
Mahotas: Open source software for
scriptable computer vision

Luis Pedro Coelho
Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, USA

Instituto de Medicina Molecular, Lisboa, Portugal

August 30, 2012

Abstract

Mahotas is a computer vision library for Python. It contains traditional image
processing functionality such as filtering and morphological operations as well
as more modern computer vision functions for feature computation, including
interest point detection and local descriptors.

The interface is in Python, a dynamic programming language, which is very
appropriate for fast development, but the algorithms are implemented in C++

and are tuned for speed.
Mahotas is available under a liberal open source license (MIT License) and

is available from http://github.com/luispedro/mahotas or the Python
Package Index (http://pypi.python.org/pypi/mahotas).

Keywords: computer vision, image processing.

1 Introduction

Mahotas is a computer vision library for the Python Programming Language
(versions 2.5 and up, including version 3). It operates on numpy arrays (Walt
et al., 2011). Therefore, it uses all the infrastructure built by that project for
storing information and performing basic manipulations and computations.
In particular, unlike libraries written in the C Language or in Java (Marcel and
Rodriguez, 2010), Mahotas does not need to define a data structure, but uses
the numpy array structure. Many basic manipulation functionality that would
otherwise be part of a computer vision library are handled by numpy, for ex-
ample computing averages and other simple statistics, handling multi-channel
images, converting between types (integer and floating point images are sup-
ported by mahotas, whenever it is meaningful). For the user, this has the addi-
tional advantage that they do not need to learn yet another set of functions.

1

http://github.com/luispedro/mahotas
http://pypi.python.org/pypi/mahotas

Additionally, by integrating into the Python numeric ecosystem, users can
use other packages in a seamless way. In particular, mahotas does not imple-
ment any machine learning functionality, but rather advises the user to use
another, specialised package, such as scikits-learn or milk.

Python is a natural “glue” language: it is easy to use state-of-the-art li-
braries written in multiple languages (Oliphant, 2007). Mahotas itself is a mix
of high-level Python and low-level C++. This achieves a good balance between
speed and ease of implementation.

Version 1.0 of mahotas has been released recently and this is now a mature,
well-tested package (the first version was made available over 4 years ago).
1 Mahotas runs and is used on different versions of Unix (including Linux,
SunOS, and FreeBSD), Mac OS X, and Windows.

2 Implementation and Architecture

2.1 Interface

The interface is a procedural interface, with no global state. All functions work
independently of each other (there is code sharing at the implementation level,
but this is hidden from the user).

The main functionality is grouped into the following categories:

SURF Speeded-up Robust Features (Bay et al., 2008). This includes both key-
point detection and descriptor computation.

features Global feature descriptors. In particular, Haralick texture features,
Zernike moments, local binary patterns, and threshold adjacency statis-
tics (both the original (Hamilton et al., 2007) and the parameter-free ver-
sions (Coelho, Ahmed, et al., 2010)).

wavelet Haar and Daubechies wavelets. Forward and inverse transforms.

morphological functions Erosion and dilation, as well as some more complex
operations built on these. There are both binary and grayscale implemen-
tations of these operators.

watershed seeded watershed and distance map transforms (Felzenszwalb and
Huttenlocher, 2004).

filtering Gaussian filtering and general convolutions.

polygon operations convex hull, polygon drawing.

1Note for reviewers: the version currently available implements all functionality described in
this manuscript. I will release it as version 1.0 when this manuscript is accepted to coincide with
publication. Naturally, any bugs that are found and reported in the meanwhile will be addressed.

2

In general, functions operate on all data types. This is performed without
any extra memory copies. Mahotas is heavily optimised for both speed and
memory usage (it can be used with very large arrays).

There are a few interface conventions which apply to many functions. When
meaningful, a structuring element is used to define neighbourhoods or adja-
cency relationships (morphological functions, in particular, use this conven-
tion). Generally, the default is to use a 3×3 cross as the default if no structuring
filter is given (the exception to this rule is the median filter, where the default
is a 3× 3 square).

When a new image is to be returned, functions take an argument named
out where the output will be stored. This argument is often much more re-
stricted in type. In particular, it must often be a contiguous array.2 Since this
is a performance feature (its purpose is to avoid extra memory allocation), it is
natural that the interface is less flexible (accessing a contiguous array is much
more efficient than a non-contiguous one).

2.2 Example of Use

This is a simple example of mahotas usage. Code for this and other examples
is present in the mahotas source distribution under the demos/ directory. In
this example, we load an image and find SURF interest point and descriptors
on it.

We start by importing the necessary packages, including numpy and ma-
hotas. We also use milk, to demonstrate how the mahotas output can integrate
with a machine learning package.

import numpy as np
import mahotas
from mahotas.features import surf
import milk

The first step is to load the image and convert to 8 bit numbers. In this case,
the conversion is done using standard numpy methods, namely astype:

f = mahotas.imread('luispedro.jpg', as_grey=True)
f = f.astype(np.uint8)

We can now compute SURF interest points and descriptors.

spoints = surf.surf(f, 4, 6, 2)

Using numpy operations and milk, we can select only the descriptors and
cluster them into a group of five:

descrs = spoints[:,6:]
values, _ = milk.kmeans(descrs, 5)

Finally, we can show the points in colour.

2Numpy supports non-contiguous arrays, which are most often slices into other, larger, con-
tiguous arrays (e.g., given a 128× 128 contiguous array, one can build a 64× 128 non-contiguous
array by taking every other row).

3

Figure 1: Example of Usage. On the left, the original image is shown, while on
the right SURF detections are represented as rectangles of different colours.

colors = np.array(
[255, 25, 1],
[203, 77, 37],
[151, 129, 56],
[99, 181, 52],
[47, 233, 5]])

f2 = surf.show_surf(f, spoints[:64], values, colors)

The show surf only builds the image as a multi-channel (one for each
colour) image. Using matplotlib (Hunter, 2007), we finally display the image
as Figure 1.

from matplotlib import pyplot as plt
plt.subplot(1,2,1)
plt.imshow(f)
plt.subplot(1,2,2)
plt.imshow(f2)

The easy interaction with matplotlib is another way in which we benefit
from the numpy-based ecosystem.

2.3 Implementation

Mahotas is mostly written in C++, but this is completely hidden from the user as
there are hand-written Python wrappers for all functions (automatically gen-
erated wrappers inevitably lead to worse error messages and are less flexible).

4

The main reason that mahotas is implemented in C++ (and not in C, which
is the language of the Python interpreter) is to use templates. Almost C++ func-
tionality is split across 2 functions:

1. A py function which uses the Python C API to get arguments and
check them.

2. A template function<dtype> which works for the type dtype per-
forming the actual operation.

So, for example, this is how erode is implemented. py erode consists mostly
of boiler-plate code:

PyObject* py_erode(PyObject* self, PyObject* args) {
PyArrayObject* array;
PyArrayObject* Bc;
PyArrayObject* output;
if (!PyArg_ParseTuple(args, "OOO", &array, &Bc, &output) ||

!numpy::are_arrays(array, Bc, output) || !numpy::same_shape(array, output) ||
!PyArray_EquivTypenums(PyArray_TYPE(array), PyArray_TYPE(Bc)) ||
!PyArray_EquivTypenums(PyArray_TYPE(array), PyArray_TYPE(output)) ||
PyArray_NDIM(array) != PyArray_NDIM(Bc)

) {
PyErr_SetString(PyExc_RuntimeError, TypeErrorMsg);
return NULL;

}
holdref r_o(output);

#define HANDLE(type) \
erode<type>(numpy::aligned_array<type>(output), \

numpy::aligned_array<type>(array), \
numpy::aligned_array<type>(Bc));

SAFE_SWITCH_ON_INTEGER_TYPES_OF(array, true);
#undef HANDLE

...

This functions retrieves the arguments, performs some sanity checks, per-
forms a bit of initialisation, and finally, switches in the input type with the help
of the SAFE SWITCH ON INTEGER TYPES() macro, which call the right spe-
cialisation of the template that does the actual work. In this example erode
implements (binary) erosion:

template<typename T>
void erode(numpy::aligned_array<T> res,

numpy::aligned_array<T> array,
numpy::aligned_array<T> Bc) {

gil_release nogil;
const int N = res.size();
typename numpy::aligned_array<T>::iterator iter = array.begin();
filter_iterator<T> filter(array.raw_array(), Bc.raw_array(), EXTEND_NEAREST, is_bool(T()));
const int N2 = filter.size();

5

T* rpos = res.data();

for (int i = 0;
i != N;

++i, ++rpos, filter.iterate_both(iter)) {
T value = std::numeric_limits<T>::max();
for (int j = 0; j != N2; ++j) {

T arr_val = T();
filter.retrieve(iter, j, arr_val);
value = std::min<T>(value, erode_sub(arr_val, filter[j]));

}

*rpos = value;
}

}

The template machinery makes the functions that use it very simple and
easy to read. The only downside is that there is some expansion of code size
when the compiler instantiates the function for the several integer and floating
point types. Given the small size of these functions, this is not a big issue.

In the snippet above, you can see some other C++ machinery:

gil release This is a “resource-acquisition is object initialisation” (RAII)3

object that release the Python global interpreter lock (GIL)4 in its construc-
tor and gets it back in its destructor. Normally, the template function will
release the GIL after the Python-specific code is done. This allows several
mahotas functions to run concurrently.

array This is a thin wrapper around PyArrayObject that knows its data
type and has iterators which resemble the C++ standard library. This makes
the code type-safer. This is also a RAII object in terms of managing Python
reference counts.

filter iterator This is taken from scipy.ndimage and it is useful to
iterate over an image and use a centered filter around each pixel (it keeps
track of all of the boundary conditions).

The inner loop is as direct an implementation of erosion as one would wish
for: for each pixel in the image, look at its neighbours, subtract the filter value,
and compute the minimum of this operation.

2.4 Efficiency

Table 1 shows timings for different operations. These were normalized to mul-
tiples of the time it takes to go over the image and find its maximum pixel

3RAII is a design pattern in C++, or other languages with scope linked deterministic object de-
struction, such as D, where a resource is represented by an object, whose constructor acquires it
and whose destructor releases it. This guarantees that the object is correctly released even if the
scope is left through an exception (Stroustrup, 1994).

4In the CPython interpreter, the most commonly used implementation of Python, there is a
global lock for many Python related functionality, which limits parallelism.

6

Operation mahotas pymorphy

erode 9.90 13.06
dilate 10.48 8.17
open 20.26 21.05
cwatershed 181.47 50211.56
center mass 6.39 NA
daubechies 16.92 NA
haralick 276.90 NA

Table 1: Efficiency Results for mahotas and pymorph. Shown are values as
multiples of the time that numpy.max(f) takes.

value (this was done using numpy.max(image). The measurements shown
were obtained on an Intel 64 bit system, running Ubuntu Linux. However, due
to the normalization, measurements obtained on another system (Intel 32 bits
running Mac OS) were qualitatively similar (data not shown).

The comparison is against Pymorph (Dougherty and Lotufo, 2003), which is
a pure Python implementation of some of the same functions. We can see that
simple morphological operations (erosion, dilation, opening) take a similar
amount of time in mahotas and pymorph (pymorph intelligently uses numpy
operations for these). However, some more complex operations such as water-
shed are much faster in mahotas.

In keeping with the philosophy of blending in with the ecosystem, Mahotas
uses the standard Python build machinery and distribution channels. Building
and installing from source code is done using

python setup.py install

Alternatively, Python based package managers (such as easy install or pip)
can be used (mahotas works well with these systems).

2.5 Quality Control

Mahotas includes a complete automated suite of unit tests. These all function-
ality and include several regression tests. There are no known bugs in ver-
sion 1.0. In fact, no releases have ever been performed with known bugs. Nat-
urally, bugs were, occasionally, discovered in released versions, but corrected
before the next release.

The development is completely open-source and development versions are
available. Many users have submitted bug reports and fixes.

7

3 Availability

Operating system
Mahotas runs and is used on different versions of Unix (including Linux, SunOS,
and FreeBSD), Mac OS X, and Windows.5

Programming language
Mahotas works in Python (minimal version is 2.5 and works in all more recent
versions, including in the Python 3 series).

Additional system requirements
None.

Dependencies
It requires numpy to be present and installed.

List of contributors
Luis Pedro Coelho (Carnegie Mellon University and Instituto de Medicina Molec-
ular), Zachary Pincus (Stanford University), Peter J. Verveer (European Molec-
ular Biology Laboratory), Davis King (Northrop Grumman ES), Robert Webb
(Carnegie Mellon University), Matthew Goodman (University of Texas at Austin),
K.-Michael Aye (University of Bern), Rita Simões (University of Twente), Joe
Kington (University of Wisconsin), Christoph Gohlke (University of Califor-
nia, Irvine), and Sandro Knauss (University of Bremen).

3.0.1 Software location

Code repository
Name: Github
Identifier: https://github.com/luispedro/mahotas
Licence: MIT
Date published: Since 2009

4 Reuse Potential

Originally, this code was developed in the context of cellular image analysis.
However, none of the functionality is specific to this context and many com-
puter vision pipelines can make use of it.

This package (and earlier versions of it) have been used by myself (Coelho,
Peng, et al., 2010; Coelho, Shariff, et al., 2009) and close collaborators in several
publications (Cho et al., 2012). Other groups have used in published work, both
in cell image analysis (Mashburn et al., 2012) and in other areas (Machlek and
Oleviov, 2013).

5Christoph Gohlke has been instrumental in providing Windows packages as well as several
fixes for that platform.

8

5 Discussion

Python is an excellent language for scientific programming because of the in-
herent properties of the language and because of the infrastructure that has
been built around the numpy project. Mahotas works in this environment to
provide the user with image analysis and computer vision functionality.

Mahotas does not include machine learning related functionality, such as
k-means clustering or any classification. This is the result of an explicit design
decision. Specialised machine learning packages for Python already exist (De-
mar et al., 2004; Pedregosa et al., 2011; Schaul et al., 2010; Sonnenburg et al.,
2010). A good classification (or other) system can benefit both computer vision
users and others. As these projects all use Numpy arrays as their data types, it
is easy to use functionality from the different project seamlessly (no copying of
data is necessary).

Python is an ideal language for fast development of both applications and
scientific software. For this platform, Mahotas is a fast library of computer vi-
sion and image processing functions. It is implemented in C++, as the standard
Python interpreter is too slow for a direct Python implementation. However,
all of the Python interface code is hand-written, as opposed to using automatic
interface generators like Swig Beazley, 2003. This is more work, but the end
result is of much higher quality, especially when it comes to giving useful error
messages (e.g., when a type mismatch occurs, an automatic system will often
be forced to resort to a generic message as it does not have any knowledge of
what the arguments mean besides their automatically inferred types).

Mahotas has been available in the Python Package Index since April 2010
and has been downloaded over 20,000 times. This does not include any down-
loads from other sources. Mahotas includes a full test suite. There are no
known bugs.

Acknowledgements

Mahotas includes code ported and incorporated from other projects. In partic-
ular, the SURF implementation is a port from the code from dlib,6 a very good
C++ library by Davis King. I also gleaned some insight into the implementation
of these features from Christopher Evan’s OpenSURF library and its documen-
tation (Evans, 2009).7 The code which interfaces with the FreeImage library,
was written by Zachary Pincus and some of the support code was written by
Peter J. Verveer for the scipy.ndimage project. All of these contributions
were integrated while respecting the software licenses under which the origi-
nal code had been released. Robert Webb, a summer student at Carnegie Mel-
lon University, worked with me on the initial local binary patterns implemen-
tation. Finally, I thank the several users who have reported bugs, submitted

6Dlib’s webpage is at http://dlib.net.
7OpenSURF is available at http://www.chrisevansdev.com/

computer-vision-opensurf.html, where several documents describe details of the im-
plementation.

9

http://dlib.net
http://www.chrisevansdev.com/computer-vision-opensurf.html
http://www.chrisevansdev.com/computer-vision-opensurf.html

small fixes, and participated on the project mailing list.
Funding: I was supported in my work by the Fundação para a Ciência e

Tecnologia (grants SFRH/BD/37535/2007 and PTDC/SAU-GMG/115652/2008)
and by a grant from the Siebel Scholars Foundation.

References

Bay, H., A. Ess, T. Tuytelaars, and L. van Gool (June 2008). “Speeded-up Robust
Features (SURF)”. In: Computer Vision and Image Understanding (CVIU) 110.3,
pp. 346–359 (cit. on p. 2).

Beazley, D.M. (2003). “Automated scientific software scripting with SWIG”. In:
Future Generation Computer Systems 19.5. ¡ce:title¿Tools for Program Devel-
opment and Analysis. Best papers from two Technical Sessions, at ICCS2001,
San Francisco, CA, USA, and ICCS2002, Amsterdam, The Netherlands¡/ce:title¿,
pp. 599 –609. ISSN: 0167-739X. DOI: 10.1016/S0167-739X(02)00171-1.
URL: http://www.sciencedirect.com/science/article/pii/
S0167739X02001711 (cit. on p. 9).

Cho, Baek Hwan, Ivan Cao-Berg, Jennifer Ann Bakal, and Robert F Murphy
(July 2012). “OMERO.searcher: content-based image search for microscope
images”. In: Nature Methods, pp. 633–634. URL: http://dx.doi.org/
10.1038/nmeth.2086 (cit. on p. 8).

Coelho, Luis Pedro, Amr Ahmed, Andrew Arnold, Joshua Kangas, Abdul-
Saboor Sheikh, Eric P. Xing, William W. Cohen, and Robert F. Murphy (Jan.
2010). “Structured Literature Image Finder: Extracting Information from
Text and Images in Biomedical Literature.” In: Lecture notes in computer sci-
ence 6004, pp. 23–32. ISSN: 0302-9743. DOI: 10.1007/978-3-642-13131-
8_4. URL: http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=2901994\&tool=pmcentrez\&rendertype=abstract
(cit. on p. 2).

Coelho, Luis Pedro, Tao Peng, and Robert F. Murphy (2010). “Quantifying
the distribution of probes between subcellular locations using unsuper-
vised pattern unmixing”. In: Bioinformatics 26.12, pp. i7–i12. DOI: 10.1093/
bioinformatics/btq220. eprint: http://bioinformatics.oxfordjournals.
org/content/26/12/i7.full.pdf+html. URL: http://bioinformatics.
oxfordjournals.org/content/26/12/i7.abstract (cit. on p. 8).

Coelho, Luis Pedro, Aabid Shariff, and Robert F. Murphy (2009). “Nuclear seg-
mentation in microscope cell images: A hand-segmented dataset and com-
parison of algorithms”. In: 2009 IEEE International Symposium on Biomedical
Imaging: From Nano to Macro. IEEE, pp. 518–521. ISBN: 978-1-4244-3931-7.
DOI: 10.1109/ISBI.2009.5193098. URL: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5193098 (cit.
on p. 8).

Demar, Janez, Bla Zupan, Gregor Leban, and Tomaz Curk (2004). “Orange:
From Experimental Machine Learning to Interactive Data Mining”. In: Knowl-
edge Discovery in Databases: PKDD 2004. Ed. by Jean-Franois Boulicaut, Flori-

10

http://dx.doi.org/10.1016/S0167-739X(02)00171-1
http://www.sciencedirect.com/science/article/pii/S0167739X02001711
http://www.sciencedirect.com/science/article/pii/S0167739X02001711
http://dx.doi.org/10.1038/nmeth.2086
http://dx.doi.org/10.1038/nmeth.2086
http://dx.doi.org/10.1007/978-3-642-13131-8_4
http://dx.doi.org/10.1007/978-3-642-13131-8_4
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2901994\&tool=pmcentrez\&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2901994\&tool=pmcentrez\&rendertype=abstract
http://dx.doi.org/10.1093/bioinformatics/btq220
http://dx.doi.org/10.1093/bioinformatics/btq220
http://bioinformatics.oxfordjournals.org/content/26/12/i7.full.pdf+html
http://bioinformatics.oxfordjournals.org/content/26/12/i7.full.pdf+html
http://bioinformatics.oxfordjournals.org/content/26/12/i7.abstract
http://bioinformatics.oxfordjournals.org/content/26/12/i7.abstract
http://dx.doi.org/10.1109/ISBI.2009.5193098
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5193098
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5193098

ana Esposito, Fosca Giannotti, and Dino Pedreschi. Vol. 3202. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, pp. 537–539. ISBN: 978-
3-540-23108-0. DOI: 10.1007/978-3-540-30116-5_58 (cit. on p. 9).

Dougherty, Edward R. and Roberto A. Lotufo (2003). Hands-on Morphological
Image Processing. Bellingham, WA: SPIE Press. ISBN: 0-8194-4720-X (cit. on
p. 7).

Evans, Christopher (2009). “Notes on the OpenSURF Library SURF : Speeded
Up Robust Features”. In: 1 (cit. on p. 9).

Felzenszwalb, Pedro and Daniel Huttenlocher (Sept. 2004). Distance Transforms
of Sampled Functions. Tech. rep. Cornell University. URL: http://hdl.
handle.net/1813/5663 (cit. on p. 2).

Hamilton, Nicholas A., Radosav S. Pantelic, Kelly Hanson, and Rohan D. Teas-
dale (2007). “Fast automated cell phenotype image classification.” In: BMC
bioinformatics 8, p. 110. ISSN: 1471-2105. DOI: 10.1186/1471-2105-8-
110. URL: http://www.ncbi.nlm.nih.gov/pubmed/17394669 (cit.
on p. 2).

Hunter, John D. (2007). “Matplotlib: A 2D Graphics Environment”. In: Com-
puting in Science and Engineering 9, pp. 90–95. ISSN: 1521-9615. DOI: http:
//doi.ieeecomputersociety.org/10.1109/MCSE.2007.55 (cit.
on p. 4).

Machlek, Tom and Kamila Oleviov (2013). “Decentralized Multi-Agent Algo-
rithm for Translational 2D Image Alignment”. In: Multimedia and Internet
Systems: Theory and Practice. Ed. by Aleksander Zgrzywa, Kazimierz Choro,
and Andrzej Siemiski. Vol. 183. Advances in Intelligent Systems and Com-
puting. Springer Berlin Heidelberg, pp. 15–24. ISBN: 978-3-642-32335-5 (cit.
on p. 8).

Marcel, Sbastien and Yann Rodriguez (2010). “Torchvision the machine-vision
package of torch”. In: Proceedings of the international conference on Multimedia.
MM ’10. Firenze, Italy: ACM, pp. 1485–1488. ISBN: 978-1-60558-933-6. DOI:
10.1145/1873951.1874254. URL: http://doi.acm.org/10.1145/
1873951.1874254 (cit. on p. 1).

Mashburn, David N., Holley E. Lynch, Xiaoyan Ma, and M. Shane Hutson
(2012). “Enabling user-guided segmentation and tracking of surface-labeled
cells in time-lapse image sets of living tissues”. In: Cytometry Part A 81A.5,
pp. 409–418. ISSN: 1552-4930. DOI: 10.1002/cyto.a.22034. URL: http:
//dx.doi.org/10.1002/cyto.a.22034 (cit. on p. 8).

Oliphant, Travis E. (2007). “Python for Scientific Computing”. In: Computing in
Science and Engineering 9, pp. 10–20. ISSN: 1521-9615. DOI: http://doi.
ieeecomputersociety.org/10.1109/MCSE.2007.58 (cit. on p. 2).

Pedregosa, Fabian, Gal Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu
Brucher, Matthieu Perrot, and douard Duchesnay (Nov. 2011). “Scikit-learn:
Machine Learning in Python”. In: J. Mach. Learn. Res. 999888, pp. 2825–2830.
ISSN: 1532-4435. URL: http://dl.acm.org/citation.cfm?id=
2078183.2078195 (cit. on p. 9).

11

http://dx.doi.org/10.1007/978-3-540-30116-5_58
http://hdl.handle.net/1813/5663
http://hdl.handle.net/1813/5663
http://dx.doi.org/10.1186/1471-2105-8-110
http://dx.doi.org/10.1186/1471-2105-8-110
http://www.ncbi.nlm.nih.gov/pubmed/17394669
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MCSE.2007.55
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1145/1873951.1874254
http://doi.acm.org/10.1145/1873951.1874254
http://doi.acm.org/10.1145/1873951.1874254
http://dx.doi.org/10.1002/cyto.a.22034
http://dx.doi.org/10.1002/cyto.a.22034
http://dx.doi.org/10.1002/cyto.a.22034
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MCSE.2007.58
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MCSE.2007.58
http://dl.acm.org/citation.cfm?id=2078183.2078195
http://dl.acm.org/citation.cfm?id=2078183.2078195

Schaul, Tom, Justin Bayer, Daan Wierstra, Yi Sun, Martin Felder, Frank Sehnke,
Thomas Rckstie, and Jrgen Schmidhuber (Mar. 2010). “PyBrain”. In: J. Mach.
Learn. Res. 11, pp. 743–746. ISSN: 1532-4435. URL: http://dl.acm.org/
citation.cfm?id=1756006.1756030 (cit. on p. 9).

Sonnenburg, Sren, Gunnar Rtsch, Sebastian Henschel, Christian Widmer, Jonas
Behr, Alexander Zien, Fabio de Bona, Alexander Binder, Christian Gehl,
and Vojtch Franc (Aug. 2010). “The SHOGUN Machine Learning Toolbox”.
In: J. Mach. Learn. Res. 11, pp. 1799–1802. ISSN: 1532-4435. URL: http://
dl.acm.org/citation.cfm?id=1756006.1859911 (cit. on p. 9).

Stroustrup, Bjarne (Jan. 1994). The design and evolution of C++. Addison-Wesley
Professional. ISBN: 0-201-54330-3. URL: http : / / portal . acm . org /
citation.cfm?id=193198 (cit. on p. 6).

Walt, S. van der, S.C. Colbert, and G. Varoquaux (Mar. 2011). “The NumPy
Array: A Structure for Efficient Numerical Computation”. In: Computing in
Science Engineering 13.2, pp. 22 –30. ISSN: 1521-9615. DOI: 10.1109/MCSE.
2011.37 (cit. on p. 1).

12

http://dl.acm.org/citation.cfm?id=1756006.1756030
http://dl.acm.org/citation.cfm?id=1756006.1756030
http://dl.acm.org/citation.cfm?id=1756006.1859911
http://dl.acm.org/citation.cfm?id=1756006.1859911
http://portal.acm.org/citation.cfm?id=193198
http://portal.acm.org/citation.cfm?id=193198
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37

	Introduction
	Implementation and Architecture
	Interface
	Example of Use
	Implementation
	Efficiency
	Quality Control

	Availability
	Software location

	Reuse Potential
	Discussion

