoclaving time resulted inmaximum (58.6%)
delignification. The cumulative biogas yield at optimum con-
dition was found to be 315-mL g−1 VS that was 50.8% more
than native sawdust. The rate constant and order of biocon-
version were also increased after pretreatment. Pretreatment of
sawdust resulted in breakdown of rigidity by lignin solubili-
zation, and hence, biogas yield was increased and bioconver-
sion rate was improved.
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