Making Anti Evil Maid protection of Qubes OS resistant against
shoulder surfing and video surveillance

Patrik Hagara

April 3, 2017

Abstract

Observing the user during early boot should not be
sufficient to defeat the protection offered by Anti
Evil Maid. Possible avenues for improvement are
explored and a solution introduced for both high-
risk users, leveraging three extra devices to increase
multistage evil maid attack resistance, and a much
simpler scheme for users whose threat model does
not include such multistage attacks. Detailed time
line is put forward for implementing this Google
Summer of Code proposal.

1 Introduction

Anti Evil Maid (AEM) is an opt-in feature of the
Qubes OS [I] project aiming to provide resistance
against so called evil maid type of security circum-
vention attacks, when an attacker has physical ac-
cess to target computer.

The current implementation of AEM protection
in Qubes OS does not offer any protection what-
soever against shoulder surfing or video surveil-
lance based attacks (referred to as ”observation
attacks” throughout this document), as both the
static trusted boot secret text or image unsealed
by the Trusted Platform Module (TPM) and the
disk encryption passphrase are seen in the clear on
the screen or keyboard, respectively. This allows an
evil maid attacker to either modify the boot process
and insert a malicious payload while still showing
the right static secret or to trivially decrypt com-
puter storage using captured passphrase.

This Google Summer of Code (GSoC) project aims
to reduce the impact of observation attacks by

changing the way TPM is used for machine to
user authentication from simple visual static secret
verification to a method resistant to such attacks.
Similarly, the user to machine authentication is
upgraded from a simple passphrase to two factor
authentication (2FA) so that an attacker knowing
only a passphrase cannot compromise the system.

Given the unique security properties and capabili-
ties of TPM devices, multiple possible avenues for
machine to user authentication present themselves.
For instance, the TPM can be used to unseal a
secret seed for time based one time passphrase
(TOTP) generator, a six digit output of which the
user would verify on a separate 2FA device (per-
haps a closely guarded smartphone with TOTP
application). As for the options of user to ma-
chine authentication, TPM-sealed and passphrase-
protected Linux Unified Key Setup (LUKS) key
files could be used. An attacker would then have
to both know the passphrase and obtain a copy of
the key file itself, which would be again stored on
a small device the user always carries with them
and plugs into the computer only after a verified
trusted boot.

Additionally to the GSoC project idea [2] written
by the Qubes OS team, this proposal strives to also
provide the best possible user experience (UX) for
users whose threat model does not include multi-
stage software based evil maid attacks.

2 Project goals

The main goal of this GSoC project is to sub-
stantially reduce the impact of observation attacks
against an AEM enabled Qubes OS installations
while not unnecessarily increasing the user per-



ceived complexity of AEM boot process. This goal
will be achieved by implementing support for and
documenting opt-in machine to user authentica-
tion mechanism leveraging Intel Trusted eXecution
Technology (TXT) dynamic root of trust measure-
ment (DRTM) and TPM assisted measured boot
to unseal a LUKS key file stored on removable me-
dia. The LUKS key file will be protected by an
additional passphrase in order to provide user to
machine authentication mechanism. Fallback sup-
port must also be developed to allow recovery in
case of LUKS key file loss or unavailability.

Since the primary goal implementation will not be
able to fully protect users whose threat model in-
cludes multistage software based evil maid attacks,
the following features listed should also be imple-
mented either during the three month GSoC work
period (should the time permit) or at any point
before or after the event.

Stretch goals are to implement, document and pro-
vide fallback options for:

e opt-in usage of TOTP tokens for machine au-
thentication

e opt-in storing TPM-sealed and passphrase-
protected LUKS key file on a secondary AEM
media (inserted only after TOTP code verifi-
cation)

Both of the above features trade ease of use for
increased resistance against software based multi-
stage evil maid attacks. However, while not com-
pletely preventing such attacks, they do extend the
attack surface by requiring multiple devices which
can be independently copied, altered or seized by
an attacker. Thus, potential users need to carefully
evaluate which of the AEM setup options are most
suited for their particular threat model, if any.

Deliverables (applicable to both primary and
stretch goals):

e AEM packages with listed features imple-
mented

e documentation for enrolling and upgrading
users

GitHub issues (tracked in qubes-issues repository
[3]) affected by this project:

e Option to use AEM secret as LUKS key file [4]

3 Implementation

Since Qubes OS aims to be ”a reasonably secure
operating system” with an emphasis on being user
friendly, the primary goal implementation aims to
deliver the best possible UX for users whose threat
model does not include high enough probability of
multistage evil maid attacks. Pros and cons of this
choice were discussed [B] on the qubes-devel mailing
list. The workflow shall be as follows:

1. user inserts their closely guarded AEM boot
media containing tboot bootloader, Xen hy-
pervisor, dom0 Linux kernel, initrd and associ-
ated configuration along with TPM-sealed and
passphrase-protected LUKS key file and makes
computer boot from it

2. measured boot is performed and then, assum-
ing neither the computer firmware nor soft-
ware has been maliciously modified, the Plat-
form Configuration Register (PCR) values in-
side the TPM will match the state needed to
unseal the LUKS key file

3. once the key file is unsealed, user is prompted
to enter their passphrase in order to decrypt
the LUKS key file

4. assuming the passphrase supplied by user was
able to decrypt the key file, internal com-
puter drive is unlocked and computer contin-
ues booting the OS

Workflow of the stretch goal implementation which
is able to resist some of the possible multistage evil
maid attacks is slightly more involved:

1. user inserts their closely guarded AEM boot
media into the computer and makes computer
boot from it

2. bootloader performs a measured boot, at-
tempts to unseal TOTP seed using TPM and,
if successful, displays a derived six digit code

3. user checks whether displayed TOTP code
matches the one computed by their 2FA de-
vice

4. if and only if the TOTP codes match, user
can safely insert secondary AEM storage me-
dia containing the TPM-sealed, passphrase-
encrypted LUKS key file



5. the key file is automatically unsealed by TPM

6. user is prompted for key file decryption
passphrase

7. assuming correct passphrase was entered and
the key file is able to unlock LUKS-protected
internal disk, the OS continues booting

In both cases, an attacker observing both screen
and keyboard during early boot cannot mount and
evil maid attack without either:

e breaking the measured boot via a vulnerability
in Intel TXT, TPM or another vital part of the
trusted boot process

e copying or seizing the AEM boot media and
the LUKS key file (possibly stored on sepa-
rate media), enabling the attacker to access
encrypted computer contents upon seizing it

Applicable to the stretch goal implementation only,
following additional attack is possible:

e gaining access to or modifying the TOTP seed,
changing time and/or date of the 2FA device
or replacing the whole device, allowing exfiltra-
tion of AEM boot media contents and LUKS
key file, thus enabling the attacker to seize the
computer and access its encrypted contents

If using TOTP token for machine authentication,
user should take care to first memorize the six digit
code shown on the computer screen and only then
take out their 2FA device to generate a verifica-
tion code. This avoids a possible attack whereas an
attacker is able to remotely alter computer screen
contents in (near) real time.

Please note that AEM protection must be installed
on removable media in all cases as observation at-
tacks would capture the TPM Storage Root Key
(SRK) passphrase and make it trivial for an at-
tacker to unseal the LUKS key file, should they
come to possess it. Combined with observing the
passphrase used for the key file, the attacker will
be able to unlock the encrypted storage of the tar-
get computer upon seizing it (simply copying con-
tents of the internal computer drive is not enough
as possessing the TPM chip is still required for key
file unsealing).

4 Timeline

May 30 - Jun 6: research and implement a proof
of concept (PoC) for generating, enrolling,
passphrase-protecting and TPM-sealing a
LUKS key file

Jun 6 - Jun 13: merge the above PoC into AEM
installer, rebuild the package and test

Jun 13 - Jun 27: implement PoC for disk un-
locking using a TPM-sealed, passphrase-
protected LUKS key file; research how to in-
tegrate it into Dracut initrd and Plymouth;
merge the PoC into AEM, rebuild the package
and test; first evaluation period starts

Jun 27 - Jul 4: implement fallback options;
merge fallback option changes into AEM
package, rebuild and test; first evaluation
period ends

Jul 4 - Jul 11: document enrollment and up-
grade procedures; rebuild the AEM package
to include documentation

Jul 11 - Jul 18: engage the community in both
reviewing documentation/code and testing the

implementation; fix any bugs found

Jul 18 - Jul 24: implement PoC for generat-
ing/importing TOTP seed, transferring gen-
erated seed into 2FA device, TPM-sealing the

seed and generating TOTP codes
Jul 24 - Jul 28: second evaluation period

Jul 28 - Aug 4: implement fallback options for
TOTP, displaying and refreshing the TOTP
code on Plymouth boot screen; merge that into
AEM package, rebuild, test

Aug 4 - Aug 11: implement support for sec-
ondary AEM device holding LUKS key file; in-
tegrate it into the AEM package, rebuild, test

Aug 11 - Aug 21: implement fallback options
for secondary AEM device; merge it into the
AEM package, rebuild, test; document enroll-
ment and upgrade steps

Aug 21 onward: engage the community in both
reviewing documentation/code and testing the
implementation; fix bugs found by the commu-
nity



Although currently having a twenty hours per week
internship, I am confident I will be able to dedicate
another thirty to forty hours per week to GSoC, as
that would be roughly equal to my schedule during
the school year. However, should this be deemed
a concern, I could suspend my internship for the
three month GSoC working period. No other com-
mitments scheduled during the relevant time frame.

I will be sending progress updates to the qubes-
devel mailing list, plus weekly formal summaries.

5 About me

Second year undergraduate in Information Security
at the Faculty of Electrical Engineering and Com-
munication, Brno University of Technology. Pre-
viously studied Computer Networks and Commu-
nication for two academic years at the Faculty of
Informatics, Masaryk University.

Passionate about free and open-source software,
computer security and digital privacy. Started cod-
ing at the age of twelve, presently focusing on
Python. Installed Qubes OS in mid-2015 and be-
gan using it as a primary OS shortly thereafter.

Almost four years of quality engineering internship
at Red Hat. Comfortable working both indepen-
dently and as part of a team, large code bases are
fine, too. Management distance of eight time zones
has never been an issue, neither has the fact of not
being a native English speaker.

Not submitting GSoC proposal to any other par-
ticipating organization.

Living in Brno, Czech Republic (UTC+2 / CEST
time zone during the GSoC event).

Contact information:
e name: Patrik Hagara
e e-mail: patrihagar@gmail.com
e GPG: 0x5C1E71DF031F9AES

e GitHub [6] and LinkedIn [7]

References

[1] https://www.qubes-os.org/
[2] https://www.qubes-os.org/gsoc/
[3] https://github.com/Qubes0S/qubes-issues

[4] https://github.com/Qubes0S/qubes-issues/issues/
1979

5

https://groups.google.com/d/topic/qubes-devel/
0kOgeiTstJ8/discussion

6

https://github.com/phagara

[7] https://www.linkedin.com/in/patrikhagara


mailto:patrihagar@gmail.com
https://www.qubes-os.org/
https://www.qubes-os.org/gsoc/
https://github.com/QubesOS/qubes-issues
https://github.com/QubesOS/qubes-issues/issues/1979
https://github.com/QubesOS/qubes-issues/issues/1979
https://groups.google.com/d/topic/qubes-devel/0kOgeiTstJ8/discussion
https://groups.google.com/d/topic/qubes-devel/0kOgeiTstJ8/discussion
https://github.com/phagara
https://www.linkedin.com/in/patrikhagara

	Introduction
	Project goals
	Implementation
	Timeline
	About me

