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Abstract

In this paper a one-dimensional material with topological order, namely the
charge density wave, is discussed. A review of the relevant theoretical back-
ground is provided. A method is proposed for finding the Chern numbers
for the charge density wave. This method allows one to approximate the
Hamiltonian of the charge density wave in such a way that the eigenstates
can be determined, so that the Chern numbers can be calculated.
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Populaire Wetenschappelijk introductie

De moderne mens heeft in het dagelijks leven veel te maken met elektriciteit.
Alles van huishoudelijke apparatuur tot mobiele telefoons wordt aangedreven
door elektrische stroom. In deze scriptie gaat het echter niet over de elek-
trische stroom zelf, maar over de materialen die stroom geleiden. Het bestud-
eren van geleiders, isolatoren en andere vaste stoffen is waar het vakgebied
gecondenseerde materie over gaat.

Over het algemeen zijn materialen geleiders of isolatoren. Geleiders laten
makkelijk een stroom door, terwijl isolatoren dat maar moeizaam of totaal
niet doen. Echter is er vrij recent een nieuwe vorm van materie ontdekt die
zowel isoleert als geleid. Over het oppervlakte van dit soort materialen kan
een stroom lopen terwijl de binnenkant van het materiaal isoleert. Materialen
met deze eigenschappen noemt men topologische isolatoren.

Topologische isolatoren zijn een excentrieke vorm van materie. De theorie
achter deze materialen is reeds bekend, echter in het vorige decennium zijn
voor het eerst pas waarnemingen gedaan van topologische isolatoren. We
kennen steeds meer materialen die en als geleider en als isolator werken.
Accurate modellen voor hoe dit soort materialen zich gedragen, worden steeds
belangrijker. Dit zodat wij in de toekomst hiervoor toepassingen kunnen
vinden.

Het doel van deze scriptie is om een wiskundige methode te formuleren
voor het bepalen van de hoeveelheid stroom die door dit soort materialen
heen gaat. Dit wordt gedaan door te bestuderen hoe de parameter ruimte van
het materiaal zich gedraagt. De parameter ruimte is een abstracte wiskundige
ruimte van het systeem. De structuur, ofwel de topologie, van de parameter
ruimte bepaald of een materiaal een topologische isolator is.
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CHAPTER 1

Introduction

For many years, phases of matter have been described using Landau the-
ory. It was thought that all phases of matter could be described by the
symmetries of the ground state of a system. However, since the discovery
of the integer quantum Hall effect, it has become clear that Landau theory
does not describe all possible phases of matter. A new kind of order has
since been introduced called topological order. Topological order becomes
apparent whenever the parameter space of a quantum mechanical system is
non-trivial.

An example of materials with topological order are topological insu-
lators. Such materials have a Fermi energy that lies in a band gap, and
should thus be insulators under most conditions. However, when they are
subjected to a slowly varying potential they allow for quantised transport
of charge. This transport occurs at the boundary of the material, while the
bulk remains insulating. The number of particles transported through the
topological insulator can be linked to a Chern number. The Chern number
reflects the non-trivial topology of parameter space.

In the following text one such system with topological order will be
studied. This system is called the charge density wave: a one-dimensional
crystal with phonon distortions The phonon distortions open up a band gap
in the material. Under the right conditions, the Fermi energy of the system
lies within this band gap and the material becomes insulating. The charge
density wave allows for a current to flow at the boundaries of the material,
but the bulk remains insulating.

Charge density waves have been studied by physicists using computa-
tion. The goal of this thesis was to see if analytical methods existed through
which the Chern number can be calculated. This thesis will propose an ana-
lytical method for calculating the Chern number of the charge density wave,
and discuss possible shortcomings of this method.
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CHAPTER 2

Solid State Physics

A complete understanding of the material that is discussed in this thesis
requires some background knowledge in condensed-matter physics, specifi-
cally in the field of topological insulators. An introduction into these fields
is provided in the following two chapters.

2.1 The hopping Hamiltonian

Figure 2.1: A periodic lattice with spacing a and hopping amplitude t. The
index j denotes the jth atom in the chain.

Let us consider an array of identical atoms so ordered that they form a
one-dimensional chain with a lattice constant a (see figure 2.1) [18]. It is
assumed that the electrons are fairly localised and can therefore only occupy
a single lattice site (in this case an atom). In order to avoid boundary
effects, we impose the periodic boundary condition |j +N〉 = |j〉, with N
representing the number of atoms in the chain and j the jth site of the lattice.
The distance x is given by aj, and the total length L of the chain equals Na.
By letting N →∞ a large chain is approximated. Furthermore, we take into
account that the electrons can jump from one site to the next. This is done
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with a so-called hopping amplitude t, which is the energy it costs an electron
to tunnel from one site to the next.

A simplified model for such a quantum mechanical system is the Hubbard
model. The Hubbard model is a useful basis for studying the CDW; for our
purposes, some simplifications will be made of this model in this subsection.
The usefulness of this model comes from the fact that we can write the
eigenstate of this Hamiltonian in terms of the vacuum state |Ω〉 and fermion
creation operators [7]

|ψ〉 =
[
Πic

†
i,↓

] [
Πjc

†
j,↑

]
|Ω〉 . (2.1)

With c†j and cj being the fermion creation- and annihilation operators, which
abide by the following anticommutation relations

{c†i,σcj,τ} = δijδστ , {c†i,σc
†
j,τ} = 0, {ci,σcj,τ} = 0, (2.2)

here {A,B} = AB +BA. As an example, consider the wave function of two
electrons: one at position x with spin up, and one at position y with spin
down. This would then be denoted as

|x↑, y↓〉 = c†x,↑c
†
y,↓ |Ω〉 . (2.3)

Using second quantisation, the Hamiltonian for the Hubbard model can
be written as [7]

Ĥ =
∑
<j,i>

∑
σ=↓,↑

(−tijc†i,σcj,σ − tjic
†
i,σcj,σ) +

N∑
i=1

Uic
†
i,↑ci,↑c

†
i,↓ci,↓. (2.4)

Here the first term is called the hopping Hamiltonian, the factor txy is the
hopping amplitude, and < j, i > stands for a sum over nearest neighbours.
The second term of the Hamiltonian is the spin-interaction term. When two
electrons with opposite spin are on the same lattice site x the system gains
energy Ux.

For the purpose of this thesis, it will not be necessary to consider the ef-
fects of spin. Therefore, the spin-interaction terms of the above Hamiltonian
will be neglected. Furthermore, because we are dealing with an arrangement
of identical atoms, the hopping probability tij will become

tij =

{
t/2 if i and j are nearest neighbours,

0 in all other cases.
(2.5)

Using these simplifications, the Hamiltonian that we will be working with,
henceforth called the hopping Hamiltonian, becomes [18]

Ĥ = − t
2

∑
j

(c†jcj+1 + h.c.). (2.6)

5



2.2 Bloch waves

The symmetries of a physical system can usually be exploited in order to
simplify a problem. For this reason, it will be useful to examine the trans-
lational symmetry of the Hamiltonian in Eq. 2.6. It is evident that under
the transformation x→ x+ a, with a being the lattice constant, the energy
remains invariant. Therefore, the so-called translation operator [8]

Ta |ψ(x)〉 = |ψ(x+ a)〉 , (2.7)

commutes with the Hamiltonian. This means that we can chose a basis such
that |ψnk〉 simultaneously diagonalises both Ta and Ĥ.

The eigenvalue of the translation operator turns out to be [8]

Ta |ψnk(x)〉 = |ψnk(x+ a)〉 = exp(ika) |ψnk(x)〉 , (2.8)

with k being the quasi-momentum, also referred to as the wave number (a
proof of this fact is provided in appendix A.1). Thus, it is possible to write
this vector in terms of Bloch waves, defined as [8]

|ψnk(x)〉 = exp(ikx) |un(x)〉 , (2.9)

where |un(x)〉 has the same periodicity as the unit cell |un(x+ a)〉 = |un(x)〉.
The method of writing the eigenstate of the Hamiltonian in terms of Bloch
waves is not only applicable to the aforementioned Hamiltonian (equation
2.6); it applies to any Hamiltonian that commutes with the translation op-
erator.

2.3 Metals and Insulators

In the outlined model the eigenvalue problem will be solved using the Fourier
transformation [18]

cj =
1√
N

∑
k

exp (−aijk)ck. (2.10)

Here, a represents the lattice constant, i the imaginary number, k the wave
number and N the number of atoms on the chain. Because the lattice is
periodic with the lattice constant a, the wave number k is well defined in
the region (−π/a, π/a) [18]. Wave numbers outside of this region repeat
themselfs such that k-space is a d-dimensional torus ??. Furthermore, due
to the periodic boundary condition x = x + L, the spacing between wave
numbers is 2π/Na.
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Returning to the Hamiltonian, let us invoke the identity [8]

1

N

∑
j

exp (aij(k − k′)) = δk,k′ , (2.11)

from which it can be obtained that the Hamiltonian becomes [18]

Ĥ = −t
∑
k

cos (ka)c†kck. (2.12)

Having performed the Fourier transformation, we have effectively solved the
eigenvalue problem of the Hamiltonian. For if we now write our eigenstate
as a product of momentum creation- and annihilation operators working on
the vacuum state |k〉 = c†k |Ω〉, we find that

Ĥ |k〉 = −t cos (ka) |k〉 . (2.13)

Using this result, it can be clarified how metals and insulators differ. There
is evidently only a small range of energies that electrons can occupy. Due
to the Pauli exclusion principle, electrons cannot occupy the same energy
eigenstate. Thus, when the chemical energy of the system lies in a region
with no allowed energies (see left side of figure 2.2), electrons cannot be
excited to the next energy level. The material is therefore insulating. When
the chemical energy lies in a region with energy bands (see right side of figure
2.2) electrons can be easily excited (for instance, by thermal fluctuations) to
higher energy states. In this case the material is a metal.

Figure 2.2: Two graphs of energy bands, with E representing energy and
k the wave number [6]. The graph on the left shows an insulator with a
chemical potential µ in between bands, while the right graph shows a metal
with a chemical potential inside energy bands.

In this thesis materials are discussed that act like insulators, in that
they have a Fermi energy in a bandgap, but nonetheless conduct electrons.
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They do this when a slowly varying potential is applied to the system. In
the following chapter, the physics of such materials is reviewed.
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CHAPTER 3

Chern Insulators

This chapter will discuss the theory behind Chern, or topological, insulators.
Chern insulators are insulators that, under the right conditions, allow for
the quantised transport of particles. The number of particles transported is
called the Chern number. The Chern number is a result of the non-trivial
topology of the parameter space of a quantum mechanical system.

3.1 The Berry phase

The topological order of a material can be described using the Berry phase,
which will be introduced in the following subsection. Subsequently, the con-
nection between the Berry phase and the quantised current will be derived.

3.1.1 Berry’s phase as an example of holomony

Berry’s phase is an example of holomony in quantum mechanics [5]. In
differential geometry, holomony is the angle by which a vector quantity is
rotated while it is transported parallel to some curved surface. Michael
Berry uses a classical example of holomony to draw the analogy between
Berry’s phase, a quantum mechanical phase he discovered, and the parallel
transport that occurs during excursions over closed loops on spheres [2]. His
example goes as follows: consider an arrow with its origin at the north pole
of a globe, angled tangential to the globe (see figure 3.1). Let the arrow move
down along a line of longitude such that at every point it remains tangential
to the globe. The arrow will move down until it reaches the equator, after
which it will move along the equator to another line of longitude. Through
this new line of longitude, let it now move up to the north pole again. The
arrow has been transported over a closed loop along the sphere, and at no
point in time was it not tangential to the sphere. What one finds, however,
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is that the arrow has picked up a phase. This is evident because the arrow
is no longer pointing in its direction (see figure 3.1).

Figure 3.1: The closed loop over the sphere goes from A, B, C to D. The
white arrows show the direction of the path taken. The black arrows are
tangential to the surface at every point. It can be seen that the black arrows
are rotated after the loop is completed.

Berry’s phase is different to the aforementioned example in that it does
not result from a loop in real space. It is rather the result of closed loops
in the parameter space of quantum systems. Such loops occur whenever the
environment of a quantum mechanical system is gradually changed in such
a way that after a time T the system restores to its initial condition. During
such processes, the initial and final wave functions are the same up to some
phase factor.

3.1.2 Berry’s phase as a consequence of adiabetic theorem

In the following section, the derivation of the Berry phase will be shown.
This will be done in accordance with Berry’s original paper [1], as well as
with the paper by Xiao et al. [3]. Let us start by considering a quantum
mechanical system with a Hamiltonian Ĥ that depends on time t through a
set of parameters. Let these parameters be represented by ξ(t). For brevity
this will be contracted to ξ = ξ(t). The state |ψ(t)〉 of this system will evolve
through time according to Schrödinger’s equation

Ĥ(ξ) |ψ(t)〉 = i~
∂

∂t
|ψ(t)〉 . (3.1)
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Let us now presume that the system’s environment is gradually changed. If
this change is gradual enough, a basis can be used such that, at any point in
time, Ĥ(ξ) is diagonal. That is, for all n (assuming the basis is discrete),

Ĥ(ξ) |n(ξ)〉 = εn |n(ξ)〉 (3.2)

is satisfied. When a system that is initially prepared in the state |n(ξ(0))〉
is adiabatically evolved from t = 0 to t = T , it follows from the adiabatic
theorem that at time t = T the system is given by [1]

|ψn(T )〉 = exp

{
− i
~

∫ T

0

En(ξ(t))dt

}
exp(iγn(T )) |n(ξ(T ))〉 . (3.3)

Here, the second exponential is the Berry phase1. To find an expression for
the Berry phase, we use Eq. 3.1 and 3.3 to obtain that [3]

γn(T ) =

∫ T

0

i 〈n(ξ)| ∂
∂t
|n(ξ)〉 dt. (3.4)

Gradually changing the system can be seen as an excursion over a trajectory
in parameter space, defined through ξ(t). When a system evolves in such
a way that after time T it returns to its inital condition, the trajectory in
parameter space becomes a loop, which shall be denoted as L. By performing
a change of variables in Eq. 3.4 it thus becomes [1]

γn(L) =

∮
L
i 〈n(ξ)|∇ξn(ξ)〉 · dξ. (3.5)

Here the quantity i 〈n(ξ)|∇ξn(ξ)〉 is called the Berry connection and shall
henceforth be written as An(ξ). Evidently, Eq. 3.5 is only dependent on the
path taken through parameter space. This highlights the geometric property
of the Berry phase.

In order for the Berry phase to be an observable quantity, it must be
both real and gauge-invariant. We shall concern ourselves only with the
gauge-invariance of the Berry phase here (for a proof that the Berry phase
is a real number, see appendix A.2).

It can be readily deduced that Eq. 3.4 is not gauge-invariant. By
performing the gauge transformation [3]

|ψn(ξ)〉 → exp(iΛ(ξ)) |ψn(ξ)〉 , (3.6)

1Michael Berry originally discovered the Berry phase while studying stationary quan-
tum states. He considered the possibility that the phase differences between such systems
could be a consequence of the adiabatic theorem [2]
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the Berry phase transforms as

γn → γn + Λ(ξ(0))− Λ(ξ(T )). (3.7)

Hence, a suitable Λ(ξ) can be chosen such that the Berry phase will be
transformed to zero. However, with the condition that we have a loop in
parameter space, ξ(0) = ξ(T ), such gauge transformations are no longer
possible due to the single-valuedness of the gauge [3]

Λ(ξ(0))− Λ(ξ(T )) = 2πn, n ∈ Z. (3.8)

It follows that in such instances the Berry phase cannot be transformed and
is thus gauge-variant.

3.1.3 The Berry curvature and classical electromagnetism

There exist some similarities between the mathematics of classical electro-
magnetism and that of the Berry phase, which will be clarified here. These
similarities have been shown to exist by [1], [3] and [4]. First, let us again
consider equation 3.5. As noted before, the line integral of the Berry con-
nection over some closed curve is a measurable quantity, but the local Berry
connection is not, because it is not gauge-invariant. Vector fields with such
properties have been studied in classical electromagnetism, where they are
known as the magnetic vector potential. To exploit these commonalities, let
us apply Stokes’ theorem to Eq. 3.5 in order to get [4]

γn(L) =

∫∫
S
∇ξ ×An(ξ) · dS. (3.9)

Here S is a surface that has as its boundary the closed loop L. dS is an
infinitesimal element of the surface S that is oriented perpendicular to this
surface. The vector ∇ξ ×An(ξ) in Eq. 3.9 will henceforth be referred to as
the Berry curvature and will be denoted as Ωn(ξ). Simplifing Eq. 3.9 gives
us [3]

γn(L) =

∫∫
S

Ωn(ξ) · dA. (3.10)

From Eq. 3.10 it becomes clear that the Berry phase can be interpreted as
the Berry curvature flux through the surface S. The sources of the Berry
curvature are the degeneracies of the of the wave function[1].
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The Berry curvature can also be expressed as a sum over states. Let
us consider the Berry curvature once more, this time working out an explicit
expression using the instantaneous eigenstates of the Hamiltonian [1]

Ωn(ξ) = −i∇ξ × 〈n(ξ)|∇ξn(ξ)〉 . (3.11)

By working out the cross-product and using the identity operator, this ex-
pression can be rewritten as a sum over states. Some obvious abbreviations
in notation will be made here [1]

Ωn(ξ) = −i
∑
m6=n

〈∇n|m〉 × 〈m|∇n〉 . (3.12)

By invoking the second Hellmann-Feynman theorem [3] (for a derivation of
this theorem see appendix A),

〈m| ∇Ĥ |n〉
(εm − εn)

= 〈m|∇n〉 , (3.13)

the expression for the Berry curvature can be simplified to [1]

Ωn(ξ) = −i
∑
n6=m

〈n(ξ)|∇ξĤ|m(ξ)〉 × 〈m(ξ)|∇ξĤ|n(ξ)〉
(εm(ξ)− εn(ξ))2

. (3.14)

To further apply our knowledge of electromagnetism, we can introduce
the Berry curvature as a second-order tensor [4]

Ωn
µν = ∂µAν − ∂νAµ, (3.15)

which is explicitly given by

Ωn
µν = −2=

〈
∂n(ξ)

∂ξµ

∣∣∣∣ ∂n(ξ)

∂ξν

〉
. (3.16)

The relation between the tensor form and the Berry curvature vector is Ωn
ij =

εijk(Ωn)k with εija being the Levi-Cevita tensor [3]. The tensor form of the
Berry curvature is the form that will be most used in this study of Chern
insulators.

It must be stressed that the similarities between classical electromag-
netism and the Berry phase are purely mathematical in nature. The vector
ξ is not necessarily three-dimensional, nor does it always denote coordinates
in real space. Whenever the Berry phase is proportional to some magnetic
flux it is only so because of the specifities of the system; it does not hold in
general.
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The Berry phase is geometric property of the parameter space of a
quantum mechanical system. As such, it can be used to quantify the topology
of parameter space. This is precisely what the Berry is used for in the study
of Chern insulators. In the next section the Berry phase will be used to
determine the current that can flow through a Chern insulator.

3.2 Quantised current

In the following section, the Berry phase will be connected to Chern insula-
tors. It will be shown that in certain materials that are generally considerd
insulators, it is possible to induce a current. This current is quantised, as will
be shown in the upcoming subsection. Furthermore, using the Berry phase
it will be shown that quantisation of the current is result of the topology of
the parameter space of the material.

3.2.1 Derivation of the quantised current

The question we pose is: do certain insulators allow for a current under the
condition that the potential is slowly varying? To answer this question, let
us consider a quantum system that is a one-dimensional band insulator. Per
definition, such an insulator has a Fermi energy that lies in between two
energy bands. Let us apply a potential which is periodic in time t with
period T , and in position x with period L. It was Thouless who showed that
for such a system a current can be induced [15].

Because the system is periodic even with perturbation, it becomes use-
ful to work with Bloch representation. The instantaneous eigenstates of
the Hamiltonian are then given by exp(ikx) |unk(t)〉, with k being the wave
number. If the potential varies slowly enough, the adiabatic approximation
can be used. Disregarding an irrelevant phase factor, the expression for the
wavefunction is [3]

|ψnk〉 ≈ |unk〉 − i~
∑
n′ 6=n

|un′k〉 〈un′k|∂tunk〉
(εn′ − εn)

. (3.17)

We will now use the following formal relationship between the Hamiltonian
and the velocity operator [10]

vn =
1

~
〈ψ|∂Ĥ/∂k|ψ〉 , (3.18)

where Ĥ is the Hamiltonian of the system and ~ is the reduced Placnk
constant. Thus, up to the same order as Eq. 3.17, the average velocity is
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given by [3]

vn =
∂εn(k)

~∂k
+
∑
m6=n

[
〈un|∂kĤ|um〉 〈um|∂tun〉

(εm − εn)
− h.c.

]
. (3.19)

By using both the second Hellmann-Feynman theorem and the identity op-
erator

∑
m |ψm〉 〈ψm| = 1, the expression becomes

vn =
∂εn(k)

~∂k
− i[〈∂kun|∂tun〉 − 〈∂tun|∂kun〉]. (3.20)

Observe that the second term in this equation is equal to the Berry curvature
tensor Ωkt. Thus, it is possible to symplify Eq. 3.20 as

vn =
∂εn(k)

~∂k
− Ωn

kt. (3.21)

Integrating Eq. 3.21 over the BZ, the first term disappears due to the period-
icty of the system, and we are left with only the second-order term. Summing
over all filled bands will therefore give us that the induced current is [3]

j = −
∑
n

∫
BZ

Ωkt
dk

2π
. (3.22)

We are interested in the number of particles that are tansported after a period
of time, T , has elapsed. For a single band we then find that the number of
transported particles is given by [15]

cn = −
∫ T

0

dt

∫
BZ

Ωkt
dk

2π
. (3.23)

By integrating the Berry curvature over the BZ, we find the induced current
in a Chern insulator. From the above derivation it is not clear why the
particles transported should be an integer number. In the next section, the
link between the Chern number and the above expression will be made, thus
proving that the number of particles transported is an integer.

3.2.2 The Chern number

In the previous section it has been shown that the current in a Chern insu-
lator is given by integrating the Berry curvature over the BZ. Such a surface
integral can be related to a line integral over the boundary of that surface
through Stokes’ theorem. The BZ of a crystal, being a torus, does not have
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a boundary; it follows that the integral of the Berry curvature over the BZ
should be zero [20].

However, the previous argument does not apply when the topology of
the parameter space is non-trivial. This occurs in systems where the gauge is
not well behaved over the whole BZ. In such instances it is necessary to divide
the BZ into sections, such that the gauge is well defined everywhere. The
boundary between two such regions necessarily has a phase discrepancy, for
otherwise the gauge could have been well defined over the whole BZ. Because
of this phase discrepancy, an integer called the Chern number can be assigned
to the system, representing the non-trivial topology of the parameter space
of the system.

For the following derivation of the Chern number, let us assume that
the BZ of a system can be divided into two regions, denoted as S1 and S2.
At the boundary of these two regions, the phase discrepancy is [20]

|ψ1〉 = exp(iχ(ξ)) |ψ2〉 . (3.24)

Here |ψ1〉 represents the wave function in S1, and |ψ2〉 represents the wave
function in S2. Thus, the difference in the Berry connection between areas
S1 and S2 at the boundary becomes [20]

A1(ξ) = i 〈ψ1|∂ξψ1〉 = i 〈ψ2|∂ξψ2〉 − ∇ξχ(ξ) = A2 −∇ξχ(ξ). (3.25)

Using the difference in the Berry connection at the boundary, it will now
be shown that the Berry phase must be an integer. By using Eq. 3.9 and
applying Stokes’ theorem, the Berry phase for the system is [20]

γn(L) =

∫∫
S1
∇ξ ×A1(ξ) · dS +

∫∫
S2
∇ξ ×A2(ξ) · dS (3.26)

=

∮
∂S1
A1(ξ) · dξ +

∮
∂S2
A2(ξ) · dξ (3.27)

Since the BZ is a torus, and is thus without a boundary, it follows that
∂S1 = −∂S2. This enables us to simplify the above equation as [20]

γn(L) =

∮
∂S1

[A1(ξ)−A2(ξ)] · dξ (3.28)

= −
∮
∂S1
∇ξχ(ξ) · dξ. (3.29)

One can imagine ∇ξχ(ξ) as an arrow rotating while it moves along the curve
∂S1. The above integral represents the amount in radians that the arrow
is rotated during its excursion over the curve [10]. Because of the single-
valuedness of χ(ξ), the arrow will have to return to its initial value when it
comes back to its starting point. Evidently the Berry phase has to be an
integer times 2π.
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3.2.3 Chern number in the two-level system

The simplest possible example of a system where the Berry phase manifests
itself is in the two-level Hamiltonian. This system is a practical example
of how the Chern number is a representation of the non-trivial topology of
parameter space.

The two-level Hamiltonian is [6]

Ĥ(k) =

(
h0 + hz hx − ihy
hx + ihy h0 − hz

)
. (3.30)

Using the Pauli matrices, Eq. 3.30 can be rewritten as [6]

Ĥ(k) = hµ(k)σµ = h(k) · σ + σ0h0, (3.31)

with the Pauli vector σ and the matrix σ0 being equal to the two-by-two
identity operator 1. The energies of the two-level Hamiltonian are [6]

E± = h0 ± ‖h‖ . (3.32)

The eigenstates for this Hamiltonian can be obtained by writing the vector h
in spherical coordinates, h = (h cos(φ) sin(θ), h sin(φ) sin(θ), h cos(θ)). Here
θ represents the azimuthal angle and φ the polar angle. The eigenstates, as
functions of θ and φ, are [3]

|ψ−〉 =

(
sin(θ/2)e−iφ

− cos(θ/2)

)
, |ψ+〉 =

(
cos (θ/2)e−iφ

sin (θ/2)

)
. (3.33)

Using the enegry eigenstates of the Hamiltonian, the Berry connection can
be determined. For the lowest eneregy eigenstate, the two vector components
of the Berry connection are [3]

Aθ = 〈ψ−|∂θψ−〉 = 0, Aφ = 〈ψ−|∂φψ−〉 = sin2(θ/2). (3.34)

As stated previously, we shall look at the non-trivial topology of pa-
rameter space. As such, we shall only be concerned with the lower energy
eigenstate. When evaluating the lower energy eigenstate at θ → 0, the phase
of the wave function becomes ill-defined. By performing the gauge transfor-
mation [6]

|ψ−〉 → exp (iφ) |ψ−〉 , (3.35)

the ambiguity of the phase at θ → 0 can be lifted; but doing so will only
shift the ill-defined region to θ → π. Thus, the wave function cannot be
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Figure 3.2: The regions UN and US where the phase is well defined can be
seen here [6]. The curve that represents the boundary of these regions is
denoted as ζ.

both smooth and well defined over the whole BZ. In order to ensure the wave
function is well defined at every point, it is necessary to divide the sphere
into two regions, denoted here as UN and US (see figure 3.2).

At the boundary ζ, where regions UN and US meet, there is a discrepancy
in the Berry connection AUS − AUN = ∇φ. This discrepancy results in the
Chern number becoming

c1 =
1

2π

∮
ζ

∇φ · dφ̂, (3.36)

with φ̂ being the unit vector in the direction of the polar angle. Therefore,
the Chern number of the lowest energy band is c1 = 1.

This derivation illustrates how the Chern number results from the phase
discrepancy at the boundary of the two regions UN and US, thus clarifying
the relationship between the topology of the parameter space of the quantum
mechanical system and the resulting Chern number.

3.3 Integer Quantum Hall Effect

The charge density wave can be mapped onto the integer quantum Hall
effect (IQHE), a system that has been studied extensively. The setup of the
IQHE consists of a two-dimensional electron gas moving in a plane, with
a magnetic field applied perpendicular to this plane. The plane is defined
by 0 < x < Lx and 0 < y < Ly. There is also an electric field applied
tangential to the plane. In the low temperature limit, the magnetic field
will quantise the energy of the system into so-called Landau levels. The low
temperature limit assures that the material will be an insulator, because the
gaps between the Landau levels are much larger than the thermal excitations
of the electrons. The name ‘integer quantum Hall effect’ derives from the fact
that the conductivity of the system is quantised σxy = (pe/2π~) with p ∈ N.
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3.3.1 Landau levels

The Landau levels can be derived using the Hamiltonian for a system with
a freely moving electron in an applied magnetic field [9]

Ĥ =
1

2m

[
(px − eH0y)2 + p2y

]
+ eE0y. (3.37)

Here pi represents the momentum operators of spacial direction i; e represents
the charge of the electron; and H0 and E0 represent the magnitudes of the
magnetic and electric fields respectively. For the magnetic field, the Landau
gauge is used. For this system, px commutes with the Hamiltonian and is
thus a constant of the motion. This allows the energy eigenstate of this
system to be written as [9]

exp(ikxx)φn(y − y′), (3.38)

with φn representing the nth energy eigenstate of the simple harmonic oscil-
lator. The centre of this eigenstate is shifted to the new origin y′ = ~kx/eH0,
with kx being the wave number in the x-direction. Here ωc is the angular
frequency eH0/m. The energy of this Hamiltonian is given by [9]

εn,k = (n+
1

2
)ωc~ +

1

2
m(E0/H0)

2 + eE0y
′. (3.39)

The boundary conditions will now be imposed on these functions. Be-
cause the electrons are restricted from leaving the plane, the centre of the
wave function needs to be within the area S = LxLy. This condition means
that kx is quantised [19]

kx(m) = 2πm/Lx, (3.40)

with m ∈ N. Furthermore, because 0 < y′ < Ly, a second condition is that
0 < m < Φ/Φ0. Here Φ0 = 2π~/e and Φ = H0LxLy [19]. Because of this, we
can write the centre of the wavefunction as [16]

y′m = Ly
Φ0

Φ
m. (3.41)

3.3.2 Laughlin’s argument

Laughlin has proposed an argument for the quantisation of the conductivity
in the QHE, based on fundamental physical principles. Using gauge ar-
guments, Laughlin proved the quantisation of the Hall conductances. The
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following subsection will describe his proof, sometimes called Laughlin’s ar-
gument.

Let us again consider a two-dimensional, non-interacting electron gas,
with the slight alteration that the surface 0 < x < Lx, 0 < y < Lx will
now be made into a loop. This will be done by imposing the condition
(x, y) = (x, y + Ly). Note that the magnetic field is still perpenducular to
every point on this loop (see figure 3.3). The Hamiltonian for this loop is
similar to Eq. 3.37.

Figure 3.3: A loop with at every point a magnetic field perpendicular to it
aswell as an applied electric field ∆V [9]. The current in this diagram is
denoted with I.

To determine the current of the system, Laughlin used the formula [9]

I = −∆εn,k
Φ0

. (3.42)

As noted before, Eq. 3.37 has solutions φn centred around ym = ~kx(m)/eH0.
The centre of these solutions is not gauge-invariant. Let us consider the gauge
transformation that adds the vector ∆Ax̂ to our original vector potential.
Here x̂ represents the unit vector in the x-direction of the material, such
that this new gauge penetrates the loop through its centre. The change in
the centre of the wave function is [9]

yn → yn − LxLy
∆A

Φ
. (3.43)

However, not all ∆A are allowed. Only when ∆A is a multiple of −Φ0/Lx
does the system remain unchanged by the gauge transformation. For exam-
ple, the gauge transformation ∆A = −Φ0/Lx transforms the centre of the
nth wave function as [16]

ym → ym + Ly
Φ0

Φ
= ym+1. (3.44)
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It is evident that this gauge tranformation essentially shifts every particle
from position m to m+1. It follows that the gauge transformation transports
some charge through the loop. Seeing as the energy is purely electric, it is
evident that ∆εn,k = peV , with p being the number of charged particles
transported through the system. Using Eq. 3.45 this results in [9]

I = p
e2V

2π~
. (3.45)

From this result it follows that σxy = (pe/2π~). Thus, it has been shown
how the IQHE can be explained through gauge arguments.

3.3.3 Topology of the integer quantum Hall effect

Laughlin’s argument has been extended by Halperin [17], who noted that
Laughlin’s argument points to the existence of a gapless edge state. This
preludes the Chern number approach, since the Chern number can be thought
of as proving the existence of edge states in a material. However, from
the above derivation it is not instantly clear that the quantisation of the
resistivity of the IQHE is topological in nature. This fact was first shown by
Thouless, Kohmoto, Nightingale and den Nijs [11].

The Chern number for the IQHE has been derived by making use of
the Nakabo-Kubo formula. This formula comes from linear response theory;
for a derivation of the formula see source [16]. The Nakabo-Kubo formula is

σxy = −ie2~
∑
εα<Ef

∑
Ef<εβ

(vy)αβ(vx)βα − (vx)αβ(vy)βα
(εα − εβ)2

, (3.46)

with Ef being the Fermi energy and vx and vy the velocity operators [10].
This formula can be related to the Berry curvature by using the formal
definitions of the velocity operators [10]

(vi)αβ =
1

~
〈α|∂Ĥ/∂ki|β〉 . (3.47)

Using this formal relationship and invoking the second Hellmann-Feynman
theorem, Eq. 3.46 becomes [10]

σxy = −ie
2

~
∑
εα<Ef

∑
Ef<εβ

(〈
∂uα

∂k2

∣∣∣∣ β〉〈β ∣∣∣∣ ∂uα∂k1

〉
−
〈
∂uα

∂k1

∣∣∣∣ β〉〈β ∣∣∣∣ ∂uα∂k2

〉)
.

(3.48)
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Here, |uα〉 are the Bloch waves, with α denoting the quantum number related
to energy. By further applying the identity operator, the expression becomes

σ(α)
xy =

(
e2

2π~

)
1

2πi

∫
BZ

d2k [∇k ×Aα(k1, k2)]3 , (3.49)

with [...]3 denoting the third vector component, the Berry connection being
A(k1, k2) = 〈uα|∇ku

α〉, and ∇k being the vector with elements ∂/∂k1 and
∂/∂k2. As has been shown in a previous section, this integral can be linked
to a Chern number p. Thus, the conductivity becomes [10]

σxy =
e2

2π~
p. (3.50)

This result is in agreement with that obtained in the previous section through
Laughlin’s argument. It shows the topological nature of the IQHE.
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CHAPTER 4

Charge Density Wave

The charge density wave (CDW) is a one-dimensional crystal with phonon
distortions that modulate the positions of the atoms, with the result that
the atoms are no longer evenly spaced. The crystal is still invariant under
discrete translations, but the length of these translations is enlarged. Because
of this, the size of the unit cell is extended and the Brillouin zone is reduced
in length, and a gap opens up in the energy bands of the system. Thus,
under the right conditions, the CDW is insulating.

This chapter begins with a description of the charge density wave. It
will show that the CDW has topological order, and that a slowly varying
potential can therefore induce a current. The question of this research project
was whether an analytical method of determining the Chern numbers for the
CDW exists. This chapter will continue by proposing such an analytical
method, and conclude with a discussion of possible shortcomings.

4.1 Rice-Mele model

Figure 4.1: Shifted atoms

In order to understand the CDW let us first consider the Rice-Mele model.
The Rice-Mele model is an altered version of the Hamiltonian discussed in the
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previous section. Let us consider again Eq. 2.6. This time, an extra term
is added to the Hamiltonian that represents phonon-electron interactions.
These interactions slightly shift the positions of the atoms in the chain either
to the right or to the left so that pairs of atoms are formed (see figure). The
amount that the atoms are shifted is dependent on the magnitude of the
phonon-electron interactions δt. The Hamiltonian for the Rice-Mele model
is [3]

Ĥ =
1

2

∑
j

{
[δt(−1)j − t]c†jcj+1 + h.c.

}
. (4.1)

The eigenvalue problem of this Hamiltonian can again be solved by using
the Fourier transformation from Eq. 4.3. Doing so yields the Hamiltonian

Ĥ =

π/2a∑
k=−π/2a

{iδt[sin (ak)c†k+π/ack − sin (ak)c†kck+π/a]

+ t[cos (ak)c†kck − cos (ak)c†k+π/ack+π/a]}.

(4.2)

For a step-by-step derivation of this Fourier transformation, see appendix
A.4.

The Hamiltonian from Eq. 4.2 is somewhat complex to evaluate as it
is. In order to simplify this equation, the Bogoliubov-DeGennes Hamiltonian
can be used [18]

Ĥ =

π/2a∑
k=−π/2a

(
c†k c†k+π/a

)
H(k)

(
ck

ck+π/a

)
, (4.3)

H(k) =

(
t cos (ak) iδt sin (ak)
−iδt sin (ak) −t cos (ak)

)
. (4.4)

The eigenvalue problem of Eq. 4.3 is now reduced to finding the eigenvalue
of H(k). The energy of this Hamiltonian is

E±(k) = ±
√
t2 cos2 (ak) + δt2 sin2 (ak). (4.5)

There are two important things to note about the Rice-Mele model. Firstly,
as mentioned in the introduction to this chapter, a gap opens in the energy
bands (see figure 4.2). This can be shown by evaluating Eq. 4.5 at the points
k = ±π/a. The gap is a result of the off-diagonal elements in H(k), which
represent the interactions between different bands. The energy gap ensures
that if the crystal is half filled with electrons, it will be insulating. Secondly,
the density of electrons in the material becomes a cosinus [13]. This fact will
be used to slide the charge density wave.
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Figure 4.2: In figure (a) we see the energy of the charge density wave without
phonon interactions [13]. In figure (b) we see the gap opening up and the
BZ being reduced in size due to the phonon interactions. Furthermore, we
see that the charge density becomes a cosinus in figure (b).

4.2 General Hamiltonian for the charge density wave

The Rice-Mele model demonstrates all of the important phenomena that are
emblematic of the charge density wave. However, there is a more general
formulation of the charge density wave that will be employed in this thesis.
This model has been used in the study of CDWs before and originates in a
paper by Flicker and van Wezel [14]. The Hamiltonian for this general charge
density wave is [14]

Ĥ =
1

2

∑
j

{
[δt cos (ajQn + φ)− t]c†jcj+1 + h.c.

}
; (4.6)

here Qn = (2π/an), and φ is some arbitrary phase. For higher integers n, the
number of atoms that cluster together becomes larger. Therefore, the unit
cell of the system is enlarged in order to accommodate the new translationial
symmetry of the system. An enlarged unit cell means a reduced Broullin
zone in k-space. The physical interpretation of Qn is that it is the length of
the reduced BZ of the system.
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Let us consider for what scenerios the CDW is insulating. First, let us
denote the total number of electrons that can occupy the charge density wave
with Ntot. When the BZ is reduced in length, the density of states remains
unchanged. Because of this, when the length of the BZ is reduced by the
fraction 1/q with q ∈ N, the number of atoms that can occupy the lowest
energy band is Ntot/q. The same holds true for the second-lowest energy
band, but in order to fill the second-lowest energy band completely 2Ntot/q
electrons are needed. Thus, for energy band p there are pNtot/q electrons
needed to fill up the band. Here p/q is called the filling fraction of the CDW
[14].

The way in which charge can be transported through the charge density
wave is by varying phase φ, such that after a certain time T the difference
in φ is 2π. This is called sliding the charge density wave (see figure 4.3).

Figure 4.3: A charge density wave with a phase that is slowly changed
through time [12]. It can be seen that after the phase has changed by 2π, the
modulated atoms return to their initial position, but some charge has been
transported.

4.2.1 Chern number for 1/3-filling

Let us look at the Chern number for the CDW with n = 3 and thus with
Q3 = 2π/3a (the 1/2-filling fraction Hamiltonian will be discussed in a later
section). The outline of determining the Chern number is as follows: first,
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the energy eigenstates of the Hamiltonian need to be determined. Next an
explicit expression of the Berry curvature tensor will be derived using the
energy eigenstates. Finally the Berry curvature will be integrated over the
BZ to yield the Chern number.

Figure 4.4: The figure represents energy bands of the charge density wave for
Q3 = 2π/3a. The graph show the energy plotted against the wave number
k. The red arrows represent the points at which different bands interact
with one another. Here ε1, ε2 and ε3 denote the functions from 4.8. The
symbols ε1, ε2 and ε3 are so positioned that it can be seen at which points
these functions should cross if there were no interactions between bands.

As such, let us start by finding the eigenvalues for our Hamiltonian.
Using 4.6 and Fourier tranforming it, it can be shown that the Bogoliubov-
DeGennes Hamiltonian is given by

H(k, φ) =

 ε1(k) δt1(k)eiφ δt∗2(k)e−iφ

δt∗1(k)e−iφ ε2(k) δt3(k)eiφ

δt2(k)eiφ δt∗3(k)e−iφ ε3(k)

 , (4.7)

with

δt1(k) =
δt

2

[
e−ia(k+Q3) + eiak

]
, ε1(k) = −t cos (ak), (4.8)

δt2(k) =
δt

2

[
e−iak + eia(k−Q3)

]
, ε2(k) = −t cos (ak + aQ3), (4.9)

δt3(k) =
δt

2

[
e−ia(k+2Q3) + eia(k+Q3)

]
, ε3(k) = −t cos (ak + 2aQ3). (4.10)

27



The matrix in Eq. 4.7 is quite complex. To avoid the difficulty of finding the
exact eigenstates of this Hamiltonian, the system will be approximated. For
this approximation, two facts are used:

• The points at which the diagonal elements of the matrix H(k, φ) are
degenerate act like sources of Berry curvature [3], and therefore deter-
mine the Chern number. Other points in the Brillouin zone are not of
importance to the Berry curvature.

• The lowest diagonal energy ε1 is degenerate at the points k = −π/3a
and k = π/3a.

Thus, the proposed method of finding the Chern number is as follows: firstly,
determine the energy eigenstate at the points that are of importance for the
Berry curvature. Secondly, define a smooth function between these points.
Thus, an expression for the energy eigenstate has been found and the Berry
curvature can be determined.

In order to find the energy eigenstates of Eq. 4.7 at the points k = ±π/a,
a further approximation is used. The degeneracies of the diagonal elements of
Eq. 4.7 are lifted by the off-diagonal elements; thus, the off-diagonal elements
are only of importance at the points k = ±π/a. For example, near the point
k = −π/3a it is possible to write Eq. 4.7 as

H(−π/3a, φ) ≈

 ε1(−π/3a) δt1(−π/3a)eiφ 0
δt∗1(−π/3a)e−iφ ε2(−π/3a) 0

0 0 ε3(−π/3a)

 . (4.11)

We can do this because ε1(−π/3a) and ε2(−π/3a) are equal to one another
at these points. Because we are determining the 1/3-filling fraction case, we
are only interested in the lowest energy eigenstates. For the matrix 4.11, the
eigenstate with the lowest energy is

|ψ(−aπ/3)〉 =
1√
2

 1
−e−iφeiπ/3

0

 . (4.12)

The other point of interest is k = π/3a. By approximating the matrix such
that only the off-diagonal terms δt2 and δt∗2 are taken into account, it can be
shown that the lowest energy eigenstate at this point is

|ψ(aπ/3)〉 =
1√
2

 1
0

−eiφe−iπ/3

 . (4.13)
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In between these points the wave function should restore to being

|ψ(k)〉 =

1
0
0

 , (4.14)

because the interactions will no longer be of interest and the matrix will
simply be diagonal.

A problem arises due to gauge freedom. Both Eq. 4.12 and Eq. 4.13
are determined up to a phase factor. Because of this, we will partition the
BZ into two sections: S1 = [−π/3a, 0] and S2 = [0, π/3a]. As such, let us
write the wave functions in these regions as

|ψ1(k, φ)〉 =

 α1(k)
β1(k)e−iφeiπ/3

γ1(k)

 , |ψ2(k, φ)〉 =

 α2(k)
β2(k)

γ2(k)eiφe−iπ/3

 . (4.15)

Here |ψ1〉 is the lowest energy eigenstate in region S1, and |ψ2〉 is the lowest
energy eigenstate in the region S2. Because of the normalisation condition
on the wave function, α can be determined when β and γ are given. As such,
we will only concern ourselves with β and γ. The values of these functions
in the relevant regions are given in the table below.

k = −π/3a k = 0

β1 −1/
√

2 0
γ1 0 0

k = 0 k = π/3a
β2 0 0

γ2 0 −1/
√

2
(4.16)

By using Eq. (3.23) the Chern number is given by

c1 =

∫ 2π

0

dφ

∫ π/3

−π/3

dk

2π
Ωkφ. (4.17)

Now the energy eigenstates from Eq. 4.15 can be used to find an expression
for the Berry curvature Ωkφ. The Berry curvature is explicitly given by

Ωkφ = −2= 〈∂kψ−|∂φψ−〉 . (4.18)

Performing the calculation, a Chern number results

c1 =

∫ 2π

0

dφ

∫ π/3a

−π/3a

dk

2π
Ωkφ (4.19)

= −β2
1(k)

∣∣∣0
−π/3a

+ γ22(k)
∣∣∣π/3a
0

(4.20)

= −1 (4.21)

Disregarding a minus sign, the result is in agreement with the values known
from the literature [14].
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4.2.2 Chern number for 2/3-filling

Having found the Chern number for the 1/3-filling case, let us now apply
the proposed method to the 2/3-filling case. The matrix is again given by
Eq. 4.7. This time we will look at the second-lowest energy eigenstate. As
such, there will be only three points at which the off-diagonal terms need to
be taken into account (see figure 4.2.1). These interactions play a role near
the points k = −π/3a, k = 0 and k = π/3a. The first and last points are
simply the same interactions from the previous section; only now they are
the higher energy state. Because of this, the eigenstates are

|ψ(− π

3a
)〉 =

1√
2

 1
e−iφeiπ/3

0

 , |ψ(
π

3a
)〉 =

1√
2

 1
0

eiφe−iπ/3

 . (4.22)

For brevity we will again use the symbol |ψ〉 here; however, here |ψ〉 rep-
resents the eigenstate of the second energy band. The degeneracy at point
k = 0 results from the crossing of bands ε2 and ε3. Thus, the matrix at k = 0
is approximated as

H(0, φ) ≈

ε1(0) 0 0
0 ε2(0) δt3(0)eiφ

0 δt∗3(0)e−iφ ε3(0)

 . (4.23)

Thus, it is evident that the eigenstate is

|ψ(0)〉 =
1√
2

 0
1

−e−iφe−iπ/3

 . (4.24)

Now that the second energy eigenstate has been determined for the relevant
points, the Berry curvature can be calculated. As before, it will be necessary
to devide the BZ up into different regions; in this instance, four regions
are required. For a step-by-step derivation of the boundary conditions see
appendix A.5. We can thus define the following functions:

|ψ1〉 =

 α1

β1e
−iφeiπ/3

0

 , |ψ2〉 =

 0
α2

β2e
−iφe−iπ/3

 , (4.25)

|ψ3〉 =

 0
β3e

iφeiπ/3

α3

 , |ψ4〉 =

 α4

0
β4e

iφe−iπ/3

 , (4.26)
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with |ψi〉 being the second-lowest energy eigenstate in the ith region, and α
being fully defined through the normalisation condition on |ψ(k, φ)〉. The
values of the functions β1, β2, β3 and β4 are given in the table below.

k = −π/3a k = −π/6a k = 0 k = π/6a k = π/3a

β1 1/
√

2 1 0 0 0

β2 0 0 −1/
√

2 0 0

β3 0 0 1/
√

2 0 0

β4 0 0 0 1 1/
√

2

(4.27)

Using these facts, it can be show that the Chern number integral is given
by

c2 =

∫ 2π

0

dφ

∫ π/3a

−π/3a

dk

2π
Ωkφ (4.28)

= β2
1(k)

∣∣∣−π/6a
−π/3a

+ β2
2(k)

∣∣∣0
−π/6a

− β2
2(k)

∣∣∣π/6a
0
− β2

2(k)
∣∣∣π/3a
π/6a

(4.29)

= 2 (4.30)

This result is again in agreement with the Chern number values found in the
literature [14]. Again, a minus sign appears to be missing, but the relative
minus sign between c1 and c2 is correct.

4.2.3 Chern number for 1/2-filling

We will now return to the 1/2-filling CDW. It will be shown that this system
does not have a Chern number.

The Hamiltonian from Eq. 4.6 can be evaluated using Q2 = π/a. Using
a Fourier transformation, the Bogoliubov-DeGennes Hamiltonian becomes

H(k, φ) =

(
t cos (ak) iδt sin (ak) cos (φ)

−iδt sin (ak) cos (φ) −t cos (ak).

)
(4.31)

The energy of this Hamiltonian can be shown to be

E± = ±
√
t2 cos2 (ak) + δt2 sin2 (ak) cos2 (φ). (4.32)

It is evident that for the values k = ±π/2a and φ = ±π/2, the energy gap
between the two surfaces closes. This means that for n = 2 the CDW is not
an insulator and therefore cannot be a topological insulator either. Further
confirmation of this fact is that when the Berry curvature from Eq. 3.14 is
used to determine the Chern number, there are points at which the Berry
curvature is infinity. This is precisely because the energy gap closes. As such,
a Chern number for this case can not be calculated.
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4.3 Discussion

In this chapter, a method for determining the Chern number in a CDW has
been proposed. The method consists of several layers of approximations.
First of all, the off-diagonal terms in the hamiltonian are only taken into
account at points where the diagonal elements are degenerate. Subsequently,
the energy eigenstates of the hamiltonian are determined at these precise
points. The idea of the approximation is that these points act like sources
for the Berry curvature and thus are the most vital to determining the Chern
number.

The second layer of approximation occurs when, having found the en-
ergy eigenstates at all these different points, a smooth function is defined
in between these points. However, when determining the eigenstates of the
Hamiltonian, there is a freedom to chose the phase of the wave function.
Thus, several regions are defined where the phases differ. The Berry curva-
ture is integrated seperately in each of these regions. Having done so, the
Chern number has been determined.

It seems that the above described method yields the right answer for
at least two filling fractions. However, at many instances in the method, the
gauge freedom is used. Thus it could be that the answers are correct only
because there are many degrees of freedom in the system.
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CHAPTER 5

Conclusion

This paper discussed Chern insulators and methods of determining the Chern
numbers of charge density waves. First, an introduction to condensed matter
physics was provided, using the Hubbard model. Furthermore it was shown
that materials that have a Fermi energy that lies in a band gap are generally
insulating. The thesis continued by discussing the theory behind topological
insulators. Which are materials that also have a Fermi energy that lies
in a band gap, but in which a current can nonetheless be induced. The
number of particles transported throught the system has been linked to the
systems topology through a Chern number. The Chern number was explained
through the Berry phase. The general background of the project was closed
by discussion of the integer quantum Hall Effect.

After the relevant background material was introduced, the charge den-
sity wave was discussed. Charge density waves are one-dimensional crystals
of which the position of the atoms is modulated. This modulations reduces
the length of the Brillouin zone and opens a band gap in the material. Thus
when the charge density wave has the right number of electrons in it, it be-
comes insulating. Following this, methods for determining the Chern number
of the charge density wave have been proposed. The method proposed al-
lows one to approximate the Hamiltonian of the charge density wave. The
energy eigenstate of the approximated Hamiltonian can be found and thus
the Chern number can be calculated. This has been done in order to gain a
deeper understanding of the workings of the charge density wave.

The proposed method goes as follows: firstly, determine the wave func-
tion at all places where there are degenerate states. Next, define regions that
have smooth functions such that the Berry curvature can be calculated there.
This method appears to work in at least two instances. Possible shortcom-
ings of the method have been discussed, which include that there might be
two many freedoms in the system.
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APPENDIX A

First Appendix

A.1 Bloch waves

The following derivation originates from the book Solid State Physics [8].
Consider the vector |ψ(x)〉, which is an eigenvector of the Hamiltonian. As
stated before, it should also be an eigenvector of the the translation operator

TR |ψ(x)〉 = c(R) |ψ(x)〉 . (A.1)

Here R and R′ being a multiple of the lattice constant a. It can be readily
deduced that the translation operators have the properties

TRTR′ |ψ(x)〉 = c(R)TR′ |ψ(x)〉 = c(R)c(R′) |ψ(x)〉 , (A.2)

TRTR′ |ψ(x)〉 = TR+R′ |ψ(x)〉 = c(R +R′) |ψ(x)〉 . (A.3)

When the translation operator commutes with the Hamiltonian of a system,
the effects of the translations cannot be observed

〈ψ(x+R)|ψ(r +R)〉 = 〈ψ(x)|c†(R)c(R)|ψ(x)〉 = 〈ψ(x)|ψ(x)〉 . (A.4)

The properties that the eigenvalues of the translation operator must adhere
to are

c(R +R′) = c(R)c(R′), ‖c(R)‖2 = 1. (A.5)

It follows from these conditions that the eigenvalue of the translation operator
is

c(R) = exp(iRk). (A.6)

Here k being the wave number.
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A.2 Proof that the Berry connection is a real quantity

It is important that the Berry connection is a real number, in order for the
Berry phase to be an observable quantity. It is assumed that the reader is
familiar with the short-hand notation used here.

The normalisation condition on the eigenstate ensures that the Berry
connection is real [5]. Note that the Berry connection is given by

−=〈n|∇n〉 . (A.7)

Now, given the fact that the 〈n|n〉 = 1, it follows that

∇〈n|n〉 = 0 (A.8)

→〈n|∇n〉 = −〈∇n|n〉 (A.9)

→〈n|∇n〉† = −〈n|∇n〉 . (A.10)

Thus, 〈n|∇n〉 is a purely imaginary number, and A.7 is purely real.

A.3 Second Hellmann-Feynman theorem

The following derivation comes from [21]. The fact that |n〉 is an instanta-
neous basis for Ĥ, i.e.

Ĥ |n〉 = εn |n〉 , (A.11)

allows us to prove the aforementioned identity. First, by applying the gradi-
ent to both sides of Eq. A.11, the expression becomes

(∇Ĥ) |n〉+ Ĥ |∇n〉 = (∇εn) |n〉+ εn |∇n〉 . (A.12)

Multiplying both sides of the equation with 〈m|, where m 6= n,

〈m|∇Ĥ|n〉+ 〈m|εm|n〉 = 〈m|(∇εn)|n〉+ εn 〈m|∇n〉 . (A.13)

Simplifying the equation thus gives us the aforementioned identity

〈m| ∇Ĥ |n〉
(εm − εn)

= 〈m|∇n〉 , (m 6= n). (A.14)

A.4 Rice-Mele model in k-space

The Rice-Mele model has a Hamiltonian that consists of a hopping term and
phonon-interaction term

Ĥ = Ĥhop + Ĥint. (A.15)
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In the following section, Ĥint will be Fourier transformed.

Ĥint =
δt

2

∑
j

[(−1)jc†jcj+1 + h.c.] (A.16)

First, note that (−1)j = exp (aQ2ij), with Q2 = π/a. By performing the
Fourier transformation 4.3, this gives

Ĥint =
δt

2N

∑
k,k′,j

{
c†kck′ exp [aij(k − k′ +Q2)] exp (−aik′) + h.c.

}
. (A.17)

Invoking the identity
∑

j exp [aij(k − k′ +Q2)] = Nδ(k−k′+Q2), yields the
equation

Ĥ =
δt

2

∑
k

{
exp [−ai(k +Q2)]c

†
kck+Q2 + h.c.

}
. (A.18)

Thus, the whole Hamiltonian in k-space becomes

Ĥ =
∑
k∈BZ

{
δt

2
exp [−i(ak + π)]c†kck+Q2 + t cos (ak)c†kck + h.c.

}
. (A.19)

It is not straightforward that this Hamiltonian is hermitian. By changing
the summation bounds from k ∈ {−π/a, π/a} to k ∈ {−π/2a, π/2a} it is
obtained that

Ĥ =

π/2a∑
k=−π/2a

{iδt[sin (ak)c†k+π/ack − sin (ak)c†kck+π/a]

+ t[cos (ak)c†kck − cos (ak)c†k+π/ack+π/a]}.

(A.20)

A.5 Boundary conditions on the energy eigenstates

The energy eigenstates of the second energy band of the charge density wave
at the points k = −π/3a, k = 0 and k = π/3a have been derived in chapter 4.
Because of the fact that for other points in the BZ the off-diagonal elements
of the Hamiltonian are left out of consideration, the Hamiltonian will consist
out of merely the diagonal elements. This means that the energie eigenstates
are given by

|ε1〉 =

1
0
0

 , |ε2〉 =

0
1
0

 , |ε3〉 =

0
0
1

 . (A.21)
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For k = −π/6a the eigenstate becomes |ε2〉 and for k = π/6a the eigenstate
becomes |ε3〉. We now have the energy eigenstates at all necessary points.
Using the gauge freedom the functions can be connected as follows:

|ψ(− π

3a
)〉 =

1√
2

 1
e−iφeiπ/3

0

 → |ψ(− π

6a
)〉 =

 0
e−iφeiπ/3

0

 . (A.22)

For the second region

|ψ(− π

6a
)〉 =

0
1
0

→ |ψ(0)〉 =
1√
2

 0
1
−e−iφ

 . (A.23)

For the third region we find

|ψ(0)〉 =
1√
2

 0
eiφeiπ/3a

1

→ |ψ(
π

6a
)〉 =

0
0
1

 . (A.24)

For the fourth region

|ψ(
π

6a
)〉 =

 0
0

eiφe−iπ/3a

→ |ψ(
π

3a
)〉 =

1√
2

 1
0

eiφe−iπ/3a

 . (A.25)

Using these facts the choices for the values in table 4.27 can be shown to be
the correct ones.
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