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1.1 INTRODUCTION

Disentangling the evolutionary history and diversity of species has preoccupied
mankind for centuries. Ever since Darwin’s work on evolutionary theory [7],
evolutionary trees or phylogenies are typically used to represent evolutionary
relationships between species.

Although phylogenies have been used for almost 150 years, statistical, com-
putational, and algorithmic work on phylogenies - often referred to as compu-
tational phylogenetics - is barely 50 years old. The analysis of phylogenetic
trees does not only serve human curiosity but also has practical applications
in different fields of science. Phylogenies help to address biological problems
such as, drug design [5], multiple sequence alignment [8], protein structure
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[27], gene function prediction [14], or studying the evolution of infectious dis-
eases [12].

In the past decade, the molecular revolution [24] has led to an unprece-
dented accumulation of molecular data for inferring phylogenies. Public databases
such as GenBank [3] grow exponentially, which, in conjunction with scalable
software, allows for computing extremely large phylogenies that contain thou-
sands or even tens of thousands of species (see [13, 28], for instance). In
practice, however, our ability to infer such comprehensive trees resurrects old
problems and gives rise to novel challenges in computational phylogenetics.

First of all, reconstructing the phylogeny that best fits the data is a com-
binatorial optimization problem. The number of phylogenetic trees increases
super-exponentially with the number of taxa [9]. For example, there are three
distinct unrooted trees for four species. However, for only 23 species there al-
ready exist 1.32×1025 possible unrooted trees, which is ten times the number
of estimated stars in the universe.

Due to continuous progress in processor technology, for instance in tran-
sistor size [4] and parallel processing techniques [17] as well as phylogenetic
analysis software such as RAxML [29] and MrBayes [25] biologists can now
routinely reconstruct trees with about 100 to 1 000 species for their studies.
However, for even larger phylogenies with up to tens of thousands of species,
we are not sure if we are obtaining a plausible, let alone correct answer, given
the literally astronomical size of the tree search space. Reconstructing large
phylogenies is particularly difficult when the alignment length remains con-
stant. In other words, accuracy decreases as we add taxa while keeping the
number of sites in the alignment fixed [16, 23].

A further problem is the non-uniform sampling of data. Although genomic
data is becoming available at an increasing rate, many species are under-
sampled because it is difficult to obtain or collect the sequencing samples. For
example, prokaryotic organisms that have small genomes, or model organisms
as well as model genes are sampled more frequently than other species.

For that reason, increasing the number of taxa in a data set typically also
increases the amount of missing data [26], which leads to potentially biasing
the results, and, therefore, to decreased phylogenetic accuracy [30]. So given
a large phylogeny, how can we assess the biological plausibility of such a large
tree?

Visual inspection to assess the plausibility of trees with more than 50 000
taxa is not an option because (i) it is impossible to do so for humans and (ii)
there are only but a few tools available for visualizing such large phylogenies.

One can follow two avenues to address the plausibility assessment problem:
either devise novel visual tools for phylogenetic data exploration or design
algorithms for automated plausibility analysis. Here we focus on the latter
idea.

We introduce a new approach to assess the plausibility of large phylogenies
by computing all pairwise topological Robinson-Foulds (RF) distances [22] of
a 55 000 taxon tree of plants [28], for instance, and a set containing a large
number of substantially smaller reference trees. These small reference trees
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are available in curated databases, such as, STBase [15], for instance and
comprise a subset of taxa of the large tree. The underlying assumption is
that, the small trees are substantially more accurate. Hence, the lower the
average RF distance, or any other reasonable topological distance, between
all small reference trees and the large tree is, the more plausible the large
tree will be. While we use a reference database containing a billion of small
reference trees one could also use reference trees from the literature or from
the treebase database [21].

Our main contribution is the design and production-level implementation
in RAxML1 of an effective algorithm for extracting induced subtrees from the
large tree with respect to the taxon set of the small reference tree. This step
is necessary to compute the RF distance.

The rest of this chapter is organized as follows: Initially, we discuss the
preliminaries and present the formal problem description. Subsequently, we
first present a näıve and then, an effective algorithm for inducing subtrees.
Next, we provide an experimental evaluation of both algorithms using simu-
lated and real data from STBase [15] and studies by Smith et al. [28]. Finally,
we present a brief summary and conclusion.

1.2 PRELIMINARIES

A rooted tree is a connected, directed and acyclic graph with an internal node
r (i.e. deg(r) > 2) designated as the root node. We say a node v has height
h(v) if the length of the longest path from v to some leaf is h(v).

We denote a node v of a tree T as central if there is no other node u such
that the length of its longest undirected path to a leaf is shorter than that of
v. Trivially, a tree can have at most two central nodes, since, otherwise there
would exist a cycle.

We say that node w is the Lowest Common Ancestor (LCA) of nodes u
and v if and only if (iff) u and v are both descendants of w and there is no
node w′ with descendants u and v such that h(w′) ≤ h(w). We denote the
LCA of nodes u and v by lca(u, v). We further denote the path from node u
to v in a tree T by u⇝ v.

An unrooted tree is a connected, undirected and acyclic graph with no root
node. The notion of node height (and hence LCA) is not defined in unrooted
trees. Therefore, we henceforth imply that we are dealing with rooted trees
when we use the terms node height and LCA. We further only consider rooted
binary trees and unrooted trees that only consist of inner nodes of degree 3
and leaves (degree 1), that is, strictly bifurcating trees.

Definition 1.1 (Euler tour of a rooted tree) The Euler tour of a rooted
tree is a sequence of nodes formed by executing the following Step with the
root node r as input parameter. Step(v): List/print node v. If v is not a leaf:

1https://github.com/stamatak/standard-RAxML
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call Step with the left child as parameter, then call Step with the right child
as parameter and finally list/print v.

The length of the Euler tour for a rooted binary tree of n nodes is exactly
2(n − 1). The number of leaves in such a tree is n+1

2 . We list each leaf only
once, each inner node with the exception of the root node three times, and
the root node exactly twice. Hence this sums to exactly 2(n − 1) elements.
See Fig. 1.1 for a graphical illustration of the Euler tour on a tree.

Definition 1.2 (Inorder traversal of a rooted tree) The inorder traver-
sal of a rooted tree is a sequence of nodes formed by executing the following
Step with the root node r as input parameter. Step(v): Call Step with left-child
as parameter, list v and call Step with right-child as parameter.

Analogously to the Euler tour, the length of the inorder traversal sequence
for a tree with n nodes is exactly n.

Lemma 1.1 Let v1, v2, . . . , vn be the inorder notation of a tree T . For every
k = 1, 2, . . . , ⌊n/2⌋ it holds that v2k = lca(v2k−1, v2k+1).

Proof : We prove the lemma by induction on the size of T . We first show that
the lemma holds for our base case which is a binary tree with three nodes.
Then, under the assumption that our claim holds for all trees with up to m
nodes, we prove that the claim also holds for trees with m+ 1 nodes.

• Let T be a tree with root node u and two child nodes v and w. The
inorder traversal of T yields the sequence v, u, w and hence the base case
holds.

• Assuming that the claim holds for trees with up to m nodes, we now
prove that the claim holds for any tree T with m + 1 nodes. Let u be
the root node of T and u1, u2, . . . , uk its direct descendants. The inorder
traversal of T yields the sequence I(T (u1)), u, I(T (u2)), u, . . . , u, I(T (uk))
where I(T (ui)) is the inorder notation of the subtree rooted at the i-th
direct descendant of u. Trivially, it holds that |T (ui)| < m, for 1 ≤ i ≤ k,
and based on our assumption, the claim holds for any node in I(T (ui)).
Now, consider the i-th occurrence of u in the sequence. Trivially, we
observe that a node from T (ui) (specifically its rightmost leaf) appears
immediately before u and a node from T (ui+1) (specifically its leftmost
leaf) immediately after u. Since the LCA of any pair (p, q) such that
p ∈ T (ui) and q ∈ T (ui+1) is u, the lemma holds.

⊓⊔

For instance, let node u be the parent of two nodes v and w where v is
the root node of subtree T (v) and w is the root node of subtree T (w). Let p
be the last node in the inorder traversal of T (v) and q the first node in the
inorder traversal of T (w). By definition of inorder traversal, p is the rightmost
leaf of T (v) and q is the leftmost leaf of T (w). Hence, the LCA of p and q is
u.
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Definition 1.3 (Preorder traversal of a rooted tree) The preorder traver-
sal of a rooted tree is a sequence of nodes formed by executing the following
Step with the root node r as parameter. Step(v): List node v. Call Step with
the left child as parameter. Call Step with the right child as parameter.

As for the inorder traversal, the generated sequence is n elements long.

Next, we define the binary relation < ⊂ V 2 on a tree with nodes drawn
from set V , such that v < u iff the preorder id of v is smaller than the preorder
id of u.

Definition 1.4 (Induced subgraph) Let T be a tree such that L is the set
of its leaves and L′ ⊆ L a proper subset of its leaves. We call induced subgraph
the minimal subgraph that connects the elements of L′.

We now give the formal definition of an induced subtree.

Definition 1.5 (Induced subtree) Let G(T, L′) be the induced subgraph of
a tree T on some leaf-set L′. Remove nodes v2, . . . , vq−1 if there exist paths of
the form v1, v2, . . . , vq resp. r, v2, v3, . . . , vq such that r is the root, deg(v1) > 2,
deg(vq) ̸= 2, and deg(v2), . . . , deg(vq−1) = 2, and replace the corresponding
edges with a single edge (v1, vq), resp. (r, vq).

Definition 1.6 (Bipartition) Let T be a tree. Removing an edge from T
disconnects the tree into two smaller trees, which we call Ta and Tb. Cutting
T also induces a bipartition of the set S of taxa of T into two disjoint sets A
of taxa of Ta and B of taxa of Tb. We call a bipartition trivial, when the size
of either A or B is 1. These bipartitions are called trivial because, as opposed
to non-trivial bipartitions, they do not contain any information about the tree
structure; a trivial bipartition A of size 1 occurs in every possible tree topology
for S. We also denote by B(T ) the set of all trivial bipartitions of tree T .

Definition 1.7 (Robinson-Foulds distance) Given a set S of taxa, two
phylogenetic trees T1 and T2 on S, and their respective sets of nontrivial bipar-
titions B(T1) and B(T2), the RF distance between T1 and T2 is RF (T1, T2) =
1
2 ((B(T1) \B(T2))∪ (B(T2) \B(T1))). In other words, the RF distance is the
number of bipartitions that occur in one of the two trees, but not in both. This
measure of dissimilarity is easily seen to be a metric [22] and we can compute
it in linear time [19].

1.3 A NAÏVE APPROACH

In the following we introduce the Plausibility-Check algorithm.
The algorithm assesses whether a comprehensive phylogenetic tree T is

plausible or not by comparing it to a set of smaller reference trees that contain
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Figure 1.1 Euler traversal of a tree

Algorithm 1: Plausibility-Check

Input : Tree T of n nodes, set F = {t1, t2, . . . , tm} of small reference
trees that contain a proper subset of the taxa in T

Output: m pairwise RF distances RF(T, F ) = {r1, r2, . . . , rm} between
induced tree T |ti and ti

1 B(T )← Extract-Non-Trivial-Bipartitions(T )
2 for i← 1 to m do
3 ▷ Extract leaf-set L′

i from ti
4 B(T |ti)← Compute-Induced-Subtree-NBP(T,L′

i)
5 B(ti)← Extract-Non-Trivial-Bipartitions(ti)
6 ri ← RF-Distance(B(T |ti), B(ti))

7 end
8 Let RF(T, F ) = r1, r2, . . . , rm

a proper subset of taxa of T . We denote an induced tree as T |ti and read it
as the tree induced by the taxon set of ti in T .

Plausibility-Check (Algorithm 1) takes as input parameters a large tree
T and a set F of small reference trees. It is important to ensure that trees in
F only contain proper subsets of the taxa in T . In a preprocessing phase, the
algorithm extracts all bipartitions of T , which we denote as B(T ) and stores
them in a hash table. Then, the algorithm iterates over all small trees ti in
F and for every small tree ti it extracts the corresponding leaf-set L′

i. After
obtaining L′

i, Plausibility-Check computes the induced subtree T |ti, its
bipartitions B(T |ti), and hence the Robinson-Foulds distance for T |ti and ti.
The algorithm finishes when all small trees have been processed and returns
a list of m pairwise RF distances.

Extract-Non-Trivial-Bipartitions (Algorithm 2) calculates all non-
trivial bipartitions of T . The implementation requires O(n2) time for travers-



TOWARDS A FASTER METHOD 7

Algorithm 2: Extract-Non-Trivial-Bipartitions

Input : Tree T of n nodes
Output: List of all non-trivial bipartitions B(T ) of T

1 ▷ Extract all bipartitions from T
2 Let B(T ) = b1, b2, ...bn−3 be the list of non-trivial bipartitions of T

ing the tree and storing all bipartitions in a suitable data structure, typically,
a hash table. For further implementation details see Chapter 4.1 in [18].

Algorithm 3: Compute-Induced-Subtree-NBP

Input : List of all non-trivial bipartitions B(T ) = b1, b2, . . . , bn−3 of T
Leaf-set L′

Output: List of all non-trivial bipartitions B(T |ti) of induced tree T |ti
1 ▷ Iterate through all bipartitions B(T )
2 for i← 1 to |B(T )| do
3 ▷ Filter bipartition b with L′

4 forall the taxa in bi do
5 if taxon is in L′ then
6 b′i ← taxon
7 end

8 end

9 end

Compute-Induced-Subtree-NBP is a näıve approach to extract the in-
duced subtree T |ti and return its non-trivial bipartitions. These steps are
described in Algorithm 3. It iterates through all bipartitions bi of T stored
in the hash table, and generates the induced non-trivial bipartitions b′i for
T |ti by deleting the taxa which are not present in the leaf-set L′. The result-
ing induced bipartitions are then re-hashed. Therefore, Compute-Induced-
Subtree-NBP has a complexity of O(n2), where n is the number of leaves

of T . Note that, we can reduce the complexity to O(n
2

w ) using a bit-parallel
implementation, where w is the vector width of the target architecture (e.g.,
128 bits for architectures with SSE3 support).

In summary, Plausibility-Check has an overall complexity of O(n
2mk
w ),

where n is the size of the large tree, k is the number of small trees in the set
F and m is the average size of the small trees.

1.4 TOWARDS A FASTER METHOD

In this section we present a novel method for speeding up the computation of
induced subtrees from a given leaf-set. The key idea is to root the large tree
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at an inner node and compute the LCA of each and every pair of leaves in
the leaf-set. We can then build the induced subtree from the leaves and the
LCAs. Although at first glance this may seem computationally expensive,
with a series of lemmas we show that it is sufficient to compute the LCAs
of only specific pairs of leaves. In fact, we only have to compute the LCAs
of m − 1 particular pairs, and with a special type of preprocessing, we can
compute the LCA of each pair in O(1) time.

The induced subgraph for a leaf-set of size two is a path of nodes and
edges from one taxon to the other, and hence the induced tree is a simple line
segment with the two taxa as end-points. Therefore, in the rest of the text we
only consider leaf-sets of three taxa and more. For an arbitrary leaf-set L′,
we partition the set V of vertices of the induced subgraph into three disjoint
sets

V = V1 ⊎ V2 ⊎ V3

such that Vi = { v | v ∈ V, deg(v) = i }. From the properties of unrooted
binary trees we obtain that the size of V3 is exactly |L′| − 2.

In the next lemma we show that all nodes in V3 are LCAs of some pairs of
leaves in L′ when rooting the tree at an arbitrary inner node (Lemma 1.2. In
fact, V3 consists of all LCAs of all possible pairs of leaves in L′ except possibly
at most 1 LCA, which will be in V2. We prove this last claim in lemma 1.3.

Lemma 1.2 Let G(T ) be the induced subgraph of an unrooted tree T . Rooting
T at an arbitrary inner node r allows us to compute V3 from the LCAs of pairs
of leaves in L′.

Proof : By contradiction.

• Let us assume there exists a node v in V3 that is not the lowest common
ancestor of any two nodes from L′. Because deg(v) = 3, in the rooted
tree exist exactly two paths v ⇝ u and v ⇝ w, where u,w ∈ L′. Now
let p = lca(u,w) be the least common ancestor of u and w, r ⇝ u and
r ⇝ w the two paths leading from root r to u and w, and r ⇝ p their
common path. However, p ̸= v implies a cycle in the subgraph.

Therefore, any node in V3 is the LCA of two leaves in L′. ⊓⊔

Fig. 1.2 portrays any node v from set V3, that is, the root node of a rooted
tree with three subtrees t1, t2 and t3. Since v is in V3 we know that all three
subtrees t1, t2 and t3 contain at least one leaf from L′.

The next lemma proves that V3 is the set of all LCAs for all pairs of leaves
from L′, except possibly at most one LCA v. This node is part of V2 (of
degree 2) and results from rooting the tree at a node that is in V2 (in which
case v is the root) or at a node that does not appear in V .

Lemma 1.3 There may exist at most one node in V2 that is the LCA of two
leaves from L′. That node appears if and only if the root is not part of the
induced subgraph or if it is the root itself.
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Figure 1.2 Node from V3

Proof : First we show a necessary condition that must hold for a node to be
in V2 and to simultaneously be an LCA of two leaves. Then, we show that
only one such node exists.

• An internal node v (as depicted in Fig. 1.2) which is the LCA of two
leaves after rooting the tree at an arbitrary point, ends in V2 only if
one of the subtrees, for instance t1, does not contain leaves from L′.
Moreover, the root must either be at node v or be in t1.

• Now, assume that there exists a node v′ in t3 or t2 that is an LCA and
belongs to V2. This node must have degree 3 in the rooted tree, and
hence connect three subtrees t′1, t

′
2 and t′3. By definition, two of the

subtrees must contain leaves from L′ and the third subtree must not
(and must contain the root), such that node v′ is in V2. However, this is
a contradiction as the third subtree is either the subtree that contains
t1, t2 and v (in case v′ is in t3) or t1, t3 and v (in case v′ is in t2).

⊓⊔

To generate the induced tree from the induced subgraph G(T ), we remove
all nodes from V2 and replace all edges (v1, v2), (v2, v3), . . . , (vn−1, vn) formed
by paths v1, v2, . . . vn such that v1, vn /∈ V2 and vi ∈ V2, for all 1 < i < n,
is represented by a single edge (v1, vn). We have already shown that it is
sufficient to compute set V3 which, together with L′, can generate the induced
tree. Therefore, computing |L′| − 2 LCAs is sufficient to induce the tree for



10 AUTOMATED PLAUSIBILITY ANALYSIS OF LARGE PHYLOGENIES

leaf-set L′. However, there exist |L′|(|L′|−1)
2 pairs of leaves. The main question

now is how to choose the pairs for computing the unique |L′| − 2 LCAs.
Let C denote the set of all LCAs of all pairs of a leaf-set L′, that is,

C = { p | p = lca(u, v), u ̸= v, u, v ∈ L′ }.

The following lemma proves a fundamental property of LCA computation
using the preorder notation. For three nodes u, v and w, where u appears
before v and v before w in the preorder traversal of a rooted tree T , we show
a transitive property which dictates that knowing the LCAs p of (u, v) and
q of (v, w) is sufficient to determine the LCA of (u,w). In fact, the LCA of
(u,w) is the node that appears first in the preorder traversal of T between
node p and node q.

This property allows us to formulate the main theorem which proves that
there exist at most L′−1 unique LCAs for the leaf-set L′ (and a rooted tree),
and states which pairs of leaves to use for obtaining the required LCAs. In
the following we denote the preorder identifier of a leaf v as pid(v).

Lemma 1.4 Let u, v, w ∈ L′ such that u < v < w. It holds that lca(u,w) =
v′, such that pid(v′) = min(pid(p), pid(q)) where p = lca(u, v) and q =
lca(v, w).

Proof : Proof by contradiction. Let r be the root of the tree. Let us assume
that p = lca(u, v) and q = lca(v, w). By definition of the LCA, q may appear
only along the path r ⇝ p or p⇝ v, that is, along the path r ⇝ v. We split
the proof in two cases: Node q appears on either r ⇝ p or p⇝ v.

• In case q appears along p⇝ v. Let us assume that v′ = lca(u,w) is not
p. It can then appear along the path r ⇝ u. If it appears anywhere
except p we have a cycle. Therefore, lca(u,w) = p and it holds that
pid(p) = min(pid(p), pid(q)).

• In case q appears along r ⇝ p. Lets assume that v′ = lca(u,w) is
not q. It can appear along the path r ⇝ u. If it appears anywhere
except p we have a cycle. Therefore, lca(u,w) = q and it holds that
pid(q) = min(pid(p), pid(q)).

The lemma holds. ⊓⊔

Specifically, with the next theorem we show that computing the set

C ′ = { p | p = lca(u, v), u < v, u, v ∈ L′, ∄w : u < w < v }

is not only sufficient, but that C ′ = C.

Theorem 1.1 Given leaves v1, v2, . . . , vn such that vi < vi+1 for 1 ≤ i < n, it
holds that lca(vj , vk) = u and pid(u) = min(pid(uj), pid(uj+1), . . . , pid(uk−1))
for 1 ≤ j < k ≤ n and ui = lca(vi, vi+1) for j ≤ i < k.

Proof : By strong induction on the range
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• Let k − j = 2. The claim holds as shown by Lemma 1.4 and this forms
our base case.

• Let m be a positive integer greater than 2, and let us assume that the
claim holds for k− j ≤ m. This forms our induction hypothesis and we
must now prove that the claim holds for m+ 1.

• Let k− j = m+1. From this interval let us consider nodes vj , vk−1 and
vk. From the induction hypothesis we obtain that uℓ = lca(vj , uk−1)

such that pid(uℓ) = min
∪k−1

i=j (pid(ui)). We also have that lca(vk−1, vk) =
uk−1. From Lemma 1.4 we can easily obtain the desired proof that
lca(vj , vk) is the node that has the smallest preorder identifier between
uℓ and uk−1 and hence our claim holds.

⊓⊔

Theorem 1.1 implies that it is sufficient to sort the leaf-set in ascending
order according to the preorder identifiers of the corresponding leaves in the
rooted tree. Then, for the sequence u1, u2, . . . , u|L′| of leaves, one can compute
the LCA of |L′| − 1 pairs (ui, ui+1), for i ≤ 1 < |L′|, to obtain the desired
|L′| − 1 unique LCAs. Note that, in case the selected root node is in V3, it
will appear twice; once as the LCA of two leaves from t1 and t2 (see Fig. 1.2),
and once as the LCA of two leaves from t2 and t3. On the other hand, if the
root node is not in V3, then we obtain one additional LCA from V2, which
will not appear in the induced tree.

So far, we have proven that, given a leaf-set L′, we can compute all common
ancestors of all pairs of leaves in L′ by simply computing the LCA of only
|L′| − 1 pairs. Each pair consists of two vertices ui and uj so that there is
no vertex uk such that ui < uk < uj . Moreover, we have shown that there
are exactly |L′| − 2 common ancestors of degree 3 which will be present in
the induced tree. In case the root node (when rooting the unrooted tree) is
not part of these nodes, we will obtain one additional common ancestor which
will have degree 2 in the induced subgraph, but that will not appear in the
induced tree.

1.5 IMPROVED ALGORITHM

We are now in a position to present and explain the actual algorithm for
inducing a tree given a leaf-set L′ and an unrooted tree T . We divide the
algorithm into two steps — preprocessing and inducing the trees. In the
preprocessing step we use a dedicated data structure created from tree T that
we can query for LCAs in constant time. In the second step, we show how to
query for LCAs and build the resulting induced tree.

Moreover, if we are given several leaf-sets at once, we can implement the
algorithm with one of the following two variants, each of which has different
asymptotic space and time complexity. The first requires loading all leaf-
sets in memory prior to computing the induced subtrees, and hence runs in
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Θ(n+ km) time and space. The second variant does not require pre-loading,
uses only Θ(n) space and runs in O(n+m logm) time.

1.5.1 Preprocessing

For fast LCA queries, it is necessary to root T at an arbitrary point and
then create a data structure that allows for O(1) queries. To achieve this we
consider the close relation between LCA computation and Range Minimum
Queries (RMQ). As shown in [2], we construct a sequence of node identifiers
which correspond to an Euler tour of the rooted tree. Identifiers are assigned
to nodes upon the first visit and in increasing order. We then preprocess
this sequence for RMQs. The size of the succinct preprocessed data structure
for a tree of n nodes is at most 2n + o(n) bits [11]. Algorithm 4 lists the
preprocessing phase. We omit the details of constructing a RMQ structure
and rather point the interested reader to the available literature [10, 11].

Algorithm 4: Preprocess-Rooted-Tree

Input : Tree T of n nodes
Output: Preprocessed data structure RMQ(T )

1 ▷ Root tree T
2 if T is unrooted then
3 Root T at an arbitrary node
4 end
5 ▷ Build Euler tour of T
6 Let E(T ) = s1, s2, . . . , s2n−1 be the Euler tour of T
7 ▷ Prepare a RMQ data structure
8 Let P (T ) = pid(s1), pid(s2), . . . , pid(s2n−1) be the list of preorder
identifiers of E(T )

9 Let RMQ(T ) = Range-Minimum-Query-Preprocess(P (T ))

1.5.2 Computing lowest common ancestors

Once we have constructed the preprocessed data structure via the Euler tour,
it is possible to compute the LCA of two leaf nodes in time O(1). To do so,
we will need one additional data structure. Let L be the set of leaves of the
rooted tree T of n nodes which we preprocessed. The new data structure
represents the mapping

f : L→ ⟨1, 2(n− 1)⟩

of the position where each leaf appears for the first time in the Euler tour.
We can now compute the LCA of two leaves u, v ∈ L by finding the node
with the lowest preorder identifier in the Euler tour in the range ⟨i, j⟩, where
i = min(f(u), f(v)) and j = max(f(u), f(v)). With the preprocessed Euler
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tour, we can compute this minimum value, and hence the ancestor of u and
v, in time O(1) using RMQs.

1.5.3 Constructing the induced tree

Given a list L′ sorted (in ascending order) by the preorder identifiers of the
nodes in tree T , we determine the common ancestor of every pair of adjacent
nodes. Let v1, v2, . . . , v|L′| be the list of nodes in L′ such that vi < vi+1 for
1 ≤ i < |L′|. We compute the LCA of every pair (vi, vi+1) and construct a new
sequence I = v1, lca(v1, v2), v2, lca(v2, v3), v3, . . . , v|L′|−1, lca(v|L′|−1, v|L|), v|L′|
of size 2|L′| − 1 by interleaving the LCA node between each pair of adjacent
nodes. These steps are described in Algorithm 5.

Algorithm 5: Compute-Induced-Tree

Input : Preprocessed RMQ structure RMQ(T )
Leaf-set L′

Mapping f : L′ → ⟨1, . . . , n⟩
Output: Induced unrooted tree T |ti

1 ▷ Sort leaf-set according to preorder traversal identifiers of T
2 Let L′

S = (u1, u2, . . . u|L′|) such that ui−1 < ui < ui+1, for 1 < i < |L′|
3 ▷ Compute common ancestors
4 for i← 2 to |L′| do
5 ci ← lca(ui−1, ui)
6 end
7 ▷ Sort the resulting nodes and construct the induced tree

8 Let V ′ = L′
S ∪

∪|L′|
i=2(ci) and name the nodes as u1,2 , . . . , u|V ′|

9 Let V ′
S = (u1, u2, . . . u|V ′|) such that ui−1 < ui < ui+1, for 1 < i < |L′|

10 T |ti ← Build-Induced-Tree(V ′
S)

The resulting sequence corresponds to the inorder notation of the induced
rooted tree (see Lemma 1.1). While we can construct the induced tree in
O(|L′|) time directly from the inorder sequence, we will show a different ap-
proach that requires an additional sorting step and is substantially simpler to
explain.

By sorting the inorder sequence in ascending order we obtain the preorder
notation of the induced rooted tree. The first node in the sequence is the
root node, and we can build the induced tree by applying Algorithm 6 on
the preorder sequence, which we include for completeness. The algorithm is
simple and builds the induced rooted tree in a depth-first order. After building
the tree and in case the root node is of degree 2 (see Lemma 1.3), we remove
the root and connect the two children by an edge.

Note that, as an alternative, it is possible to extract the required bipar-
titions after sorting the sequence without building the actual tree. Using
Algorithm 7 we can calculate the non-trivial bipartitions based upon the pre-
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Algorithm 6: Build-Induced-Tree

Input : Sorted list of nodes (u1, u2, . . . , un)
Output: Induced unrooted tree

1 ▷ Check whether the root is of degree 2 or 3
2 r ← New-Node
3 push r; push r
4 if u1 = u2 then
5 push r
6 start← 3
7 deg(r)← 3

8 else
9 start← 2

10 deg(r)← 2

11 for i← start to n do
12 pop p
13 q ← New-Node
14 Append-Child(p, q)
15 if ui is a leaf then
16 push q; push q
17 deg(q)← 3

18 else
19 deg(q)← 1

20 if deg(r) = 2 then
21 Connect the two children of r with an edge and remove r

order sequence. The algorithm determines all subtrees of the induced tree
T |ti and extracts the corresponding bipartitions by separating these subtrees
from T |ti.

EXAMPLE 1.1

Compute the induced tree, given the query tree in Fig. 1.3 and a leaf-set
L′ that consists of the leaves marked in blue.
First, we transform the unrooted tree into a rooted one by designating one

node as root. We then assign a preorder traversal identifier to each node as
shown in Fig. 1.4, starting from 0. The numbers at each node in the figure
indicate the preorder traversal identifiers assigned to that particular node.
For this example, the Euler traversal is the sequence
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Algorithm 7: Extract-Bipartitions-Prefix

Input : Sorted list of nodes (u1, u2, . . . , un)
Output: Non-trivial bipartitions from induced subtree

B(T |ti) = b1, b2, . . . , bn−3

1 k = 0
2 for i← n to 1 do
3 if k < number of splits then
4 V [i]← 1
5 if ui is not a leaf then
6 for j ← 1 to deg(ui) do
7 V [i]← V [i] + V [i+ V [i]]
8 for j ← 1 to V [i] do
9 if ui+j is a leaf then

10 Add ui+j into bi
11 else
12 Add all nodes from bi+j into bi
13 j ← j + V [i+ j]

14 k = k + 1

0 1 2 3 4 3 5 3 2 6 7 6 8 6 2 1
9 10 11 10 12 10 9 13 14 13 15 13 9 1 0 16
17 18 19 18 20 18 17 21 22 21 23 21 17 16 24 25
26 25 27 25 24 28 29 28 30 28 24 16 0 31 32 33
34 33 35 33 32 36 37 36 38 36 32 31 39 40 41 40
42 40 39 43 44 43 45 43 39 31

which is preprocessed for RMQ queries. We then sort the sequence of leaves
of L′ in ascending order, that is,

8, 20, 22, 23, 26, 38, 41

Then, we compute the LCAs of node pairs

(8, 20), (20, 22), (22, 23), (23, 26), (26, 38), (38, 41)

and obtain the sequence

8, 0, 20, 17, 22, 21, 23, 16, 26, 0, 38, 31, 41

which represents the inorder notation of the induced tree. We can now build
the induced tree directly from this inorder notation, or sort the sequence and
build the tree using Algorithm 6. Fig. 1.4 depicts the induced tree.

1.5.4 Final remarks

As stated earlier, it is possible to implement the algorithm in two different
ways, depending on the amount of available memory. The difference between
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Figure 1.3 Unrooted phylogeny of 24 taxa (leaves). The taxa for which we induce
a subtree are marked in gray. Inner nodes which represent the common ancestors and
hence the minimum amount of nodes needed to maintain the evolutionary relationships
among the selected taxa are shown dashed. The numbers denote the order of each node
in the preorder traversal of the tree assuming we root it at node 0.

the two variants is in the way how the initial sorting of each query leaf-set is
done.

Let T be a large tree of n nodes and let L′
1, L

′
2, . . . , L

′
k be k leaf sets with an

average size of m. One can now sort each leaf-set, compute the LCAs from the
sorted sequence (and the already preprocessed Euler tour of the query tree)
using Algorithm 5, and then apply Algorithm 6 to construct the induced tree.
The asymptotic time and space complexity for this variant is O(n) time and
space for preprocessing T and O(km logm) time for inducing k trees.

The alternative variant is to avoid sorting each of the k leaf-sets individu-
ally. Instead, one can store all of them in memory at the same time and sort
them using a bucket sort method. Since the range of values in the k leaf-sets
is ⟨1, n⟩, we can sort them all in a single pass in conjunction with the prepro-
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Figure 1.4 Induced tree for Example 1.1

cessing step in O(max(n, km)) time and space. Thereafter, we can build the
k induced trees in O(km) time, assuming that we construct the induced tree
directly from the inorder notation.

1.6 IMPLEMENTATION

In the following, we present a straightforward implementation of thePlausibility-
Check algorithm. We have implemented the algorithm in C as part of
RAxML. Furthermore, we address how to efficiently implement the fast
method from Section 1.5 for bifurcating unrooted trees.

1.6.1 Preprocessing

First of all, we need to preprocess the large phylogenetic tree by assigning
preorder identifiers to every node. Therefore, we root the tree at an arbitrary
inner node and traverse it to assign preorder identifiers and store them in
an array. We will use this array in the following steps to efficiently look up
preorder identifiers for every node.

We now traverse our tree for a second time via an Euler traversal. We can
also avoid this second tree traversal by assigning preorder identifiers on the fly
during the Euler traversal. However, this method requires additional memory
for marking already visited nodes. Note that, the resulting array consists of
4|L| − 5 elements because the Euler traversal visits |L| − 3 inner nodes (all
inner nodes except for the root) three times, all other |L| nodes once and the
root four times. To further optimize the induced tree reconstruction phase,
we use an additional array, which we denote by FastLookUp, that stores
the index of the first appearance of each taxon during the Euler tour. This
information allows us to speed up RMQ queries in the reconstruction phase
and we can also compute it on-the-fly during the Euler traversal.
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While we choose to use arrays for storing node information such as preorder
identifiers or Euler labels, one could also use hash tables to reduce memory
storage or list data structures, for instance.

Based on the Euler tour, we can now construct a RMQ data structure. For
this, we use source code developed by Fischer et al. [11] which we modify and
adapt to our purposes.

1.6.2 Reconstruction

Initially, we extract the leaf set from our small reference tree by traversing
the small tree and storing its taxon set in an auxiliary array called Small-
TreeTaxa. As before, we denote the number of taxa in the small reference
tree by m. In the following, we use SmallTreeTaxa each time we need to
iterate through the leaf set of the small tree.

Now, for every taxon in the reference tree we look up at which index posi-
tion it first appeared in the Euler tour using the FastLookUp array. Because
of the auxiliary FastLookUp array, this procedure has a time complexity of
O(m). Without this additional array, we would have to search through the en-
tire Euler tour to find the corresponding indices, which would require O(nm)
time. Thereafter, we sort all resulting indices in ascending order using quick-
sort. Note that, this is analogous to sorting the preorder identifiers, which
is necessary for computing the induced tree as outlined in Section 1.5. By
querying the RMQ data structure, we can now find the least common an-
cestor of two taxa in constant time and reconstruct the induced tree using
Algorithm 6.

1.6.3 Extracting Bipartitions

To finally compute the RF distance, we extract all non-trivial bipartitions by
traversing the small reference tree and the induced tree using the bipartition
hash function which has been thoroughly discussed by Pattengale et al. [18].

To reduce memory consumption and to improve running times, we store
bipartitions in bit vectors with m instead of n bits. We achieve this, by
consistently using the taxon indices from SmallTreeTaxa instead of the
original taxon index in the large tree. Bit vectors are well suited for storing
sets with a pre-defined number of m elements such as bipartitions. They only
need Θ(m) bits of space and can be copied efficiently with C functions like
memcpy(). These bit vectors are then hashed to a hash table and can be
looked up efficiently.

As stated earlier in Section 1.5, it is possible to extract all non-trivial
bipartitions directly from the preorder sequence without relying on an instance
of a tree structure, as outlined in Algorithm 7. We deploy this approach
because it does not require building the induced tree at all.

However, for both implementation options, we need a mechanism to avoid
storing (and thus checking for) complementary bipartitions. To avoid distinct,
yet identical representations of one and the same bipartition (the bipartition
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and its bit-wise complement), we hash bipartitions in a canonical way. We
only hash a bipartition if it contains a specific taxon (in our case the first
taxon in SmallTreeTaxa). If our bit vector does not contain the specific
taxon, we compute and then hash its complement instead.

1.7 EVALUATION

In the following we describe the experimental setup and the results.

1.7.1 Test Datasets

1.7.1.1 Real-world Datasets For real-world data tests, we used the mega-
phylogeny of 55 473 plant species by Smith et al. [28]. To obtain a reference
tree set, we queried all trees in STBase [15] which are proper subsets of the
large tree. Our reference tree set consists of 175 830 trees containing 4 up to
2 065 taxa and is available for download at http://www.exelixis-lab.org/
material/plausibilityChecker.tar.bz2.

1.7.1.2 Simulated Datasets As large trees, we used 15 trees with 150 up to
2 554 taxa from [20] that are available for download at http://lcbb.epfl.ch/
BS.tar.bz2. For each large tree, we generated 30 000 corresponding reference
trees containing 64 taxa. We used the following procedure to simulate and
build the reference trees: First we extract the taxon labels of the large tree.
Thereafter, we randomly select a proper subset of these taxa and construct
the trees using an algorithm that is similar to Algorithm 6.

Moreover, we also want to assess how long it will take our algorithm to run
on a very large number of reference trees for a mega-phylogeny. To this end,
we extracted 1 million reference trees with 128 taxa each from the empirical
mega-phylogeny with 55 000 taxa.

1.7.2 Experimental Results

All experiments were conducted on a 2.2 GHz AMD Opteron 6174 CPU run-
ning 64-bit Linux Ubuntu. We invoked the plausibility check algorithm as
implemented in standard RAxML with following command:

raxmlHPC-AVX -f R -m GTRCAT -t largetree -z referencetrees -n T1

In all experiments, we verified that both algorithms yield exactly identical
results.

1.7.2.1 Mega-phylogeny For the mega-phylogeny, we obtain an average rel-
ative RF distance of 0.318 (see Table 1.1) between the large tree and the
reference trees from STBase. We consider this average topological distance
of approximately 32% to be rather low, because of the substantially larger
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tree search space for the 55K taxon tree. For a tree with 2 000 taxa there
are about 3.00× 106 328 possible unrooted tree topologies, whereas for 55 000
taxa there exist approximately 2.94× 10253 380 possible unrooted tree topolo-
gies. In other words, the tree search space of the 55K taxon tree is about
10247 052 times larger than for the 2 000 taxon tree. Taking into account that,
different procedures were used to automatically construct the corresponding
alignments, and that, the trees have also partially been constructed from dif-
ferent genes, an average error of around 30% appears to be low. However,
the interpretation of these results is subject to an in-depth empirical analysis
which is beyond the scope of this paper. Fig. 1.5 illustrates the overall distri-
bution of RF distances, whereas Fig. 1.6 shows the corresponding distribution
for the 20 000 largest reference trees. Using our improved algorithm, we can
process the 175 830 small reference trees by five orders of magnitude faster
than with the näıve algorithm. In total, the näıve algorithm required 67 644s
for all reference trees, while the effective algorithm required less than 7.14 s,
after a preprocessing time of 0.042 s. If we only consider the inducing steps
and ignore the time for parsing every single tree, the näıve algorithm needs
67 640 s for reconstructing the induced tree whereas the effective approach
only takes 3.11 s. Hence, the effective algorithm is five orders of magnitude
faster than the näıve version.

1.7.2.2 Simulated data The näıve algorithm needs more time for larger phy-
logenies as discussed in Section 1.3 because it iterates over all taxa of the large
tree for each small tree. In contrast to this, our new approach only prepro-
cesses the large tree once. As we show in Fig. 1.7, the run-time of the effective
algorithm is independent of the input tree size. It induces the subtree in time
that is proportional to the size of each small tree. This yields a significant
run-time improvement for our new algorithm (see Table 1.2). In the following,
we calculated the speedup by comparing the run times for the inducing step
in both algorithms. Fig. 1.8 shows the speedup for the optimized induced
subtree version of Plausibility-Check compared to the näıve approach.
As theoretically expected, the speedup improves with increasing size of the
input phylogeny T . For example, on the large tree with 2 458 tips, the ef-
fective approach is about 19 times faster than the näıve algorithm which is
consistent with our theory. In each run, the näıve algorithm has to traverse
the large tree which is about 40 times the size of the small tree (64 tips),

Average Robinson-Foulds distance 0.318
Total time for inducing (näıve) 67 640.00 s
Total time for inducing (improved) 3.11 s
Total execution time (näıve) 67 643.00 s
Total execution time (improved) 7.14 s

Table 1.1 Test results for a mega-phylogeny of 55 473 taxa
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Figure 1.5 Distribution of all relative RF distances between the large mega-
phylogeny and the reference trees from STBase.

whereas the efficient method only traverses the small reference tree. However,
due to additional sorting and traversing of the small tree, we suffer a loss in
run-time performance which explains the resulting speedup. If the difference
between the size of the large tree and the small reference tree is small, both
algorithms will have approximately the same run-time. However, this is not
the standard use case for our algorithm. Fig. 1.9 shows the overall execution
times for both algorithms, while Fig. 1.10 shows the preprocessing time for the
effective algorithm which depends on the size of T . The preprocessing time
is negligible compared to the overall execution time. Table 1.3 illustrates the
huge differences between the effective and the näıve algorithm on extremely
large data sets. For one million reference trees, our näıve algorithm required
113 hours (ca. five days) whereas the effective algorithm required less than 8
minutes.
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Figure 1.6 Distribution of relative RF distances for the 20 000 largest reference
trees (30 up to 2 065 taxa)

# of
taxa in
large
tree

Inducing
time

(näıve)

Inducing
time
(im-

proved)

Preprocessing
time

Overall
execution

time
(näıve)

Overall
execution

time
(effective)

150 1.805363 2.21387 0.00030 3.200785 3.959420
218 2.173332 2.27510 0.00031 3.614717 3.989973
354 3.318583 2.30837 0.00036 4.935320 4.178407
404 3.683192 2.42039 0.00037 4.904781 4.053480
500 4.318119 2.26976 0.00038 5.648583 3.990615
628 6.077749 2.36570 0.00046 7.312694 3.895842
714 7.063149 2.36753 0.00048 8.399326 3.897443
994 10.290771 2.35056 0.00056 11.840957 4.079138
1 288 16.531953 2.33238 0.00077 18.346817 4.078463
1 481 20.654801 2.44133 0.00080 22.444981 4.134798
1 604 23.317732 2.45706 0.00086 25.385845 4.269186
1 908 29.793863 2.44010 0.00100 31.903671 4.188301
2 000 30.726621 2.43945 0.00106 32.648712 4.050954
2 308 39.535349 2.39014 0.00119 41.739811 4.157518
2 554 46.642499 2.48903 0.00125 48.698793 4.498240

Table 1.2 Test results for different input tree sizes (150 - 2 554 taxa). We
executed the algorithm on 30 000 small trees for each run. Each small tree
contains exactly 64 taxa.



EVALUATION 23

# of taxa in large tree 55 473
# of small trees 1 000 000
Total time for inducing (näıve) 406 159.00 s
Preprocessing time 0.045 s
Total time for inducing (improved) 238.37 s
Total execution time (näıve) 405 902.00 s
Total execution time (improved) 448.40 s

Table 1.3 Test results for one million simulated reference trees (each
containing 128 taxa)
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Figure 1.10 Time needed for the preprocessing step of the effective algorithm
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1.8 CONCLUSION

In view of the increasing popularity of megaphylogeny approaches in biolog-
ical studies [13, 28], one of the main challenges is to assess the plausibility
of such large phylogenies. Because of the availability of a large number of
curated smaller phylogenies, the methods and software we introduce here, al-
low to automatically assess and quantify the plausibility of such large trees.
Moreover, they can be used to compare such large phylogenies to each other
by means of their respective average RF distances. Here, we use the RF dis-
tance metric, but any other, potentially more advanced, topological distance
metric, such as the quartet-distance [6] for instance, can be used.

We consider the average RF distance of 32% we obtained using empirical
reference trees for the 55K taxon tree to be surprisingly small with respect to
the size of the tree search space. The histograms with the distribution of the
RF distances can be used to identify problematic clades in mega-phylogenies.
One could also establish an iterative procedure that removes taxa from the
mega-phylogeny in such a way that the average RF distance drops below a
specific threshold. This may also give rise to novel optimization problems.
For instance, one may consider the problem of finding the smallest set of
taxa to prune, whose removal yields a 10% improvement of the average RF
distance. This kind of optimization problems might also be connected to
recent algorithms for rogue taxon identification [1]. Apart from these practical
considerations, we showed that our method runs in O(km) or O(km logm)
time. This is an important finding because the time complexity, except for
the preprocessing phase, is independent of the size of the mostly very large
input phylogeny. Our experimental findings are in line with our theoretical
results and the implementation exhibits a substantial speedup over the näıve
algorithm. Nevertheless, there are still several open problems that need to
be addressed. Is it possible to design an algorithm for our method which
runs in linear time as a function of the leaf set of the small reference tree?
Furthermore, our method examines the extent to which a large phylogeny
corresponds to existing, smaller phylogenies. At present, the small trees have
to contain a proper taxon subset of the large phylogeny. An open problem is
how to handle small trees that contain taxa which do not form part of the
large tree.

Finally, we simply do not know if large trees that attain high plausibility
scores (low average RF distance) do indeed better represent the evolutionary
history of the organisms at hand.
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