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Abstract

The aim of this tutorial is to show how to perform Bayesian analysis in the case of multinomial data. Every
time we have to model a situation with mutually exclusive alternatives then a multinomial likelihood arises.
Think of a customer that have to choose among different brands for the same product or to the result of a
football match (win, draw, loss) or to count data with a fixed sum. All these situations may be modeled
with a multinomial model. The multinomial probabilities are a ratio of a function of parameters to a sum of
those functions. From the complex functional form of this likelihood derives the difficulties on maximizing it.
These difficulties become bigger if we introduce random effects in the model.

In this tutorial, we will use the Multinomial-Poisson transform (Baker (1994)) to transform the multinomial
likelihood into a Poisson likelihood with additional parameters. The use of this transformation ensures us
the same estimates and asymptotic variances. This technique is also called the Poisson Trick. Given that
we can use the INLA (Håvard Rue, Martino, and Chopin (2009)) package to deal with Poisson variables.
The key advantage of using INLA is that we can introduce complex random effects in the model paying a
“discounted price” for them. Chen and Kuo (2001) and Lee, Green, and Ryan (2017) applied the Poisson
Trick to Multinomial data studying the Yogurt Data (first introduced by Janin, Vilcassim, and Chintagunta
(1994)) but both of them use SAS and no random effects are included in the models. There exist packages to
work directly with multinomial data, like mlogit (Croissant (2013)) and nnet (Venables and Ripley (2013))
but even in this case is difficult to introduce a random effect in the model.

The tutorial is organized in two main part: the first one is theoretical and talks about the multinomial logit
model and the Poisson trick. The second part is more practical and talks about the parameters specification
and the different models that we can implement in INLA. This part has the purpose of laying the foundations
of a long-lasting friendship between the reader and INLA. All the steps needed to be friends are retraced:
from the first sight (simplest model) to help each other in struggling situations (continuous space models,
here INLA really helps us). The section on multinomial logit model and the multinomial data is taken by
(Croissant and others (2012)) given the clarity and elegance of his illustration. To make the explanation as
clear as possible and to convince the reader of the effectiveness of this approach we will use simulated data.
In this way, the true value of the parameters is known and we can check how well we are able to retrieve it.
The code is provided and explained as well. In the end, we will report the results of our technique on the
famous Yogurt Data.

Theoretical part

On the Multinomial logit model

The multinomial logit model arises naturally when we have to model discrete choices. The sample unit has to
make a choice between mutually exclusive alternatives. Let see how to build this kind of models. Suppose a
customer has to choose between three brands of a certain good. We can define an index of satisfaction Vij for
customer i with respect to brand j. Assume that Vij is a linear function of some covariates. The situation for
i-th customer is:
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Vi1 = β0 + β1xi1 + β2zi1

Vi2 = β0 + β1xi2 + β2zi2

Vi3 = β0 + β1xi3 + β2zi3

Now we have to transform these satisfaction indexes into probabilities. Considering that the probability of
choosing alternative j should increase with Vij then the multinomial logit model is obtained by considering

Pij = gij(β)
Gi(β)

Where β = {β0, β1, β2} and

gij(β) = expVij Gi(β) =
3∑

j=1
gij(β)

This specification of Pij ensures that the obtained probabilities are proper. Once fitted, this model can be
seen at two levels: individual and aggregate. On the individual level we can study how the covariates influence
the choice of the specific customer and given new data make prediction relative to the single unit.
On the other hand, at the aggregate level, the estimated probabilities can be seen as market shares and study
how these shares change varying the covariates could be a useful tool for brand market policies.

On the Poisson Trick

For the sake of coherence, we adopt the same notation used in the original paper on the Multinomial-Poisson
transformation (Baker (1994)). Let Yi = {Yi1, ..., Yij , ...}, for i = 1, ..., I and j ∈ Ji, be a vector of random
variables with realization yi = {yi1, ..., yij , ...}. The subscript i represents the sample unit and j represents
the alternatives. We assume that Yi follows a multinomial distribution with parameters proportional to
{gij(β), j ∈ Ji}. Where gij(β) is a regression function like the one seen in the previous section. To lighten
the notation we omit the dependence from the covariates. The goal is to estimate the regression parameter β.
The kernel of the likelihood is:

LM (β) =
I∏

i=1

∏
j∈Ji

{
gij(β)
Gi(β)

}yij

(1)

Where

Gi(β) =
Ji∑

j=1
gij(β)

The problems in dealing with this likelihood come from the presence of Gi(β) which makes the use of
logarithm pointless. The idea behind the Multinomial-Poisson (MP) transformation is to treat this set of
functions as additional parameters to be estimated. The MP transformation of equation (1) is:

LP (β, φ) =
I∏

i=1

∏
j∈Ji

{gij(β) expφi}yij exp{−gij(β) expφi} (2)

Where φ = {φ1, ..., φI} is the vector of additional parameters to make the transformation work. In fact,
considering the logarithm of equation (2), taking the derivative with respect to φi and setting it to zero we
obtain the following result:
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exp(φi) ∝
1

Gi(β)

this ensures that LP (φ(β),β) ∝ LM (β). On the basis of results in Richards (1961) it follows that the
maximum likelihood estimates of β and their asymptotic variances are identical for LP (φ, β) and LM (β).
The name of the transformation derives from the fact that LP (φ, β) is the likelihood kernel of a vector of
Poisson variables

Yij ∼ Poisson{gij(β) expφi}, j ∈ Ji

Notice that this notation is improper because in this case the Yij are finite and bounded by the size of the
multinomial. In a true Poisson model, the sample space is infinite. However, this expression is very useful to
memorize the transformation and gives us the idea of what is going on.

Practical Part

Before going through this tutorial be sure to have the following packages installed

library(INLA)
library(deldir)
library(sp)
library(rgeos)
library(mvtnorm)
library(gridExtra)
library(mlogit)

On the Multinomial Data and Model Parameters

In this section, we illustrate the shape that our data has to have in order to work with INLA properly. This
shape is different from the ones used in the literature, therefore, we strongly recommend the reader to read
this part carefully. The two dataset shapes known in literature are the wide format and the long format.
More detail on Croissant and others (2012). We will use a mix of these two, the shape of a variable depends
on its nature. The types of variable that we could encounter will be listed and explained in a minute. Before
of that we want to be sure that the structure of the data is clear.

As we said before the Multinomial model explains choice situations; in these situations there is an individual
which choose between mutually exclusive alternatives. This structure is reflected in the data that is
characterized by three indexes:

• the alternative
• the choice situation
• the individual

The last one is relevant only if we have repeated observation for the same unit. We will not study this kind
of situations in the tutorial. So we have two indexes to take into account, one for the alternative and one for
the choice situation.
While working with Multinomial logit models, there exist three kinds of variables:

• alternative specific variables xij with a generic coefficient β. These kind of variables are relative to
the alternative and could change for each choice situation. The coefficient is generic: it is not supposed
to depend on the alternative. Think to a transport mode situation; spending one euro in car or train is
the same, then, we can consider the price as an alternative specific variable with a generic coefficient
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• alternative specific variables wij with an alternative specific coefficient δj . The difference between
this category and the previous lies in the coefficient. For these variables, the coefficient depends on the
alternative. Continue with the transport mode example; one hour more of travel time has a different
impact if spent in a car or in a train. Then, it is reasonable to consider the travel time as alternative
specific with an alternative specific coefficient

• individual specific variables zi with an alternative specific coefficient γj . These variables are
relative only to the individual and they have the same value for all the alternatives. The coefficient has
to be alternative specific for reason that will see soon. Finishing with the transport mode example we
can think of the income of the individual; this variable is clearly related only to the individual.

In the example that we will use from now on there are all these kind of variables. The model that we are
considering is the following:

Vij = βxij + δjwij + γjzi

The model may have an intercept, we choose to omit it just to lighten the formulas. Notice that to model
the choice of one alternative over the others we will look only on the differences between satisfaction values.
Satisfaction is ordinal. Moreover, given the construction of the multinomial logit model, differences in
satisfaction stand for ratio on probabilities. Let us write down these differences:

Vij − Vik = β(xij − xik) + (δjwij − δkwik) + zi(γj − γk)

Focusing on zi: if the γ is not alternative specific the contribution of this covariate would disappear in the
differentiation. Furthermore, only difference γ’s may be identified. We will back to this point later.

Data structure

Now we are ready to start with our example. We will work with a multinomial model with three alternatives:
A, B, and C. The covariates are also three; one per category. We consider a small data set of 500 data points.
The size of the multinomial will be variable and we will study the effect of this parameter on the posterior
estimates. Declare the parameters and the covariates:

beta = -0.3
deltas = c(1, 4, 3)
gammas = c(0.3, 0.2, 0.4)
param = c(beta, deltas, gammas)
n = 500

set.seed(123)
# alternative specific with generic coefficient beta
X.A = rnorm(n, mean = 30, sd = 2.5)
X.B = rnorm(n, mean = 35, sd = 3.5)
X.C = rnorm(n, mean = 40, sd = 1)

# alternative specific with alternative specific coefficient delta
W.A = abs(rnorm(n, mean = 1))
W.B = abs(rnorm(n, mean = 1))
W.C = abs(rnorm(n, mean = 1))

# individual specific with alternative specific coefficient gamma
Z = rnorm(n, 20, 3)
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As first example we don’t consider any random effect. We write a function of the size N of the multinomial
to generate the sample.

Multinom.sample = function(N){
Y = matrix(NA, ncol = 3, nrow = n)
for(i in 1:n){

V.A = beta*X.A[i] + deltas[1]*W.A[i] + gammas[1]*Z[i]
V.B = beta*X.B[i] + deltas[2]*W.B[i] + gammas[2]*Z[i]
V.C = beta*X.C[i] + deltas[3]*W.C[i] + gammas[3]*Z[i]

probs = c(V.A, V.B, V.C)
probs = exp(probs)/sum(exp(probs))
samp = rmultinom(1, N, prob = probs)

Y[i,] = as.vector(samp)
}
colnames(Y ) = c("Y.A", "Y.B", "Y.C")
return(Y)

}

Take a look of what it produces.

head(Multinom.sample(1), 5)

## Y.A Y.B Y.C
## [1,] 0 0 1
## [2,] 0 1 0
## [3,] 0 0 1
## [4,] 0 1 0
## [5,] 0 0 1
head(Multinom.sample(100), 5)

## Y.A Y.B Y.C
## [1,] 53 13 34
## [2,] 8 17 75
## [3,] 39 7 54
## [4,] 3 96 1
## [5,] 0 1 99

Once we have data we have to build the data set to give to INLA. The dataset will have n ∗ 3 rows,
one for each choice alternative in each choice situation. Now we have to add the covariates and this
is the tricky part. The structure of each covariate depends on its type, fortunately, there are only
three types and two of them have the same structure. For an alternative specific variable with a
generic coefficient and for an individual specific variable we just use the long format. For alternative
specific, each row contain just the value of the variable referred to the corresponding alternative; for
the individual specific the value is repeated along the alternatives. For an alternative specific with
an alternative coefficient, we need three columns, one for each alternative (like the wide format) and
n ∗ 3 rows (like the long format). This is the mixed structure. Each column will have the value of the
covariate for the corresponding alternative and zeros for the others. The complicated part is done but
the data construction is not finished yet. We need two more columns. An index column representing
the choice situation, this column will be our additional parameter φ. The last column is another index
column representing the choice alternatives. We hope the code will clarify what it is hazy to the reader.
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The following function takes as input a data frame in wide format and transforms it into the desired structure.

Y = Multinom.sample(1)
df = data.frame(cbind(Y, X.A, X.B, X.C, W.A, W.B, W.C, Z))

Data.structure = function(df){
Data = matrix(NA, ncol = 8, nrow = n*3)
for(i in 1:n){

# simulated variable
Data[((i-1)*3+1):(i*3), 1] = c(df$Y.A[i], df$Y.B[i], df$Y.C[i])
# alternative specific with generic coeff
Data[((i-1)*3+1):(i*3), 2] = c(df$X.A[i], df$X.B[i], df$X.C[i])
# alternative specific with alternative coeff
Data[((i-1)*3+1):(i*3), 3:5] = diag(c(df$W.A[i], df$W.B[i], df$W.C[i]))
# individual specific with alternative coeff
Data[((i-1)*3+1):(i*3), 6] = rep(df$Z[i],3)
# choice situation index
Data[((i-1)*3+1):(i*3), 7] = rep(i,3)
# choice alternative index
Data[((i-1)*3+1):(i*3), 8] = c(1, 2, 3)

}
Data = data.frame(Data)
names(Data) = c('Y', "X","W.A","W.B","W.C","Z",'phi','alt.idx')
return(Data)

}

round(head(Data.structure(df)),3)

## Y X W.A W.B W.C Z phi alt.idx
## 1 1 28.599 0.179 0.000 0.000 19.549 1 1
## 2 0 32.893 0.000 0.488 0.000 19.549 1 2
## 3 0 39.004 0.000 0.000 0.321 19.549 1 3
## 4 0 29.425 0.693 0.000 0.000 19.017 2 1
## 5 0 31.522 0.000 1.237 0.000 19.017 2 2
## 6 1 38.960 0.000 0.000 1.574 19.017 2 3

A Simple Model

Once we have the data, we can fit our first model, without random effect and intercept. First of all, we
need to build a formula representing our model. We remember to the reader that the model at hand is the
following:

Yij ∼ Poisson(λij)

Where

log(λij) = φi + βxij + δijwij + γjzi

The corresponding formula is:
formula = Y ~ -1 + X + W.A + W.B + W.C +

f(phi, initial = -10, fixed = T) +
f(alt.idx, Z, fixed = T, constr = T)
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Let us explain it. The −1, in the beginning, means that we are not considering an intercept. Again, the way
in which a variable is declared depends on his type. For the alternative specific variable, we just declare them
as they are, without any particular adjustments. The choice situation index variable is declared as a random
effect to speed up the code. The individual specific variable is also defined as a random effect. In this way,
we can add to the model a sum up to zero constraint on the γ’s imposing constr = T.
As we said before we may identify only the differences between γ’s, that gives rise to a system of two equation
(one for each difference) in three unknowns. In order to have a unique solution, we need to consider an
additional constraint. The only thing missing is to fit the model, if not specified INLA considers a diffuse
prior for the parameters. We consider N = 1

Data = Data.structure(df)
model = inla(formula, data = Data, family = 'Poisson')

Take a look of what we get

result = rbind(model$summary.fixed[1:5], model$summary.random$alt.idx[2:6])
result = cbind(result, true = param)
row.names(result) = c("beta","delta.A","delta.B","delta.C","gamma.A","gamma.B","gamma.C" )
round(result,3)

## mean sd 0.025quant 0.5quant 0.975quant true
## beta -0.320 0.039 -0.400 -0.319 -0.245 -0.3
## delta.A 0.795 0.162 0.482 0.794 1.118 1.0
## delta.B 4.366 0.393 3.632 4.353 5.177 4.0
## delta.C 2.985 0.252 2.511 2.978 3.500 3.0
## gamma.A 0.010 0.013 -0.015 0.010 0.035 0.3
## gamma.B -0.124 0.017 -0.160 -0.124 -0.092 0.2
## gamma.C 0.115 0.015 0.086 0.115 0.146 0.4

As we can see the estimates for the β and δ’s are fine. Instead, the estimates for γ’s are pretty bad. But, let
us look at the difference between them

diff.result =
cbind("0.025quant"= diff(model$summary.random$alt.idx$`0.025quant`),

"0.5quant" = diff(model$summary.random$alt.idx$`0.5quant`),
"0.975quant" = diff(model$summary.random$alt.idx$`0.975quant`),
"true" = diff(gammas))

row.names(diff.result) = c("gamma.B - gamma.A", "gamma.C - gamma.B")
round(diff.result,3)

## 0.025quant 0.5quant 0.975quant true
## gamma.B - gamma.A -0.145 -0.134 -0.127 -0.1
## gamma.C - gamma.B 0.247 0.239 0.237 0.2

As we said before even if we are not able to estimates the true value of the γ parameters we can retrieve their
differences.

Changing the size

What happens if we change the size of the multinomial? Increasing the size of the multinomial gives us
more information about the underlying model. Think about it: having a multinomial distribution of size one
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Figure 1: Confidence Interval for beta varying the size parameter N

implies that yij ∈ {0, 1}. Remember that we are treating the observations as they come from a collection of
Poisson variables. The Poisson is a model for counts data and having only zeros and ones is not the best
situation in which use it. Increasing the size we have a more likely counts data and our estimates are more
precise.

To prove that we run one hundred simulation for each N ∈ {1, 100, 500, 1000}. Figure 1 shows the confidence
intervals for β, the results are pretty similar for δ’s. The estimates remain centered on the true value of the
parameters and the variance reduces as N increases. The situation is a bit different for the difference between
γ parameters. In this case, the variance of the posterior is small even for N = 1 but the intervals get closer
and closer to the true value as N increase as it is shown in Figure 2. The take-home message here is to find a
way to have N as large as possible. Think to the customer example, instead of considering each customer as
a single unit we could aggregate to some covariate level. For example, knowing where the customer made his
choice and aggregate to the shop level could be interesting.

Be careful, All that glitters is not gold. In this situation, we know the truth and we are using the true model.
Using the wrong model could give us very concentrated results in an unrealistic part of the parameters space.
If we are not sure of the model, then, take a small N is better because it ensures more flexible posterior
results.

A First Random Effect

Now that we have gain confidence with the multinomial logit model it’s time to add a first, very simple,
random effect to the model. As a first example, we consider an independent and identical distributed random
effect. The random effect influences only the satisfaction index related to choice A, otherwise, considering
three random effects would make the model non-identifiable. The model for the other probabilities is exactly
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Figure 2: Confidence Interval for the difference between gamma.B and gamma.A varying the size parameter
N

the same of the previous section. The modified model is the following:

ViA = βxiA + δAwiA + γAzi + vi

vi ∼ N(0, 1) i = 1, ..., n

In the above formula, vi represents the random effect that acts in each choice situation, the way in which it
influences the choice is independent between different situations. Using the Poisson transformation we are
saying that the random effect plays a role only on the observations relative to alternative A. In other words
the observations for which alt.idx = 1. Let us generate the random effect and write a function to generate
data following this structure. To have a better fit for this example we consider a multinomial of size N = 100
random.effect = rnorm(n)
Multinom.sample.rand = function(N, random.effect){

Y = matrix(NA, ncol = 3, nrow = n)
for(i in 1:n){

V.A = beta*X.A[i] + deltas[1]*W.A[i] + gammas[1]*Z[i] +
random.effect[i]

V.B = beta*X.B[i] + deltas[2]*W.B[i] + gammas[2]*Z[i]
V.C = beta*X.C[i] + deltas[3]*W.C[i] + gammas[3]*Z[i]

probs = c(V.A, V.B, V.C)
probs = exp(probs)/sum(exp(probs))
samp = rmultinom(1, N, prob = probs)

Y[i,] = as.vector(samp)
}
colnames(Y) = c("Y.A", "Y.B", "Y.C")
return(Y)
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}

Y.rand1 = Multinom.sample.rand(100, random.effect)
df.rand1 = data.frame(cbind(Y.rand1, X.A, X.B, X.C, W.A, W.B, W.C, Z))
Data.rand1 = Data.structure(df.rand1)

In INLA adding a random effect is simple. We just need an index variable indicating on which observations it
acts, the others will be set to NA. Then, first step: add an index variable to the data.

rand.idx = rep(NA, n*3)
rand.idx[seq(1,n*3, by = 3)] = seq(1,n)
Data.rand1$rand.idx = rand.idx
round(head(Data.rand1),3)

## Y X W.A W.B W.C Z phi alt.idx rand.idx
## 1 81 28.599 0.179 0.000 0.000 19.549 1 1 1
## 2 4 32.893 0.000 0.488 0.000 19.549 1 2 NA
## 3 15 39.004 0.000 0.000 0.321 19.549 1 3 NA
## 4 5 29.425 0.693 0.000 0.000 19.017 2 1 2
## 5 26 31.522 0.000 1.237 0.000 19.017 2 2 NA
## 6 69 38.960 0.000 0.000 1.574 19.017 2 3 NA

The other thing that we need in INLA to consider a random effect is to specify it in the formula. To do that
we use the function f(); it takes as inputs the index column that we have created before and the model,
equal to iid in this case. In the next sections, we will see that to consider a structured random effect it is
sufficient to change the model option.

formula.rand1 = Y ~ -1 + X + W.A + W.B + W.C +
f(phi, initial = -10, fixed = T) +
f(alt.idx, Z, fixed = T, constr = T) +
f(rand.idx, model = "iid") #random effect

Then, just run the inla() function and check the result.

model.rand1 = inla(formula.rand1, data = Data.rand1, family = 'Poisson')
result.rand1 = rbind(model.rand1$summary.fixed[1:5])
result.rand1 = cbind(result.rand1, true = param[1:4])
row.names(result.rand1) = c("beta","delta.A","delta.B","delta.C")
round(result.rand1,3)

## mean sd 0.025quant 0.5quant 0.975quant true
## beta -0.296 0.006 -0.307 -0.296 -0.285 -0.3
## delta.A 1.144 0.061 1.026 1.144 1.264 1.0
## delta.B 3.957 0.045 3.871 3.957 4.045 4.0
## delta.C 3.015 0.035 2.946 3.015 3.085 3.0

diff.result.rand1 =
cbind("0.025quant"= diff(model.rand1$summary.random$alt.idx$`0.025quant`),

"0.5quant" = diff(model.rand1$summary.random$alt.idx$`0.5quant`),
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Figure 3: Boxplot of the estimated random effect mean square errors varying the size parameter N

"0.975quant" = diff(model.rand1$summary.random$alt.idx$`0.975quant`),
"true" = diff(gammas))

row.names(diff.result.rand1) = c("gamma.B - gamma.A", "gamma.C - gamma.B")
round(diff.result.rand1,3)

## 0.025quant 0.5quant 0.975quant true
## gamma.B - gamma.A -0.088 -0.090 -0.092 -0.1
## gamma.C - gamma.B 0.196 0.196 0.196 0.2

Regarding the random effect, there are many indexes that we can use to evaluate the estimates. We
choose the simplest one and check the accuracy of our estimates calculating the mean square error which is
satisfyingly low.

mean((random.effect - model.rand1$summary.random$rand.idx$`0.5quant`)^2)

## [1] 0.2864846

Exactly as before, increasing the size of the multinomial we have better estimates. We run one hundred
simulations for each value of size N ∈ {1, 100, 500, 1000}. The statements that we have done in the previous
section are valid also for the random effect estimates. Greater the size better the accuracy. In Figure 3 are
reported the box plots of the mean square errors for each value of N .

The estimates with N = 1 are particularly bad, that’s why there is not enough information to evaluate
correctly the random effect and the resulting estimates are almost zero. To make this point clearer in Figure
4 are reported the confidence intervals relative to 20 samples from the random effect.

Time Random Effects

Now that we are a little bit more familiar with INLA (not friends yet), we can go further and add a simple
structure to our random effect. Consider one of the easiest and most used structures for random effects: a
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Figure 4: Confidence intervals for a sample of 20 points from the random effect varying the size parameter N

random walk. This kind of random effects is particularly useful when we have observations repeated in time.
For example, we have the choices story of a customer. In this situation we can imagine that these choices are
linked together, that exists a connection between adjacent observations. In this situation, we may use a random
walk of some order to link the observations. Generate a random walk of order one and the corresponding data.

# Generate the random effect
random.walk1 = rep(NA, n)
random.walk1[1] = 0
for(i in 2:n){

random.walk1[i] = rnorm(1, mean = random.walk1[i-1], sd = 0.1)
}

# Generate data
Y.rw1 = Multinom.sample.rand(100, random.walk1)
df.rw1 = data.frame(cbind(Y.rw1, X.A, X.B, X.C, W.A, W.B, W.C, Z))
Data.rw1 = Data.structure(df.rw1)

The INLA package needs exactly the same thing of the previous section: an index variable and a f() function.
The difference is in that now we have to write model = "rw1" when we specify the formula. This syntax
is pretty general in INLA for the random effects. For example, if we want to consider a random walk of
order two instead of one, we have to specify model = "rw2". For a complete list of the models just run
this command names(inla.models()$latent). For more details on the use of INLA check (Blangiardo and
Cameletti (2015)). Back to the problem, the index column is the same of the previous section since only the
“first” probability is affected by the random effect. The model is the following:

VitA = βxitA + δAwitA + γAzit + ut
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Where i is an index for the individual, in our example we consider all the observations as relative to the same
customer. Subscript t represents the time in which the choice is made and ut is a random walk of order one
such that:

ut|ut−1 ∼ N(ut−1, σ
2
u)

Also the syntax to fit the model is exactly the same as before.

rw1.idx = rep(NA, n*3)
rw1.idx[seq(1,n*3, by = 3)] = seq(1,n)
Data.rw1$rw1.idx = rw1.idx

formula.rw1 = Y ~ -1 + X + W.A + W.B + W.C +
f(phi, initial = -10, fixed = T) +
f(alt.idx, Z, fixed = T, constr = T) +
f(rw1.idx, model = "rw1") #random walk of order 1

model.rw1 = inla(formula.rw1, family = 'poisson', data = Data.rw1)

To check the goodness of our estimate we show the trace plots of the true random walk and the estimated one.
In particular to make the curves match we have to subtract the mean from the true random walk. That’s
why the model assumes a zero mean random walk and the simulated one has not mean equal to zero. This
technicality is relevant only if we know the truth and we have to plot it. As it is shown in Figure 5 the curves
match very well.
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Discrete Spatial Random effect

Now that the seeds of our INLA-friendship are sowed we can move forward and start talking about spatial
random effect. Spatially structured random effects are useful in many situation; take again the customer
example and assume that we know the location of each choice situation, where the individual made its choice.
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This choice could be influenced by some advertising campaign for which we don’t have data. Think of a
billboard, only the customers near it may be influenced.

In general, whenever the covariates don’t explain enough the variability of the observations, the observations
given the covariates are not independent, then considering a spatial structure may mitigate the problem.
Let us start with the discrete case. We have the space that is divided in a certain number of regions
(e.g. municipality, cities, countries,. . . ) and each region is influenced and influence only its neighbors. Each
data point in a region is subject to the same random effect. To simulate data with this structure we the
points locations and a partition of the space. For the locations we just pick n points at random in the set
[0, 1]× [0, 1].
x.loc = runif(n)
y.loc = runif(n)
loc = cbind("x.loc" = x.loc, "y.loc" = y.loc)

For the partition is a little bit more complicated. One way to do that is to select some point at random in
[0, 1]× [0, 1] and construct the Voronoi Tessellation using these points as centers. We are not going through
the details of Voronoi tessellation, for whom is interested more details on De Berg et al. (2000). This is a
function to generate a Voronoi polygons given points, it uses functions from the sp (Pebesma and Bivand
(2005)) and deldir (Turner (2017)) libraries.

voronoi.polygons <- function(x) {
require(deldir)
if (.hasSlot(x, 'coords')) {

crds <- x@coords
} else crds <- x
z <- deldir(crds[,1], crds[,2])
w <- tile.list(z)
polys <- vector(mode='list', length=length(w))
require(sp)
for (i in seq(along=polys)) {

pcrds <- cbind(w[[i]]$x, w[[i]]$y)
pcrds <- rbind(pcrds, pcrds[1,])
polys[[i]] <- Polygons(list(Polygon(pcrds)), ID=as.character(i))

}
SP <- SpatialPolygons(polys)
voronoi <- SpatialPolygonsDataFrame(SP,

data=data.frame(x=crds[,1],
y=crds[,2],
row.names=sapply(slot(SP, 'polygons'),

function(x) slot(x, 'ID'))))
}

To generate a partition of the space just pick some random points, be sure that the corners of your study
area are included and the above function will generate one region (polygon) for each point. Before move
on we would like to give some information on the output of voronoipolygons(). This function gives us a
SpatialPolygonsDataFrame. This kind of object is very useful when we are dealing with spatial data. Each
row of the data frame is related to a region and we can put there whatever we want as a column. How to use
it and how to make nice plots will be shown in a while, first of all, let us generate the partition.

# number of regions
n.reg = 50
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Figure 5: Partiotion of the region [0,1]x[0,1], each red point correspond to a different location

# corners
boundaries = rbind(c(0,0), c(1,1), c(0,1), c(1,0))
# points
points = rbind(boundaries, cbind(runif(n.reg - 4), runif(n.reg - 4)))
# generate Voronoi polygons
vor = voronoi.polygons(points)

Now let us check how many non-empty regions do we have and make the first plot with the Voronoi polygons
and the locations.

# Create an ID column for the regions, it will be our index
vor@data$id = seq(1,n.reg)
# Transform the locations in SpatialPoint
pp = SpatialPoints(loc)
# This vector contains the region in which each point is located
id.samples = over(pp,vor)$id
# Check the number of non epty regions
check = as.integer(length(unique(id.samples)))
check

## [1] 49
# plot the partition and the locations
plot(vor)
points(loc, pch = 21, bg = 2, cex = 0.7)

Once we have a partition of the space we need to generate a random effect. To take into account the
neighbors structures of the partition we choose to use a Gaussian Markov Random Field. More details
on (Havard Rue and Held (2005)) and (Blangiardo and Cameletti (2015)). Skipping all the theoretical stuff,
we need to synthesize the neighbors’ structure; we need the adjacency matrix A. With A in the hands, we will
generate the random effect from a multivariate Gaussian distribution with a covariance matrix that depends
on the adjacency matrix. This model is also called CAR model or iCAR model depending on the specification

15



−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 6: Random effect on the partition

of the covariance matrix. To calculate the adjacency matrix we use the function gTouches() of the package
rgeos, R. Bivand and Rundel (2017). To sample from the multivariate normal we use rmvnorm() function of
the package mvtnorm, Genz and Bretz (2009). More details on polygons here [Polygons web Page]

# adjacency matrix
ADJ = gTouches(vor, byid = T)
# marginal variance of each random effect component
S = diag(n.reg)
# covariance matrix
cov.matrix = solve(diag(n.reg) - ADJ)%*%S
# generate the random effect and add it to the SpatialPolygonDataFrame
vor@data$rand.eff = as.numeric(rmvnorm(1,sigma = cov.matrix))

## Warning in rmvnorm(1, sigma = cov.matrix): sigma is numerically not
## positive semidefinite
spplot(vor, 'rand.eff', col.regions = terrain.colors(32))

We can breathe a sigh of relief, this tricky part about polygons is over. What remains to do is to generate
data accordingly to this model, remember, each location in the same region is affected by the same value of
the random effect. Then we can use the same function used before to sample from the data, we just need to
build the random effect vector in the proper way.

# generate random effect vector
random.effect = vor@data$rand.eff[id.samples]
# generate sample
Y.spatial = Multinom.sample.rand(N = 100, random.effect)
# construct data set
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df.spatial = data.frame(cbind(Y.spatial, X.A, X.B, X.C, W.A, W.B, W.C, Z))
Data.spatial = Data.structure(df.spatial)

Using the same function to generate data as before means that the spatial random effect influences only the
first probability, then we have to build an index column with non zero elements only on the row relative to
the first alternative. These elements are the id of the region in which the observation is located. The index
column plays the same role of the previous examples: using it as input on the f() function in the formula we
specify our spatial random effect. In this situation we set model = "besag" because was him to introduce
this model in Besag (1974). The only additional requirements is that we need to specify a neighbors structure
in the f() function, it is done using the adjacency matrix setting graph = ADJ.
# create and add index column
rand.eff.idx = rep(NA, n*3)
rand.eff.idx[seq(1,n*3, by = 3)] = id.samples
Data.spatial$rand.eff.idx = rand.eff.idx

# Formula
formula.spatial = Y ~ -1 + X + W.A + W.B + W.C +

f(phi, initial = -10, fixed = T) +
f(alt.idx, Z, fixed = T, constr = T) +
f(rand.eff.idx, model = 'besag', graph = ADJ) #spatial random effect

# Fit the model
model.spatial = inla(formula.spatial, family = "poisson", data = Data.spatial)

# Check the results
result.spatial = cbind(model.spatial$summary.fixed[3:5], true = param[1:4])
row.names(result.spatial) = c("beta","delta.A","delta.B","delta.C")

diff.result.spatial =
cbind("0.025quant"= diff(model.spatial$summary.random$alt.idx$`0.025quant`),

"0.5quant" = diff(model.spatial$summary.random$alt.idx$`0.5quant`),
"0.975quant" = diff(model.spatial$summary.random$alt.idx$`0.975quant`),
"true" = diff(gammas))

row.names(diff.result.spatial) = c("gamma.B - gamma.A", "gamma.C - gamma.B")

round(rbind(result.spatial, diff.result.spatial),3)

## 0.025quant 0.5quant 0.975quant true
## beta -0.310 -0.302 -0.293 -0.3
## delta.A 0.952 0.989 1.027 1.0
## delta.B 3.911 3.983 4.056 4.0
## delta.C 2.905 2.956 3.007 3.0
## gamma.B - gamma.A -0.099 -0.099 -0.098 -0.1
## gamma.C - gamma.B 0.203 0.202 0.202 0.2

We have just seen that, regarding the parameters, the model works. To check if it works for the random
effect as well we calculate the mean square error and make a plot with the true random effect, the estimated
one, and the residuals. Using the SpatialPolygonsDataFrame we just need to add the values that we want
to plot to the data frame and then plot them. To plot multiple figure at the same time we have to use the
function grid.arange() of the gridExtra package (Auguie (2017)).
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Figure 7: Comparison between the true random effect and the estimated one

# compute mean square error
mean((vor@data$rand.eff -

model.spatial$summary.random$rand.eff.idx$`0.5quant`)^2)

## [1] 0.01606867
# add columns to the SpatialPolygonDataFralme
vor@data$rand.eff.est = model.spatial$summary.random$rand.eff.idx$`0.5quant`
vor@data$residuals = (vor@data$rand.eff-

model.spatial$summary.random$rand.eff.idx$`0.5quant`)^2
# plot them
grid.arrange(spplot(vor, 'rand.eff', at = seq(-2.5, 2.5, length.out = 32),

col.regions = terrain.colors(32), main = "True"),
spplot(vor, 'rand.eff.est', at = seq(-2.5,2.5,length.out = 32),

col.regions = terrain.colors(32), main = "Estimates"),
spplot(vor, 'residuals', at = seq(-2.5,2.5,length.out = 32),

col.regions = terrain.colors(32), main = "Residuals"),
nrow = 1)

Continuos spatial random effect

This is the last step to definitively consolidate our friendship with INLA, it’s here that this package shows its
full potential and becomes a truly desirable friend. In the previous section we assumed a discrete spatial
effect, it means that the effect in a specific region is constant. This approach works well in many situations
in which we have an effect related to the county or to the municipality or to the district. What happens if we
are working with natural phenomena? In this case, we may suppose that the effect is not constant inside
a region or inside a municipality. Think about temperature or air pollution level, in this case, considering
the effect derived from these variables as constant inside a region doesn’t seem reasonable. The solution is
to consider a continuous random effect (or at least very small regions). We can do that using the so-called
SPDE approach. You can find an entire tutorial on this argument on Krainski et al. (2017).

Few words about this: we are considering a Gaussian random field with zero mean and Matérn correlation
function. Zero mean because the mean is supposed to be modeled by the fixed effects. About the Matérn
correlation function, the important thing to have in mind is that it depends on the Euclidean distance between
points. This means high correlation for points close to each other and low correlation for far away points.
Of course, we cannot deal with something really continuous, otherwise, it will be computationally infisible,
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but we can deal with something discrete defined on a set of very small regions. Hence, the purpose is to
approximate the continuous spatial random effect with a discrete spatial effect (Lindgren, Rue, and Lindström
(2011)). Let us start from here: discretization of the study area. We divide the area into small triangles, in
each triangle the random effect is supposed to be linear. This operation is called Delaunay Triangulation and
the result is a mesh. Even if it seems a complex operation we can build a mesh using INLA in one line of
code. The function inla.mesh.2d() requires a set of location and some parameters to guarantee a “nice”
triangulation. More details on the parameters and what “nice” means on [Mesh website].
mesh = inla.mesh.2d(loc, max.edge = c(0.02, 0.2), cutoff = 0.02)

Let us plot it and check how many triangles we have created for the area of interest. The mesh, being the
support for our approximation, more triangles it has, more precise the approximation will be.

mesh$n

## [1] 2320
par(mfrow = c(1,1))
plot(mesh)
points(loc, pch = 21, bg = 2)

Constrained refined Delaunay triangulation

Now we have to simulate our continuous spatial random effect, it depends on two parameters: the
range r and the marginal variance σ2

0 . The range is the distance at which the correlation of two points is
around 0.13. The marginal variance is the marginal variance. We will set the range r equal to a fifth of the
size of the study area and σ2

0 = 1. We pass the parameters to INLA using a different parametrization.

# starting parametrization
size <- min(c(diff(range(mesh$loc[, 1])), diff(range(mesh$loc[, 2]))))
range <- size/5
sigma0 = 1
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# new parametrization
kappa0 <- sqrt(8)/range
tau0 <- 1/(sqrt(4 * pi) * kappa0 * sigma0)

# create an spde object
spde <- inla.spde2.matern(mesh, B.tau = cbind(log(tau0), -1, +1),

B.kappa = cbind(log(kappa0), 0, -1))

It remains only to simulate the random effect. To do that we simulate from a Gaussian Markow random
field, each component is related to a triangle and the precision Matrix Q is defined through a Matérn
covariance function. The INLA package helps us to retrieve the precision matrix Q

Q = inla.spde.precision(spde, theta = c(0,0))
# the number of elements of Q is the square of the number of triangles
dim(Q)

## [1] 2320 2320

Let us simulate

sample = inla.qsample(n = 2, Q, seed = 123)

Now we have a sample in which each element is related to a triangle and we need the values of the effect on
the data points locations. To pass from the mesh locations to the data locations we need a matrix A such
that:

u(s) = Au(s′)

Where s = {s1, ...sN} are the data points locations and s′ = {s′1, ..., s′N ′} are the mesh locations. The INLA
package comes to help us again with the inla.spde.make.A() function. This function takes as input a
mesh and a set of location and computes the projection matrix A. Please pay attention: remember that
working with Multinomial-Poisson transformation implies that for each location (multinomial observation)
we have a number of Poisson observation equal to the number of alternatives. All of them are related to the
same location, then, we have to replicate each location 3 (number of alternatives) times. As before, we are
considering a random effect acting only on the probability of the first alternative, hence, we have to select
only the rows relatives to that one.

# create A
A = inla.spde.make.A(mesh = mesh,

loc = cbind(rep(loc[,1], each = 3),
rep(loc[,2], each = 3)))

# select rows relative to the first alternatives
A = A*rep(c(1,2,3) == 1, n)

The random effect will be the first column of the product between the projection matrix A and the simulated
Gaussian Markov random field on the mesh locations.

random.effect = matrix(drop(A%*%sample[,2]), ncol = 3, byrow = T)[,1]
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Figure 8: The right figure represents the continuos spatial effect, the left figure represents the value of the
random effect on the sample locations

To convince the reader about what we have done since now we show the plots of the continuous
random effect and the obtained projection on the data points locations. We are not going through the
details of how to obtain these plots, the interested reader can find more detail on (page Mesh). Fig-
ure 8 shows the comparison between the continuous random effect and the projection on the sample locations.

par(mfrow = c(1,2))

# plot the continuos random effect
proj <- inla.mesh.projector(mesh, dims = c(100, 100))
sample_proj = inla.mesh.project(proj, field = sample[,2])
image(proj$x, proj$y, sample_proj , xlim = c(0,1), ylim = c(0,1),

xlab = '',ylab = '')
contour(proj$x, proj$y, sample_proj, add = T)

# plot the projection on the sample locations
rbPal <- colorRampPalette(heat.colors(100))
Col <- rbPal(100)[as.numeric(cut(random.effect, breaks = 100))]
plot(loc, pch = 20, col = Col, xlab = '', ylab = '')

Now that we have a random effect defined on the locations we can go through the simulation of
the multinomial data.

# generate sample
Y.spde = Multinom.sample.rand(N = 100, random.effect)
# construct data set
df.spde = data.frame(cbind(Y.spde, X.A, X.B, X.C, W.A, W.B, W.C, Z))
Data.spde = Data.structure(df.spde)
round(head(Data.spde),3)
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## Y X W.A W.B W.C Z phi alt.idx
## 1 94 28.599 0.179 0.000 0.000 19.549 1 1
## 2 4 32.893 0.000 0.488 0.000 19.549 1 2
## 3 2 39.004 0.000 0.000 0.321 19.549 1 3
## 4 8 29.425 0.693 0.000 0.000 19.017 2 1
## 5 23 31.522 0.000 1.237 0.000 19.017 2 2
## 6 69 38.960 0.000 0.000 1.574 19.017 2 3

To perform a Bayesian analysis with this kind of random effect with INLA we need to specify two more
objects. This part is crucial to the success of our analysis, we shall never tire of repeating, the data is defined
on a set of locations and the random effect is defined on another set of locations. From this incongruity
derives the needing of an object that manages it for us. Again, INLA proves to be a good friend and provides
us this object: the stack. The inla.stack() function does the job, it mainly needs three thing:

• data: a list containing the variable subject of study and the offset if it is present.

• effect: a list containing the effects included in the model. The spatial random effect is represented by
an index created with the function inla.spde.make.index(); the fixed effects are represented by the
columns of the data frame containing the covariates.

• A: a list containing the projection matrices: one for the random effect and one for the fixed effects.
The projection matrix for the random effect is the matrix A created above. The projection matrix for
the fixed effects is just 1 because the covariates are recorded in the same locations of the data. Notice
that if the covariates are recorded in different locations with respect the data, then we have to specify a
different matrix.

# index for the random effect
s_index <- inla.spde.make.index(name="spatial.field",

n.spde= spde$n.spde)

# stack object
stack = inla.stack(data = list(Y = Data.spde$Y),

effects = list(s_index, list(Data.spde[,2:8])),
A = list(A, 1))

We are at the end of our SPDE-journey and, finally, we are ready to fit the model. As always we need to
specify a formula and an f() function for the spatial random effect, in this case the index variable is the
spatial.field (element of the SPDE index created above). The model option is spde and we need also to
specify an additional option group = spatial.field.group (another element of the SPDE index). After
that, we can run the inla() function and wait for the results. It will take some time especially if we work
with a lot of data. Notice that the data is specified using the stack object. In particular we need to use the
function inla.stack.data(). Furthermore, we need to specify also the projection matrix A. It is done in
the control.predictor option. This option requires a list containing an element A and compute = T.

In the following code, we use a little trick to speed up the computations. This trick can be done only
after a first fit of the model. It consists in specify values for the hyper-parameters and then use the
option control.inla= list(int.strategy = "eb"). The last line of the chunk shows how to retrieve the
hyper-parameters values. Without this adjustment, INLA takes around 2 minutes to fit the model. Adding
the starting value and using eb strategy it takes around 7 seconds. We strongly recommend doing this every
time you have to fit a model multiple times trying little changes.
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formula.spde = Y ~ -1 + X + W.A + W.B + W.C +
f(phi, initial = -10, fixed = T) +
f(alt.idx, Z, fixed = T, constr = T) +
f(spatial.field, model = spde, group = spatial.field.group)

init = c(-0.008, -0.093)
model.spde <- inla(formula.spde,

data=inla.stack.data(stack, spde = spde),
family="poisson",
control.predictor=list(A = inla.stack.A(stack), compute=TRUE),
control.inla= list(int.strategy = "eb"),
control.mode=list(restart=T, theta=init))

round(model.spde$internal.summary.hyperpar$mode, 3)

## [1] -0.007 -0.094

We don’t show the results about the parameters because they are pretty similar to the ones showed in the
other sections. The only thing that we like to show is the prediction of the spatial random field, we compute
the accuracy and reconstruct the continuous spatial random field. Figure 9 shows the comparison between
the estimated spatial field and the true one.

# estimates on the mesh locations
spde.mesh.est = model.spde$summary.random$spatial.field$`0.5quant`
# estimates on the data locations
spde.loc.est = matrix(drop(A%*%spde.mesh.est),

ncol=3, byrow=TRUE)[,1]
# Mean Square Error
mean((spde.loc.est - random.effect)^2)

## [1] 0.1120674
par(mfrow = c(1,2))

# plot the estimates
output_proj = inla.mesh.project(proj, field = spde.mesh.est)
image(proj$x, proj$y, output_proj , xlim = c(0,1), ylim = c(0,1),

xlab = '',ylab = '', main = "Estimate")

# plot the true one
sample_proj = inla.mesh.project(proj, field = sample[,2])
image(proj$x, proj$y, sample_proj , xlim = c(0,1), ylim = c(0,1),

xlab = '',ylab = '', main = "True")

Yogurt Data

This is the last section of the tutorial; here we analyze the Yogurt Data studied in the literature on Multinomial
models. The first to introduce it was Jain in 1994 (Janin, Vilcassim, and Chintagunta (1994)), the same
results are obtained also by Lee, Green, and Ryan (2017) and Chen and Kuo (2001). In the first part of this
section, we implement the model used in literature and in the second we propose some modification to the
model.
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Figure 9: Recostruction of the spatial random field

Model

The data is composed of 2412 observations, each of them represents a choice situation in which a customer
choose between four yogurt brands: yoplait, dannon, hiland, weight. The covariates are two alternative
specific variables: price (continuous) and feat (Boolean). The latter indicates the presence of a feature
advertisement on the newspapers. The data includes repeated choices for each individual. The data is
included in the mlogit package. The starting model is the following:

Vij = αj + β1Pij + β2Fij

Where i stands for the choice situation and not the customer. Pij stands for the price of brand j in choice
situation i and Fij indicates the presence of a feature advertisement. Translating it into Poisson’s terms the
model becomes:

Yij ∼ Poisson(λij)
log(λij) = φi + αj + β1Pij + β2Fij

Where αj represents an intercept that depends on the yogurt brand. In this model, there are only alternative
specific variables with generic coefficients. As you can see β = {β1, β2} is the same for each choice situation
and for each alternative. Hence, the data will be in long format. The original data is in wide format and
looks like this

data("Yogurt")
head(Yogurt)

## id feat.yoplait feat.dannon feat.hiland feat.weight price.yoplait
## 1 1 0 0 0 0 10.8
## 2 1 0 0 0 0 10.8
## 3 1 0 0 0 0 10.8
## 4 1 0 0 0 0 10.8
## 5 1 0 0 0 0 12.5
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## 6 1 0 0 0 0 10.8
## price.dannon price.hiland price.weight choice
## 1 8.1 6.1 7.9 weight
## 2 9.8 6.4 7.5 dannon
## 3 9.8 6.1 8.6 dannon
## 4 9.8 6.1 8.6 dannon
## 5 9.8 4.9 7.9 dannon
## 6 9.2 5.0 7.9 dannon

Instead, the data that we are going to use is in this format:

head(Data)

## Y price feat cust.id phi alpha.idx
## 1 0 0.108 0 1 1 yoplait
## 2 0 0.081 0 1 1 dannon
## 3 0 0.061 0 1 1 hiland
## 4 1 0.079 0 1 1 weight
## 5 0 0.108 0 1 2 yoplait
## 6 1 0.098 0 1 2 dannon

The formula in this situation is straightforward

formula = Y ~ -1 + price + feat + alpha.idx +
f(phi, initial = -10, fixed = T)

model = inla(formula, data = Data, family = 'Poisson')

These are the results and you can check the literature and see that they are almost the same.

results = model$summary.fixed[,1:5]
rownames(results) = c("price", "feat", "dannon", "hiland", "weight", "yoplait")
round(results,3)

## mean sd 0.025quant 0.5quant 0.975quant
## price -36.468 2.423 -41.300 -36.443 -31.782
## feat 0.494 0.120 0.257 0.494 0.728
## dannon 1.454 2.974 -4.385 1.453 7.288
## hiland -2.264 2.973 -8.100 -2.264 3.567
## weight 0.812 2.974 -5.027 0.812 6.646
## yoplait 2.185 2.979 -3.663 2.184 8.028

Now that we have verified the correctness of our approach retrieving the literature results, we can do
something more interesting. Think about the price, in the previous model the coefficient is unique no matter
what the price is. We can suppose that lower prices encourage the purchase and, instead, that high prices
discourage it. To check this hypothesis we divide the price classes and then we look for a different coefficient
for each of them. Just to make the story more interesting we also suppose that the relation between the
outcome and the price is non-linear. We can express this behavior fitting a random walk of order 1 on the
price. In this way the coefficient β1 depends on the price level, it becomes β1(Pij). The model is the following:
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log(λij) = φi + αj + Pijβ1(Pij) + β2Fij

Data$price.class = inla.group(Data$price, n = 12, method = "cut")

formula.price = Y ~ -1 + feat + alpha.idx +
f(price.class, model = "rw1") +
f(phi, initial = -10, fixed = T)

model.price = inla(formula.price, data = Data, family = 'Poisson')

res = model.price$summary.fixed[,1:5]
rownames(res) = c('feat', 'dannon','hiland','weight','yoplait')
round(model.price$summary.random$price.class[,1:5],3)

## ID mean sd 0.025quant 0.5quant
## 1 0.008 3.676 0.881 2.229 3.575
## 2 0.025 3.034 0.319 2.461 3.016
## 3 0.050 0.724 0.263 0.254 0.707
## 4 0.061 0.306 0.243 -0.118 0.287
## 5 0.079 0.410 0.238 -0.001 0.390
## 6 0.086 -0.073 0.235 -0.480 -0.093
## 7 0.108 -0.909 0.239 -1.328 -0.927
## 8 0.122 -1.352 0.240 -1.774 -1.370
## 9 0.132 -2.490 0.598 -3.866 -2.423
## 10 0.193 -3.152 1.556 -6.802 -2.957

As we can see from the results, considering a unique coefficient for the price ignores part of the information
that we have. From the above table, we can see that lower prices have a positive effect on the probability of
buying an item. On the other hand, higher prices have a negative effect. The relation between the coefficient
β1 and the price level is almost linear. Studying this kind of effects may be an interesting tool in the design
of brand market policies.

plot(model.price$summary.random$price.class$ID,
model.price$summary.random$price.class$mean, type = 'l',
ylab = expression(beta[1]),
xlab = 'price')
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Another modification to the standard model that we can consider is about the covariates represent-
ing the presence of a feature advertisement. Here, we can consider an alternative specific coefficient. This
choice materializes the following intuition: different brands have different advertisers and their advertising
campaigns may have a different impact on the market. To consider the feat covariate as related to an
alternative specific coefficient we have to change the format. The data should be like this

## Y price feat.yoplait feat.dannon feat.hiland feat.weight cust.id phi
## 1 0 0.108 0 NA NA NA 1 1
## 2 0 0.081 NA 0 NA NA 1 1
## 3 0 0.061 NA NA 0 NA 1 1
## 4 1 0.079 NA NA NA 0 1 1
## 5 0 0.108 0 NA NA NA 1 2
## 6 1 0.098 NA 0 NA NA 1 2
## alpha.idx
## 1 yoplait
## 2 dannon
## 3 hiland
## 4 weight
## 5 yoplait
## 6 dannon

The corresponding model is:

log(λij) = φi + αj + β1Pij + β2jFij

formula.feat = Y ~ -1 + price + feat.yoplait + feat.dannon +
feat.hiland + feat.weight + alpha.idx +
f(phi, initial = -10, fixed = T)
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model.feat = inla(formula.feat, data = Data, family = 'Poisson')

The results about the price and αj ’s are almost the same that we found in the standard model. Then we
show just the results relative to the feature advertisement.

model.feat$summary.fixed[2:5, 1:5]

## mean sd 0.025quant 0.5quant 0.975quant
## feat.yoplait 0.48899022 0.1919609 0.1122663 0.48892751 0.8657212
## feat.dannon -0.01453562 0.2302875 -0.4644865 -0.01528773 0.4391747
## feat.hiland 1.96832434 0.3023283 1.3629788 1.97240695 2.5504927
## feat.weight 0.33839566 0.2402181 -0.1404982 0.34089904 0.8029663

From these results, it seems that the advertising campaign of hiland has a great impact on the choice compared
with the other. On the other hand, maybe dannon has to review its advertising group. Just one problem, in
our dataset hiland has been chosen only the 2% of the times. This means that the above results could be due
to over-fitting but going deeper is not in our purposes.

Conclusion

Just few words to conclude this tutorial. As you have seen the Multinomial-Poisson transformation combined
with INLA is an amazing combination and it allows us to implement complex models in a reasonable
computational time. We hope that the reader appreciates this tutorial and that it is the beginning of a lasting
friendship with INLA. For any question feel free to send an e-mail to [someone] or to write a post on the
https://groups.google.com/forum/#!forum/r-inla-discussion-group.

References

Auguie, Baptiste. 2017. GridExtra: Miscellaneous Functions for “Grid” Graphics. https://CRAN.R-project.
org/package=gridExtra.

Baker, Stuart G. 1994. “The Multinomial-Poisson Transformation.” The Statistician. JSTOR, 495–504.

Besag, Julian. 1974. “Spatial Interaction and the Statistical Analysis of Lattice Systems.” Journal of the
Royal Statistical Society. Series B (Methodological). JSTOR, 192–236.

Bivand, Roger, and Colin Rundel. 2017. Rgeos: Interface to Geometry Engine - Open Source (’Geos’).
https://CRAN.R-project.org/package=rgeos.

Blangiardo, Marta, and Michela Cameletti. 2015. Spatial and Spatio-Temporal Bayesian Models with R-Inla.
John Wiley & Sons.

Chen, Zhen, and Lynn Kuo. 2001. “A Note on the Estimation of the Multinomial Logit Model with Random
Effects.” The American Statistician 55 (2). Taylor & Francis: 89–95.

Croissant, Yves. 2013. Mlogit: Multinomial Logit Model. https://CRAN.R-project.org/package=mlogit.

Croissant, Yves, and others. 2012. “Estimation of Multinomial Logit Models in R: The Mlogit Packages.” R
Package Version 0.2-2. URL: Http://Cran. R-Project. Org/Web/Packages/Mlogit/Vignettes/Mlogit. Pdf.

De Berg, Mark, Marc Van Kreveld, Mark Overmars, and Otfried Cheong Schwarzkopf. 2000. “Computational
Geometry.” In Computational Geometry, 1–17. Springer.

Genz, Alan, and Frank Bretz. 2009. Computation of Multivariate Normal and T Probabilities. Lecture Notes

28

https://groups.google.com/forum/#!forum/r-inla-discussion-group
https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=rgeos
https://CRAN.R-project.org/package=mlogit


in Statistics. Heidelberg: Springer-Verlag.

Janin, Dipak C, Naufel J Vilcassim, and Pradeep K Chintagunta. 1994. “A Random-Coefficients Logit
Brand-Choice Model Applied to Panel Data.” Journal of Business & Economic Statistics 12 (3). Taylor &
Francis: 317–28.

Krainski, Elias T, Finn Lindgren, Daniel Simpson, and Havard Rue. 2017. “The R-Inla Tutorial on Spde
Models Warning: Work in Progress... Suggestions to Elias@ R-Inla. Org Are Welcome.”

Lee, Jarod YL, Peter J Green, and Louise M Ryan. 2017. “On the‘ Poisson Trick’ and Its Extensions for
Fitting Multinomial Regression Models.” arXiv Preprint arXiv:1707.08538.

Lindgren, Finn, Håvard Rue, and Johan Lindström. 2011. “An Explicit Link Between Gaussian Fields and
Gaussian Markov Random Fields: The Stochastic Partial Differential Equation Approach.” Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 73 (4). Wiley Online Library: 423–98.

Pebesma, Edzer J., and Roger S. Bivand. 2005. “Classes and Methods for Spatial Data in R.” R News 5 (2):
9–13. https://CRAN.R-project.org/doc/Rnews/.

Richards, Francis SG. 1961. “A Method of Maximum-Likelihood Estimation.” Journal of the Royal Statistical
Society. Series B (Methodological). JSTOR, 469–75.

Rue, Havard, and Leonhard Held. 2005. Gaussian Markov Random Fields: Theory and Applications. CRC
press.

Rue, Håvard, Sara Martino, and Nicolas Chopin. 2009. “Approximate Bayesian Inference for Latent Gaussian
Models by Using Integrated Nested Laplace Approximations.” Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 71 (2). Wiley Online Library: 319–92.

Turner, Rolf. 2017. Deldir: Delaunay Triangulation and Dirichlet (Voronoi) Tessellation. https://CRAN.
R-project.org/package=deldir.

Venables, William N, and Brian D Ripley. 2013. Modern Applied Statistics with S-Plus. Springer Science &
Business Media.

29

https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/package=deldir
https://CRAN.R-project.org/package=deldir

	Abstract
	Theoretical part
	On the Multinomial logit model
	On the Poisson Trick

	Practical Part
	On the Multinomial Data and Model Parameters
	Data structure
	A Simple Model
	A First Random Effect
	Time Random Effects
	Discrete Spatial Random effect
	Continuos spatial random effect
	Yogurt Data
	Conclusion

	References

