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Abstract

We present a quantum algorithm for combinatorial optimization using the cost structure of the search
states. Its behavior is illustrated for overconstrained satisfiability and asymmetric traveling salesman
problems. Simulations with randomly generated problem instances show each step of the algorithm
shifts amplitude preferentially towards lower cost states, thereby concentrating amplitudes into low-cost
states, on average. These results are compared with conventional heuristics for these problems.

1 Introduction

Quantum computers [6, 7] operate on superpositions of all classical search states, allowing them to evaluate
properties of all states in about the same time a classical machine requires for a single evaluation. This
property is known as quantum parallelism. Superpositions are described by a state vector, consisting of
complex numbers, called amplitudes, associated with the classical states.

Most quantum search algorithms focus on decision problems, which have an efficiently computable test
of whether a given state is a solution. Without using any information about the problems beyond this test,
quantum computers give a quadratic improvement in search speed by using amplitude amplification [11, 1].
Using more information gives further improvement in some cases [12, 13, 15, 27], but it remains to be seen
how much improvement is possible for large, difficult search problems.

Some combinatorial searches have so many desired properties for a solution that none of the search states
satisfy all of them, i.e., there is no solution. In such cases, one often instead asks for a state with as many
desirable properties as possible [8]. More generally, each state has an associated cost and the goal is to
find a minimum-cost state. Such optimization searches can be treated as a series of decision problems with
different assumed values for the minimum cost. However many classical heuristics for optimization problems
find low-cost states directly, although these are not guaranteed to be the actual minimum. This raises the
question of whether quantum algorithms can show similar behavior since amplitude amplification does not
directly apply to optimization problems where the minimum cost is not known a priori.

As a direct approach to optimizaton problems, this paper examines algorithms mixing amplitudes among
different states so as to gradually shift the bulk of the amplitude toward states with relatively low costs, a
technique previously applied to a decision problem [15]. Like many classical methods, the resulting quantum
algorithms are heuristic (i.e., not guaranteed to find the minimum-cost state) and incomplete (i.e., even if
such a state is found, the algorithm provides no definite indication that it is indeed a minimum). In common
with most studies of heuristic methods, we evaluate their typical behavior on classes of problems rather than
determining worst-case bounds (which are often far more pessimistic than typical behaviors). Specifically, the
next section presents the quantum algorithm in the context of a general optimization problem, and contrasts
it with amplitude amplification. The following two sections then examine instances of the algorithm suitable
for overconstrained satisfiability problems (SAT) and asymmetric traveling salesman problems (ATSP).
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2 Optimization Algorithm

The quantum optimization algorithm presented here operates on superpositions of all search states, and
attempts to find a state with relatively low cost. The cost associated with each search state is used to adjust
the phase of the state’s amplitude, and a mixing operation combines amplitudes from different states.

More specifically, the overall algorithm consists of a number of independent trials, each of which returns
a single state after the final measurement. The number of trials can be fixed in advance if some (hopefully
low-cost) state is required within a preset time bound, or can continue until some other criterion is satisfied,
e.g., a sufficiently low cost state is found or a long series of trials gives no further improvement. In this
respect, this algorithm is similar to incomplete classical heuristics which tend to give low-cost states but do
not guarantee to find the absolute minimum. Moreover, even when the minimum is found, the algorithm
offers no guarantee that this is indeed the minimum cost so that further trials will not give a lower cost.

2.1 A Single Trial

A single trial of the algorithm on a quantum computer with n bits to represent the search state consists of
the following efficiently implementable [1, 17] steps:

1. initialize the amplitude equally among the states, giving ψ
(0)
s = 2−n/2 for each of the 2n states s.

2. for steps 1 through j, adjust amplitude phases based on the costs associated with the states and then
mix them. These operations correspond to matrix multiplication of the state vector, with the final
state vector given by:

ψ(j) = U (j)P (j) . . . U (1)P (1)ψ(0), (1)

where, for step h, U (h) is the mixing matrix and P (h) is the phase matrix, as described below.

3. measure the final superposition, giving state s with probability p(s) = |ψ(j)
s |2. Thus the probability to

obtain a minimum cost state with a single trial is Pmin =
∑

s p(s) where the sum is over those s with
the minimum cost.

The mixing matrix is U (h) = WT (h)W , where, for states r and s, Wrs = 2−n/2(−1)|r∧s| is the Walsh
transform and |r ∧ s| is the number of 1-bits the states have in common. The matrix T (h) is diagonal with

elements depending on |s|, the number of 1-bits state s contains: T
(h)
ss = t

(h)
|s| with

t
(h)
b = eiπτhb (2)

where τh is a constant depending on the class of problems and the number of steps, but not the particular

problem instance being solved. From these definitions, the elements U
(h)
rs depend only on the Hamming

distance between the states, d(r, s), i.e., the number of bits with different values in the two states. That

is, we can write U
(h)
rs = u

(h)
d(r,s), with u

(h)
d = (−i tan(πτh/2))d, up to an overall phase and normalization

constant [15].
The phase adjustment matrix, P (h), is a unitary diagonal matrix depending on the problem instance

we’re solving, with values determined by the cost associated with each state: P
(h)
rr = p

(h)
c(r) and

p(h)
c = eiπρhc (3)

where ρh is a constant and c(r) is the cost associated with search state r.
This algorithm has the same overall structure as amplitude amplification [11]. In fact, it reduces to

amplitude amplification if we define the “cost” of a search state to be 0 for a solution and 1 otherwise and

make the choices t
(h)
0 = −1, t

(h)
b = 1 for b > 0, p

(h)
0 = −1 and p

(h)
1 = 1 for all steps h. Note that for

optimization problems where the minimum cost is not known a priori, none of the states will be solutions
and amplitude amplification gives no enhancement in the minimum-cost states. On the other hand, the
multiple trials of this optimization algorithm could be combined with amplitude amplification to achieve
a further quadratic improvement if the minimum cost were known or through a series of repetitions using
different assumed values for the minimum [2].
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2.2 Applying the Algorithm

Completing the specification of the algorithm requires the number of steps j and values for the phase
parameters τh and ρh for h = 1, . . . , j. We consider two approaches for identifying parameters giving good
performance. The first uses a sample from the class of problems to be solved, and numerically adjusts the
parameters to give the largest probability of finding a minimum cost state when averaged over the sample.
This approach, commonly used to tune classical heuristics, allows precisely tuning the parameters but is
limited to small problem sizes whose behavior can be simulated using classical machines. Applying this
approach to larger problems will require the development of quantum hardware.

The second approach evaluates the asymptotic average behavior of the algorithm, as a function of the
phase parameters, and selects values giving good average performance for large problems. When the number
of steps j is held fixed as n increases, this can be done exactly [14]. However, good performance requires the
number of steps to increase with the size of the problem, which complicates this exact analysis. Instead, we
can use an approximate evaluation of the asymptotic behavior [15]. In this approximation, the amplitudes

at each step are assumed to depend only on the costs associated with the states. Let φ
(h)
c be the average

amplitude of states with cost c after step h. With the above definitions of the mixing and phase matrices,
the change in average amplitudes from one step to the next is approximately

φ
(h)
c′ =

∑

dc

u
(h)
d p(h)

c φ(h−1)
c ν(c′, d, c) (4)

where ν(c′, d, c) is the average number of states with cost c at distance d from a state with cost c′. This
quantity can be expressed as

(

n
d

)

P (c|d, c′) where P (c|d, c′) is the conditional probability a state has cost
c when at distance d from a state with cost c′. When a class of problems has a simple expression for
the asymptotic form of this conditional probability, this approximate equation gives the behavior of the
average amplitudes. It can then be used to select phase parameters and the number of steps to give a large
enhancement in amplitudes for low-cost states.

An optimization heuristc can be evaluated in a number of ways. For example, 〈C〉 = j/Pmin is the
expected number of steps (including repetitions due to multiple trials) required to produce a minimum-cost
state. Alternatively, one could ask how close the algorithm gets to the optimum as a function of the number of
trials. This latter measure allows trade-offs between methods that give reasonably good results very quickly,
but then give little subsequent improvement, and those that improve only slowly but eventually give lower
cost states. Finally, one could characterize a single trial by its likelihood of returning the minimum cost, Pmin,
or the expected cost of returned states,

∑

c c
∑

s|c(s)=c p(s). In our case we focus on 〈C〉 as a performance
measure. However, since the algorithms concentrate amplitude toward low-cost states, comparisons based
on the other measures give the same general conclusions.

3 Satisfiability

Satisfiability is a combinatorial search problem consisting of a propositional formula in n Boolean variables
and the requirement to find an assignment (true or false) to each variable so that the formula is true. For
k-satisfiability (k-SAT), the formula is a conjunction of m clauses each of which is a logical OR of k (possibly
negated) variables. In this form, every clause must be true in order that the full formula is true. A state
(i.e., an assigned value to each variable) is said to conflict with any clause it doesn’t satisfy. For k ≥ 3,
k-SAT is NP-complete [9]. An example 2-SAT problem with 3 variables and 2 clauses is (v1 OR (NOT v2))
AND (v2 OR v3), which has 4 solutions, e.g., v1 = false, v2 = false and v3 = true.

k-SAT problems with many clauses typically have no solutions. Such cases give an optimization prob-
lem [8], namely to find assignments with the minimum number of conflicts, i.e., the fewest unsatisfied clauses.
To examine typical behavior of the algorithm, we use the well-studied class of random k-SAT, in which the
m clauses are selected uniformly at random. Specifically, for each clause, a set of k variables is selected
randomly from among the

(

n
k

)

possibilities. Then each of the selected variables is negated with probability
1/2 to produce the clause. Thus each of the m clauses is selected, with replacement, uniformly from among
the

(

n
k

)

2k possible clauses. The difficulty of solving such randomly generated problems varies greatly from
one instance to the next. This class has a high concentration of hard instances when µ ≡ m/n is near a
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phase transition in search difficulty [5, 21, 16]. For random 3-SAT this transition is near µ = 4.25. For
our study of optimization, we generate these random problems but keep in the sample only those with no
solutions, as evaluated with a classical exhaustive search. The minimum cost can vary among the instances
in a sample.

3.1 Algorithm

Since SAT involves Boolean variables, the states in a problem with n variables can be directly represented
with n bits in a quantum computer. With such a representation, the Hamming distance between two
bit-sequences corresponds to the number of variables assigned different values in the two corresponding
search states. This correspondence allows a simple combinatoric expression for the conditional probability
P (c|d, c′) that an assignment has c conflicts when at distance d from another assignment with c′ conflicts.
This expression can in turn be used to select algorithm parameters that lead to significant shift of amplitude
toward states with few conflicts, on average [15].

Specifically, this approximation suggests using j = n and a linear variation in the phase parameters,
i.e., ρh = 1

j (R0 + R1(1 − h−1
j )) and τh = 1

j (T0 + T1(1 − h−1
j )). Thus, for instance, the first step uses

ρ1 = (R0 +R1)/j. As j increases, the ρ and τ values become small so the corresponding P and U matrices
become close to identity matrices, i.e., each step only introduces small changes in the amplitudes.

The appropriate values of the four parameters, R0, R1, T0 and T1, depend on the class of SAT problems,
in particular the values of k and µ for random k-SAT. These values can be evaluated numerically in the
context of decision problems, i.e., attempting to maximize the probability in solution states, assuming any
exist [15]. This process gives parameter values suitable for problems with solutions. In this paper, we apply
the same values for optimization problems.

3.2 Behavior

An example of the shift in amplitude is illustrated in Fig. 1. The distribution for step 0 simply reflects the
number of states with each number of conflicts in the problem. Thus in this example most assignments have
about 10 conflicts. Although this problem has no solutions, it shows the same shift in amplitude toward
low-cost states as seen for soluble problems [15]. In particular, after the last step, the measurement is likely
to produce a minimum-conflict state. Furthermore, even if such a state is not produced, the result is still
very likely to have a relatively low number of conflicts. Significantly, the algorithm operates even without
prior knowledge on the minimum number of conflicts. In fact, the approximate theory used to numerically
select the phase parameters is based on maximizing the solution probability among soluble random 3-SAT
with µ = 4 in this case. The figure shows such parameters also work well for insoluble problems. Thus the
correlation between number of conflicts and Hamming distance used by the theory is roughly the same for
soluble and insoluble instances for most of the states. Nevertheless, an open question is whether somewhat
different phase parameters may give better performance for optimization problems.

Classical heuristics also often manage to find low-conflict states. One such heuristic is GSAT [25]. The
GSAT algorithm starts from a random assignment and, for each step, examines the number of conflicts in
the assignment’s neighbors (i.e., assignments obtained by changing the value for a single variable) and moves
to a neighbor with the fewest conflicts. If a solution isn’t found after a prespecified number of steps (2n for
the comparison reported here), e.g., because the current assignment is a local minimum, the search is tried
again from a new random assignment. As with the quantum algorithm, GSAT is incomplete, i.e., does not
guarantee its result is indeed a minimum-conflict assignment.

We use multiple trials to estimate the probability GSAT returns a minimum conflict state. Specifically,
the expected cost estimate is 〈C〉 = Stotal/Tmin where Stotal is the total number of steps in all 1000 trials we
used for each problem and Tmin is the number of trials for which a minimum-conflict state was found.

A comparison of the search costs, as measured by the expected number of steps, for GSAT and the
quantum heuristic is shown in Fig. 2. Interestingly, the costs of the quantum algorithm are comparable or
below those of GSAT. Actual search times for these methods will depend on detailed implementations of the
steps. Although the number of elementary computational steps, involving evaluating the number of conflicts
in an assignment (and, in the case of GSAT, its neighbors) are similar for both techniques, differences in the

4



0

5

10

15

20

Step

0
5

10
15

20

c

0

0.2

0.4

0.6

0.8

P

0

5

10

15

20

Step0

0.2

0.4

0.6

Figure 1: Probability to find an assignment with each number of conflicts vs. number of steps for a 3-SAT
problem with 20 variables, 80 clauses and no solution (so the probability of finding a state with 0 conflicts
is always zero). In this case, the minimum number of conflicts is one. The algorithm used T0 = 0.539298,
T1 = 3.5105, R0 = 4 and R1 = −3.4 with j = 20 steps.

extent to which operations can be optimized and the relative clock rates of classical and quantum machines
remain to be seen.

Since the trials of GSAT and this quantum heuristic are independent, decision problems allow a further
quadratic speedup for either of these techniques by combining them with amplitude amplification [2]. Thus
an interesting direction for future work is the extent to which such techniques, extended to use the number
of conflicts in the search states, could give further improvement for optimization problems as well.

4 Traveling Salesman Problem

The asymmetric traveling salesman problem (ATSP) has N cities with the distance from city x to y not
necessarily equal to the distance from y to x, as would be approriate, for instance, in planning routes along
many one-way roads. The goal is a minimum-distance tour that visits every city exactly once and returns
to the starting point. Many real-world planning and scheduling problems can be modeled as TSP’s [22, 23].
An N -city problem has (N − 1)! distinct tours starting and ending in a given city, and the time required to
solve ATSP grows exponentially with N [9].

We consider the average behavior for a class of TSPs studied in the context of phase transitions in search
behavior [5, 29, 10]. Specifically, we looked at problems with intercity distances picked independently from
a normal distribution with average µ and standard deviation σ, and then rounded to the nearest integer.
Thus the probability a particular tour has length L is a discretized normal distribution with average Nµ
and standard deviation

√
N σ. The value of µ just sets the distance scale: we take it equal to 100.

5



10 12 14 16 18 20
n

15

20

30

50

70

c
o
s
t

Figure 2: Median number of steps to find a state with the minimum number of conflicts, 〈C〉 = j/Pmin, for
random 3-SAT problems with n variables and no solutions using j = n steps for each trial. Solid curves
show behavior for the quantum heuristic for µ = 4 (black) and 6 (gray). For comparison, the dashed curves
show the corresponding behavior for the classical GSAT heuristic on the same problems. The algorithm used
T0 = 0.539298, T1 = 3.5105, R0 = 4 and R1 = −3.4 for µ = 4 and T0 = 0.87, T1 = 2.7, R0 = 2.57 and
R1 = −1.73 for µ = 6. The error bars show the 95% confidence interval for the median [26, p. 124]. The
values are based on 100 problems for each n.

4.1 Algorithm

Quantum computers with n bits are most naturally used with superpositions of 2n classical states. Unlike the
SAT problem, ATSP has no direct mapping between the (N−1)! search states and the 2n states representable
by superpositions of n quantum bits. Thus an important aspect of designing a quantum algorithm for this
problem is selecting a suitable representation for the tours with binary elements.

One possibility, used in neural network approaches to TSP [18], represents each tour by a permutation
matrix, i.e., an N×N matrix of binary values. Specifically, entry i, j is one when city i is at position j in the
tour. Thus a tour gives exactly one entry in each row and column that is equal to one, and the rest are zero.
Since the choice of the first city is arbitrary, we can take city 1 to be the first in each tour, leaving a reduced
(N−1)×(N−1) matrix describing the permutation of cities 2 through N . Such a matrix can be represented
with n = (N − 1)2 binary values. While this representation has a fairly simple correspondence with the
tours, considering superpositions of all 2n possible values introduces many states that do not correspond to
tours (i.e., cases in which the corresponding matrix has two or more 1’s in a single row or column and thus
is not a permutation). Moreover, from a practical viewpoint, the quadratic growth in the number of bits
with N severely limits the problem sizes feasible for classical simulation. Thus, while this representation
may be useful for theoretical analyses and may provide good performance, it is of limited use for empirically
evaluating quantum heuristics on classical machines.

Another representation, requiring fewer bits, simply enumerates the tours starting from a given city in
lexicographical order and associates each with a bit string representing its index in this list. For example,
a 4-city problem with cities A, B, C, and D has 6 distinct tours that start and end at city A: ABCDA,
ABDCA, ACBDA, ACDBA, ADBCA, and ADCBA. Three bits are needed to represent these 6 tours,
ranging from 000 to 101. The three bits give 8 possible values, so we also get 2 states without corresponding
tours: 110 and 111.

Importantly for its use in a quantum algorith, the permutation corresponding to a given index can be
computed efficiently as a particular example of techniques for ranking a variety of combinatorial struc-
tures [24]. Specifically, consider index i, ranging from 0 to (N − 1)! − 1, as specifying a permutation of
cities 2 through N (with the understanding that the overall tour starts and ends with city 1). The value
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⌊i/(N − 2)!⌋ + 2, ranging from 2 to N , gives the first city in the permutation, and i mod (N − 2)! is the
index of the permutation for the remaining cities. Repeating this procedure once for each city gives the full
permutation in O(N) operations.

This representation uses a number of states that is the closest power of two larger than or equal to the
number of tours, i.e., 2n ≥ (N − 1)!, so n = ⌈log2(N − 1)!⌉ ∼ N log2(N/e). This introduces some extra
states, not corresponding to tours, but far fewer than using the permutation matrix representation. The
algorithm must operate so as to avoid giving much amplitude to these extra states.

For this problem, the phase adjustments depend on c, the scaled tour length: c(r) = L(r)/(Nµ) (where
Nµ is the average tour length in this class of problems and L(r) is the length of tour r, i.e., the sum of costs
between successive cities in its path). Smaller values of c correspond to shorter tours. This definition makes
the behavior of this algorithm similar to that of the SAT algorithms described earlier, where c represented
the number of conflicts in an assignment. Since we want the extra states (the ones added to make the total
number of states a power of two) to have small amplitudes, they should be assigned a large value of c. We
chose c = 2 for these extra states, so they are treated as additional tours with especially long lengths.

With this representation of the tours, the Hamming distance between two bit-strings has no simple
relation to the difference of the corresponding tours. This precludes a simple expression for the conditional
probability P (c|d, c′) used in the approximate theoretical approach to identifying good phase parameters.
Instead, we examined the performance for a random sample of problems, allowing for different values of these
parameters at each step of the algorithm. We found only a small effect on performance from allowing τh to
vary from one step to the next, so we take it to be a fixed value τ for the results reported below. However,
using a different ρh value for each step significantly improved performance. In particular, we took the values
to vary linearly, as with the SAT algorithm, i.e., we took ρh = ρinit + ρrateh for h from 1 to j where ρinit and
ρrate were new parameters depending only on the class of problems, defined by µ and σ, and total number
of steps.

In summary, for given choices of µ, σ and total number of steps j, we selected parameters τ , ρinit and
ρrate giving the best average performance based on evaluation with a sample of problems. The best choices
we found for these parameters are listed and discussed in the next section.

4.2 Behavior

Fig. 3 illustrates the algorithm’s behavior for a random 6-city problem. The height of each bin is the sum of
the probabilities p(s) of all the tours s whose lengths fall in the bin’s range. The initial step shows the initial
distribution of tour lengths. We see the algorithm shifts amplitude from the longer tours towards shorter
ones. For the problem instance shown in the figure, the probability of finding the optimal tour peaks at 0.45
after 16 steps. After 20 steps, the bins with large probabilities correspond to short tours. Thus when the
algorithm does not find the optimal tour, it will most likely still produce a tour close to optimal. A similar
shift toward shorter tours occurs for other problems including those with more cities.

To evaluate the average behavior for random 6- and 7-city problems we generated 100 problems with
µ = 100 and σ equal to 5, 10, 15, 20, 30, and 40, and then applied the algorithm for 20 steps. The results
show the cost of solving the problems doesn’t depend on the σ parameter of the distribution. In other words,
all problems of a given size are equally complex; there are no hard and easy cases for this algorithm. This
behavior differs from most classical heuristics that work particularly well on under- and overconstrained
problems [10]. This difference indicates our algorithm is not taking full advantage of the problem structure,
most likely due to the simple form of the mixing matrix and the representation of tours. It suggests an
opportunity for improved performance by developing mixing matrices using problem structure, or using
state representations where Hamming distance is a meaningful measure of tour similarity.

Quantitatively, after 20 steps a solution to 6-city problems is found with probability of roughly 30%. This
decreases to about 11% for 7-city problems. Thus, while the size of the search space increases seven-fold, the
cost goes up just by a factor of 3. With additional steps, the solution probability increases. For example,
after 30 steps (with different optimal choices for the parameters τ , ρinit and ρrate), a solution to an average
7-city problem with σ = 40% is found with a probability of about 16%. Identifying the best number of
steps, on average, remains an open question. In particular, based on the behavior of the algorithm for SAT,
taking the number of steps proportional to N may give better performance with suitable choices for the
phase parameters.
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Figure 3: Probability to find a tour vs. scaled length c and number of steps for a 6-city ATSP with µ = 100
and σ = 40. Tours are binned according to their scaled lengths. The minimum tour, with c = 0.72, is the
only one in the bin with the smallest c value. The bin at c = 2 has the extra states that do not correspond
to tours.

Table 1 summarizes the the phase parameters used in 6 and 7-city simulations, i.e., values of ρinit, ρrate

and τ that maximize the probability of finding the optimal tour in 20 steps. The optimal ρ(h) = ρinit +ρrateh
values are almost independent of the problem size, but are largely (and very consistently) dependent on σ:
doubling σ roughly halves the value of ρ. This is to be expected because doubling σ also doubles the range
of scaled tour lengths, c − 1 (where 1 is the average value of c for the class of problems). Thus halving
ρ-values keeps the phase matrix entries pc(r) about the same, up to an irrelevant overall phase. Since the
mixing matrix does not use the problem structure, it is not surprising that the optimal value of the mixing
matrix constant τ is independent of N and σ for a given number of steps.

Fig. 4 shows the scaling behavior for a fixed choice of σ. For N > 7, the simulations are too slow to
allow finding optimal parameter values. Instead, noting the parameters for the 6 and 7 city problems, given
in Table 1, were the same for σ = 40%, we continued using these parameters for the larger N . The solution
probability after 20 steps decreases as e−1.2N . These larger cases continue to show the shift of probability
toward short tours. The resulting costs grow more slowly than the expected number of trials for random
selection to find the optimal tour, (N −1)!/2. This random selection contrasts with exhaustive enumeration,
with cost (N − 1)!, which not only finds the optimum but also guarantees the result is indeed optimal.

As another comparison, Fig. 4 also shows an estimate of the median cost for a good classical method,
depth-first branch-and-bound (DFBnB) [28]. This technique relies on the assignment problem (AP), in
which each city is linked to another so that the total cost of these links is minimized. The resulting links
need not form a complete tour, in which case the search proceeds by considering subproblems in which some
of the links in the AP solution are not allowed. The initial AP can be solved in time of order N3 while
subsequent instances appearing in the subproblems require only N2 operations. Ignoring overall constants
and the, usually relatively minor, cost to find an initial upper bound on tour lengths by adjusting the result
of the initial AP [19], we take the search cost associated with this method to be Cclassical ≈ N3 + bN2 where
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deviation 5% 10% 15% 20% 30% 40%

6 cities

ρinit .32 .28 .36 .32 .32 .32
ρrate .84 .44 .32 .24 .16 .12
τ .12 .12 .12 .12 .12 .12

7 cities

ρinit .36 .32 .36 .36 .36 .32
ρrate .84 .44 .36 .24 .16 .12
τ .12 .12 .12 .12 .12 .12

Table 1: Optimal parameters for 20 steps.
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Figure 4: Median number of steps to find the optimal tour vs. N for σ = 40%. The black curve shows the
quantum search cost, 20/Pmin, using the optimal parameters for 6 and 7 cities, which are identical in this
case. The gray curve shows the scaling of random selection and the dashed curve is the cost estimate for
the classical method DFBnB described in the text. The error bars show the 95% confidence intervals for the
medians. Each point is based on a sample of 100 problems.

b is the number of subproblems evaluated during the search. To compare with the quantum search cost
measured in terms of steps, note that each step involves computing the cost of tours in superposition, which
requires O(N) operations. Thus we divide Cclassical by N to obtain the cost estimates used for comparison
in Fig. 4. While the estimate does not include multiplicative constants, it does show the classical heuristic
grows much more slowly than the quantum method introduced here. One caveat is that for large problems b
grows exponentially but for the small problems accessible to the quantum simulations, i.e., N up to about 10,
about a third of the instances are solved without any search since the initial assignment problem returns a
complete tour. Many other cases are solved by expanding just a few subproblems. Thus many of these small
problems are dominated by the cost of the initial AP and the figure does not show the eventual exponential
growth in cost. We should also note this classical algorithm, unlike the quantum algorithm and GSAT, is
complete and guarantees its result is indeed the minimum.

In spite of these limitations, this comparison does suggest the quantum technique is not particularly
effective in exploiting problem structure, especially when compared with the satisfiability search described
above. An interesting open question is whether this indicates quantum heuristics are inherently less effective
for ATSP than for SAT. Other possible reasons for the relatively large costs with the quantum algorithm
include the choice of problem representation, which does not explicitly use the relations among tours with
many common edges, and nonoptimal values of phase adjustment parameters and number of steps for the
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larger problem sizes considered here.

5 Conclusion

A quantum algorithm shifting amplitude toward low-cost states is effective for combinatorial optimization
problems, and does not require prior knowledge of the minimum cost for particular instances. This work
illustrates how quantum techniques developed for decision problems can also apply to optimization, but only
if they make use of the cost structure of the states. The experiments for satisfiability indicate appropriate
phase parameters can allow the algorithm to have performance at least comparable to classical heuristics.
The exponential increase in cost for classical simulation precludes evaluating these observations with larger
problems.

For the asymmetric traveling salesman problem, our algorithm works fairly well for small instances, and
specifically is much better than random selection. Its performance is independent of the standard deviation
of the intercity distances. By allowing contributions from different search states to interfere, the algorithm
avoids the large resource costs of using quantum parallelism without mixing the amplitudes [4]. One direction
for future work is examining other ways of encoding the problem. Currently all the tours are enumerated
in lexicographical order, and the mixing matrix doesn’t take advantage of the problem structure. Other
enumerations may allow the mixing matrix to incorporate some problem structure. In analogy with the
mixing of assignments in SAT, we could favor mixing amplitudes amongst similar tours, since tours that
have a large number of edges in common are likely to have similar lengths. Ideally, such a representation
could provide simple analytic evaluation of the conditional probability and thereby suggest better phase
parameters for larger problems.

For some classical search methods applied to decision problems, the method can be incorporated in a
quantum algorithm to give a further improvement [2, 3]. Hence an interesting open question is whether such
techniques can generalize to optimization problems and thereby improve, for instance, on GSAT and the
branch-and-bound examples of classical heuristics discussed here.

Unlike decision problems where results are easily verified, this optimization algorithm’s results cannot be
directly checked for optimality. Thus, as with classical heuristics, such as GSAT and simulated annealing [20],
applied to optimization problems, this algorithm does not indicate whether its result is indeed optimal.
Moreover, although we focus on the probability to find the optimal tour, algorithms for optimization problems
are characterized more generally by their trade-off between search cost and quality of the result. Such trade-
offs may be particularly relevant for implementations of quantum computers limited to relatively few steps
due to decoherence. For the algorithms considered here, the required number of coherent computational
steps (i.e., the length of a single trial) grows at most linearly with with problem size. This contrasts with the
exponentially growing number of steps in a single trial of amplitude amplification. Thus the structure-based
algorithms make less stringent requirements on the extent to which coherence can be maintained.

In summary, we have shown how to use the cost associated with states in an optimization problem
to adjust a superposition to increase the amplitudes associated with low-cost states. This opens a new
direction for applying quantum computers to combinatorial searches, but the extent to which this capability
can improve on classical heuristics, on average, remains an open question.
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