
ar
X

iv
:q

ua
nt

-p
h/

98
11

07
3

v2

30
 D

ec
 1

99
8

Tools for Quantum Algorithms

Tad Hogg

hogg@parc.xerox.com

Carlos Mochon

carlosm@mit.edu

Wolfgang Polak

polak@pal.xerox.com

Eleanor Rieffel

rieffel@pal.xerox.com

November 8, 2005

Abstract

We present efficient implementations of a number of operations for

quantum computers. These include controlled phase adjustments of the

amplitudes in a superposition, permutations, approximations of trans-

formations and generalizations of the phase adjustments to block ma-

trix transformations. These operations generalize those used in proposed

quantum search algorithms.

1 Introduction

Shor’s factorization algorithm [1, 2] and Grover’s search algorithm [3, 4] demon-
strate that quantum computers can solve certain problems faster than classical
computers. It has been well-known for over a decade that any classical algo-
rithm has a quantum analog of comparable complexity [5, 6, 7, 8], and quantum
analogs of classical building blocks have been studied [9, 10, 11]. But to ex-
ploit the power of quantum computers and create algorithms of new complexity
classes, we need to use building blocks that do not have classical analogs but
instead take advantage of quantum parallelism through modifying and mixing
amplitudes in superpositions.

Two sorts of tools have been used effectively in the quantum algorithms
that have been developed so far. First, transformations that mix amplitudes,
such as the Fourier and Walsh transforms. Second, selective adjustment of the
phases of certain states that, when combined with a mixing transform, promote
amplitude cancellation or amplification. Such phase adjustments form the ba-
sis of search algorithms for NP problems [12, 4, 13]. Here, we discuss efficient
implementations of relative phase changes and of mixing transformations that
combine amplitude from only a small number of states. The choice of phases
and which states to mix depends on a classically efficiently computable function
f . As we are dealing with tools for algorithms in general, specific problems will
not be addressed, so f will remain necessarily abstract. We discuss implementa-
tions of phase changes, of permutations, of approximations of transformations,

1

and generalizations of the phase change techniques to block matrix transfor-
mations. For each of these transformations, we describe the resources in terms
of time, number of calls to f , and number of additional qubits needed for the
implementation. Our aim is simply to describe a collection of efficiently imple-
mentable transformations which we hope will allow future designers of quantum
algorithms to take a somewhat more high level approach when thinking about
how to take advantage of quantum parallelism. Furthermore, the implementa-
tions we describe for more general operations than have been used in algorithms
proposed to date may form the basis for more effective algorithms.

We assume that the reader is familiar with quantum computing and the
standard terminology and notation of that field. For an introduction to the
field, see [14].

1.1 General set-up

Throughout we will be describing transformations of an n qubit system. In order
to implement these transformations we will assume at times that we also have
access to an m qubit register in which we can store values which will help us
perform the desired transformation. We are particularly interested in describing
transformations that can be efficiently implemented, where by “efficient” we
mean that the implementation takes a number of steps that is polynomial in n.

We first concern ourselves with transformations that change the relative
phases of components that make up a superposition. Such transformations
correspond to acting on the state with a diagonal matrix D. Conversely, because
quantum operations are unitary, any operation described by a diagonal matrix
will consist of such phase adjustments. Since a global phase change has no
physical meaning, so the matrix is only well defined up to multiplication by
a constant. To specify a general phase change would require specifying all
N = 2n elements Dxx of the diagonal matrix D. Only phase changes that can
be expressed in a concise form are practical. For this reason, we will assume
that the phase changes are determined by an efficiently computable function f .
For example, the function f(x) for Grover’s search algorithm computes whether
or not x is one of the desired elements. In Hogg’s algorithms, f(x) depends
for instance on the number of conflicts a state x has with the constraints and
on the size of x. Here, we will take a general f that is efficiently computable
classically.

At first glance, the problems we are concerned with may appear trivial.
How hard could it be to implement a diagonal matrix? However, these are
2n × 2n matrices, and we are interested in implementing them in a number of
steps which is only polynomial in n. Furthermore, there are many families of
transformations that cannot be efficiently computed, even when they can be
described in terms of an f that can be efficiently implemented. To illustrate
this point we describe a permutation that can be concisely described in terms
of f , but which cannot be efficiently implemented.

Imagine we are in the simplest set-up for Grover’s search algorithm, where
we are looking for a single item in an unstructured database of size N = 2n.

2

The efficiently computable function f(x) simply checks if x is the desired item,
so f(x) = 1 when x is the desired item and f(x) = 0 otherwise. One way to
find the item would be to use a tranformation which switched the state |00 . . .0〉
with the state x with f(x) = 1. If such a transformation could be efficiently
implemented, we could find the desired item much more quickly than Grover’s
algorithm does, simply by starting with |00 . . . 0〉, applying the transformation,
and then reading the output, which would be the desired state. However, as
Grover’s algorithm is optimal [15], this transformation cannot be efficiently
implemented.

Throughout this paper, we use the fact that efficiently implementable clas-
sical functions can be implemented with comparable complexity on a quantum
computer using standard building blocks. [7, 10, 9] We assume perfect opera-

tions, so we do not deal with error control. In this paper a phase change of e
2πi
m

will be treated as one step no matter how large the m.
Let f(x) be a classical polynomially computable function. Quantum paral-

lelism can be used to compute all the values of f(x) for all x at the same time.
This computation uses an additional register to hold the values of f . We will
ignore any temporary workspace which returns to its original state by the end
of the computation that might be needed to compute f . We use the following
standard transform to implement the quantum parallel computation of f(x),

Uf : |x, a〉 → |x, a ⊕ f(x)〉, (1)

where ⊕ is the bitwise exclusive-or.

Uf

|x〉

|a〉

|x〉

|a ⊕ f(x)〉

Consider a superposition of x values,
∑

x

ax|x〉.

Then Eq. (1) transforms
∑

x ax|x〉 ⊗ |0〉 as
∑

x

ax|x, 0〉 →
∑

x

ax|x, f(x)〉. (2)

1.2 A summary of the techniques described

In implementing quantum algorithms it will be useful to have a variety of tech-
niques depending on whether number of bits or coherence time (number of
operations) is the main limiting factor.

3

This paper describes several methods for implementing relative phase changes
to components of an n-qubit quantum state, which can be represented as 2n×2n

diagonal matrices D. Specifically if the phase Dxx depends on an efficiently
computable function f(j) then

• if there are only k distinct phase values, D can be implemented in O(k)
steps and two evaluations of f . The technique requires ⌈log2(k)⌉ additional
qubits.

• the well known technique for inverting the phase of states selected by
f(x) = 1 can be extended to change the phase of selected states by a
single phase value which is a 2mth root of unity. This extension requires
at most m evaluations of f , an average of less than 2 evaluations, and one
additional qubit.

• if all phases in D are multiples of a kth root of unity, D can be implemented
with a single application of f using ⌈log2(k)⌉ additional qubits and only
O(log2(k)) operations to prepare these additional qubits.

• if the phases in D need only be computed to k bit binary precision, D
can be implemented in O(k) operations using one additional qubit and k
function evaluations.

• if D is decomposable, in that it can be written as tensor product of single
qubit rotations, it can be implemented trivially in O(n) steps without
any additional qubits or function calls. We give a sufficient and necessary
condition for the decomposability of D.

The utility of diagonal matrices is enhanced if it is possible to perform per-
mutations on the quantum state efficiently. We present a technique for imple-
menting an arbitrary permutation g on a n-bit quantum state by one evaluation
of g and one evaluation of g−1 using n additional qubits.

Finally, we show how some of the implementation techniques for diagonal
matrices and permutations can be extended to block diagonal matrices, which
effect amplitude mixing among a small number of states.

1.3 Related Work

In [16] Høyer shows how to efficiently implement certain unitary transformations
that can be represented as generalized Kronecker products. The technique ap-
plies to general transformations along the lines of the quantum Fourier transfor-
mation. His paper includes an efficient implementation for certain permutations
and and an implementation block diagonal matrices that is similar to the one
described in section 6.1.

Knill [17] discusses the approximation of quantum transformations and proves
an upper bound on the complexity of implementing arbitrary unitary transfor-
mations. The upper bound, while smaller than previous known results, is still

4

exponential in the number of qubits. Knill also shows that arbitrary unitary
transformations cannot be efficiently approximated.

Tucci [18] defines a “quantum compiler” based on Cosine/Sine decompo-
sition of a given unitary matrix. In principle his approach seems promising.
However in its present form the quantum compiler takes the actual matrix as
input as opposed to symbolic input, so the space and time complexity just for
the input is exponential in the number of quantum bits n. Furthermore, the
current algorithm rarely generates polynomial implementations even when that
is possible.

2 Independent Phase Changes

In this section we discuss the efficiency of implementing phase changes on com-
ponents of an n-qubit state represented by an N × N diagonal matrix D with
diagonal entries dx for x ranging from 0 to N − 1, where N = 2n. The meth-
ods vary in their restrictions on the dx’s, their efficiency in terms of number of
operations and calls to Uf needed, and the number of additional qubits required.

In the worst case a diagonal matrix D of size N ×N can be implemented in
O(N) steps by iterating the following procedure over all N values: For any x,
let δy(x) be the function that is 1 when y = x and 0 otherwise. Apply Uδy

using
Eq. (1) to the original state

∑

x ax|x, 0〉 to get
∑

x ax|x, δy(x)〉. Then multiply
the state by I ⊗ Gy where

Gy =

(

1 0
0 dy

)

and dy is the diagonal value of D corresponding to state y. The δy(x) value in
the additional register can be removed by repeating the transform Uδy

. This
argument shows how a general diagonal matrix can be implemented. Note that
this implementation is not an efficient one, as it is exponential in n. As we
describe in this paper, many special forms of the matrix can be implemented
much more efficiently. However this implementation will be used in the sequel
to implement k×k diagonal matrices which are part of efficient implementations
discussed later where k is polynomial in n.

2.1 A small number of distinct phases

This subsection describes a method for efficiently implementing a phase change
involving only polynomially many distinct phases r. It requires O(r) operations,
two calls to Uf , and ⌈log2(r)⌉ additional bits.

Suppose there are r distinct values p0, . . . , pr−1 of dx such that r ≤ k = 2m

for some k that is a power of 2. Further suppose f(x) is a rapidly computable
function from n-bits to the values {0, . . . , r − 1} such that dx = pf(x). Let P
be the k × k diagonal matrix with diagonal elements p0, . . . , pk−1 where k − r
elements are chosen arbitrarily. Starting with the superposition

|0〉 =
∑

x

ax|x, 0〉,

5

we first apply the transform of Eq. (1), with the result given in Eq. (2). We
then operate with I ⊗ P on this result, giving

∑

x

pf(x)ax|x, f(x)〉. (3)

Finally, the extra register for the index can be disentangled by reversing the
computation of the index. Since bitwise exclusive-or is its own inverse, this
disentangling can be accomplished by redoing the Uf operation, giving

∑

x

pf(x)ax|x, f(x)〉 →
∑

x

pf(x)ax|x, 0〉, (4)

which is the desired phase change.
This algorithm requires two evaluations of the Uf . In addition to depending

on the efficiency with which f(x) can be computed, this algorithm depends on
the efficiency of implementations for the matrix P . As was shown above, the
direct evaluation of a k × k diagonal matrix costs at most O(k). Note that the
cost to implement I ⊗ P is the same as that to implement just P .

Working with the k × k diagonal matrix P of the distinct phase choices,
instead of the full N × N diagonal matrix D reduces the cost of implementing
D. In particular, when k depends polynomially on n, the matrix D can be
implemented in polynomial time using P , even though the size of the matrix D
itself increases exponentially with n.

2.2 Roots of unity

When the desired phases are roots of unity, D can be implemented somewhat
more efficiently. By using fewer operations than the general case given above,
these alternate techniques will likely be somewhat less sensitive to errors, in
addition to the advantage of faster operation.

2.2.1 Changing the sign

The following technique was introduced by Boyer et al [15]. Let f(x) = 1 if the
sign of x is to change, and f(x) = 0 otherwise. The additional register is set to
the superposition |a〉 = 1√

2
(|0〉 − |1〉). The operation Uf of Eq. (1) then gives a

superposition in which the phase of those x with f(x) = 1 are inverted and |a〉
remains unchanged. This is readily seen as follows:

Uf

(

∑

x

ax|x〉 ⊗
1√
2
(|0〉 − |1〉)

)

=
1√
2

(

∑

x∈X0

ax|x, 0〉 −
∑

x∈X0

ax|x, 1〉 +
∑

x∈X1

ax|x, 1〉 −
∑

x∈X1

ax|x, 0〉
)

=

(

∑

x∈X0

ax|x〉 −
∑

x∈X1

ax|x〉
)

⊗ 1√
2
(|0〉 − |1〉)

6

where X0 = {x|f(x) = 0} and X1 = {x|f(x) = 1}. The operation introduces
a phase factor of −1 for exactly those x ∈ X1, as desired. It also leaves |a〉
unchanged. In particular the extra register is not entangled with the x values.

This technique requires only one call to Uf , but restricts the phases to 1 and
−1. Otherwise it requires the same number of resources as the method described
in section 2.1. The method described here can be generalized somewhat, to
phases which are 2mth roots of unity, but it cannot be generalized to arbitrary
phase values.

2.2.2 No direct generalization to arbitrary phase values

Suppose we want to change the phase of all of the elements of X1 by γ. Instead
of using |a〉 = 1√

2
(|0〉 − |1〉) we use |a〉 = 1√

2
(|0〉+ γ|1〉). The result of applying

Uf is

1√
2

(

∑

x∈X0

ax|x, 0〉 + γ
∑

x∈X0

ax|x, 1〉 +
∑

x∈X1

ax|x, 1〉 + γ
∑

x∈X1

ax|x, 0〉
)

. (5)

In general, the resulting state is not simply a tensor product of x and a with
some additional phase shift. Usually, x and a become entangled.

A possible approach to extracting the desired state from this entanglement
is to measure the last bit. The state in Eq. (5) becomes either

∑

x∈X0

ax|x, 0〉 + γ
∑

x∈X1

ax|x, 0〉

or
γ
∑

x∈X0

ax|x, 1〉 +
∑

x∈X1

ax|x, 1〉.

If the measurement returns 0, we have achieved the desired phase shift. To get
the desired result when the measured value is 1, we try multiplying the state by
γ to get

γ2
∑

x∈X0

ax|x, 1〉 + γ
∑

x∈X1

ax|x, 1〉.

We get the desired result only when γ2 = 1.

2.2.3 Phase changes by a 2mth root of unity

While the preceding calculation shows that general phase changes cannot be
implemented with the technique for changing signs, the behavior when the last
bit is measured does suggest a way to change the phase of the elements of X1

by a 2mth root of unity.
For example, this trick can be used to rotate part of the state by i or −i.

Let γ = i. Perform Uf and measure the last bit. If the result is 0, the state will
be

∑

x∈X0

ax|x, 0〉 + i
∑

x∈X1

ax|x, 0〉

7

and if the result is 1, the result will be

i
∑

x∈X0

ax|x, 1〉 +
∑

x∈X1

ax|x, 1〉 = i

(

∑

x∈X0

ax|x, 1〉 − i
∑

x∈X1

ax|x, 1〉
)

.

Except for a constant factor, the two states differ only in the phase of x ∈ X1

and one can be transformed into the other by applying a phase change of −1
to X1. Thus half the time, when 0 is measured, only one call to f(x) is needed.
Otherwise a second phase change is needed, which requires an additional call to
f(x) for a total of two calls.

By iterating this process, one can achieve arbitrary rotations by 2mth roots
of unity. Let γ = e2πi/2m

. The transformation and measurement of the last bit
give

∑

x∈X0

ax|x, 0〉 + e2πi/2m
∑

x∈X1

ax|x, 0〉

or
e2πi/2m

∑

x∈X0

ax|x, 1〉 +
∑

x∈X1

ax|x, 1〉

when the last bit is measured to be 0 or 1, respectively. In the latter case the
state is, up to a constant overall phase,

∑

x∈X0

ax|x, 1〉 + e−2πi/2m
∑

x∈X1

ax|x, 1〉.

Essentially X1 has been rotated by the right amount, but in the wrong direction.
The desired state can be achieved by rotating X1 by e2πi/2m−1

, twice the original
amount, using the same process. In the worst case, rotating elements in X1 by
e2πi/2m

requires O(m) invocations of Uf . Surprisingly, the average number of

calls to f(x) for this rotation is only 2m−1−1
2m−2 . This average is always less than

two, so on average this technique requires fewer calls than the method given in
section 2.1.

2.2.4 kth roots of unity

A different generalization of the sign change technique of section 2.2.1 allows ad-
ditional function calls to be avoided completely. Furthermore, multiple phases,
even up to 2n of them, can be achieved in this way, as long as they are all mul-
tiples of the same underlying phase ω = e2πi/k. This technique requires only
one function call plus log2(k) steps, and log2(k) additional qubits.

In this case, the bitwise exclusive-or in Eq. (1) is replaced by modular
addition. Specifically, we use

Uf : |x, a〉 → |x, a + f(x) mod k〉. (6)

Here, f(x) maps states to the set {0, . . . , k−1} and the desired phase adjustment
for state x is ωf(x), where ω = e2πi/k. To perform this adjustment with a single

8

evaluation of f(x), we set the extra register in the superposition

R =
1√
k

k−1
∑

h=0

ωk−h|h〉. (7)

The superposition R can be constructed in log k steps using the technique de-
scribed in section 4.

To see the behavior of Uf of Eq. (6) acting on S ⊗ R, write

S =

k−1
∑

j=0

∑

x∈Xj

ax|x〉, (8)

where Xj is the set of states for which f(x) = j. Then

S ⊗ R =
1√
k

∑

h

∑

j

∑

x∈Xj

axωk−h|x, h〉. (9)

Operating with Eq. (6) then gives

1√
k

∑

h

∑

j

∑

x∈Xj

axωk−h|x, h + j mod k〉. (10)

For any j, as h ranges from 0 to k − 1, m = h + j mod k ranges over these
values as well. In terms of m, h = m− j mod k and k− h = j + (k−m) mod k.
Furthermore, since ωk = 1, we can write the sum as

1√
k

∑

m

∑

j

∑

x∈Xj

axωjωk−m|x, m〉 (11)

or
1√
k

∑

j

∑

x∈Xj

axωj |x〉 ⊗
∑

m

ωk−m|m〉, (12)

which is just DS ⊗ R.

3 Approximation of Phase Changes

An arbitrary phase can be approximated by a series of shifts by roots of unity.
For instance, consider φ = ep2πi for 0 ≤ p < 1. Let p = 0.b1b2 . . . bk be the
binary expansion of p to the desired precision. Then

φ = exp

2πi

k
∑

j=1

bj2
−j

 =
∏

j∈B

e2πi2−j

(13)

where B = {j|bj = 1}.

9

Knill [17] shows that arbitrary unitary transformations cannot be efficiently
approximated. However, if the phase changes can be concisely described, then
they can be approximated to k bit precision using Eq. (13). Let the phase
change be represented by a diagonal matrix D with phases Dmm = pm, and
let fj for each j < k be such that fj(m) is the j-th bit of pm. Then D can
be implemented to k bit precision using one evaluation of each fj. This can be
done by using one of the techniques described in section 2 for each fj using the
2 × 2 phase matrices

(

1 0

0 e2πi/2j

)

.

Thus, an arbitrary diagonal matrix D can be approximated to e2πi/2k

in O(k)
steps plus the time it takes to compute each of the fj ’s.

4 Decomposition

A diagonal matrix D of size N = 2n representing a phase change of an n qubit
system can be implemented in O(n) steps if it is decomposable into single-bit
rotations on each of the n bits. In this section we give a test for decomposability
of a matrix D with diagonal elements dj = Djj . As multiplying the entire state
by a constant phase factor has no physical meaning, we may assume that d0 = 1
without loss of generality.

A diagonal matrix D is single-bit-decomposable if D = Gn−1 ⊗ . . . ⊗ G0

where Gj are single bit phase shift gates of the form

Gk =

(

1 0
0 gk

)

.

Thus, the elements dj are of the form dj = Πn−1
k=0gr

k, where r is the value of
the k-th bit of the binary expansion of j, if and only if D is decomposable.
Equivalently, given the binary representation j = bn−1 . . . b1b0 then

dj = dbn−1...b1b0 = g
bn−1

n−1 . . . gb1
1 gb0

0 . (14)

In particular it follows that

gk = d2k = D2k2k . (15)

An effective way to test whether D is decomposable is to see whether the
gk’s given by Eq. (15) satisfy Eq. (14). For arbitrary phase changes, this test
is exponential in n, but in most practical cases the dj ’s will be given by some
function in terms of which the test can be performed efficiently.

For any pair {x, x′} with x > x′ that differ only in bit k of their binary
representations, it follows from Eq. (14) and Eq. (15) that dx/dx′ = gk = d2k .
This condition is necessary for decomposability, so can be used as a way to rule
out matrices that are not decomposable.

10

5 Permutations

In this section we will discuss efficient ways of implementing permutations.
These transformations are often used in reordering states, so that subsequent
operations can be efficiently implemented. For example, many diagonal ma-
trices are decomposable when the states are ordered in some appropriate way.
In contrast to more general unitary operations, permutations take each basis
vector to another basis vector, rather than to a superposition of two or more
basis vectors.

Every permutation of the 2n basis vectors of an n-bit quantum register
corresponds to a classical computation on this register and vice versa. To see
this note that a Toffoli gate (T) applied to any 3 bits of an arbitrary quantum
state is a permutation on the basis vectors. Since T is complete for all classical
computations, all classical computations are permutations. On the other hand,
each permutation can be decomposed into a sequence of swaps each of which
can be realized by a classical computation.

We consider permutations that are described by a function g(x) of the form
Ug : |x, 0〉 → |x, g(x)〉 with the requirement that both the permutation function,
g(x), and its inverse g−1(x) must be computable in polynomial time. These
restrictions, which are stronger than those of previous sections, prevent the
efficient implementation of permutations like the exchange of the desired state
and the state |00 . . .0〉 described in section 1.1.

The algorithm itself is simple. Every state computes its destination

∑

x

ax|x, 0〉 →
∑

x

ax|x, g(x)〉. (16)

after which the g(x) bits erase the x bits. This last step can be accomplished
using the exclusive-or operation and the function g−1(x′):

∑

x

ax|x, g(x)〉 →
∑

x

ax|x ⊕ g−1(g(x)), g(x)〉 =
∑

x

ax|0, g(x)〉. (17)

If the position of the answer is relevant, the right and left parts of the register
can always be exchanged by swapping individual qubits.

The total computation time that this operation requires is just the time to
compute g(x) plus the time to compute its inverse.

Note that this process turns any classical bijection g of the form Ug : |x, 0〉 →
|x, g(x)〉 into an in-place computation of g of the form Ug′ : |x〉 → |g(x)〉.

6 Mixing Operations

For effective quantum algorithms, we also need to be able to efficiently mix
amplitudes in a superposition so as to increase the chance of a desired reading
being made. One way to achieve this mixing is to combine an efficiently imple-
mentable diagonal matrix with a decomposable mixing matrix. For instance, a
number of existing algorithms [3, 19] make use of mixing matrices of the form

11

WDW where D is a diagonal matrix and W is the Walsh-Hadamard transform
given by

Wxy =
1

2n/2
(−1)|x·y|.

We have described efficient implementations for certain diagonal matrices that
can be combined with the Walsh-Hadamard transformation or other mixing
matrices to achieve desireable amplitude interference.

Another option for efficiently combining amplitudes, described in the re-
mainder of the section, combines permutations with block-diagonal matrices to
perform a different class of mixing operations. These mixing operations parti-
tion the standard basis for quantum computation into small subsets, and mix
amplitudes only between components in the same partition.

6.1 Polynomial size block matrices

An extension to the ideas presented so far is to consider matrices with a few
off-diagonal elements. Specifically, we will talk about block diagonal matrices
made out of equally sized k × k blocks {Bl},

M =

B0

B1

. . .

Bj−1

. (18)

Many of the techniques used for implementing diagonal matrices can also
be used for block matrices. The techniques are particularly useful when all the
blocks have the same size k, because k must then be a power of two and the
blocks act entirely on the lowest log2(k) bits. Multiplying by M is equivalent
to the higher bits choosing a unitary matrix to apply to the lower bits. This is
the equivalent of states choosing a phase when multiplied by a diagonal matrix.

In this section we will expand the technique discussed in section 2.1. In the
diagonal case, we showed how an exponentially-sized diagonal matrix, could be
implemented using a polynomial-sized diagonal matrix. The only restriction
on the original matrix was that the number of different phases had to grow
polynomially with the number of bits.

For block diagonal case, we will do the same. We start with an exponentially-
sized matrix M , and reduce it to a polynomial one. Instead of restricting the
number of distinct phases, we restrict both the size of the blocks k and the
number of distinct blocks α < j which make up M to be polynomial in n. The
large matrix M , must also be described by a function f(x) that determines the
locations of the blocks. If the distinct blocks are labeled with numbers from 0
to α − 1, then f(x) assigns to each state the number of the block in M that
would multiply it. Of course f(x) must assign the same value for any two states
that differ only by their lowest log2(k) bits.

With all the definitions in place we can compute

12

∑

x

ax|x, 0〉 →
∑

x

ax|x, f(x)〉. (19)

All that remains is to multiply this state by a polynomial-sized block diagonal
matrix, which can done as follows. For each value c in the range of f(x), define
g(y), for y ≡ f(x), to be 1 if y = c and 0 otherwise. Then, we multiply the
low bits of x by the matrix By if and only if g(y) = 1. Knill [17] shows that
any quantum transformation on log2(k) qubits can be implemented in at most
O(k2 log2(k)) operations, so the total number of operations needed to perform
all of these steps is O(αk2 log2(k)).

In the end, the bits containing f(x) must be erased. This can be done with
another call to Uf . Hence, this algorithm requires two calls to Uf plus time
O(αk2(log2(k)), the time it takes to perform each of the α multiplications by
the k × k block matrices.

Note that this technique is very similar to the “quantum direct sum” algo-
rithm given by Høyer [16]. The main difference is that Høyer does not require
a polynomial number of different blocks, although he hints that his method can
be speeded up in certain cases along the lines we have described here. In return
function f becomes f(x) = xmod m where m is the size of each block, and so
f can be computed in-place without additional qubits.

6.1.1 Combining Permutations and Blocks

By combining permutations with block matrices, we can form more general
mixing matrices. The idea is to divide the states into sets of k elements, called
k-sets, and then mix them according to some property of the k-set.

The first step reorders the states. We assign to each k-set a unique number
called a group number. We also assign to each state a number from 0 to k − 1,
called the member ID, that distinguishes it from the other states in its k-set.
Using

g(x) = group number(x) · k + member ID(x), (20)

we can apply the permutation x → g(x) which will order the states with blocks
corresponding to the k-sets.

The second step involves multiplication by a block diagonal matrix, M , made
up of k × k sized blocks. The choice of blocks in M given by f(x) will depend
only on the group number of each k-set. In this fashion, each k-set can be mixed
in different ways depending on its properties.

The final step uses the permutation corresponding to g−1(x) to send the
states back to their original order.

Note that this implementation is efficient only if k is polynomial in n and if
g, g−1, and f are all efficiently computable.

13

7 Conclusions

In this paper we have discussed a number of non-classical programming tech-
niques for quantum computers. Several methods for implementing relative phase
changes on components of an n-qubit state were described, as well as the trade-
offs between these methods in terms of numbers of additional bits, number of
calls to Uf , and the number of basic operations needed. Implementations of
permutations and of block diagonal matrices were also described. Some of these
techniques are more general than those used in currently known quantum algo-
rithms. The hope is that they will aid in the development of future quantum
algorithms.

References

[1] P.W. Shor, Proceedings of the 35th Annual Symposium on Foundations
of Computer Science, pp. 124–134, Institute of Electrical and Electronic
Engineers Computer Society Press, 1994.

[2] P.W. Shor, Society for Industrial and Applied Mathematics Journal on
Computing 26 (1997) 1484.

[3] L.K. Grover, Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, pp. 212–219, Philadelphia, Pennsylvania,
1996.

[4] L.K. Grover, Proceedings of the 30th annual ACM symposium on the
theory of computing (1998) 53, quant-ph/9711043.

[5] P.A. Benioff, Journal of Statistical Physics 22 (1980) 563.

[6] P.A. Benioff, Journal of Statistical Physics 29 (1982) 515.

[7] D. Deutsch, Proceedings of the Royal Society of London Ser. A A400 (1985)
97.

[8] D. Deutsch, Proceedings of the Royal Society of London Ser. A A425 (1989)
73.

[9] A. Barenco et al., Physical Review A 52 (1995) 3457.

[10] E. Bernstein and U.V. Vazirani, Society for Industrial and Applied Math-
ematics Journal on Computing 26 (1997) 1411.

[11] V. Vedral, A. Barenco and A.K. Ekert, Quantum networks for elementary
arithmetic operations, Physical Review A, 1996, quant-ph/9511018.

[12] N.J. Cerf, L.K. Grover and C.P. Williams, Nested quantum search and
NP-complete problems, Preprint at Los Alamos Physics Preprint Archive,
http://xxx.lanl.gov/abs/quant-ph/9806078, 1998, quant-ph/9806078.

14

[13] T. Hogg, Physical Review Letters 80 (1998) 2473.

[14] E.G. Rieffel and W. Polak, Introduction to quantum computing for non-
physicists, Preprint at http://xxx.lanl.gov/abs/quant-ph/9809016.,
quant-ph/9809016.

[15] M. Boyer et al., Proceedings of the Workshop on Physics of Computa-
tion: PhysComp ’96, Los Alamitos, CA, 1996, Institute of Electrical and
Electronic Engineers Computer Society Press, quant-ph/9605034.

[16] P. Høyer, Efficient quantum transforms, Los Alamos Physics Preprint
Archive, http://xxx.lanl.gov/abs/quant-ph/9702028, 1997, quant-
ph/9702028.

[17] E. Knill, Approximation by quantum circuits, Los Alamos Physics
Preprint Archive, http://xxx.lanl.gov/abs/quant-ph/9508006, 1995,
quant-ph/9508006.

[18] R.R. Tucci, A rudimentary quantum compiler, Los Alamos Physics
Preprint Archive, http://xxx.lanl.gov/abs/quant-ph/9805015, 1998,
quant-ph/9805015.

[19] T. Hogg, Physica D 120 (1998) 102, quant-ph/9701013.

15

