
Page 1 of 13

FAB: An Intuitive Consensus Protocol using Raft and Paxos

Bhavin Thaker

Symantec Corporation
*

bhavin_thaker@symantec.com

23
rd

 March, 2015

*
 © 2015 Symantec Corporation. All rights reserved.

Abstract

The Fast Atomic Broadcast (FAB) protocol pro-

vides atomic broadcast of messages across a pre-

configured set of cluster members such that either

all or none of the members receive the messages.

FAB is a distributed consensus protocol that builds

on concepts from the Raft and Paxos protocols, but

is relatively intuitive and easier to understand.

Similar to Raft and Paxos, FAB is faster than the

usual 2-Phase Commit (2PC) protocol because

FAB requires the broadcast of a message to reach

only a majority of the cluster members. In contrast,

the 2PC protocol requires all cluster members to

receive the message. The cluster operates as long as

there is a majority of the members in the cluster.

All messages to be broadcast are routed through a

single Leader with remaining members serving as

Followers. The Leader is elected based on majority

consensus among the members, and the messages

are committed based on majority consensus. The

broadcast messages are persisted in a transaction

log and retained until all cluster members receive

the messages. When appropriate, each cluster

member deletes the messages (garbage collection).

If a disconnected member lags in terms of the mes-

sages it has persisted, as compared to other mem-

bers, that member is synchronized automatically

when it connects back to the cluster. In addition,

FAB supports dynamic addition and deletion of a

member in a cluster while the broadcast of messag-

es is in-progress, while continuing to provide con-

sistency and high-availability at all times. FAB

also provides weighted leader election to influence

which member of the cluster becomes the Leader

without compromising consistency.

1. Introduction

A plethora of distributed consensus protocols have

been proposed, of which Paxos [10] is one of the most

widely used. Raft [16] and Ark [7] make a sincere at-

tempt to have a consensus protocol that is easier to un-

derstand. FAB is a newer protocol that combines essen-

tial ideas from the Raft and Paxos protocols to provide

an intuitive distributed consensus algorithm.

The FAB protocol is implemented using the C lan-

guage in a user-level library. The implementation is

about 5,000 lines of production-quality source code

(excluding the RPC communication layer), and it han-

dles many corner-case scenarios reliably.

Explaining Distributed Systems in a paper is like de-

scribing a movie, where the element of time and multi-

ple actors make it difficult to capture the story easily in

diagrams. Inspired by comic-book-style illustrations,

the time-lapsed illustrations in this paper make the core

concepts intuitive and easy to understand. This paper

borrows pedagogical concepts from ECKEL, B.,

MARSH, D., Atomic Scala [3]. The principles of

“Show, don’t tell” and “Practice before theory” aid in

appreciating the design decisions.

2. Motivation for FAB

The main motivation to create FAB is based on the

observation that Paxos and Raft have many elegant de-

sign concepts that could be combined and enhanced to

build a protocol that is simple, intuitive and easy to un-

derstand without requiring correctness proofs or math to

appreciate the beauty of a distributed consensus proto-

col. The “foundational” scenarios described in this pa-

per are sufficient to understand the protocol in order to

implement it easily.

FAB uses the notion of a strong Leader as well as

terminology and data structures such as term, voted_for,

etc., borrowed from Raft. FAB, however, avoids Raft’s

overlapping configurations and joint consensus, which

can be complex and unreliable to implement. Instead,

FAB requires only one configuration change to be

pending at a time. It broadcasts and applies the configu-

ration change via a message to the majority of the clus-

ter members. Additionally, similar to Paxos but unlike

Raft, FAB considers a message as committed implicitly

if the message is present on a majority of the cluster

members. This property is used by FAB’s Leader elec-

Page 2 of 13

tion to maintain message consistency and reliability. In

contrast, Raft allows many messages to be written to the

Leader log without requiring that they have been written

to the majority of the cluster members. This can be a

source of complexity for handling many corner-case

scenarios. For example, having the Leader restart multi-

ple times with many uncommitted entries makes recov-

ery complex.

The primary use-case of FAB is replicating configu-

ration updates persistently across a set of cluster mem-

bers. In such use-cases, where the messages are given a

global sequence number, the messages typically are

heavily interdependent. Hence, it is believed that there

is not much benefit gained if the design was to transmit

multiple interdependent messages in parallel after get-

ting a global sequence number and then implement

complex recovery scenarios. Instead, by making the

design decision to wait for message completion before

transmitting the next message, the simple and minimal-

istic infrastructure design principle has eased implemen-

tation of features such as dynamic addition and deletion

of cluster members, and weighted leader election for the

highest weighted member to become the Leader. Addi-

tionally, similar to Paxos and Raft, waiting for a majori-

ty of the cluster members allows FAB to scale to a large

number of nodes.

3. Design

3.1. Problem Overview

The problem of Distributed Consensus is to have

cluster members agree on a proposal made to the clus-

ter. The proposal is a message sent to any member of

the cluster. Either all members agree to accept the mes-

sage, in which the message is “committed,” or none of

the members agree to retain the message, if less than a

majority of the members happen to have the message. In

the latter case, the members discard (“rollback”) the

message since the message was “not committed.” For

each message received by the cluster, a globally unique

message identifier (msgid) is assigned by the cluster,

after which the message is either committed or rolled

back before the next message is accepted by the cluster.

3.2 Configuration Overview

Information about all members in the cluster is con-

figured in the fab/conf/fab.conf file, which is same on

all cluster members. Each cluster member has a unique

numeric identifier in the fab/conf/myid file, which is

different for each cluster member.

…/fab/conf/fab.conf: is the FAB configuration file

that lists information about all the cluster members. The

format resembles the Zookeeper [4] configuration file.

server.1=10.182.198.21:12341:22221:10

server.2=10.182.198.22:12341:22221:20

server.3=10.182.198.23:12341:22221:30

#server.myid=IPaddr:Iport:Eport:Weight

Each line in the configuration file above refers to a par-

ticular cluster member. The IP address after the equals

sign is the member’s IP address. The two ports after the

IP address denote the internal port number that is used

for FAB-to-FAB member communication and the exter-

nal port number that is used for client-to-FAB commu-

nication. The number at the end of the line denotes the

weight of the member, which is used for Weighted

Leader Election. This weight influences Leader Election

such that the member with the highest weight becomes

the Leader. In the above configuration, member 3 be-

comes the Leader since it has the highest weight of 30,

as long as it can get a majority of votes from the cluster

members. The fourth line is a comment line.

…/fab/conf/myid: is the member identification file.

The id is an integer from 1 to 127, the largest member

count curently supported by FAB. For example, the

myid file on member 1 contains “1”.

3.3 Interface Overview

This section provides a black-box overview of the

FAB API. Each API has a flags argument that is re-

served for use in special cases. All FAB API calls are

blocking. The return value of each API call is 0 for suc-

cess and non-zero for failure.

Figure 1 shows the flow of API calls made by FAB

clients on each cluster member. The FAB client on clus-

ter member S1 initiates a broadcast to the FAB Leader,

which is elected through majority consensus among the

cluster members on startup. The FAB Leader assigns a

new message id to each message received for broadcast

and triggers a broadcast of the message to all the cluster

members. Each cluster member, on receiving the broad-

cast message, updates the FAB state, logs the message

persistently, and sends an ACK back to the Leader that

initiated the broadcast. The Leader uses the 2PC proto-

col to commit the message on at least a majority of the

cluster members. Once the message is committed, it is

ready to be received by the client on each cluster mem-

ber. The FAB client on each cluster member calls

fab_recv() to receive the message and get the associated

message id for the received message. The client pro-

cesses the received message and then receipt-

acknowledges (called rack) the message id to FAB. The

Page 3 of 13

fab_rack() acknowledgement is an operation local to the

cluster member, and it does not send any network mes-

sage. Mainly, it indicates to FAB what message the cli-

ent has processed so that FAB does not need to redeliv-

er the message to the client in cluster member failure

scenarios. When the message is racked locally and is

present on all the cluster members, it is deleted. Note

that all cluster members can issue the broadcast call in

parallel even though they are routed for broadcast

through the single Leader.

S2

S3S1

FAB State Msg Log

FAB

FAB client

T1

T2

T3

FAB State Msg Log

FAB

FAB client

T4 T5

FAB State Msg Log

FAB

FAB client

T1) Client on S1 does fab_bcast()

T2) FAB Leader broadcasts the msg using

2PC

T3) Each member receives the msg, updates

FAB State and Msg Log and completes 2PC

T4) Each client does fab_recv() of the msg

T5) Each client processes the received msg

and does fab_rack() for it

T3 T3 T3

T3 T3

T2

T2

T5T4

T4 T5

Figure 1: Flow of API calls made by FAB clients

3.3.1 fab_open()

int fab_open(struct rpc *rpc,

 struct fab **fabpp, int flags);

fab_open() opens the FAB module based on the in-

formation in the configuration files, viz.

fab/conf/{fab.conf, myid} and returns a pointer to FAB

via fabpp. The passed-in RPC pointer is used for RPC

communication between cluster members.

3.3.2 fab_bcast()

int fab_bcast(struct fab *fabp,

 char *msgp, uint32_t msglen,

 uint32_t *msgidp,

 uint32_t prev_msgid, int flags);

fab_bcast() broadcasts messages atomically. The

message pointer is passed via msgp and the message

length via msglen. FAB returns the message id assigned

to this message via msgidp. The argument, prev_msgid,

is the msgid of the latest msgid known to the client. If

prev_msgid is specified, the fab_bcast() call checks if

the specified prev_msgid value matches the latest com-

mitted msgid in FAB. If it does not match, it implies

that another msgid was committed recently by another

cluster member. When this happens, fab_bcast() returns

EINVAL. Then, the client reads the message that re-

cently got committed, updates its prev_msgid accord-

ingly and reinitiates the fab_bcast() call. If prev_msgid

is 0, this check is skipped by FAB. The prev_msgid

check acts like a test-and-set operation and is similar to

the version check of Zookeeper’s [4] znode in the

zoo_set() API. It allows the broadcast to be atomic

without requiring explicit locking.

3.3.3 fab_recv()

int fab_recv(struct fab *fabp,

 char *msgp, uint32_t *msglenp,

 uint32_t *msgidp, int flags);

The fab_recv() call receives the message from FAB

via msgp. The client allocates memory for the message

and passes in pointers to the message and its length via

msgp and msglenp respectively. FAB returns the length

of the message via the same pointer msglenp. The mes-

sage id is returned by FAB via msgidp.

3.3.4 fab_rack()

int fab_rack(struct fab *fabp,

 uint32_t msgid2ack, int flags);

The client uses fab_rack() to “receipt ack” all the da-

ta received via fab_recv() and processed so far. Note

that the ACK is not sent over the network; it merely

updates the persistent pointer to the data successfully

read and processed by the client so far. As an example,

if the client has not yet completed ACK of msgid=150,

on restart after a crash, the client gets msgid=150 from

FAB. If the client has successfully completed ACK of

msgid=150, on restart after a crash, the client gets

msgid=151 onwards from FAB. In other words, on a

restart that happens before the fab_rack() completion,

the unacknowledged data is received by the client. Simi-

larly on a restart that happens on fab_rack() completion,

the acknowledged data is no longer received by the cli-

ent from FAB.

3.3.5 fab_close()

int fab_close(struct fab **fabpp, int flags);

This closes the FAB module, freeing up resources.

Page 4 of 13

3.3.6 A sample program to use FAB library

A self-explanatory sample program to use the FAB

library for broadcast of three messages is given in Fig-

ure 2.

Figure 2: A sample program to use FAB library

3.3.7 Dynamic addition of a FAB member

The member that wants to join a cluster sets its myid

configuration file to 0 and sets its member information

in the first line with a member id of 0 in the fab.conf

file. The second line lists the leader to which it needs to

send an add request. An example configuration for dy-

namic addition is given below, where the current leader

has myid = 2.

…/fab/conf/myid:

0

…/fab/conf/fab.conf:

server.0=10.182.198.24:12341:22221:5

server.2=10.182.198.25:12342:22222:3

Once the member addition process is complete, the

myid file contains the new member id, and the updated

fab.conf is replicated on all the cluster members. The

configuration files for the above example, after the dy-

namic addition process has completed, are given below:

…/fab/conf/myid:

4

…/fab/conf/fab.conf:

server.1=10.182.198.21:12341:22221:2

server.2=10.182.198.22:12341:22221:3

server.3=10.182.198.23:12341:22221:4

server.4=10.182.198.24:12341:22221:5

3.3.8 Dynamic deletion of a FAB member

A member can be deleted only from the member

server that is the Leader of the cluster. If the Leader

deletes itself, it triggers reelection. The id of the mem-

ber to be deleted from the cluster is written to the file

…/fab/conf/deleteid, which FAB periodically reads and

acts upon appropriately.

3.4 Design Overview

The following sections explain foundational scenari-

os of the overall design.

3.4.1 Leader election

To ensure that there is only one cluster member that

assigns the globally unique message id, and to coordi-

nate the message commitment across the cluster mem-

ber, one of the cluster members acts as a “Leader,”

while the remaining cluster members act as “Follow-

ers.” By default, when a cluster member starts, it enters

the state of being a Follower. After a wait of Heartbeat

timeout period, the cluster member switches from the

state of Follower to “Candidate” and requests votes

from all the cluster members.

Page 5 of 13

S1: Follower

term=100

voted_for=0

S2: Follower

term=100

voted_for=0

S3: Follower

term=100

voted_for=0

T1: Each Member becomes Follower on

startup

RequestVote

S1: Candidate

term=101

voted_for=0

S2: Follower

term=100

voted_for=0

S3: Follower

term=100

voted_for=0

T3: Candidate sends RequestVote to all

members

S1: Candidate

term=101

voted_for=0

S2: Follower

term=100

voted_for=0

S3: Follower

term=100

voted_for=0

T2: S1 times-out and becomes Candidate;

increments its term

S1: Leader

term=101

voted_for=1

S2: Follower

term=101

voted_for=1

S3: Follower

term=101

voted_for=1

T4: On getting majority ACKs, Candidate

becomes Leader

Figure 3: TLI for Leader election

On receiving votes from the majority of the cluster

members, the cluster member switches its state from

“Candidate” to “Leader.” The time-lapsed illustration

(TLI) for a 3-member cluster (server S1, server S2 and

server S3) with the starting term 100 is shown in Figure

3. T1, T2, T3, and T4 represent the sequenced time-

steps. The updated state variables are highlighted in

bold. A member grants a vote to a Candidate for a par-

ticular “term,” similar to the way a citizen votes for the

election of the President of a country for a particular

term. The “term” helps identify stale messages after a

configuration change like electing a new leader or add-

ing or deleting a cluster member. Once a server has

granted a vote to a candidate for a term, it cannot

change its vote. However, it can communicate its al-

ready granted vote to the same candidate again in re-

sponse to a request vote message. A member sends a

positive acknowledgment as a grant vote and a negative

acknowledgment as a reject vote. A member always

grants a vote to a request vote with a term higher than it

has already voted for, and always rejects a request vote

with a lower term than it has already voted for.

3.4.2 Convergence of Leader election

If a Leader is not elected within the election timeout

period, then the Candidate waits a random period less

than the Election timeout and starts reelection by incre-

menting the term and sending the broadcast of Re-

questVote with the incremented term value. The reason

for a random wait during reelection is to make it im-

probable to have multiple Candidates sending broad-

casts of RequestVote messages at the same time and

therefore causing reelection repeatedly. In some cluster

configurations (say, an even number of cluster mem-

bers, for example, four), there could be stalemate sce-

narios where two candidates receive votes from half

(e.g. two) of the total number of cluster members (e.g.

four) and not achieve a majority number of votes (e.g.

three or more votes). The random wait makes this un-

likely to occur. If it does, the Leader Election is retried,

thereby helping in convergence of the Leader Election

process. Additionally, each member’s current term is

updated to the term in the request vote message if the

request vote’s term is newer than its current term. The

Candidate increments its term at the start of a new elec-

tion so that previous lower-numbered terms are consid-

ered stale. The members are aware of the global state of

each other and this helps in fast convergence of the

Leader election.

3.4.3 State transition diagram

Figure 4 summarizes the state transitions.

Startup

On Heartbeat timeout,

start Election;

++ term;

broadcast RequestVote

If no Leader elected

within Election timeout,

start Re-election;

++ term;

broadcast RequestVote

On receiving

Majority votes,

become Leader

Step-down

if received message

with higher Term

Follower Candidate Leader

Figure 4: State transition for member type

3.4.4 Leadership assertion

The Leader sends heartbeats at periodic time inter-

vals (called timer timeout, for example, 3 seconds) to all

the cluster members and expects acknowledgments

(ACKs) from a majority of the cluster members to assert

its leadership. If the majority of the ACKs do not arrive

in a pre-determined time interval (called heartbeat

timeout, for example, 15 seconds, that is, 5 missed

heartbeats), then the Leader “steps-down” from its

Leader state and becomes a Follower. Each Follower

expects a periodic heartbeat from the Leader, and if it

does not arrive in the pre-determined time-interval

(heartbeat timeout, 15 seconds), then the Follower as-

sumes that the Leader is no longer alive and “steps-up”

to the Candidate state, thereby triggering Leader Elec-

tion. After the Candidate sends RequestVote messages

to all cluster members, if a majority of votes are not

received with an Election timeout period (for example,

10 seconds), the Candidate increments the term and

starts a new reelection. The timer out (3 seconds) is less

than the election timeout (10 seconds), which is less

Page 6 of 13

than the heartbeat timeout (15 seconds). The values are

chosen based on the principle that leader election step

should be deferred as much as possible to handle spuri-

ous network failures but once started, the leader election

step should complete as soon as possible. Leadership

assertion is illustrated in Figure 5.

S1: Leader

term=101

voted_for=1

S2: Follower

term=101

voted_for=1

S3: Follower

term=101

voted_for=1

T1: Leader sends RequestVote to all

members (asserting Leadership)

S1: Leader

term=101

voted_for=1

S2: Follower

term=101

voted_for=1

S3: Follower

term=101

voted_for=1

T2: On getting majority ACKs; S1

continues Leadership

S1: Leader

term=101

voted_for=1

S2: Follower

term=101

voted_for=1

S3: Follower

term=101

voted_for=1

T3: S2 , S3 down; No majority ACKs;

S1 loses Leadership after timeout

S1: Follower

term=101

voted_for=1

S2: Follower

term=101

voted_for=1

S3: Follower

term=101

voted_for=1

T4: S1 steps-down to Follower

RequestVote

Figure 5: TLI for Leadership assertion

3.4.5 Stale Leader

S1: Leader

term=101

voted_for=1

S2: Follower

term=101

voted_for=1

S3: Follower

term=101

voted_for=1

T1: S1 unresponsive/hung; S2 or S3

timeout since no response from Leader

S1: Leader

term=101

voted_for=1

S2: Candidate

term=102

voted_for=1

S3: Follower

term=101

voted_for=1

T2: Say S2 times out; becomes Candidate;

++term; sends RequestVote to all members

S1: Leader

term=101

voted_for=1

S2: Candidate

term=102

voted_for=2

S3: Follower

term=102

voted_for=2

T3: S2 and S3 send ACKs to S2; Term

updated by S2 to 102

S1: Leader

term=101

voted_for=1

S2: Leader

term=102

voted_for=2

S3: Follower

term=102

voted_for=2

T4: S2 becomes Leader with term=102

S1: Leader

term=101

voted_for=1

S2: Leader

term=102

voted_for=2

S3: Follower

term=102

voted_for=2

T5: S1 is responsive again; S1 sends

RequestVote for asserting Leadership

S1: Follower

term=102

voted_for=2

S2: Leader

term=102

voted_for=2

S3: Follower

term=102

voted_for=2

T6: A single NACK makes S1 step-down

to Follower & update its term

RequestVote

RequestVote

Figure 6: TLI for handling a Stale leader

It is possible that network connectivity could be lost

temporarily between members of the cluster such that a

Leader is disconnected from all the cluster members,

the remaining cluster members elect a new Leader and

then the original Leader is connected back to the clus-

ter. Another way to get into this scenario is when the

current Leader is unresponsive (as illustrated by a

crossed-circle in time-steps T1 to T4 of Figure 6), so

that another cluster member becomes the Leader.

In order to handle this scenario of two Leaders in the

cluster, the notion of “term” is used as a logical clock.

Each Leader election process starts with a new term

number, incremented during the Candidate state. If we

have two Leaders in the cluster, the Leader with the

higher term survives, whereas the Leader with the lower

term is a stale Leader and steps-down to the Follower

state, as illustrated in Figure 6. Additionally, a cluster

member grants its vote to a candidate for a particular

term after which it is not allowed to regrant its vote for

that term. This ensures convergence of the Leader Elec-

tion process and is similar to the voting process, where

a citizen is allowed to grant only one vote to a candidate

of the Presidential election for a particular term.

3.4.6 Split Votes during Leader Election

S1: Candidate

term = 101

voted_for=1

S2: Follower

term = 101

voted_for=1

S3: Follower

term = 101

voted_for=4

T2: S1, S2 grant vote to S1 only;

S4, S3 grant vote to S4 only

S4: Candidate

term = 101

voted_for=4

S1: Candidate

term = 101

voted_for=0

S2: Follower

term = 100

voted_for=0

S3: Follower

term = 100

voted_for=0

T1: Two Candidates concurrently send

RequestVote to all members

S4: Candidate

term = 101

voted_for=0

S1: Candidate

term = 102

voted_for=0

S2: Follower

term = 101

voted_for=1

S3: Follower

term = 101

voted_for=4

T3: No Majority; Candidates timeout

randomly; one (say S1) proceeds; sends

RequestVote

S4: Candidate

term = 101

voted_for=4

S1: Leader

term = 102

voted_for=1

S2: Follower

term = 102

voted_for=1

S3: Follower

term = 102

voted_for=1

T4: S4 steps-down to Follower on

receiving RequestVote of higher term; S1

gets Majority ACKs to become Leader

S4: Follower

term = 102

voted_for=1

RequestVote

RequestVote

Figure 7: TLI for handling Split Votes during Leader

Election

It is rare but possible that multiple candidates request

votes from the cluster members and get an equal num-

ber of votes, causing a tie and leading to an indetermi-

nate state. As an example, if we have four cluster mem-

bers, it is possible that two candidates could get two

votes each, leading to a tie. If a candidate does not get a

majority of votes, then it waits for a random time peri-

od, times out and restarts the election. In the example

described in Figure 7, if two candidates get same num-

Page 7 of 13

ber of votes, then each one of them waits for a random

time period and restarts the election. Next, both candi-

dates will most probably wait for different time periods

and one of the candidates will win the election before

the other candidate, thereby causing convergence and

completion of the Leader election process.

3.4.7 Log Replication

A message submitted to the cluster is broadcast to all

members of the cluster so that eventually all members

have the same message or none of them have this mes-

sage. This is the atomic property of the atomic broad-

cast. In order to be able to recover from many failure

scenarios, for example, a member that is offline when

the broadcast happens, or a member that goes offline

after receiving the message, the broadcast is done using

the 2 Phase Commit (2PC) protocol. In the current im-

plementation, each cluster member is the client doing

the broadcast and is aware of the Leader in the cluster.

The Leader receives the message and performs the 2PC

of the message to the cluster members.

Assume that the message that needs to be broadcast-

ed is “aa”, as illustrated in Figure 8. After receiving the

message, the Leader assigns a message id to the mes-

sage (say msgid=1) and sends an AppendEntries (AE)

request with the msgid and the message (=“aa”) to all

the cluster members. This is Phase 1 (P1) of the 2PC

protocol. Each cluster member, including the Leader

itself, receives the msgid (=1) and the message (=“aa”)

and stores it persistently in a log file. The message is

stored in a log file in order to be able to recover from

node crash or reboot. The failures are assumed to be

non-malicious (non-Byzantine); that is, on a crash or

during data transfer the data is not tampered with and

remains unchanged. Two values related to the message

id, curr_msgid and cmted_msgid, are required to com-

plete the 2PC protocol. They are abbreviated as curr_m

and cmted_m respectively in the illustrations. As an

example, when the msgid=1 is in Phase 1, curr_m is

updated from 0 to 1, whereas cmted_m remains 0. As

part of Phase 2, cmted_m is updated to 1 completing the

2PC protocol. Each member records the log message

(=”aa”) and curr_m (=1) persistently and then sends a

positive ACK back to the Leader. This completes Phase

1 of the 2PC protocol, as illustrated in steps T1 to T4 of

Figure 8.

 Note that if majority of the cluster members have

persistently written the log message, the transaction is

considered committed, even though the ACKs have not

been sent by the cluster members. In other words, once

the message is persistently written to a majority of the

cluster servers, if there is a crash of the complete clus-

ter, this message will be recovered and be present in the

cluster. If the majority of the cluster members did not

store the message, then there is no guarantee of the mes-

sage being present in the cluster, and the results may be

indeterminate.

AE-P1

(“aa”)

S1: Leader

term=101

curr_m=0

cmted_m=0

S2: Follower

term=101

curr_m=0

cmted_m=0

S3: Follower

term=101

curr_m=0

cmted_m=0

T1: fab_bcast(“aa”) submitted to S1; S1

sends AppendEntries-Phase1 to members

S1: Leader

term=101

curr_m=1 (aa)

cmted_m=0

S2: Follower

term=101

curr_m=1 (aa)

cmted_m=0

S3: Follower

term=101

curr_m=1 (aa)

cmted_m=0

T3: On majority ACKs, Transaction

considered as committed

“aa”

S1: Leader

term=101

curr_m=1 (aa)

cmted_m=0

S2: Follower

term=101

curr_m=1 (aa)

cmted_m=0

S3: Follower

term=101

curr_m=1 (aa)

cmted_m=0

T2: “aa” persisted to log on each member;

++curr_m; If majority persist “aa”, then

Phase1 logically complete

“aa”

S1: Leader

term=101

curr_m=1 (aa)

cmted_m=1 (aa)

S2: Follower

term=101

curr_m=1 (aa)

cmted_m=0

S3: Follower

term=101

curr_m=1 (aa)

cmted_m=0

T4: Leader updates cmted_m=1; msgid=1

returned to fab_bcast(“aa”)

AE-P1

(“bb”)

S1: Leader

term=101

curr_m=1 (aa)

cmted_m=1 (aa)

S2: Follower

term=101

curr_m=1 (aa)

cmted_m=0

S3: Follower

term=101

curr_m=1 (aa)

cmted_m=0

T5: fab_bcast(“bb”) submitted to S1; S1

sends AppendEntries-Phase1 to members

S1: Leader

term=101

curr_m=2 (bb)

cmted_m=1 (aa)

S2: Follower

term=101

curr_m=2 (bb)

cmted_m=1 (aa)

S3: Follower

term=101

curr_m=2 (bb)

cmted_m=1 (aa)

T7: On majority ACKs, Leader considers

msgid=2 as committed

“bb”

S1: Leader

term=101

curr_m=2 (bb)

cmted_m=1 (aa)

S2: Follower

term=101

curr_m=2 (bb)

cmted_m=1 (aa)

S3: Follower

term=101

curr_m=2 (bb)

cmted_m=1 (aa)

T6: Phase2 of msgid=1 implicitly

complete; “bb” persisted to log; If

majority persist “bb”, Phase1 of msgid=2

logically complete

“bb”

T8: Leader updates cmted_m=2; msgid=2

returned to fab_bcast(“bb”)

S1: Leader

term=101

curr_m=2 (bb)

cmted_m=2 (bb)

S2: Follower

term=101

curr_m=2 (bb)

cmted_m=1 (aa)

S3: Follower

term=101

curr_m=2 (bb)

cmted_m=1 (aa)
Phase2 of m=1 implicit via

Phase1 of m=2

AE-P2

(“bb”)

S1: Leader

term=101

curr_m=2 (bb)

cmted_m=2 (bb)

S2: Follower

term=101

curr_m=2 (bb)

cmted_m=1 (aa)

S3: Follower

term=101

curr_m=2 (bb)

cmted_m=1 (aa)

T9: After timeout, S1 (Leader) sends

AppendEntries-Phase2 to members

S1: Leader

term=101

curr_m=2 (bb)

cmted_m=2 (bb)

S2: Follower

term=101

curr_m=2 (bb)

cmted_m=2 (bb)

T10: Phase2 of msgid=2 complete

S3: Follower

term=101

curr_m=2 (bb)

cmted_m=2 (bb)
Phase2 of m=2 completed

by Leader on timeout

Figure 8: TLI for Log Replication via 2PC

In the 2
nd

 phase of the 2PC protocol, if the Leader

receives a majority of positive ACKs from the cluster

members, it learns that the message was committed

from the ACKs and communicates this information to

all the cluster members as part of the 2
nd

 phase. As an

optimization for performance reasons, this 2
nd

 phase is

not immediately carried out by the Leader. The Leader

Page 8 of 13

waits for a new message to arrive, and if it does, then

receipt of the Phase1 of a subsequent message implicitly

indicates completion of Phase2 for the previous mes-

sage, as illustrated in steps T5 to T8 of Figure 8.

Finally, if a newer message does not arrive, as illus-

trated in time-steps T9 to T10, the Leader times out and

sends an explicit AppendEntries (AE-P2) message for

Phase2 of the 2PC protocol, thereby completing 2PC.

3.4.8 Replay of messages

Consider the scenario illustrated in Figure 9, where a

message is uncommitted since the message from the

Leader reached itself but did not reach the other cluster

members. This means that the message is not present on

a majority of the cluster members. Therefore, curr_m=1

and message “aa” got recorded persistently on the

Leader whereas other cluster members have curr_m=0

and and no message “aa”. Now, if the Leader crashes

and one of the cluster members, S2, becomes the Leader

with term=102. It is not aware of the uncommitted mes-

sage on S1. So when a new message (“bb”) arrives, S2,

being the Leader, assigns msgid=1 to it and does a 2PC

of this message to get it committed. When S1 comes

online, since its “aa” message was uncommitted, it is

overwritten via replay of the messages from the Leader

S2. Thus, it is guaranteed that committed messages are

retained by the cluster, whereas the presence of the un-

committed messages after the cluster recovery is inde-

terminate.

AE-P1

(“aa”)

S1: Leader

term=101

curr_m=0

cmted_m=0

S2: Follower

term=101

curr_m=0

cmted_m=0

S3: Follower

term=101

curr_m=0

cmted_m=0

T1: fab_bcast(“aa”) submitted to S1; Say

AE-P1(“aa”) to S2, S3 lost; but to S1 ok

S1: Leader

term=101

curr_m=1 (aa)

cmted_m=0

S2: Leader

term=102

curr_m=1 (bb)

cmted_m=1(bb)

S3: Follower

term=102

curr_m=1 (bb)

cmted_m=1 (bb)

T3: S2 becomes Leader; fab_bcast(“bb”)

submitted to S2; gets msgid=1 after 2PC

“aa”

S1: Leader

term=101

curr_m=1 (aa)

cmted_m=0

S2: Follower

term=101

curr_m=0

cmted_m=0

S3: Follower

term=101

curr_m=0

cmted_m=0

T2: “aa” and curr_m=1 persisted on S1

only; S1 dies

S1: Follower

term=102

curr_m=1(bb)

cmted_m=1(bb)

S2: Leader

term=102

curr_m=1(bb)

cmted_m=1(bb)

S3: Follower

term=102

curr_m=1(bb)

cmted_m=1(bb)

T4: S1 comes up; S2 does Replay to S1,

overwriting uncommitted “aa” with “bb”

“bb”
Replay

Figure 9: TLI for uncommitted message overwritten

via Replay

When a disconnected member joins the cluster and

the Leader finds that the disconnected member lags in

terms of the messages, the Leader sends the pending

messages to the lagging member. This step is called

replay of the messages from the Leader to the lagging

member. The lagging member cannot participate in the

2PC of new messages unless it is up to speed with the

Leader. This ensures that there are no holes or gaps in

messages on a cluster member. This design choice also

makes it easy to implement dynamic addition or dele-

tion of a cluster member.

3.4.9 Recovery of messages

This section explains a scenario where a message is

present on a majority of cluster members in Phase 1, but

the Leader crashes before 2PC completes. The presence

of the message on the majority of the cluster members

influences the selection of the Leader deterministically.

The Leader performs recovery of this committed mes-

sage so that it is retained and is eventually present on all

the cluster members. As illustrated in Figure 10, mes-

sage “aa” is submitted to Leader S1 who assigns

msgid=1 and sends AppendEntries request to the cluster

members. Assume that the connection between S1 and

S3 breaks, and the AppendEntries message for “aa” is

lost. Next, assume that S1 crashes and S3 becomes a

candidate. Note that S3 is stale, whereas S2 is more

recent with respect to the messages received. When S3

sends a RequestVote message during Leader election to

S2, S2 sends Negative ACK denying its vote, due to

which S3 steps-down from candidate to follower and S2

steps-up from follower to candidate to leader, as illus-

trated in steps T1 to T6 in Figure 10.

If the message is not present on the majority of the

cluster members, then it will get recovered only if one

of the members containing the message participates in

Leader election. However, this cannot be deterministic

since it is possible that these cluster members contain-

ing the message may not participate in determining the

majority for a new leader election, in which case this

message will be lost. In other words, the presence of the

message on the majority of the cluster members influ-

ences the selection of the leader deterministically in a

guaranteed manner, while the presence of the message

on a minority can influence the selection of the leader

only if a cluster member containing the message partic-

ipates in the new leader election, which may or may not

happen.

After becoming the Leader, S2 notices that it has a

message with msgid=1 (“aa”) that it needs to “recover”

and so it initiates 2PC on this message, resending mes-

sages for both Phase1 and Phase2 for this message so

that it completes 2PC on a majority of the cluster nodes.

When S1 comes online later, it gets a copy of the com-

mitted message from the Leader via replay of the pend-

ing messages that were committed while it was offline.

Page 9 of 13

AE-P1

(“aa”)

S1: Leader

term=101

curr_m=0

cmted_m=0

S2: Follower

term=101

curr_m=0

cmted_m=0

S3: Follower

term=101

curr_m=0

cmted_m=0

T1: fab_bcast(“aa”) submitted to S1; Say,

AE-P1(“aa”) to S3 lost; but to S1 & S2 ok

“aa”

S1: Leader

term=101

curr_m=1 (aa)

cmted_m=0

S2: Follower

term=101

curr_m=1(aa)

cmted_m=0

S3: Follower

term=101

curr_m=0

cmted_m=0

T2: “aa” and curr_m=1 persisted on S1

and S2 (Majority); S1 dies

S1: Leader

term=101

curr_m=1 (aa)

cmted_m=0

S2: Follower

term=101

curr_m=1 (aa)

cmted_m=0

S3: Candidate

term=102

curr_m=0

cmted_m=0

T3: If S3 becomes Candidate; sends

RequestVote to all members

S1: Leader

term=101

curr_m=1 (aa)

cmted_m=0

S2: Follower

term=102

curr_m=1 (aa)

cmted_m=0

S3: Candidate

term=102

curr_m=0

cmted_m=0

T4: S2 sends NACK because it has higher

curr_m than S3

S1: Leader

term=101

curr_m=1 (aa)

cmted_m=0
S3: Follower

term=102

curr_m=0

cmted_m=0

T5: On sending NACK, S2 becomes

Candidate; On receiving NACK, S3 steps-

down to Follower
S2: Candidate

term=103

curr_m=1 (aa)

cmted_m=0 S1: Leader

term=101

curr_m=1 (aa)

cmted_m=0
S3: Follower

term=103

curr_m=0

cmted_m=0

T6: S2 becomes Leader via Election

S2: Leader

term=103

curr_m=1 (aa)

cmted_m=0

S1: Leader

term=101

curr_m=1 (aa)

cmted_m=0
S3: Follower

term=103

curr_m=0

cmted_m=0

T7: S2 does Recovery of open tx

curr_m=1(aa) via AE-P1

S2: Leader

term=103

curr_m=1 (aa)

cmted_m=0

AE-P1

(“aa”)

S1: Leader

term=101

curr_m=1 (aa)

cmted_m=0
S3: Follower

term=103

curr_m=1(aa)

cmted_m=0

T8: curr_m=1(aa) is recovered and

committed on S2. Since AE-P2 deferred,

S3 has cmted_m=0
S2: Leader

term=103

curr_m=1 (aa)

cmted_m=1 (aa)

S1: Follower

term=101

curr_m=1 (aa)

cmted_m=0
S3: Follower

term=103

curr_m=1 (aa)

cmted_m=0

T9: S1 comes up; committed msg

curr_m=1 (aa) is replayed from S2 to S1

S2: Leader

term=103

curr_m=1 (aa)

cmted_m=1 (aa)

Replay

S1: Follower

term=103

curr_m=1 (aa)

cmted_m=1(aa)
S3: Follower

term=103

curr_m=1 (aa)

cmted_m=0

T10: term updated on S1 on receiving the

Replay message curr_m=1 (aa)

S2: Leader

term=103

curr_m=1 (aa)

cmted_m=1 (aa)

Recovery

Figure 10: TLI for recovery of a committed message

Note the difference between the terms “replay” and

“recovery.” Replay of messages means synchronizing

ready committed messages from the Leader to a lagging

Follower, whereas recovery of a message completes the

2
nd

 Phase of a committed message from the Leader to a

majority of the cluster members. Replay happens for

one or more messages that have completed 2PC, where-

as recovery happens only for a single uncommitted mes-

sage for which the 2PC is not yet complete. The replay

happens to a single lagging cluster member at a time,

though many independent, simultaneous replays are

possible. In contrast, the recovery of a message happens

to a majority of the cluster members, and there can only

be one instance of recovery of a message happening at

any point of time. Thus, an uncommitted message influ-

ences a Leader election so that the Leader can recover

the message to complete the 2PC for the message and

retain it in the cluster.

3.4.10 Garbage Collection

The scenario illustrated in Figure 11 is sufficient to

understand the garbage collection design. Consider the

scenario where cluster members S1 and S2 have seven

messages committed so that their curr_m=7 and

cmted_m=7, whereas cluster member S3 has been off-

line during the 2PC of these 7 messages, due to which

S3 has curr_m=0 and cmted_m=0. This is time-step T1

in Figure 11.

Now, if S3 comes online and the Leader S1 does a

replay of messages to the lagging S3, as in time-step T2.

However, if S3 crashes after getting msgid=5 from the

Leader S1. In this state, msgid=5 is committed on all

the three members of the cluster and hence cmte-

dall_m=5 on all the cluster members. The cmtedall_m

field indicates the msgid that has been committed on all

the members of the cluster. The Leader determines the

cmtedall_m value based on the cmted_m value in the

response messages (both Request Vote and AppendEn-

tries) from the cluster members. The Leader piggybacks

the cmtedall_m value in the periodic RequestVote mes-

sage (or AppendEntries message) to all the cluster

members, making all the cluster members aware of this

global state. The cmtedall_m field allows each member

to know that messages earlier than this cmtedall_m

msgid can be safely deleted since they are present on all

the cluster members. However, a message on a cluster

member cannot be deleted if it has not been read by the

cluster member, and hence the racked_m field is used in

conjunction with cmted_m field for garbage collection.

In time-step T4 of Figure 11, S1 has read all the sev-

en committed messages due to which racked_m=7.

However, it cannot delete all the seven committed mes-

sages because another cluster member (S3 in this exam-

ple) will need to get messages from S1, if S1 is the

Leader when S3 comes online. Hence S1 can delete

messages only up to 5. In other words, messages can be

deleted or garbage collected up to the minimum value

of cmted_m and racked_m. So for S1, messages can be

deleted up to:

MIN(cmtedall_m=5, racked_m=7) = 5,

which is indicated by deleted_m after the completion of

the deletion. Similarly, for cluster member S2,

deleted_m = MIN(cmtedall_m=5, racked_m=3) = 3.

Page 10 of 13

S1: Leader

curr_m=7

cmted_m=7

cmtedall_m=0

racked_m=7

deleted_m=0

S2: Follower

curr_m=7

cmted_m=7

cmtedall_m=0

racked_m=3

deleted_m=0

S3: Follower

curr_m=0

cmted_m=0

cmtedall_m=0

racked_m=0

deleted_m=0

T1: S1 and S2 have 7

msgs committed;

S3 down with no msgs;

S1 racked up to m=7;

S2 racked up to m=3 Replay

S1: Leader

curr_m=7

cmted_m=7

cmtedall_m=0

racked_m=7

deleted_m=0

S2: Follower

curr_m=7

cmted_m=7

cmtedall_m=0

racked_m=3

deleted_m=0

S3: Follower

curr_m=0

cmted_m=0

cmtedall_m=0

racked_m=0

deleted_m=0

T2: S3 comes up;

S1 does Replay to S3

S1: Leader

curr_m=7

cmted_m=7

cmtedall_m=5

racked_m=7

deleted_m=0

S2: Follower

curr_m=7

cmted_m=7

cmtedall_m=5

racked_m=3

deleted_m=0

S3: Follower

curr_m=5

cmted_m=5

cmtedall_m=5

racked_m=0

deleted_m=0

T3: S3 crashes after

Replay completed for

m=5; Since all members

have m=5 committed,

cmted_all_m=5

S1: Leader

curr_m=7

cmted_m=7

cmtedall_m=5

racked_m=7

deleted_m=5

S2: Follower

curr_m=7

cmted_m=7

cmtedall_m=5

racked_m=3

deleted_m=3

S3: Follower

curr_m=5

cmted_m=5

cmtedall_m=5

racked_m=0

deleted_m=0

T4: Periodic garbage

collection deletes up to

deleted_m=min(cmtedall_m,

racked_m)

Figure 11: TLI for Garbage Collection

3.4.11 Dynamic addition and deletion of a member

FAB can dynamically add or delete a member in the

cluster configuration without requiring the cluster to be

brought offline. The dynamic addition or deletion of a

cluster member can happen while the messages are be-

ing broadcast. This is possible because the dynamic

addition or deletion itself is a special message that is

broadcast similar to other messages. It is a special mes-

sage because instead of the client message, the message

content is the new configuration that the Leader gener-

ates and broadcasts to all the cluster members atomical-

ly.

Consider the scenario illustrated in Figure 12 where

we have a cluster containing two members, S1 and S2,

with a new cluster member S3 that needs to dynamically

join the cluster. S3 configures its myid=0 in the

fab/conf/myid file and its own configuration (that is, IP

address, ports, etc.) plus the Leader configuration in the

fab/conf/fab.conf file as mentioned below:

server.0=10.182.198.23:12341:22221:4

server.1=10.182.198.21:12341:22221:2

The line containing server.0 has the configuration for

S3, which wants to be dynamically added to the cluster,

and the line containing server.1 has the configuration

for Leader S1. The information about the Leader is

known to the administrator and is required to be set

manually. This could be dynamically determined in a

future implementation.

On startup, S3 sends an AddMember message to the

Leader S1 with the configuration details of itself. The

Leader S1 assigns a new member id (=3) to S3 and gen-

erates a new configuration file that also contains S3.

The Leader S1 then atomically broadcasts this new con-

figuration file as an AppendEntries message flagged as

a configuration update. This special flag is used by the

receivers of the message to apply the message inline

after the message is determined to be committed, that is,

after receiving majority ACKs on the Leader and after

receiving Phase2 AppendEntries on the Followers. Ap-

plying the message means updating the configuration of

the cluster member and recognizing the new server S3

to be part of the cluster. In other words, after the new

configuration is applied, the Leader S1 replays of any

pending messages to S3, if necessary. After the new

cluster member S3 is synchronized with the Leader S1,

S1 includes S3 in the broadcast of the 2PC of all the

messages.

S1: Leader

myid=1

term=101

curr_m=4

cmted_m=4

S2: Follower

myid=2

term=101

curr_m=4

cmted_m=4

S3: Follower

myid=0

T1: Startup of S3 sends AddMember request

to Leader S1; Cluster Config={S1,S2}

AddMember

S1: Leader

myid=1

term=101

curr_m=4

cmted_m=4

S2: Follower

myid=2

term=101

curr_m=4

cmted_m=4

S3: Follower

myid=0

T2: S1 assigns new id=3 to S3, prepares new

config with S3, and sends it as AE for 2PC

AE-P1 (new config)

S1: Leader

myid=1

term=101

curr_m=5

cmted_m=4

S2: Follower

myid=2

term=101

curr_m=5

cmted_m=4

S3: Follower

myid=0

T3: On Majority ACKs, m=5 committed

S1: Leader

myid=1

term=101

curr_m=5

cmted_m=5

S2: Follower

myid=2

term=101

curr_m=5

cmted_m=4

S3: Follower

myid=3

T4: S1 updates config={S1, S2, S3}; S1 replies

to S3 with id=3; S3 updates myid=3

S1: Leader

term=101

curr_m=5

cmted_m=5

S2: Follower

term=101

curr_m=5

cmted_m=5

S3: Follower

curr_m=0

cmted_m=0

T5: S1 sends AE-P2 for m=5 to S1, S2; S2

commits m=5 and updates config={S1,S2,S3}

AE-P2 (new config)

S1: Leader

term=101

curr_m=5

cmted_m=5

S2: Follower

term=101

curr_m=5

cmted_m=5

S3: Follower

term=101

curr_m=5

cmted_m=5

T6: Leader S1 does Replay of committed

messages to lagging S3 via Replay

Replay

id=3

Figure 12: TLI for dynamic addition of a member

Dynamically deleting a cluster member uses the same

procedure as dynamically adding a cluster member. The

server id that needs to be dynamically deleted is written

to the file fab/conf/deleteid on the Leader. The Leader

periodically checks for the presence of this file and if

present, the file is read, deleted, and then acted upon by

the Leader; that is, the id of the cluster member men-

tioned in the file is deleted from the cluster. If the id is

the same as the Leader, then the Leader steps-down and

another cluster member goes through Leader election. A

server that is deleted from the cluster brings itself down

after it knows that it is no longer part of the cluster.

Page 11 of 13

Note that the Leader always ensures that it is one of the

members in the majority requirement for the configura-

tion update to be considered committed so that the de-

leted server is not present in subsequent broadcasts.

This design choice avoids the need for complexity of

supporting multiple configurations as is the case in Raft.

3.4.12 Weighted Leader Election

RequestVote

S1: Candidate

weight=2

term=101

voted_for=0

S2: Follower

weight=3

term=100

voted_for=0

S3: Follower

weight=2

term=100

voted_for=0

T1: Candidate sends RequestVote to all

members; Weights ignored

S1: Leader

weight=2

term=101

voted_for=1

S2: Follower

weight=3

term=101

voted_for=1

S3: Follower

weight=2

term=101

voted_for=1

T2: S1 becomes Leader; Weights ignored

for Leader Election but exchanged in

messages

RequestVote:

GrantLeadership

S1: Leader

weight=2

term=101

voted_for=1

S2: Follower

weight=3

term=101

voted_for=1

S3: Follower

weight=2

term=101

voted_for=1

T3: S1 knows S2 has highest Weight; S1

sends RequestVote to S2 (you become Leader)

S1: Leader

weight=2

term=101

voted_for=1

S2: Follower

weight=3

term=101

voted_for=1

S3: Follower

weight=2

term=101

voted_for=1

T4: On Grant Leadership to S2, S2 sends

NACK for RequestVote, becomes Candidate

next

S1: Follower

weight=2

term=101

voted_for=1

S2: Candidate

weight=3

term=102

voted_for=0

S3: Follower

weight=2

term=101

voted_for=1

T5: Candidate S2 increments Term; sends

RequestVote to all members

S1: Follower

weight=2

term=102

voted_for=2

S2: Leader

weight=3

term=102

voted_for=2

S3: Follower

weight=2

term=102

voted_for=2

T6: On Majority ACKs, S2 becomes Leader

RequestVote

RequestVote

RequestVote

Figure 13: TLI for Weighted Leader Election

As illustrated in Figure 13, the Leader selection based

on weight happens only after the Leader election based

on consistency requirements (message recovery) is

complete. This ensures that consistency is not compro-

mised and a higher-weighted server does not win the

election when another lower weighted server with a

higher message number (higher curr_m or cmted_m)

should win the election and become the Leader. Once

the Leader election based on consistency requirements

is complete, if the Leader is not the highest-weighted

member of the cluster, then the Leader grants leadership

to this highest-weighted server via a GrantLeadership

flag in the RequestVote message to that server. When

the highest-weighted server gets a RequestVote message

with the GrantLeadership flag, it replies negative ACK

to the RequestVote message so that the current Leader

steps-down from its Leadership and transitions to Can-

didate state, thereby triggering Leader Election and

becoming the Leader.

4. Implementation

FAB has an intuitive, efficient and maintainable im-

plementation. FAB borrows data structures and proto-

col from Raft [16], uses the 2PC optimization from

Paxos [10, 11, 12] and simplifies the overall design and

implementation. Refer to the Raft data structures and

protocol for help in understanding the FAB design and

implementation.

As shown in Figure 14, FAB maintains a control

block at each server to record its current volatile and

persistent state. The persistent state is stored in the

…/fab/state directory.

Similar to Raft, FAB has two message types for

FAB-to-FAB communication on the internal port:

 RequestVote message:

a. Used by a Candidate to request votes

from members during Leader election.

b. Used by the Leader to send heartbeat

and assert Leadership.

 AppendEntries message:

a. Used by the Leader to atomically repli-

cate or broadcast messages to cluster

members.

b. Used by the Leader to atomically per-

form dynamic addition or deletion of a

cluster member.

c. Used by the Leader to replay messages

to a lagging Follower.

d. Used by the Leader to recover a mes-

sage that is on a majority of the cluster

members.

Each member is aware of the committed msgid state

of the online members of the cluster since this infor-

mation is exchanged during the RequestVote and Ap-

pendEntries messages. A timer thread runs periodically

in each member to perform many housekeeping tasks.

For example, if the member is the Leader, the timer

thread sends heartbeat RequestVote messages to ensure

that a message is not stuck for a long time in a particular

phase of 2PC (after which the Leader steps-down to

Follower). Additionally, the timer thread ensures that

the AppendEntries message for the 2
nd

 Phase of the 2PC

is sent after a timeout. FAB uses negative ACKs judi-

ciously to transfer critical information to cluster mem-

bers and simplify the protocol and its implementation.

FAB has extensive tracing capabilities with detailed

diagnostic messages that helps to see the protocol in

action. The fab_state.sh utility displays the FAB state

interactively so as to debug and view the FAB protocol

behavior while it is running. The tables in Figure 14

show the main FAB data structures.

Page 12 of 13

FAB Persistent State

type Follower or Candidate or Leader

term Current term

cmted_term Last committed term in log

curr_msgid Current message id in log

cmted_msgid Committed message id in log

racked_msgid Receipt-ACKed msgid in log

deleted_msgid Highest deleted msgid in log

cmtedall_msgid Msgid committed on all members

voted_for I have voted for this member

RequestVote: Send Message

leader_id Sender’s current Leader id

id Sender’s id

term Sender’s current term

flags Flags to denote Grant Leadership

curr_msgid Sender’s current msgid

cmted_msgid Sender’s last committed msgid

cmted_term Sender’s term for cmted_msgid

cmtedall_msgid Committed msgid at all members

RequestVote: Response Message

leader_id Responder’s current Leader id

id Responder’s id

term Responder’s term

vote_granted ACK/NACK/0

curr_msgid Responder’s current msgid

cmted_msgid Responder’s committed msgid

cmted_term Responder’s term for cmted_msgid

AppendEntries: Send Message

id Sender’s id

msgtype Msg Type: Data/Config Update

logtype Log Type: Phase1/Phase2/Reply

leader_term Sender’s (Leader’s) current term

cmted_msgid Sender’s last committed msgid

cmted_term Sender’s last committed term

cmtedall_msgid Last cmted msgid at all members

msgid Log entry index

term Log entry term

msg[] Log entry message

msglen Log entry message length

AppendEntries: Response Message

leader_id Responder’s Leader id

id Responder’s id

ack ACK/NACK

curr_msgid Responder’s current msgid

term Responder’s term

cmted_msgid Responder’s last committed msgid

cmted_term Responder’s last committed term

Bcast: Send Message

id Sender’s id

msgtype Msg Type: Data/Config Update

prev_msgid Client’s cmted_msgid so far

msg[] Log entry message

msglen Log entry message length

cfg_ipaddr Member add/del: IP address

cfg_eport Member add/del: External Port no.

cfg_iport Member add/del: Internal Port no.

Bcast: Response Message

Id Responder’s id

msgtype Msg Type: Data/Config Update

ack ACK/NACK

cmted_msgid Committed msgid

leader_id If non-0, redirect to new leader

leader_ipaddr Leader’s IP address

leader_iport Leader’s Internal Port no.

leader_eport Leader’s External Port no.

cfg_myid New id set by Leader to receiver

Figure 14: FAB Data structures

5. Summary

FAB combines essential ideas from Paxos and Raft

protocols to provide an intuitive distributed consensus

algorithm. FAB also simplifies design choices like wait-

ing for a message to complete its Phase1 before acting

on the subsequent message. The tradeoff is that the se-

quenced messages are not sent in parallel. This tradeoff

is insignificant because the sequenced messages are

interdependent. Better network latency has also helped

in making such design choices for FAB as compared to

the distributed systems that were built about a decade

ago. The hope for a simpler system is that it is intuitive

and easier to understand and therefore more reliable

due to a rock-solid implementation that can be tested

well. FABulous, isn’t it?

Acknowledgments

I would like to thank Sharad Srivastava and Partha

Seetala for the opportunity to work on the distributed

consensus problem. I would also like to thank my team

members who reviewed this design paper and the FAB

protocol. Finally, this work would not have been possi-

ble without the fabulous work done by the authors of

Paxos and Raft, which formed the foundation for FAB.

References

[1] BURROWS, M. The Chubby lock service for

loosely coupled distributed systems. In Proc.

OSDI’06, Symposium on Operating Systems De-

Page 13 of 13

sign and Implementation (2006), USENIX, pp.

335–350.

[2] CHANDRA, T. D., GRIESEMER, R., AND RED-

STONE, J. Paxos made live: an engineering per-

spective. In Proc. PODC’07, ACM Symposium on

Principles of Distributed Computing (2007), ACM,

pp. 398–407.

[3] ECKEL, B., MARSH, D., Atomic Scala,

http://www.atomicscala.com

[4] HUNT, P., KONAR, M., JUNQUEIRA, F. P.,

AND REED, B. ZooKeeper: Wait-free coordina-

tion for Internet-scale systems. In Proc ATC’10,

USENIX Annual Technical Conference (2010),

USENIX, pp. 145–158.

[5] JOHNSON, B. Raft: The Understandable Distribut-

ed Consensus Protocol

http://www.infoq.com/presentations/raft

[6] JUNQUEIRA, F. P., REED, B. C., AND SERAF-

INI, M., Zab: High-performance broadcast for pri-

mary-backup systems. In Proc. DSN’11, IEEE/IFIP

Int’l Conf. on Dependable Systems & Networks

(2011), IEEE Computer Society, pp. 245–256.

[7] KASHEFF, Z. WALSH. L., Ark: A Real-World

Consensus Implementation,

http://arxiv.org/abs/1407.4765

[8] KIRSCH, J., AMIR, Y. Paxos for system builders.

Tech. Rep. CNDS-2008-2, Johns Hopkins Univer-

sity, 2008.

[9] LAMPORT, L. Time, clocks, and the ordering of

events in a distributed system. Commununications

of the ACM 21, 7 (July 1978), 558–565.

[10] LAMPORT, L. The part-time parliament. ACM

Transactions on Computer Systems 16, 2 (May

1998), 133–169.

[11] LAMPORT, L. Paxos made simple. ACM SIGACT

News 32, 4 (Dec. 2001), 18–25

[12] LAMPORT, L. Fast Paxos. Distributed Compu-

ting 19, 2 (2006), 79–103

[13] LogCabin source code.

http://github.com/logcabin/logcabin

[14] MAZI `ERES, D. Paxos made practical, Jan. 2007

http://www.scs.stanford.edu/˜dm/home/papers/pax

os.pdf

[15] ONGARO, D. Consensus: Bridging Theory and

 Practice. PhD thesis, Stanford University, 2014

 http://ramcloud.stanford.edu/˜ongaro/thesis.pdf.

[16] ONGARO, D., AND OUSTERHOUT, J. In

search of an understandable consensus algorithm

http://ramcloud.stanford.edu/raft.pdf.

[17] Latest version of this paper (Symantec -internal):

 http://socialtext.ges.symantec.com/samg/fab

http://www.atomicscala.com/
http://www.infoq.com/presentations/raft
http://arxiv.org/abs/1407.4765
http://github.com/logcabin/logcabin
http://ramcloud.stanford.edu/˜ongaro/thesis.pdf.
http://ramcloud.stanford.edu/˜ongaro/thesis.pdf.
http://ramcloud.stanford.edu/˜ongaro/thesis.pdf.
http://ramcloud.stanford.edu/raft.pdf
http://socialtext.ges.symantec.com/samg/fab

