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a b s t r a c t 

In spatial epidemiology, data are often arrayed hierarchically. The classification of individ- 

uals into smaller units, which in turn are grouped into larger units, can induce contextual 

effects. On the other hand, a scaling effect can occur due to the aggregation of data from 

smaller units into larger units. In this paper, we propose a shared multilevel model to 

address the contextual effects. In addition, we consider a shared multiscale model to ad- 

just for both scale and contextual effects simultaneously. We also study convolution and 

independent multiscale models, which are special cases of shared multilevel and shared 

multiscale models, respectively. We compare the performance of the models by applying 

them to real and simulated data sets. We found that the shared multiscale model was the 

best model across a range of simulated and real scenarios as measured by the deviance 

information criterion (DIC) and the Watanabe Akaike information criterion (WAIC). 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In spatial epidemiology, data are often arrayed hierar-

chically, i.e., individual level data are aggregated into areal

units (e.g. counties) that are clustered to form larger areal

units (e.g. states). The clustering of individuals into areal

units, which in turn are grouped into larger areal units, can

induce contextual effects ( Lawson, 2013 , 2016 ); meaning

that individuals within areal units have similar character-

istics. In general, contextual effects arise from the under-

lying spatial distribution of the individual level outcomes.

Appropriate model parameters should be used to adjust for

the contextual effects and when such parameters are not

included then bias would be induced in the estimated rel-

ative risk, which is the parameter of interest in the disease
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mapping. Hence, researchers considered multilevel model-

ing of hierarchically available individual level data to en-

compass contextual effects ( Bobashev and Anthony, 1998 ;

Goldstein et al., 2002 ; Leyland and Goldstein, 2001 ; Merlo

et al., 2004 ; Preisser et al., 2003 ). However, this approach

only handles the correlation between the outcomes within

a single areal unit; it ignores spatial correlation among

neighboring areal units. 

Multilevel models often assume that all spatial corre-

lation can be reduced to within area correlation ( Chaix et

al., 2005 ); thus, there is no spatial random effect com po-

nent that handles the correlation between the neighbor-

ing areas. The random effects in multilevel models only ac-

count for the correlation between the individual level out-

comes within a given spatial unit. Therefore, it provides

partial information on the geographical variation of health

outcomes in measuring the correlation within a spatial

unit but not the correlation between neighboring re-

gions. Researchers extend multilevel models to incorporate

http://dx.doi.org/10.1016/j.sste.2017.06.001
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spatial interaction effects in different fields such as geogra- 

phy and spatial econometrics ( Browne et al., 2001 ; Chaix et 

al., 2005 ; Dong et al., 2015 ; Langford et al., 1999 ; Tranmer 

et al., 2014 ). In this paper, we (i) extend the multilevel 

models to account for spatial correlations between adja- 

cent areas using a convolution model developed by Besag 

et al., (1991) ; and (ii) develop models for aggregated unit 

level data by adjusting for contextual effects. The proposed 

multilevel model focuses on the risk variation at the fine 

level areal units by incorporating the contextual effects in 

the model. In addition, the estimation of the risk varia- 

tion at larger areal units (coarse level) is possible by aggre- 

gating (e.g. averaging) the fine level estimates within the 

coarse level, while using only the data at the fine level. 

In practice, data could be available at different geo- 

graphically aligned levels. For example, the outcome of 

interest could be available in the form of aggregation at 

the census block, block group, and census tract: the re- 

sponses at the census block could be summed up to obtain 

the responses at the block group, which in turn could be 

summed up to obtain the responses at the census tract. 

This kind of data aggregation results in losing informa- 

tion at the coarse level (e.g. block group and census tract). 

This is known as a scaling effect in geography ( Wong, 

2009 ). Scaling effects arise when data are aggregated from 

a lower (e.g. census tract) into a higher geographical level 

(e.g. county). In the literature, multiscale models have been 

used in different fields to solve scaling problems at multi- 

ple scale levels ( Basseville et al., 1992 ; Berliner et al., 1999 ; 

Calder et al., 2009 ; Chou et al., 1994 ; Craigmile and Gut- 

torp, 2011 ; Delouille et al., 2006 ; Huang and Cressie, 20 0 0 ; 

Huang et al., 2002 ; Johannesson et al., 2007; Kolaczyk and 

Huang, 2001 ; Nychka et al., 2002 ; Vidakovic, 1999 ; Wikle 

et al., 2001 ; Zhu and Yue, 2004 ). 

In spatial epidemiology, researchers have implemented 

multiscale models to account for scaling effect due to 

the aggregation of data ( Banerjee et al., 2004; Cressie, 

1996 ; Wong, 2009 ) by factorizing the likelihood at the 

coarse (high) level into the fine (low) level ( Louie and Ko- 

laczyk, 2004, 2006a, 2006b ). Alternatively, we ( Aregay et 

al., 2015a, 2015b, 2016a, 2016b ) developed a shared ran- 

dom effect multiscale model that accommodates the ag- 

gregation (scale) effect by inheriting the coarse level ef- 

fect into the fine level. However, it could be argued that 

the latter approach uses the data twice as the data at the 

coarse level are an aggregation of the data at the fine level. 

The objective of this paper is to describe risk variations 

at fine and coarse levels simultaneously by accommodat- 

ing scaling and contextual effects. To achieve this goal, we 

applied and compared different models. First, we compare 

the shared multiscale model with the shared multilevel 

model in real and simulated data sets. Second, we study 

the impact of ignoring the contextual effects on the esti- 

mation of the risk variations at both the fine and coarse 

levels by simulating data with strong contextual effects. 

Note that the focus of this paper is on studying contextual 

effects although we touch on scaling effects as well. 

The structure of the paper is as follows. In Section 2 , 

we present the data that motivated us to conduct this re- 

search. Section 3 describes the statistical methods as well 

as the design of the simulation study, while Section 4 ded- 
icates to the results obtained from fitting the models to 

the real and simulated data sets. Finally, in Section 5 , we 

present the discussion and concluding remarks. 

2. Georgia oral cancer data 

We are motivated by the county level data available in 

the state of Georgia via OASIS system ( http://oasis.state.da. 

us ). We consider the number of persons discharged from 

non-federal acute-care inpatient facilities for oral cancer 

in 2008. The observed outcomes of the counties are ag- 

gregated (summed up) to the public health (PH) districts. 

These aggregations of data can induce a scaling effect. The 

state of Georgia consists of 159 counties (see left panel in 

Fig. 1 ) that are classified into 18 PH districts (see the right 

panel of Fig. 1 ). The grouping of the counties into PH dis- 

tricts can induce a contextual effect. Each PH district con- 

sists of one or more counties. The PH districts are used 

for administration of public health resources. The Georgia 

Department of Public Health (DPH) funds and collaborates 

with the 18 PH districts. The goal of modeling the risk vari- 

ation at both the county and PH district levels is that it 

can be used for allocating of health resources at both lev- 

els in a cost-effective manner. Hence, the DPH can use the 

risk mapping results to legislate regulations to protect the 

public health in each county as well as in each PH district. 

The observed standardized morbidity ratio (SMR), 

which is the ratio of the outcome to the expected number 

of cases, at both the county and PH levels are displayed 

in Fig. 2 . We can see that the scaling effect smooths out 

the county level risk variation when the data are aggre- 

gated into the PH districts. To address both the contextual 

and scale effects, we propose different models described in 

Section 3 . It is worth mentioning contextual and scale ef- 

fects have an inverse relationship. When we have strong 

presence of contextual effects, we will have weak scale 

effects because the risk variations will be similar at the 

fine (e.g. county) and coarse (e.g. PH districts) levels (see 

Fig. 3 ). The scales of the relative risk (RR) ranges from 0.61 

to 1.68 on both scale levels. On the other hand, when there 

are weak contextual effects, the scale effects will be strong 

(see Fig. 4 ). The scale of the RR in the left panel is between

0.45 and 2.23, whereas in the right panel it is between 

0.97 and 1.49 indicating that the presence of a relatively 

strong scale effect smoothed out the risk variation at the 

county level when it is aggregated into the PH level. We 

can also see this kind of behavior in Fig. 2 . The application

of the models to the Georgia oral cancer data is deferred 

to Section 4.2 . 

3. Models for aggregated small area data 

In the next section, we present the models most rele- 

vant to small area aggregated data. To make it clear, we 

abbreviated the four models considered below as M1, M2, 

M3, and M4 and they represent Model 1, Model 2, Model 

3, and Model 4, respectively. We define the models us- 

ing the two scale levels Georgia oral cancer study. As- 

sume that y ij is the outcome of interest for the j th 

th county 

(fine scale) at the i th 

th public health district (coarse scale) 

http://oasis.state.da.us
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Fig. 1. State of Georgia, USA: county and PH district boundary map. 

Fig. 2. Georgia oral cancer study: observed standardized morbidity ratio (SMR) pattern. 

Fig. 3. Simulated relative risk (RR) at both the county and public health district levels by allowing a strong contextual effect. 

Fig. 4. Simulated relative risk (RR) at both the county and public health district levels by allowing a weak contextual effect. 
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where i = 1 , 2 , . . . · · · , N and j = 1 , 2 , . . . · · · , M i with N rep-

resenting the number of PH district, i.e., N = 18 and M i de- 

notes the number of counties within the i th 

th PH district. 

In the next sections, we describe the four models. 

3.1. Model 1: convolution model 

Besag et al. (1991 ) proposed a convolution model that 

uses correlated heterogeneity terms (CH) and uncorrelated 

heterogeneity terms (UH) to describe the spatial risk vari- 

ation for disease(s). The CH terms measure the similarities 

of the risks of a certain infection between neighboring re- 

gions, whereas the UH terms uniquely quantify the risk of 

a certain infection for each region. In this paper, we con- 

sidered the convolution model (M1) to estimate the rela- 

tive risk at the county level as follows: 

y i j 

∣∣μi j ∼ P ois ( μi j = e i j θi j ) , (1) 

log ( θi j ) = a 01 + v i j + u i j , (2) 

where θ ij , a 01 , v ij , u ij , and e ij are the relative risk, the inter- 

cept, the UH terms, the CH terms, and the expected num- 

ber of cases for county j within the PH district i , respec- 

tively. We computed e ij as follows: 

e i j = 

∑ N 
i =1 

∑ M i 

j=1 
y i j ∑ N 

i =1 

∑ M i 

j=1 
p i j 

p i j 

where p ij is the county level population size in county j 

within the PH district i . We assumed a normal distribu- 

tion for the UH terms, v ij ∼ N (0, σ 2 
v 1 ), and an intrinsic con- 

ditional autoregressive structure (ICAR) for the CH terms, 

i.e., 

u i j 

∣∣∣∣∣u −i j ∼ N 

( 

1 

n i j 

∑ 

j∼l 

u il , 
σ 2 

u 1 

n i j 

) 

, 

where j ∼ l indicates the two counties j and l are neighbors, 

n ij is the total number of neighbors for county j of the i th 

PH district not just neighbors within the same PH district, 

u −i j is the set of all county level random effects excluding 

the j th county within PH district i and σ 2 
u 1 is the vari- 

ance of the CH terms. Note that we can have counties be 

neighbors even if they have different PH districts. Neigh- 

bors are those regions that share a common boundary and 

in this paper, they are defined based on the adjacency- 

matrix. For this and the other models below, we assumed a 

non-informative normal prior for the intercept a 01 and uni- 

form prior distributions, U (0100), for the standard devia- 

tions σ u 1 and σ v 1 ( Gelman, 2006 ). 

To estimate the relative risk at the PH district level, 

we aggregated the relative risk estimates from the county 

level, i.e., θi = μi / e i , where μi = 

∑ M i 
j=1 

μi j and e i is the ex- 

pected number of cases at the i th PH level. Model 1 ac- 

commodates neither contextual effects nor scale effects. 

The next model, Model 2, will demonstrate how to adjust 

for the contextual effects. 
3.2. Model 2: multilevel convolution model 

Although the convolution model (M1) is a widely used 

method to estimate spatial risk variations, it is not flexi- 

ble enough to address the contextual and scaling effects. 

The contextual effects could be accommodated by includ- 

ing the coarse level CH and UH terms into the fine level 

model in ( 2 ). The model formulation is similar as in ( 1 )

and ( 2 ), except we now include the random effects v ′ 
i 

and 

u ′ 
i 

that are shared across counties within the PH district as 

following: 

log ( θi j ) = a 0 1 + v i j + u i j + v ′ i + u 

′ 
i , (3) 

where v ′ 
i 

is the PH level UH term and assumed to be 

normally distributed, v ′ 
i 
∼ N(0 , σ 2 

v 1 ) , while u ′ 
i 

is the PH 

level CH term and it has an ICAR distribution, u ′ 
i 
| u ′ −i 

∼
N( 1 n i 

∑ 

i ∼l u 
′ 
l 
, 

σ 2 
u 1 

n i 
) . Here i ∼ l denotes the two PH districts i 

and l are neighbors, n i indicates the numbers of neighbors 

for PH district i , and u ′ −i 
is the set of all PH level random

effects not including the i th. We assumed similar prior dis- 

tributions as in M1 for the parameters. Here also, the rela- 

tive risk at the PH level, θ i , is estimated in a similar fashion 

as described in M1. 

3.3. Model 3: independent multiscale model 

The previous models, M1 and M2, only use the data 

at the county level. In our example, we have data at the 

county and PH levels for the state of Georgia. Hence, in 

this model, we use the information at each scale level; 

we assumed Poisson distributions for the outcomes at the 

county and PH levels and considered a convolution model 

at each scale level as follows: 

y i j 

∣∣μi j ∼ P ois ( μi j = e i j θi j ) , 

log ( θi j ) = a 01 + v i j + u i j , 

y i | μi ∼ P ois ( μi = e i θi ) , 

log ( θi ) = a 02 + v ′ i + u 

′ 
i , (4) 

where y i is the sum of the outcomes of the counties within 

the PH level, i.e., y i = 

∑ M i 
j=1 

y i j with y ij , θ ij , a 01 , v ij , u ij , v ′ i , u ′ 
i 
,

and e ij are the same as in M1 and M2. Here, θ i , a 02 , and e i 
are the relative risk, the intercept, and the expected num- 

ber of cases at the PH district level. We assumed a non- 

informative normal prior distribution for a 02 and we calcu- 

lated e i as follows: e i = 

∑ N 
i =1 y i ∑ N 
i =1 p i 

p i , where p i is the PH level 

population size and N is the number of PH districts, i.e., 

N = 18 . Note that Model 3 addresses neither the scale ef- 

fect nor the contextual effects. 

3.4. Model 4: shared multiscale model 

We have seen that M3 uses the information at each 

scale. However, M3 does not adjust for scale and contex- 

tual effects. In this section, we present the shared multi- 

scale model that accounts for the scale effects as well as 

the contextual effects using the shared CH and UH terms 

similar to M2 in ( 3 ). The model formulation for M4 is sim-

ilar to M3, but now the shared convolution model in ( 3 )
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replaces the county level convolution model in ( 4 ) as fol-

lows: 

y i j 

∣∣μi j ∼ P ois ( μi j = e i j θi j ) , 

log ( θi j ) = a 01 + v i j + u i j + v ′ i + u 

′ 
i , 

y i | μi ∼ P ois ( μi = e i θi ) , 

log ( θi ) = a 02 + v ′ i + u 

′ 
i . (5)

The difference between M4 and M2 is that in M4 we

estimate the relative risk at each scale level using convolu-

tion models, whereas in M2, we considered only a convo-

lution model at the fine level (county) and the coarse level

(PH district) relative risks are estimated using the fine level

relative risks. In addition, M2 uses only the data at the fine

level, while M4 considers the aggregated data across the

scale levels. Hence, the shared components in M4 could

address both the contextual effect as well as the scaling

effect by propagating information across the scale levels.

Note that M2 only allows one to study the covariate ef-

fect at the fine level. On the other hand, M4 helps to in-

vestigate the effect of covariate on the outcome of interest

across scale levels. We demonstrated this in the Supple-

mentary Appendix. In the next section, we describe first

the criteria to compare the different models and thereafter,

we present a simulation study to investigate the impact of

ignoring the contextual and scaling effects. 

3.5. Goodness of fit 

To evaluate and compare the performance of the mod-

els, we considered the deviance information criterion (DIC

Spiegelhalter et al., 2002 ) and the Watanabe Akaike in-

formation criterion (WAIC Watanabe, 2010 ). While the

DIC is based on a point estimate ( Gelman et al., 2014 ;

Plummer, 2008 ; van der Linde, 2005 ), the WAIC approxi-

mates cross-validation and uses a posterior predictive dis-

tribution ( Gelman et al., 2014 ). Note that Gelman et al.,

(2014 ) discussed that it is not easy to do WAIC in some

structured-data settings such as time series, spatial and

network data because it depends on partitioning of data.

They also discussed that DIC does not make this partition

explicitly, but derivation of DIC assumes that the resid-

uals are independent given the point estimate. However,

the formulation of WAIC is based on pointwise predictive

density ( Gelman et al., 2014; Watanabe, 2010 ) and it is

straightforward to implement it in standard software such

as WinBUGS even for structured-data such as spatial data

( Aregay et al., 2015a, 2015b, 2016a , 2016b ). Moreover, as

expected, we found similar results for both WAIC and DIC

(see Section 4 ). To assess the prediction ability of the mod-

els, we employed a mean square prediction error (MSPE

Lawson, 2013 ). 

One can argue that the multilevel models (M1 and M2)

should not be compared to the multiscale models (M3 and

M4) using DIC and WAIC measures because they have dif-

ferent likelihoods. Nevertheless, we believe that the multi-

level models and the multiscale models can be compared

using the DIC and WAIC measures at the county level be-

cause the likelihood of the multilevel models is similar

with the likelihood of the multiscale models at the county

level. However, at the PH level, we can only compare M3
and M4 using DIC and WAIC because M1 and M2 only use

the data (likelihood) at the county level and hence, we

cannot obtain DIC and WAIC values at the PH level for M1

and M2. 

We fitted all models jointly using Markov chain Monte

Carlo (MCMC) posterior sampling in a single analysis as

described in Section 4 . We considered 30,0 0 0 iterations

after we discarded the first 15,0 0 0 burn-in samples. We

ran three separate chains starting from different initial val-

ues. Hence, the posterior means were calculated based on

45,0 0 0 iterations, which were sufficient for convergence.

Further, we have run the MCMC algorithm for 10 0,0 0 0

burn-in iterations followed by 15,0 0 0 iterations and the re-

sults provided robust estimates. We assessed convergence

using an estimated potential scale reduction factor ( ̂  R ) and

trace plots. 

3.6. Simulation study 

In this section, we aim to investigate the impact of

ignoring contextual and scale effects using a simulation

study under a range of scenarios. We simulated county

level data within the state of Georgia from a Poisson dis-

tribution in ( 1 ) using the relative risk θ ij in ( 3 ) and the

expected number of cases e ij which is generated from a

gamma distribution with hyper-parameters equal to one.

This means that the county-level data sets were simulated

from M2. We fitted M1 and M3 to the simulated data

sets to assess the impact of ignoring scaling and contex-

tual effects, whereas we fitted M2 and M4 to investigate

how well the models recover the simulated risks. To obtain

the outcomes at the PH level, we summed up the county

level simulated outcomes within the PH district, i.e., y i =∑ M i 
j=1 

y i j . Note that we did not simulate both the county

and PH level data from M3 and M4 because the county

level data do not sum up to the PH level data when we

simulate the PH level data from a Poisson distribution. The

county level data within the PH district must sum up to

obtain consistent data at the PH district level because we

have hierarchically aligned counties within the PH districts.

Hence, we could not address the scaling effect in our sim-

ulated model. Although we could not directly simulate the

scaling effect from the models, it is naturally induced dur-

ing the data aggregation from the county into the PH level.

An alternative approach would be to use the multinomial

simulation based on the PH district simulated count with

county count probabilities a function of the county level

risks. However, this approach would involve making condi-

tions on the PH level data to simulate the county level data

from a multinomial distribution, which may be unrealistic

because in practice, the county level data are observed first

and then aggregate to obtain PH level data (see Section 2 ).

Next, we will discuss the two scenarios, where we sim-

ulated the contextual effects. In the first scenario, we sim-

ulated strong contextual effects, while in the second sce-

nario we simulated weak contextual effects. The novelty of

this simulation study is that it investigates how M1 and

M3 that ignore the contextual effects might badly recover

the simulated risks during the presence of strong contex-

tual effects in the simulated data sets. On the other hand,
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we expect that M2 and M4 will recover well the simulated 

risks. 

3.6.1. Scenario 1: strong contextual effects 

In the first scenario, we simulated 200 data sets from 

a Poisson distribution in ( 1 ) by introducing a strong con- 

textual effect in ( 3 ), i.e., we simulated 200 data sets from 

M2. Here, our main interest is to assess whether the mod- 

els that ignore the contextual effect (M1 and M3) could 

recover the risk variation when there is a strong PH (con- 

textual) effect in the data. This can be done by assuming 

the variances of the PH level CH and UH, σ 2 
u 2 and σ 2 

v 2 , 

to be large relative to the variances of the county level 

CH and UH, σ 2 
u 1 and σ 2 

v 1 , as shown in Fig. 3 . We as- 

sumed the following values that reflect the practical values 

for the relative risk: σu 1 = 0 . 01 , σv 1 = 0 . 01 , σu 2 = 0 . 3 , σv 2 =
0 . 3 , and a 01 = 0 . 1 . Comparing the county level and the PH

level risk patterns in Fig. 3 , we can see that the counties 

within the PH district have similar risks; there is a strong 

grouping (contextual) effect. On the other hand, there is a 

weak scale effect in the simulated risks because the scale 

of the risks at both county and PH levels is similar; it 

ranges approximately from 0.6 to 1.68. We also consid- 

ered other possible values with σu 1 = 0 . 1 σv 1 = 0 . 1 , σu 2 = 

0 . 5 , σv 2 = 0 . 5 , and a 02 = 0 . 1 (see Section 1 in the Supple-

mentary Appendix). 

3.6.2. Scenario 2: weak contextual effects 

In this scenario , our aim is to evaluate whether the 

complex models (M2 and M4) and the parsimonious mod- 

els (M1 and M3) provide similar risk variations when there 

is not a strong contextual effect in the data. Thus, we sim- 

ulated 200 data sets from a Poisson distribution in ( 1 ) by 

allowing a weak contextual effect in ( 3 ), i.e., we simulated 

data from M2. Here, we assumed the counties would not 

inherit common characteristics from their PH district; each 

of the counties has their own characteristics. To allow for 

such assumption in the model, we considered large val- 

ues for the variances of the county level CH and UH rel- 

ative to the variances of the PH level CH and UH terms. 

Hence, we assumed the following values: σu 1 = 0 . 3 , σv 1 = 

0 . 3 , σu 2 = 0 . 01 , σv 2 = 0 . 01 , and a 01 = 0 . 1 . We also consid-

ered other possible values with σu 1 = 0 . 5 , σv 1 = 0 . 5 , σu 2 = 

0 . 1 , σv 2 = 0 . 1 , and a 01 = 0 . 1 (see Section 2 in the Supple-

mentary Appendix). Fig. 4 shows the trend of the relative 

risk at both the county and PH levels for data simulated 

with a weak contextual effect. We can see that the county 

level risks within the PH district are different; there is no 

contextual (grouping) effect. Note that there is a relatively 

strong scale effect in Fig. 4 as compared to Fig. 3 because 

the scales at the county and PH levels are different; While 

the scale of the county level risks ranges from 0.45 to 2.23, 

the PH level risks were smoothed out and hence, the scale 

is between 0.97 and 1.49. 

4. Results 

We implemented the models with real and simulated 

data via the R2WinBUGS package. First, we present the re- 

sults obtained by fitting the models to the 200 simulated 

data sets. Thereafter, we describe the results obtained by 
applying the models to the oral cancer data from the state 

of Georgia. 

4.1. Simulation results 

4.1.1. Scenario 1: strong contextual effects 

Table 1 shows the model fit and prediction accuracy 

results for the data simulated using scenario 1, indicating 

that M4 is the best model at both the county and PH lev- 

els as measured by DIC and WAIC. Note that the bold-faced 

numbers represent the best model. The next best model 

at the county level is M2. M1 and M3 perform similarly 

at the county level. Although there is no significant differ- 

ence in terms of the MSPE, M2 and M4 provide slightly 

smaller values of the MSPE as compared to M1 and M3 at 

the county level. On the other hand, at the PH level, M4 

provides significantly smaller MSPE than M3, showing that 

M4 has better prediction accuracy than M3. The fact that 

M4 is better than M2 at the county level might indicate 

that jointly modeling the data at both levels is important 

to propagate information from one level to another level in 

both directions. 

Table 2 displays the bias and MSE of the parameters ob- 

tained from the models fitted to the simulated data. The 

bold-faced numbers represent the best model for that par- 

ticular parameter estimate in terms of bias and MSE. M1 

and M3 have smaller bias and MSE estimates for the in- 

tercept at the county level a 01 as compared to M2 and M4. 

This is an expected result because in M2 and M4 both the 

county and the shared PH level variances of the CH and 

UH terms affect the estimate of the county level intercept, 

while in M1 and M3 only the county level variances of the 

CH and UH terms affect the estimate of the county level 

intercept. On the other hand, M4 produces the least bias 

and MSE estimates for the county level variances of the CH 

and UH terms. This may be because the shared PH level CH 

and UH terms could capture some proportion of the county 

level variabilities; the PH level variances of the CH and UH 

terms obtained from M4 are larger than that of M3. Ul- 

timately, M2 has smaller bias and MSE estimates for the 

PH level variances of the CH and UH terms as compared to 

M4. This could be because we simulated the data from M2. 

In terms of average bias and MSE of the relative risks over 

the 159 counties and 200 simulated data sets, M1 and M2 

provide slightly smaller bias as compared to M3 and M4, 

while M4 produces the smallest MSE. Note that the bias 

measures of the relative risk estimates are smaller because 

they are an average of the bias of the 159 counties; some 

counties have negative values others have positive bias val- 

ues. When the biases are averaged over the 159 counties, 

they canceled each other. 

To investigate the models in terms of recovering the 

risk pattern, we calculated the average relative risk over 

the 200 simulated data sets for each county as shown in 

Fig. 5 . We can see that M2 and M4 recover the simu- 

lated risk in Fig. 3 , whereas M1 and M3, which ignore the 

contextual effects, do not recover the simulated risk well. 

Moreover, M2 and M4 produce consistent risk estimates at 

both the county and PH levels, while M1 and M3 provide 

risk estimates that are inconsistent across levels. 
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Table 1 

Simulation study scenario 1: model fit and prediction accuracy for data simulated from 

a Poisson distribution. 

Models DIC WAIC MSPE 

County PH district County PH district County PH district 

Model 1 362.90 – 362.31 – 1.969 –

Model 2 359.44 – 358.09 – 1.920 –

Model 3 362.54 88.50 362.03 87.31 1.967 19.951 

Model 4 350.09 79.57 348.28 75.63 1.877 14.355 

Table 2 

Simulation study scenario 1: bias and MSE of the estimates obtained from Models 1–4 that are 

applied to the simulated data from a Poisson distribution. 

Parameters Model 1 Model 2 Model 4 Model 3 

Bias MSE Bias MSE Bias MSE Bias MSE 

a 01 −0.144 0.029 −0.159 0.035 −0.144 0.029 −0.169 0.043 

σ u 1 0.374 0.167 0.284 0.097 0.367 0.159 0.202 0.048 

σ v 1 0.231 0.062 0.193 0.043 0.228 0.064 0.159 0.029 

σ u 2 – – 0.102 0.022 0.099 0.024 0.162 0.048 

σ v 2 – – -0.017 0.012 0.001 0.014 0.081 0.029 

θ1 −0.004 0.073 0.004 0.042 −0.006 0.073 0.007 0.040 

Fig. 5. Simulation study scenario 1: relative risk (RR) pattern obtained from the models fitted to the simulated data at the county and public health (PH) 

levels. The relative risks were obtained by averaging over all the 200 simulated data sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To assess how robust our results are, we assumed other

possible values for the parameters with σu 1 = 0 . 1 σv 1 =
0 . 1 , σu 2 = 0 . 5 , σv 2 = 0 . 5 , and a 01 = 0 . 1 ; the simulated rela-

tive risks are shown in the Supplementary Appendix Fig.

1A. The results obtained from the models (see Tables 1A

and 2A, and Fig. 2A in Section 1 in the Supplementary

Appendix) are similar with the findings of the models

fitted to the simulated data assuming σu 1 = 0 . 01 , σv 1 =
0 . 01 , σ = 0 . 3 , σ = 0 . 3 , and a = 0 . 1 . 
u 2 v 2 01 
4.1.2. Scenario 2: weak contextual effects 

In this scenario, we obtained the results from the mod-

els fitted to the simulated data assuming a weak contex-

tual effect as shown in Tables 3 and 4 . Here also, M4 is

the best model as measured by DIC, WAIC, and MSPE. This

is because M4 attempts to address the scale effect due to

data aggregation from the county to the PH level. However,

the difference in DIC, WAIC, and MSPE values between the

models in scenario 2 is not as significant as in scenario 1.
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Table 3 

Simulation study scenario 1: model fit and prediction accuracy for data simulated from 

a Poisson distribution. 

Models DIC WAIC MSPE 

county PH district County PH district County PH district 

Model 1 379.06 – 378.89 – 2.171 –

Model 2 380.04 – 379.88 – 2.168 –

Model 3 378.73 86.35 378.60 84.88 2.181 18.111 

Model 4 374.84 80.18 374.39 77.19 2.146 15.469 

Table 4 

Simulation study scenario 2: bias and MSE of the estimates obtained from Models 1–4 that are 

applied to the simulated data from a Poisson distribution. 

Parameters Model 1 Model 2 Model 3 Model 4 

Bias MSE Bias MSE Bias MSE Bias MSE 

a 01 −0.052 0.011 −0.080 0.017 −0.055 0.013 −0.084 0.019 

σ u 1 −0.006 0.016 −0.013 0.020 −0.0 0 01 0.021 −0.075 0.015 

σ v 1 −0.035 0.011 −0.042 0.013 −0.039 0.013 −0.068 0.016 

σ u 2 – – 0.270 0.079 0.274 0.083 0.333 0.125 

σ v 2 – – 0.151 0.028 0.149 0.031 0.197 0.053 

θ1 -0.007 0.132 −0.007 0.149 −0.009 0.134 −0.008 0.143 

 
In addition, M1, M2, and M3 have similar model perfor- 

mance at the county level. On the other hand, M4 is still 

better than M3 at the PH level. This shows that even with 

a weak PH (contextual) effect in the counties within the 

PH district, M4 fits and predicts the data better than M3, 

especially at the PH level. This may be because the shared 

components in M4 can serve dual purposes; adjusting for 

(1) scale effects and (2) contextual effects. Aregay et al. 

( Louie and Kolaczyk, 20 04, 20 06 ) also found model im- 

provement for the shared multiscale model as compared to 

the independent multiscale model for data simulated with- 

out contextual effects. As in scenario 1, M4 is better than 

M2 at the county level. This may be because M4 allows the 

county level data to borrow information from the PH level 

data and vice versa. 

Similar to scenario 1, M1 and M3 reveal smaller bias 

and MSE estimates for the intercept as compared to M2 

and M4 ( Table 4 ). However, M2 produces the smallest bias 

and MSE estimates for the variances of the CH and UH 

terms at the PH levels. In contrast to scenario 1, the bias 

and MSE estimates for the county level variances ( σ 2 
u 1 

and σ 2 
v 1 ) from M2 are smaller than those of M4. These 

results could show that the shared components in M4 may 

not fully incorporate some of the county level variabilities 

into the PH level data when there is a weak PH effect in 

the county level data. 

Fig. 6 displays the county and PH levels relative risks 

obtained from the models fitted to the simulated data sets. 

Here, in contrast to scenario 1, all the models provide simi- 

lar results. However, M2 and M4 recover the simulated risk 

in Fig. 4 slightly better than M1 and M3; For example, in 

south-western Georgia, there is an elevated risk present in 

the results from M2 and M4 as well as in the simulated 

model in Fig. 3 at both levels. M1 and M3, however, pro- 

vide relatively lower risk estimates in those areas as com- 

pared to that of M2 and M4. 

As in scenario 1, here also we assumed other possible 

values for the parameters with σu 1 = 0 . 5 , σv 1 = 0 . 5 , σu 2 = 
0 . 1 , σv 2 = 0 . 1 , and a 01 = 0 . 1 , and the simulated relative

risks are displayed in Fig. 3 (A) (see Section 2 in the Sup- 

plementary Appendix), indicating that the findings (see Fig. 

4(A), and Tables 3(A) and 4(A) Section 2 in the Supple- 

mentary Appendix) are similar with the results assuming 

σu 1 = 0 . 3 , σv 1 = 0 . 3 , σu 2 = 0 . 01 , σv 2 = 0 . 01 , and a 01 = 0 . 1 . 

4.2. Application to Georgia oral cancer data 

The results obtained from the models applied to the 

Georgia oral cancer study are shown in Tables 5 and 6 and 

Fig. 7 . In terms of DIC and WAIC, M4 slightly outperforms 

the other models at the county level. In addition, M4 is 

better than M3 at the PH level as measured by DIC, WAIC, 

and MSPE. On the other hand, all the models provide sim- 

ilar predictive accuracy at the county level. The fact that 

M4 is better than M3 at the PH level could indicate that 

the shared components in M4 attempt to recover the lost 

information during data aggregation. Nevertheless, there is 

no improvement in M2. This may be because there is not a 

strong contextual effect in this example (see Fig. 2 ). Hence, 

for this example, the shared components in M2 intended 

to account for the contextual effect could be considered 

unnecessary. 

The results in Table 6 show that M1, M2, and M3 pro- 

vide similar county level posterior parameter estimates, 

while M4 reveals slightly different county level estimates 

from those obtained using M1–M3. For example, the 

county level variance of the CH term ( σ 2 
u 1 ) obtained from 

M1–M3 is almost twice as large as that of M4. This may be 

because some of the county level variabilities in M4 propa- 

gate into the PH level variabilities as we found in the simu- 

lated data sets. This could be seen from PH level variances 

( σ 2 
u 2 and σ 2 

v 2 ) in M4, which are higher than those of M2 

and M3. 

When we compare the observed SMR in Fig. 2 with 

the relative risk (RR) obtained from the models in Fig. 7 , 

there is much variability in Fig. 2 at the county level as 
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Fig. 6. Simulation study scenario 2: relative risk (RR) pattern obtained from the models fitted to the simulated data at the county and public health (PH) 

levels. The relative risks were obtained by averaging over all the 200 simulated data sets. 

Table 5 

Georgia oral cancer study: model fit and prediction accuracy results. 

Models DIC WAIC MSPE 

County PH district County PH district County PH district 

Model 1 485.58 – 486.57 – 4.861 –

Model 2 487.31 – 488.17 – 4.86 –

Model 3 485.52 114.56 485.58 112.71 4.81 42.24 

Model 4 483.62 107.03 484.17 102.66 4.80 35.9 

Table 6 

Georgia oral cancer study: the posterior mean and standard error (SE) estimates. 

Parameters Model 1 Model 2 Model 3 Model 4 

Mean SE Mean SE Mean SE Mean SE 

a 01 0.031 0.073 0.014 0.086 0.025 0.077 −0.015 0.085 

σ u 1 0.564 0.169 0.509 0.197 0.518 0.175 0.242 0.164 

σ v 1 0.183 0.115 0.197 0.131 0.261 0.119 0.204 0.117 

σ u 2 – – 0.264 0.180 0.399 0.178 0.425 0.189 

σ v 2 – – 0.129 0.089 0.144 0.103 0.178 0.106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

compared in Fig. 7 . This is because the SMR is a crude es-

timate and as such, it does not adjust for neighbors’ ef-

fect, whereas the Models 1–4 provide smoothed RR es-

timates at the county level. However, at the PH level,

the observed SMR and the RR obtained from the models

have similar patterns. This is because the aggregation ef-

fect smooths out the data at the PH level and we tend to

see a smoothed SMR as compared to the county level: the

maximum county level SMR is 7.11 but after geographical

aggregations of these counties into PH district, the maxi-

mum PH level SMR is dropped into 1.78. Note that there

are some differences in the RR estimates among the mod-

els. For instance, similar to the observed SMR, M4 results

in higher risk estimates in the southwest part of the state

of Georgia as compared to Models 1–3. 

Furthermore, we extended Models 1–4 in Section 3 to

include an income covariate effect on the incidence of oral
cancer. The relative risks of the models with an income 
covariate are provided in the Supplementary Appendix, Ta-

ble 5(A). Note that X ij represents the median household in-

come for the j th county at PH district i , whereas X i denotes

the average income of the counties within the i th 

th PH dis-

trict, i.e., X i = 

∑ M i 
j=1 

X i j 

M i 
. The observed income at the county

and PH levels are shown in the Supplementary Appendix,

Fig. 5A indicating that there is a high median household

income at the northern Georgia. 

The results of the models applied to assess the spatial

impact of income on the incidence of oral cancer in the

state of Georgia are provided in the Supplementary Ap-

pendix, Table 6A. Comparing these results with the find-

ings in Table 5 above, we can see that including the in-

come covariate in the model significantly improve nei-

ther the model fit nor the prediction accuracy. On the

other hand, from Table 7A in the Supplementary Appendix,

all the models indicate that income has a significant
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Fig. 7. Georgia oral cancer study: relative risk (RR) pattern obtained from the models fitted to the data at the county and public health (PH) levels. 
spatial negative relationship with the incidence of oral can- 

cer at the county level, whereas M3 and M4 reveal in- 

significant positive results at the PH level. We also com- 

puted the risk patterns obtained from these models as 

shown in the Supplementary Appendix, Fig. 6A. Here also, 

similar to Fig. 7 above, there is a high incidence of oral 

cancer in the eastern Georgia. 

5. Discussion and conclusion 

The goal of this paper is to compare a shared multi- 

level model (M2) and a shared multiscale model (M4) for 

data available at different geographical units. M2 only con- 

siders the data available at the fine level, while M4 de- 

scribes the data available at both the fine and coarse lev- 

els. Furthermore, our proposed M2 can adjust for the con- 

textual effect due to grouping of smaller areal units into 

larger units, whereas M4 can address both the contextual 

effects as well as the scaling effects. We also compared 

special cases of these models: the special case of the M2 

is a convolution model (M1) that ignores the contextual ef- 

fect, while the special case of M4 is an independent mul- 

tiscale model (M3) that ignores both the contextual and 

scaling effects. 

The models were implemented using both real and sim- 

ulated data sets. When we simulated data with strong con- 

textual effects, M2 and M4 recover the pattern of the sim- 

ulated risk variations better than M1 and M3. M4 was also 

better than M2 as measured by DIC and WAIC. This could 

be because information is propagated from the fine to the 

coarse level and vice versa in M4. On the other hand, when 

there are weak contextual effects in the data, all the mod- 

els provide similar risk variations. Yet, in terms of DIC and 

WAIC, M4 was slightly better than the other models. This 

shows that even with weak contextual effects, the shared 

components in M4 attempt to account for the scale effects 

due to data aggregation. For the real data set application, 

the M4 was the best model at both the county and PH 

levels. 
The advantage of M2 over M4 is that it is a parsimo- 

nious model because it uses a convolution model only at 

the fine level to estimate the relative risk, while it esti- 

mates the relative risk at the coarse level by aggregating 

the relative risk estimates of the smaller areal units within 

the larger units. M4 provides better model fit and predic- 

tion accuracy as compared to M2. However, M4 uses the 

data twice at the fine and coarse levels because the data 

at the coarse level is an aggregation of the data at the fine 

level. In addition, M2 results in a more unbiased and pre- 

cise estimates of the variance of the random effects at the 

coarse level. If someone is interested in inference of the 

spatial correlation between areas at the PH level, M2 is a 

better option than M4. 

In summary, both the shared multilevel (M2) and 

shared multiscale models (M4) are useful to estimate risk 

variations at different geographically aggregated levels for 

public health planning purposes. We recommend using M2 

if the objective is to incorporate the contextual effects in 

the model and if there is interest in the inference of the 

strength of the contextual effects, whereas we recommend 

using the M4 if the goal is to study both the contextual 

and scale effects simultaneously. 
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