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Quantum search heuristics

Tad Hogg*
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304

~Received 19 October 1999; revised manuscript received 12 January 2000; published 14 April 2000!

An alternative quantum algorithm for combinatorial search, adjusting amplitudes based on number of con-
flicts in search states, performs well, on average, for hard random satisfiability problems near a phase transition
in search difficulty. The algorithm exploits correlations among problem properties more effectively than some
current heuristics, and improves on prior quantum algorithms that ignore these correlations.

PACS number~s!: 03.67.Lx, 89.70.1c, 02.70.2c
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Shor’s polynomial-time factoring algorithm@1,2# showed
quantum computers@3–6# efficiently solve an importan
problem thought to require exponential time on our curr
‘‘classical,’’ machines. Can quantum computers significan
improve other apparently intractable problems? At first sig
combinatorial searches, such as arise in scheduling, theo
proving, cryptography, genetics, and statistical physics,
one possibility. This is because many such searches
‘‘nondeterministic polynomial’’ ~NP! problems @7#, which
have a rapid test of whether a candidate solution is in fa
solution and an exponential growth in the number of can
dates with the size of the problem. Quantum computers
test all candidates in superposition with about as many
erations as a classical machine uses to test just one, sug
ing large improvements are possible. Unfortunately, the
ficulty of extracting a solution from the superpositio
appears to preclude rapid solution of at least some NP p
lems @8#, though, as is the case classically, this remains
open question.

Lacking a definitive result on the power of quantum co
puters, a practical fallback is how well they perform fortypi-
cal searches encountered in practice. This distinction is
portant because classical heuristics, using readily comp
problem properties to suggest candidates to test, solve m
NP problems much more rapidly than worst-case analy
predict. For instance, constraint satisfaction problems@9#,
such as arise in scheduling, consist of a number of c
straints on the values various combinations of variables
take. A candidate solution for such problems can not onl
evaluated in terms ofwhetherit satisfies all the constraints
but also in terms ofhow manyconstraints it violates. This
additional information is often a useful guide to finding s
lutions, providing the basis for heuristic searches.

Some heuristics consist of independent trials, each s
ceeding with a small probabilityp. A simple example is hill
climbing: starting from a random initial state, small chang
are made as long as the state appears to improve, e.g., r
ing the number of violated constraints. This process con
ues until a solution is found or the program reaches a ‘‘lo
minimum,’’ at which point none of the available chang
give any further improvement. In the latter case, another t
is started from a new initial state. For use with quantu
computers, these independent trials are modified to run f
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prespecified number of steps, rather than allowing them
terminate early when a solution is found or continue inde
nitely looking for a local minimum. For such heuristics, am
plitude amplification@10# reduces the average cost from 1p
trials to only about@11# 1/Ap by repeatedly testing all can
didates in superposition. This quadratic speedup, which
also apply when constructing solutions incrementally@12#, is
the best possible for quantum methods based only on the
of whether candidates are solutions@8#.

The trials of many heuristics are not independent~e.g.,
they use information gained from prior, unsuccessful tria!,
so amplitude amplification does not apply. An example
the context of hill climbing is emphasizing those changes
the current state that remove violations for constraints t
remained unsatisfied at the end of many prior trials. One w
to do this associates a weight with each constraint, whic
incremented at the end of any trial for which the constra
remains unsatisfied. In each trial, the hill climbing opera
with respect to the weighted sum of constraint violatio
rather than just their total number. A more complex heuris
involves caching new constraints inferred during the trials
in so-called ‘‘truth maintenance systems’’@13#. These addi-
tional constraints can improve subsequent searches, but
incur additional overhead leading to additional mechanis
that erase those inferred constraints judged to be no lon
useful.

Finally, some heuristics do not consist of separate trial
all but rather involve, for any particular problem instance,
exponentially long computation before a solution is foun
Examples are methods that construct solutions incremen
and involve backtracking to prior decision points when co
flicts are found. Such methods have an exponentially la
variation in the solution time among different problem i
stances, so arbitrarily stopping the search after a prespec
number of steps will give zero probability to obtain a sol
tion for some instances, and probability 1 for others, th
giving no opportunity for improvement with amplitude am
plification.

Any possibility of achieving greater than quadrat
speedup of independent-trial heuristics, or utilizing the ca
bilities of other heuristics with quantum computers, requi
using additional problem properties directly in the quantu
algorithm. For some small or relatively easy problems su
techniques are known to have high performance@14,15#.
More generally, with precise information on states’ distanc
©2000 The American Physical Society11-1
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TAD HOGG PHYSICAL REVIEW A 61 052311
to a solution, quantum methods perform well@16#, but such
information is not readily available for hard searches.

Heuristics often introduce complex dependencies am
successive search choices, preventing a theoretical ana
of their performance; instead, they are usually evaluated
pirically on a sample of typical problems. To be a useful te
this requires a class of problem instances with a high c
centration of hard cases. Fortunately, such classes have
identified for a variety of NP-complete search problems@17–
19#. In particular, these classes correspond to problems
an intermediate number of constraints, while those w
fewer or more constraints tend to be fairly easy. Sign
cantly, such classes of hard problems, associated with ab
‘‘phase transitions’’ in behavior, are found to be particula
difficult for a variety of heuristics, making them good te
cases for evaluating new methods. Hence a particularly g
indication of the practical utility of quantum computers f
search is to study their capabilities for precisely these cla
of problems that are difficult for a wide range of heuris
methods.

Toward this end, we present an alternative quantum a
rithm that performs well, on average, for hardk satisfiability
(k-SAT! problems, which consist ofn Boolean variables and
m clauses. A clause is a logicalOR of k variables, each of
which may be negated. A solution is an assignment, i.e
value, true or false, for each variable, that satisfies all
clauses. An assignment is said to conflict with any claus
does not satisfy. An example 2-SAT problem with three va
ables and two clauses isv1 OR ~NOT v2) andv2 OR v3, which
has four solutions, e.g.,v15false, v25false, andv35true.
For k>3, k-SAT is NP-complete@7#, i.e., is among the mos
difficult of NP problems.

A well-studied class of such problems is randomk-SAT,
in which the m clauses are selected uniformly at rando
Specifically, for each clause, a set ofk variables is selected
randomly from among the (k

n) possibilities. Then each of th
selected variables is negated with probability 1/2 to prod
the clause. Thus each of them clauses is selected, with re
placement, uniformly from among the (k

n)2k possible clauses
The difficulty of solving such randomly generated proble
varies greatly from one instance to the next. This class h
high concentration of hard instances whenm[m/n is near a
phase transition in search difficulty@17–19#. For random
3-SAT this transition is nearm54.25, the value used for th
results presented here as well as extensive prior studie
classical heuristics for SAT. Whenm is at least somewha
smaller or larger than this value, the problems are typica
much easier for both classical and quantum methods, inc
ing the quantum algorithm presented here. Thus as w
evaluating classical heuristics, testing quantum algorith
using a value ofm near the transition gives a particular
stringent test on their average effectiveness.

The quantum algorithm consists of a series of steps, w
amplitude adjustments varying linearly with the step and
number of conflicts@14#, a property commonly used in clas
sical heuristics. Specifically, four real-valued ‘‘phase para
eters’’ R0 , R1 , T0, andT1 define
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for steps h51, . . . ,j with R(l)5R01R1(12l), T(l)
5T01T1(12l). These values are used as follows.

Superpositions are described by a vector with an am
tude for each assignment. Starting with an equal superp
tion of all 2n assignments, i.e.,cs

(0)522n/2, the superposition
c ( j ) after j steps is

c ( j )5U ( j )P( j )
•••U (1)P(1)c (0). ~2!

The algorithm involves two types of matrices: the diagon
phase adjustmentsP(h), depending on the particular problem
instance being solved, and the matrixU (h), mixing ampli-
tudes from different states without regard to the particu
problem.

Specifically,P(h) is diagonal withPss
(h)5eiprhc(s) where

c(s) is the number of conflicts in assignments. Sincec(s)
itself is efficiently evaluated~by comparing the state with
each of them clauses! and has onlym115O(n) possible
values, 0, . . . ,m, this matrix operation can be implemente
efficiently on quantum computers@22# as a generalization o
the technique used for amplitude amplification. To see t
let C be the operator reversibly evaluatingc(s) that takes
us,a& to us,a% c(s)& where% denotes the bitwise exclusive
OR operation anda is an additional register capable of re
resenting integers up tom. Let P̂(h) be the (m11)3(m
11) diagonal matrix with entrieseiprhc for c from 0 to m.
Starting with the superposition of states(scsus,0&, applying
C gives (scsus,c(s)&. We then apply I ^ P̂(h), giving
(scse

iprhc(s)us,c(s)&. This operation involves only the

polynomial-sized diagonal matrixP̂(h) acting on the extra
register, and so can itself be implemented efficiently. A s
ond application ofC then disentangles the additional registe
(scse

iprhc(s)us,0&, which is the required operation involvin
the exponentially large matrixP(h).

Viewing assignments as strings ofn bits, the mixing ma-
trix is defined asU (h)5WT(h)W, whereT(h) is diagonal with
Tss

(h)5eipthusu, usu denotes the number of 1-bits ins, andW is
the Walsh transform,Wrs522n/2(21)ur ∧su, where ur ∧su is
the number of 1’s the two assignments have in comm
ThusUrs

(h)522n( te
ipthutu(21)ur ∧tu1us∧tu. Each 1-bit oft con-

tributes 0, 1, or 2 tour ∧tu1us∧tu when the corresponding
positions ofr ands are both 0, have exactly a single 1-bit,
are both 1, respectively. Thus (21)ur ∧tu1us∧tu5(21)z where
z is the number of 1-bits int that are in exactly one ofr and
s: such bits oft can be selected only from positions wherer
and s have different values. The number of such positio
equalsd(r ,s), the Hamming distance betweenr and s or,
equivalently, the number of variables assigned different v
ues inr ands. This givesUrs

(h)522n( te
ipthutu(21)z. Among

the statest with x 1-bits, there are (z
d)(x2z

n2d) with a given
value ofz, so the sum can be written as
1-2
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QUANTUM SEARCH HEURISTICS PHYSICAL REVIEW A61 052311
Urs
(h)522n(

xz
eipthx~21!zS d

zD S n2d
x2zD

522n~12eipth!d~11eipth!n2d. ~3!

ThusUrs
(h) is @20#, up to an overall phase and normalizatio

constant, (2 ivh)d(r ,s), wherevh5tan(pth/2).
With these definitions, Eq.~2! can be evaluated efficientl

by a quantum computer@10,21,22#. Observing the final su-
perposition gives an assignment havingc conflicts with prob-
ability p( j )(c)5(suc(s)5cucs

( j )u2, with the sum over all as-
signments withc conflicts.

The best choices for the phase parameters and numb
steps depend on the problem instance. In practice, these
not be known. Instead, we select parameters that work
on average for random 3-SAT with a given value ofm. For
m54.25, the approximate analysis given below predi
good average performance ifj grows at least as fast asn ~for
definiteness we takej 5n) and R054.86 376, R15
24.18 118,T051.2, andT153.1. Figure 1 shows the behav
ior for one problem instance: each step shifts the peak in
probability distribution toward assignments with fewer co
flicts, until a large probability builds up in the solutions. Th
shift is also seen for other problem instances~as well as
when averaged over many samples!, but with differing final
probabilities. This behavior contrasts with amplitude amp
fication where the probability in solutions increases but
other amplitudes decrease uniformly.

In this algorithm, amplitudes depend on the problem
conflict distribution, precluding an exact analytic evaluati
of the algorithm’s asymptotic behavior. Instead, as for m
classical heuristics, one must rely on empirical evaluation
approximate analyses. Figure 2 shows the growth of
search cost, measured by the expected number of s
j /p( j )(0), based on collections of randomly generated pr

FIG. 1. Search behavior for a randomly generated 3-SAT pr
lem with n520 andm54.25. For each steph, the figure shows the
probability p(h)(c) in assignments with each number of conflic
Shading is based on the relative deviations of the amplitudes,
scribed in the text. The small contributions for assignments witc
.15 are not included in the figure.
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lems. The exponential fit gives the cost growing ase0.10n.
The observations for this range of variables are also clos
a power-law fit, growing asn1.7.

Provided the number of solutionsS is known, the cost for
the simplest amplitude amplification is@21# (p/4)A2n/S,
also shown in Fig. 2. The values grow ase0.30n. In practice,
S is not knowna priori, but even so the expected cost is le
than four times larger@21#, so it does not affect the exponen
tial growth rate.

Average costs for even the best known classical heuris
also grow exponentially, though more slowly. For instan
Fig. 2 shows that a good classical heuristic, GSAT@23#,
grows somewhat faster than this quantum heuristic. T
GSAT algorithm starts from a random assignment and,
each step, examines the number of conflicts in the ass
ment’s neighbors~i.e., assignments obtained by changing t
value for a single variable! and moves to a neighbor with th
fewest conflicts. If a solution is not found after a prespecifi
number of steps, e.g., because the current assignment
local minimum, the search is tried again from a new rand
assignment. The most significant comparison between GS
and the quantum heuristic is the relative growth rates in
search costs, as measured by the number of steps. Th
because actual search times will depend on detailed im
mentations of the steps. Although the number of elemen
computational steps involving evaluating the number of c

-

e-

FIG. 2. Log plot of median search cost vsn for the quantum
heuristic~diamond!, amplitude amplificationassuming the numbe
of solutions is known~triangle!, and GSAT@23# with restarts after
2n steps~circle!. For eachn, the same 1000 soluble random 3-SA
problems withm54.25 were solved with each method~except only
500 samples forn524). For thosen not divisible by 4, half the
samples hadm5 b4.25nc and half hadm larger by one. Error bars
show the 95% confidence intervals~ @40#, p. 124!. The curves show
exponential fits to the quantum heuristic~solid! and amplitude am-
plification ~dashed!.
1-3
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TAD HOGG PHYSICAL REVIEW A 61 052311
flicts in an assignment~and, in the case of GSAT, its neigh
bors! is similar for both techniques, differences in the exte
to which operations can be optimized away~e.g., as is pos-
sible in some cases for NMR-based quantum impleme
tions @35#! and the relative clock rates of classical and qu
tum machines remain to be seen. At any rate, Fig. 2 sh
that including the number of conflicts in the phase adju
ments reduces, on average, the number of steps require
the quantum algorithm below that required for GSAT. Th
is true even though GSAT in fact makes use of somew
more problem structure than this quantum algorithm, nam
the difference in numbers of conflicts between a state an
neighbors. Because the trials are independent, both the q
tum heuristic introduced here and GSAT can be quadr
cally improved with amplitude amplification@11#.

As another comparison, a good classical backtracking
gorithm scales@24# as 2n/19.55e0.036n. This technique uses
additional problem structure, namely conflicts in partial a
signments, and more complicated processing at each
precluding a simple cost comparison for the small probl
sizes accessible to classical simulation of the quantum h
ristic. Moreover, unlike GSAT and the quantum heurist
the backtracking algorithm is a complete search method,
it can not only find a solution if one exists but can al
determine that a problem has no solutions. Nevertheless,
interesting to note that, even without making use of this
ditional structure, the quantum heuristic, when combin
with amplitude amplification, has an exponential growth r

of Ae0.10n5e0.05n, only a bit larger than this classical bac
tracking method. In studies using problems with hundreds
thousands of variables, techniques such as GSAT, base
hill climbing, significantly outperform backtracking algo
rithms @23# for soluble problems. Thus comparing the qua
tum heuristic to GSAT is a more important evaluation th
using a backtracking algorithm.

From this discussion, the quantum algorithm appears
improve on some classical heuristics for a well-studied cl
of hard NP searches, but definitive statements canno
made based only on such small problems. Unfortunat
classical simulations of quantum machines incur an expon
tial slowdown, preventing evaluation with larger problem

This leaves the option of an approximate ‘‘mean-field
analysis using average properties of randomk-SAT, which
successfully helps understand and improve classical he
tics @25,17,26,27#. Empirical observation of how the algo
rithm changes the amplitudes for assignments withc con-
flicts, illustrated schematically in Fig. 3, indicates that for t
dominant values ofc at each step, asn increases the ampli
tudes are adequately characterized by average valuesFc

(h)

[^c r
(h)&c , where^ &c denotes the average over assignme

with c conflicts. With this approximation, steph of Eq. ~2!
becomes

c r
(h)}(

dc
~2 ivh!deiprhcFc

(h21)n~r ;d,c!, ~4!

where n(r ;d,c) is the number of assignments withc con-
flicts at distanced from assignmentr. Equation~4! gives a
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mean-field approximation forFc8
(h) by replacingn(r ;d,c)

with its average value ^n(r ;d,c)&c8 , which equals
(d

n)P(cuc8,d) whereP(cuc8,d) is the probability an assign
ment hasc conflicts when at distanced from another withc8
conflicts. This conditional probability is P(cuc8,d)
5P(c,c8ud)/P(c8) where P(c8)5(c8

m )22km(2k21)m2c8 is
the probability an assignment hasc8 conflicts, and
P(c,c8ud)5(BP(B,c2B,c82Bud) is the joint probability
two assignments separated by distanced have, respectively,
c and c8 conflicts. Finally,P(B,b,b8ud) is the probability
the assignments haveB conflicts in common and, respec
tively, b and b8 unique conflicts. The explicit form for this
probability distribution depends on the class of problem
For randomk-SAT, P(B,b,b8ud) is a multinomial distribu-
tion:

S m
B,b,b8,m2B2b2b8 D Pboth

B Punique
b1b8 Prest

m2B2b2b8 , ~5!

where Pboth522k( k
n2d)/(k

n), Punique522k2Pboth, and Prest

5122Punique2Pboth are the probabilities a randomly se
lected clause conflicts with both assignments, withr but not
s, or with neither assignment, respectively. For instancen
2d variables have the same assigned value in bothr ands,
hence ( k

n2d) choices for thek variables appearing in a claus
will involve only these commonly assigned variables. F
such a choice, the clause conflicts with bothr and s, with
probability 22k, or with neither. Combining these factor
gives the value ofPboth since in randomk-SAT each clause is
selected uniformly at random. Similarly, the expression
Punique makes use of the fact that a random clause has p
ability 22k to conflict with a given assignment. With thes
expressions, Eq.~4! relates the average amplitudes after s
h to those of the prior step.

Figure 4 compares this approximation ofFc
(h) with actual

values for a sample of random problems halfway through
algorithm, i.e., after steph5n/2. Since a constant shift in th

FIG. 3. Schematic illustration of amplitude clustering for a
intermediate step of the algorithm. The lines represent amplitu
as vectors in the complex plane. The groups are for assignm
with c50, i.e., solutions~dashed!, c51 ~gray!, andc52 ~solid!.
The arrows show the average valuesFc

(h) . Values forc.2 are not
shown.
1-4
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QUANTUM SEARCH HEURISTICS PHYSICAL REVIEW A61 052311
imaginary values is an irrelevant overall phase, the appr
mation is fairly good. To indicate how welluFc

(h)u character-
izes amplitude sizes,Cc

(h)5A^uc r
(h)u2&c is also shown.

Particularly for the dominantc values, belowc55 in
Fig. 4, the difference in behavior is relatively small. For t
behavior vs h, Fig. 1 shows the relative deviatio
A^uc r

(h)2Fc
(h)u2&c/uFc

(h)u by the shading, ranging from
white, when this ratio is 0, to black, when it is larger than
The largest ratios occur only in the last few steps and
values ofc for which p(h)(c) is quite small, limiting their
effect.

As illustrated in Fig. 1, at each step amplitude conc
trates in a narrow range of conflicts. This concentration
comes more pronounced asn increases, so the smooth vari
tion of lnFc

(h) in Fig. 4 allows a linear expansion to captu
the main behavior as n→`, i.e., taking Fc

(h)

}e(2 f h/21 ipah)c, with f h andah real-valued parameters. Th
constant of proportionality provides normalization and an
relevant overall phase. The initial superposition, with eq
amplitudes, hasf 050, a050. Thec values dominating the
amplitudes will be those near the average(cc2nP(c)uFc

(h)u2,
which, with this expansion, iscavg( f h)5m/F( f h) where
F( f )[(2k21)ef11. For hard randomk-SAT problemsm
}n so significant amplitude is in solutions wheneveref is at
least of ordern.

Using this linear form forFc
(h) and Eq.~5! in Eq. ~4! and

expanding aroundcavg( f h21) give a recursion forf h andah
in terms of f h21 andah21. For largen, the changes at eac
step are small so the recursion is approximated by a dif
ential equation by writingf h[ f (l), ah[a(l) with l5h/ j ,
giving

FIG. 4. Behavior of amplitude average and spread. Real~black!
and imaginary~gray! parts of lnFc

(10) vs c. The curves show em
pirical values, averaged over 100 random 3-SAT problems witn
520, m54.25. The points show the predictions from Eq.~4!. The
dashed curve shows the empirical values of lnCc

(10) .
05231
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dl
5pAe2 f /2F~ f !sin~pa!,

~6!

da

dl
5R~l!2

A

2
@e2 f /2

„F~ f !22…cos~pa!22k12#,

with initial conditions f (0)5a(0)50, with

A5T~l!
k

2k21
expS 2km

ef22ef /2 cos~pa!11

F~ f ! D ~7!

andR andT defined with Eq.~1!.
For most phase parameters, the solution is well beha

giving O(1) values forf over the full range ofl asn→`. In
such cases,cavg remains proportional tom and amplitudes
are not significantly concentrated in solutions. However, E
~6! can also develop logarithmic singularities, e.g., with t
limiting form f (l);22 ln(12l) and a(l);1/2 asl→1.
In general such solutions will not also satisfy the initial co
ditions f (0)5a(0)50. Instead, requiring the solution to sa
isfy both sets of conditions imposes two constraints on
four phase parameters. That is, for given choices of, sayT0
andT1, such solutions exist only for specific choices ofR0 ,
R1 that can be found numerically. One such choice, giv
above, is used in the figures. Small changes inT0 , T1, with
R0 , R1 adjusted to maintain the singularity in Eq.~6!, give
similar behavior. This technique also applies to other clas
of randomk-SAT, e.g., with differentm.

Since the recursion forf anda remains finite for allh, the
growth in f h deviates from the singular solution of Eq.~6!
for the last few steps. This deviation is significant when t
next term in the Taylor series expansion of the recursi
f 9(l)/ j 2, is comparable to f 8(l)/ j , i.e., when 12l
5O(1/ j ). For largen, this limits ef j to be of ordern2, more
than enough to give significant probability in solutions. Th
with suitable choices for the phase parameters, this ana
predicts the average number of search steps to find th
solution grows only linearly inn. Based on small problem
sizes, Fig. 2 shows that the analysis correctly identifies ph
parameters giving good average performance for hard
dom 3-SAT. In particular, the actual cost grows more slow
than classical heuristics using similar problem informatio
However, the costs in Fig. 2 grow faster than linearly. If th
continues for largern, identifying the correct scaling require
improving the analysis, e.g., accounting for the spread
amplitudes among states withc conflicts arising from the
variance inn(r ;d,c) values in Eq.~4!. The remaining free-
dom to selectT0 , T1 and the number of steps, and introdu
some nonlinearity inR(l) and T(l), could help minimize
the spread.

A number of extensions are possible. First, the amplitu
shift of Fig. 1 also occurs in problems with no solution
amplitude is enhanced in states with few conflicts. Thus, l
local classical search methods such as GSAT but unlike
plitude amplification, the algorithm applies directly to com
binatorial optimization, i.e., finding a minimal conflict sta
@28#.
1-5
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Second, the mean-field analysis also applies to o
classes of search problems, provided, as with Eq.~5!, the
probabilities relating problem properties can be determin
This is possible for a variety of commonly studied rando
search classes. More realistic classes lack analytically kn
probability distributions, but sampling representative
stances allows estimating theP(cuc8,d). Such estimates ma
even be useful for random ensembles, allowing some tun
of phase parameters for a particular problem instance.

Third, in common with amplitude amplification@21# and
some classical methods@29#, the growth ofp(h)(0), asseen
in Fig. 1, means stopping a bit before the largest probab
reduces the cost. Furthermore, the wide performance di
bution makes this algorithm suitable for improvement v
portfolios @30,31#. This is especially true due to the sma
correlation between the costs of the quantum heuristic
GSAT among problems with the same number of solutio
as shown in Fig. 5. More specifically, among random 3-S
problems, much of the variation in costs for both method
due to the differing numbers of solutions. For the remain
cost variation among those with the same number of s
tions, the most difficult cases for the quantum method are
also the most difficult for classical methods such as GSA
and vice versa. Hence applying both GSAT and this quan
heuristic to a set of problems, halting when either finds
solution, can further reduce the median cost, particula
when this portfolio is itself combined with amplitude amp
fication.

This heuristic relies on the correlation between numbe
conflicts and distance to a solution. Other properties class
heuristics exploit may also give useful phase adjustme
Examples include how an assignment’s conflicts compar
those of its neighbors, conflicts in partial assignments use
backtracking searches, how an assignment to one vari
affects others, and identifying new constraints during sea
Conversely, for which searches are these correlations
weak for quantum methods to use effectively? This ques
is particularly important for cryptography, which relies o
easily finding hard searches that are readily solved with
ditional information~i.e., the key! @32#.

These results indicate additional problem properties al
quantum searches to perform better than previously thou
but one must keep in mind their limitations: as with stud
of classical heuristics, they do not provide rigorous boun
on the average search cost and, even if the algorithm
forms well on average, they give no guarantee for spec
n
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instances. Nevertheless, restricting consideration to a
rithms whose behavior is analytically simple is likely to u
derestimate the potential of quantum computers for typ
searches. With ongoing developments in error correct
@33,34# and implementation@35–39#, quantum machines
with even a modest number of bits and limited coheren
time could help address these issues by evaluating heuri
beyond the range of classical simulation. This will be p
ticularly useful for more complicated heuristics, using ad
tional problem properties, whose theoretical analysis is e
more difficult. Exploring their behavior will identify oppor
tunities quantum computers have for using information av
able in combinatorial searches to significantly improve p
formance.

I have benefited from discussions with Matt Frankli
Wolf Polak, Eleanor Rieffel, and Christof Zalka.

FIG. 5. Comparison of quantum heuristic and GSAT costs
some of the random 3-SAT problems withn520, m54.25 used in
Fig. 2, whose median number of solutions is 8. The black and g
points correspond to problems with 8 and 15 solutions, respectiv
Within each group, the correlation coefficient between the t
methods is about 30%. Those points above the line are more c
to solve with GSAT than the quantum heuristic, and vice versa
ni,
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