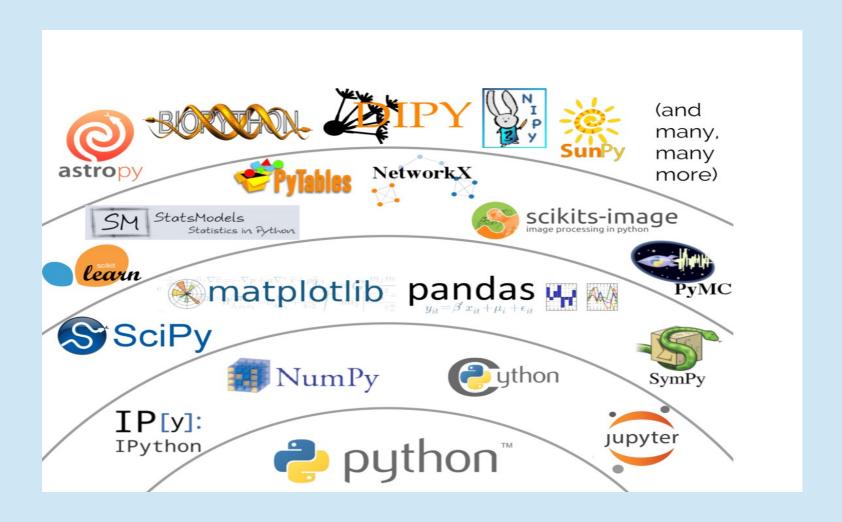
Scikit-Learn Tutorial

Object Oriented Programming and Scripting in Python

The Python Eco-System



- The most relevant activities ...
 - classification
 - clustering
 - regression
 - dimensionality reduction

Classification

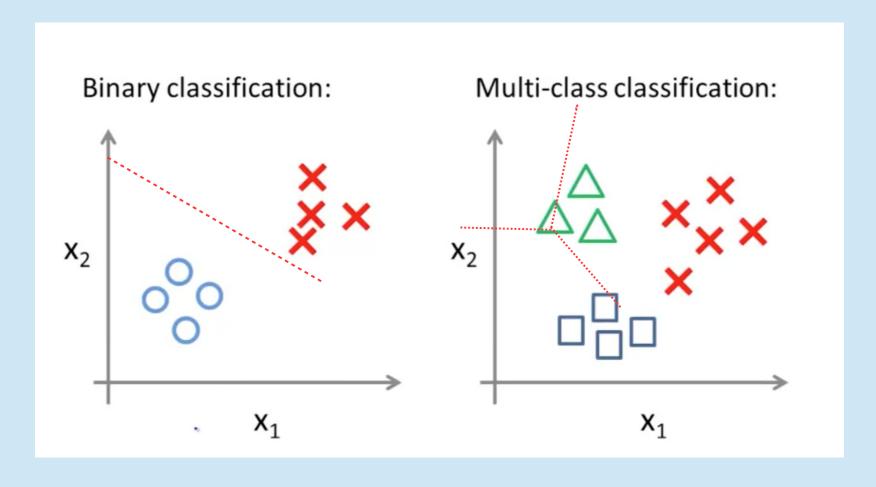
- is the task of identifying the class label of an instance
- problems with two class labels are called "binary"
 with more class labels you may have a multiclass or a multilabel problem
- some examples are needed to train the classifier

Classification

- an instance is a 1D array of values
- each column of the 1D array is a feature
- the available data are an array of instances, hence data is a 2D array
- one instance per row and one feature per column
- targets are the corresponding class labels
- an example is the combination of an instance and its target

Classification

Binary vs. multiclass classification

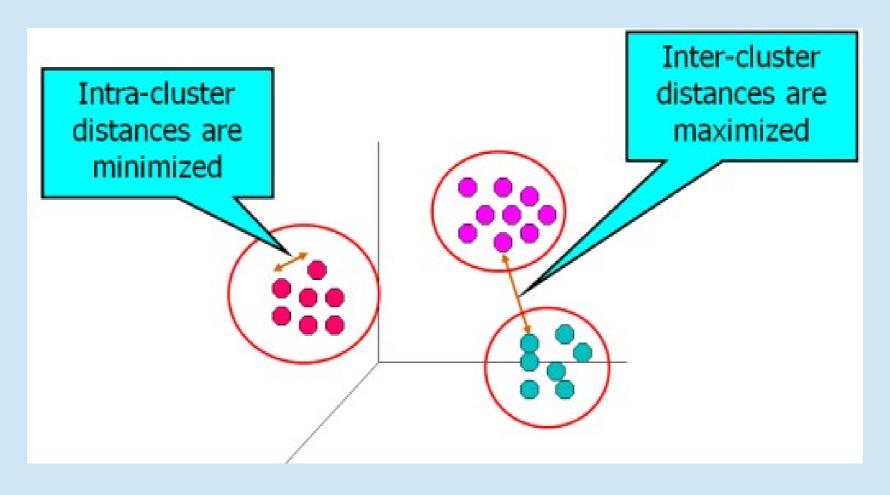


- Classification an example
 - iris (toy) dataset
 - number of examples: 150
 - number of features: 4 (all real-valued)
 - an instance: [5.1, 3.5, 1.4, 0.2]
 - target names: ['setosa', 'versicolor' 'virginica']
 - **x** an example: [5.1, 3.5, 1.4, 0.2] → setosa

Clustering

- Only data are available (i.e., no targets are given)
- Available data must be partitioned into clusters, based on their "similarity"
- Most often, similarity means that if two instances are close in the multidimensional space generated by the features, then they should be considered as part of the same cluster

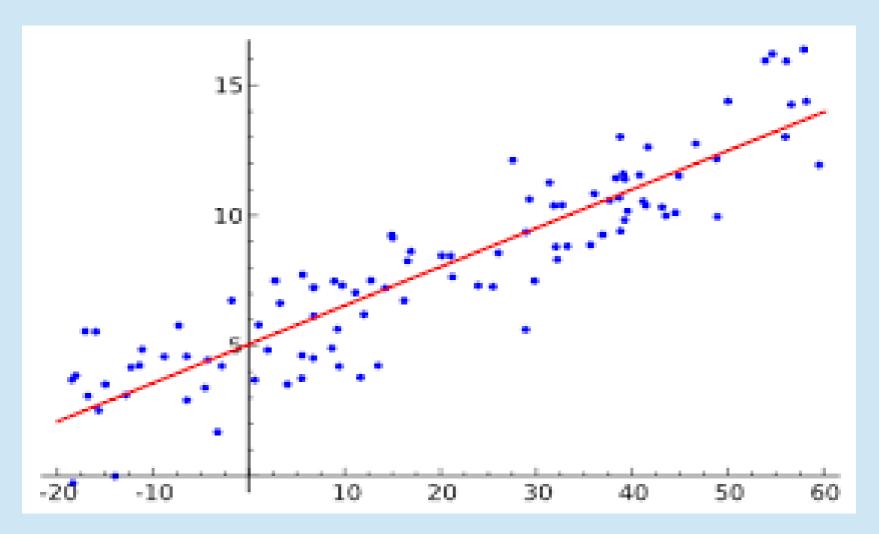
Clustering in a 3D feature space ...



Regression

- aims at estimating the relationships between a dependent variable (i.e., the outcome variable) and one or more independent variables (i.e., the features, also called predictors or covariates)
- the simplest setting consists of trying to identify the function that generates the outcomes starting from the given feature values

Regression between a single feature and the outcome ...

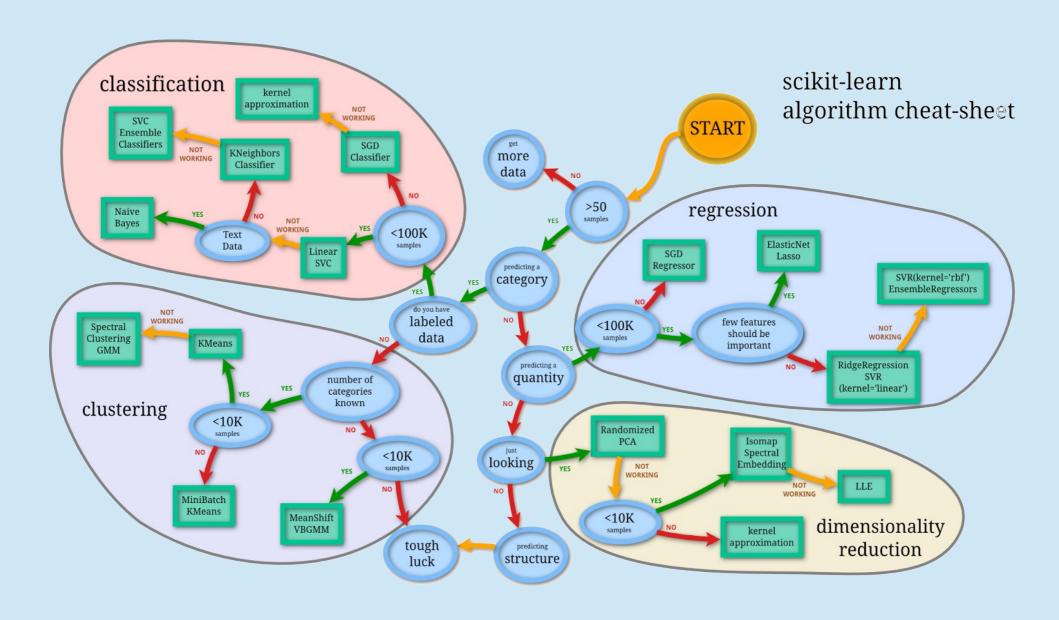


Dimensionality reduction

- Sometimes machine learning problems (in particular for classification problems) suffer from the so-called "curse of dimensionality"
- This issue arises when the number of features is much greater than the number of examples
- In this case the dimension of the input space is typically reduced with a proper preprocessing technique (i.e., feature selection or feature reduction)
 - Feature selection preserves some features (deemed useful) while dropping the others
 - Feature reduction generates an alternative feature space, whose dimension is reduced with respect to the original one

- Dimensionality reduction
 - Principal component analysis (PCA / Kernel PCA)
 - Discriminant analysis (LDA / GDA)
 - Canonical correlation analysis (CCA)
 - ecc.

SKLearn: Which task?



The main library for data mining

scikit-learn

Machine Learning in Pythor

· Simple and efficient tools for data mining and data analysis

Google Custom Search

- · Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- · Open source, commercially usable BSD license

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image

Algorithms: SVM, nearest neighbors,

random forest, ... — Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. **Algorithms**: SVR, ridge regression, Lasso,

- Examples

Clustering

Automatic grouping of similar objects into

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering, mean-shift, ... — Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased

Algorithms: PCA, feature selection, nonnegative matrix factorization. — Exar **Model selection**

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter

tuning

Modules: grid search, cross validation,

metrics. — Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms.

Modules: preprocessing, feature extraction.

— Examples

Search X

- Machine Learning library
- Designed to inter-operate with NumPy and SciPy
- Focus on:
 - Classification
 - Clustering
 - Regression
 - Dimensionality reduction
 - ... etc. ...
- Website: http://scikit-learn.org/
- How to import it in Python

```
>>> import sklearn
```

What is Machine Learning?

- ML is the field of computer science that deals with the study and the development of systems that can learn from data
- Useful definitions
 - Model: the collection of parameters you are trying to fit
 - Data: what you are using to fit the model
 - Target: the value you are trying to predict with your model
 - Features: attributes of your data that will be used in prediction
 - Methods: algorithms that will use your data to fit a model

Learning problem

- A learning problem considers a set of samples of data and then tries to predict properties of unknown data
- Supervised learning
 - If the systems learns from already labeled data (training set) and tries to predict the class of the unknown samples (test set), the task is classification
 - If the desired output consists of one or more continuous variables, then the task is regression

Learning problem

- Unsupervised learning
 - All samples are unlabeled; hence we can only investigate "hidden" properties of the given samples
- Typical tasks ...
 - Find groups of similar samples (clustering)
 - Determine the data distribution (density estimation)
 - Project data from high-dimensional space to a lowdimensional space (dimensionality reduction)

- Scikit-learn comes with a few standard datasets
- One may use specific functions to download any of them:
 - load_boston() #Load and return the boston house-prices dataset (regression)
 - load_iris() #Load and return the iris dataset (classification)
 - load_diabetes() #Load and return the diabetes dataset (regression)
 - load_digits([n_class]) #Load and return the digits dataset (classification)
 - load_linnerud() #Load and return the linnerud dataset (multivariate regression)

- A dataset object contains the following fields (n be the number of samples and m the number of features):
 - data: a 2D-array [with shape (n, m)]
 - feature_names: a list containing the names of the features [with size m]
 - target: an array containing, for each sample, the corresponding class value (for supervised learning) [with size n]
 - target_names: an array containing the class names (for supervised learning) [with size at least 2]

Example of dataset import (iris):

```
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> dir(iris)
['DESCR', 'data', 'feature_names', 'filename',
'target', 'target_names']
```


Example of dataset import (iris):

```
>>> from sklearn import datasets
>>> iris = datasets.load iris()
>>> iris.data
   array([[ 5.1, 3.5, 1.4, 0.2],
      [4.9, 3., 1.4, 0.2],
      [4.7, 3.2, 1.3, 0.2], \dots
>>> iris.feature names
    ['sepal length (cm)', 'sepal width (cm)',
     'petal length (cm)', 'petal width (cm)']
>>> iris.target
   array([0, 0, 0, 0, 0, 0, 0, ...
```


Example of dataset import (iris):

Datasets: sample images

- Scikit-learn also provides a couple of 2D sample images
 - #Load the couple of sample images
 load_sample_images()
 - #Load the numpy array of a single sample image load sample image(image name)

Datasets: sample images

Examples

Load two images (and show the first one)


```
>>> from sklearn import datasets as ds
>>> from matplotlib import pyplot as pl
>>> images = ds.load_sample_images()
>>> image1, image2 = images.images
>>> pl.imshow(image1)
```

Load a single image (i.e., 'flower.jpg')

```
100
200
300
400
0 100 200 300 400 500 600
```

```
>>> im = ds.load_sample_image('flower.jpg')
>>> pl.imshow(im)
```

Datasets: Olivetti faces data

Set of face images

```
>>> #Load the face dataset (40 subjects, 10
image per subject)
>>> from sklearn import datasets as ds
>>> faces = ds.fetch_olivetti_faces()
```

- data: numpy array of shape (400, 4096), each row being a flatted face image of 64 x 64 pixels
- images: numpy array of shape (400, 64, 64), each row being a face image one subject of the dataset
- target: numpy monodimensional array, each element being a label, ranging from 0 to 39 and corresponding to the subject ID
- DESCR: description of the dataset

Datasets: Olivetti faces data

```
>>> from matplotlib import pyplot as pl
>>> from sklearn import datasets as ds
>>> faces = ds.fetch_olivetti_faces()
>>> pl.imshow(faces.images[0])
>>> print(faces.target[0])
```

Datasets: 20 newsgroups

Set of 18000 textual posts on 20 topics, splitted in training and test set

```
>>> #Load a list of raw text posts
>>> from sklearn import datasets as ds
>>> subset = 'train/test'
>>> news = fetch_20newsgroups(subset=subset)
```

- data: list of raw text posts.
- filenames: list of file where data are stored
- target: numpy monodimensional array containing the integer index of the associated category
- target_names: labels of the categories

Datasets: 20 newsgroups

Set of 18000 textual posts on 20 topics, splitted in training and test set

```
>>> #Load a list of raw text posts
>>> from sklearn import datasets as ds
>>> subset = 'train/test'
>>> news = ds.fetch_20newsgroups(subset=subset)
>>> #Returns ready-to-use features
>>> vnews = ds.fetch_20newsgroups_vectorized()
```

Datasets: 20 newsgroups

It is possible to load only a sub-selection of the categories, as follows:

Datasets transformation

Feature extraction Extraction of features from datasets, in a format supported by machine learning algorithms

Note Feature extraction differs from feature selection: the former consists of transforming arbitrary data, such as text or images, into numerical features usable for machine learning. The latter is a technique focused on identifying a useful subset of features (typically used in presence of many features).

Feature extraction

- Loading from dictionary The class DictVectorizer is used to convert features represented as lists of dict objects to the NumPy/SciPy representation used by scikit-learn estimators
- Useful methods of the DictVectorizer class (X being dicts or mappings of feature objects):
 - x fit_transform(X): returns feature vectors (array or sparse matrix)
 - get_feature_names(): returns a list of feature name,
 ordered by indexes
 - inverse_transform(Y): transform array or sparse matrix
 back to feature mappings

Feature extraction

Loading from dictionary

```
>>> measurements = [
... {'city': 'Dubai', 'temperature': 33.},
... {'city': 'London', 'temperature': 12.},
... {'city': 'San Fransisco', 'temperature':
18.}
... ]
```

Feature extraction

Loading from dictionary

```
>>> from sklearn.feature extraction import
DictVectorizer
>>> v = DictVectorizer()
>>> v.fit transform(measurements).toarray()
   array([[ 1., 0., 0., 33.],
          [ 0., 1., 0., 12.],
          [ 0., 0., 1., 18.]])
>>> v.get feature names()
    ['city=Dubai', 'city=London',
     'city=San Fransisco', 'temperature']
```

Text feature extraction

Bag of Words

Documents are described by word occurrences while ignoring the position of the words in the document.

- Tokenization of strings and indexing of each possible token (e.g., white-spaces and punctuation as token separators).
- Count of the occurrences of tokens in each document.
- Normalization and weighting (tokens that occur in the majority of samples / documents are less important).
- Each token occurrence frequency is a feature.
- A corpus can be represented by a matrix with one row per document and one column per token (e.g., per word).

CountVectorizer

Turns a collection of text documents into numerical feature vectors.

```
>>> from sklearn.feature_extraction.text import
CountVectorizer
>>> c = CountVectorizer()
```

CountVectorizer

```
>>> c = CountVectorizer()
>>> C
    CountVectorizer(analyzer=u'word',
    binary=False, charset=None,
    charset error=None, decode error=u'strict',
    dtype=<type 'numpy.int64'>,
    encoding=u'utf-8', input=u'content',
    lowercase=True, max df=1.0, max features=None,
    min df=1, ngram range=(1, 1),
    preprocessor=None, stop words=None,
    strip accents=None,
    token pattern=u'(u?)\\b\\w\\w+\\b',
    tokenizer=None, vocabulary=None)
```

- Tf-Idf term weighting
 - In a large text corpus, frequent words carry very little meaningful information about the actual contents of the document (e.g. "the", "a", "is" in English).
- In order to re-weight the count features into floating point values suitable for usage by a classifier it is very common to use the tf-idf transform.
- Tf means term-frequency while idf means inverse document-frequency.
- This normalization is performed by the TfidfTransformer class.

```
>>> from sklearn.feature extraction.text
         import TfidfTransformer
>>> transformer = TfidfTransformer()
>>> counts = [[3, 0, 1],
            [2, 0, 0],
              [3, 0, 0],
              [4, 0, 0],
              [3, 2, 0],
              [3, 0, 2]]
>>> tfidf = transformer.fit transform(counts)
>>> tfidf
  <6x3 sparse matrix of type '<...
  'numpy.float64'>' with 9 stored elements in
  Compressed Sparse ... format>
```

As tf—idf is very often used for text features, there is also another class called TfidfVectorizer that combines all the options of CountVectorizer and TfidfTransformer in a single model

```
>>> from sklearn.feature_extraction.text
import TfidfVectorizer
>>> vectorizer = TfidfVectorizer()
>>> vectorizer.fit_transform(corpus)

<4x9 sparse matrix of type '<...
'numpy.float64'>' with 19 stored elements
in Compressed Sparse ... format>
```

Dataset transformation

- Preprocessing
 - The preprocessing package provides common utility functions and transformer classes to change raw feature vectors into more suitable representations.
- Standardization: several estimators require data with Gaussian distribution with zero mean and unit variance.
- The function scale provides a quick and easy way to perform this operation on a single array-like dataset.

Preprocessing: gaussian scaling

```
>>> from sklearn import preprocessing
>>> import numpy as np
>>> X = np.array([[1., -1., 2.],
                  [ 2., 0., 0.],
                  [0., 1., -1.]]
>>> X scaled = preprocessing.scale(X)
>>> X scaled.mean(axis = 0)
    array([ 0., 0., 0.])
>>> X scaled.std(axis = 0)
    array([ 1., 1., 1.])
```

Preprocessing: normalization

- Normalization: process of scaling individual samples to have unit norm.
- The function normalize provides a quick and easy way to perform this operation on a single array-like dataset, either using the L1 or L2 norms:

Preprocessing: binarization

- Feature binarization: process of thresholding numerical features to get Boolean values
- The class Binarizer provides way to perform this operation on a single array-like dataset:

```
>>> X = ([[1., -1., 2.],
[2., 0., 0.]
[0., 1., -1.]]
>>> from preprocessing import Binarizer
>>> b = Binarizer(threshold = 0.0)
>>> X binarized = b.transform(X)
>>> X binarized
     array([[ 1., 0., 1.],
           [ 1., 0., 0.],
            [ 0., 1., 0.]])
```

Preprocessing: dimensionality reduction

- If the number of features is high, it may be useful to reduce it with an unsupervised step prior to supervised steps.
- Principal Component Analysis (PCA): linear dimensionality reduction using Singular Value Decomposition, keeping only the most significant vectors to project the data to a lower dimensional space.

Preprocessing: dimensionality reduction

```
>>> from sklearn.decomposition import PCA
>>> X = np.array([-1, -1, 1], [-2, -1, 3],
                    [-3, -2, -1], [1, 1, 4],
                    [2, 1, -2], [3, 2, 0]
>>> pca = PCA(n components = 2)
>>> pca.fit transform(X)
    array([-1.37906599, -0.19483452],
           [-2.67976904, 1.58289587],
           [-3.05951071, -2.64246464],
           [ 0.57960659, 3.41925573],
           [2.83966112, -2.22778034],
           [ 3.69907808, 0.06292795]],
    dtype=float32)
```

Feature selection

Feature selection

Process of selecting a subset of relevant features, either to improve estimators' accuracy scores or to boost their performance on very high-dimensional datasets

SkLearn provides a module containing the main algorithms and utilities for feature selection tasks (feature_selection module)

Feature selection

- Functions of feature selection:
 - SelectPercentile([...])
 select features according to a percentile of the highest scores.
 - SelectKBest([score_func, k])
 select features according to the k highest scores.
 - RFE(estimator[, ...])
 feature ranking with recursive feature elimination.
 - VarianceThreshold([threshold])
 feature selector that removes all low-variance features.
 - feature_selection.chi2(X, y)
 compute chi-squared statistic for each class/feature combination.

• ...

Feature selection

Removing features with low variance:

```
>>> from sklearn.feature selection import
VarianceThreshold as VTh
>>> X = [[0, 0, 1], [0, 1, 0], [1, 0, 0],
[0, 1, 1], [0, 1, 0], [0, 1, 1]
>>> sel = VTh(threshold = .2)
>>> sel.fit transform(X)
    array([[0, 1],
           [1, 0],
           [0, 0],
           [1, 1],
           [1, 0],
           [1, 1])
```

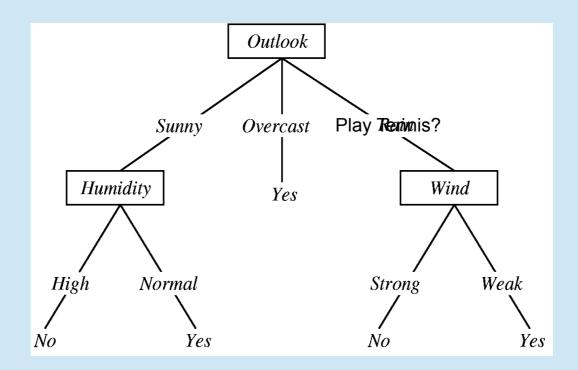
End of part I

Classification

- In machine learning, classification is the problem of identifying to which of a set of categories (subpopulations) a new observation belongs, on the basis of a training set of data containing observations (or instances) whose category membership is known.
- Classification is considered an instance of supervised learning, i.e., learning where a training set of correctly identified observations is available.

Decision Trees

Decision Trees (DTs) are used for classification and regression. The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. The deeper the tree, the more complex the decision rules and the fitter the model.



Decision Tree Classifier

- DecisionTreeClassifier is a class capable of performing multi-class classification on a dataset.
- A DecisionTreeClassifier takes as input two arrays:
 - an array X of shape (n_samples, n_features)
 holding the training samples, and
 - an array Y of integer values, of size n_samples, holding the class labels for the training samples

Decision Tree Classifier

Example 1

```
>>> from sklearn import tree
>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(X, Y) #data fitting
```

After fitting, the model can then be used to predict new values:

```
>>> clf.predict([[2., 2.]])
array([1])
```

Decision Tree Classifier

Example 2

```
>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
>>> iris = load_iris()
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(iris.data, iris.target)
>>> clf.predict(iris.data[0, :])
array([0])
```

- A neirest neighbor classifier finds a predefined number of training samples closest in distance to the new point, and predicts the label from these
- The number of samples to be considered for classification can be a user-defined constant (in knearest neighbor classifiers), or may vary depending on the local density of points (in radius-based neighbor classifiers)

- Scikit-learn implements two different nearest neighbors classifiers:
 - KNeighborsClassifier implements the kNN classifier
 - RadiusNeighborsClassifier implements the radius-based neighbor classifier

```
>>> from sklearn import neighbors
```

KNN classifier class

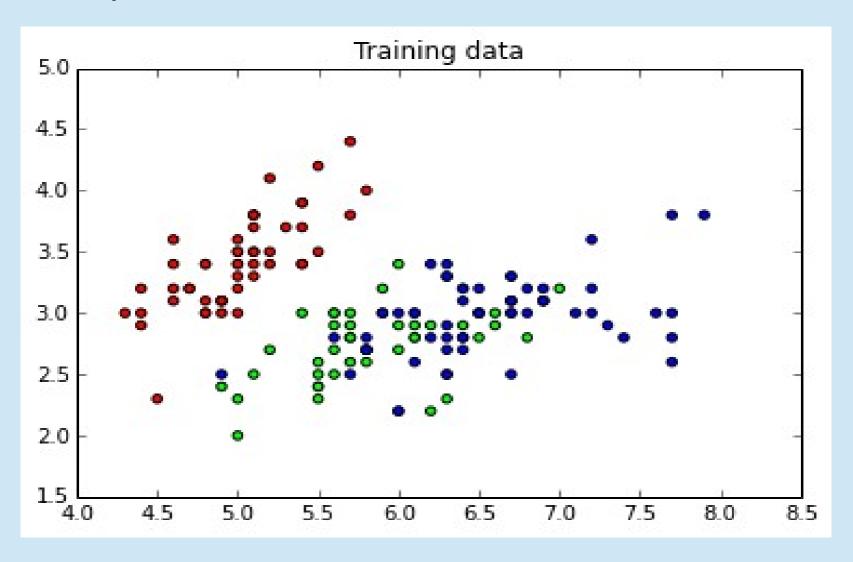
```
KNeighborsClassifier(n_neighbors,
weights = weights)
```

- n_neighbors: the value of k
- weights: the weighting function for each neighbor:
 - 'uniform': assigns uniform weights to each neighbor
 - 'distance': weights are proportional to the inverse of the distance from the query point
 - alternatively, a user-defined function of the distance can be supplied

Example: iris dataset

```
>>> from matplotlib.colors import ListedColormap
>>> from sklearn import neighbors, datasets
>>> iris = datasets.load iris()
>>> X = iris.data[:, :2] #Taking the first 2 features
>>> y = iris.target
>>> colors = ['#FF0000','#00FF00','#0000FF']
>>> cmap bold = ListedColormap(colors)
>>> F1, F2 = X[:, 0], X[:, 1]
>>> matplotlib.scatter(F1,F2, c = y, cmap = cmap bold)
>>> matplotlib.title('Training data')
>>> matplotlib.show()
```

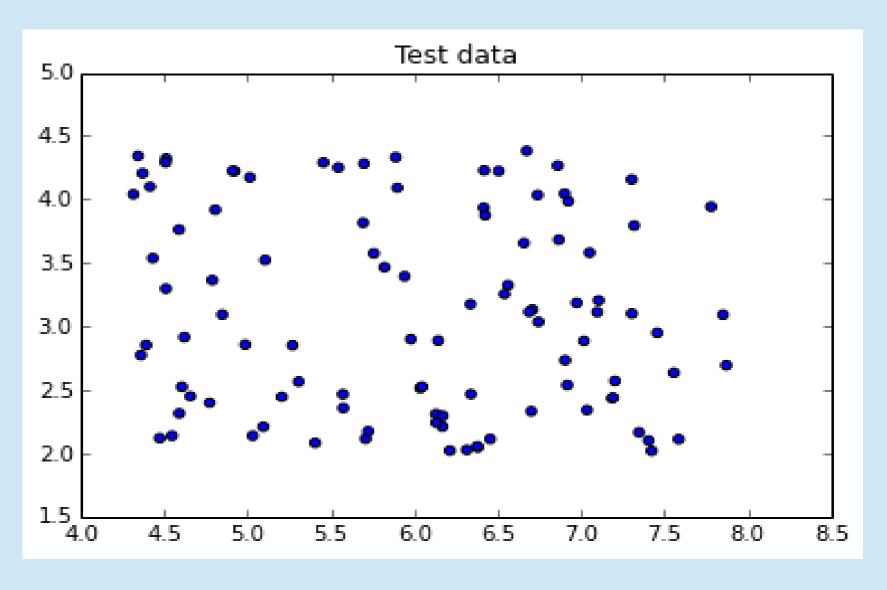
Example: iris dataset



Iris dataset

```
>>> clf = neighbors.KNeighborsClassifier(15,
weights='uniform') #Classifier instance
>>> clf.fit(X, y) # Classifier fitting
>>> #generation of random test samples
>>> N = 100
>>> from random import uniform
>>> xx = [uniform(F1.min(),F1.max()) for k in range(N)]
>>> yy = [uniform(F2.min(), F2.max()) for k in range(N)]
>>> matplotlib.scatter(xx, yy)
>>> matplotlib.title('Test data')
>>> matplotlib.show()
```

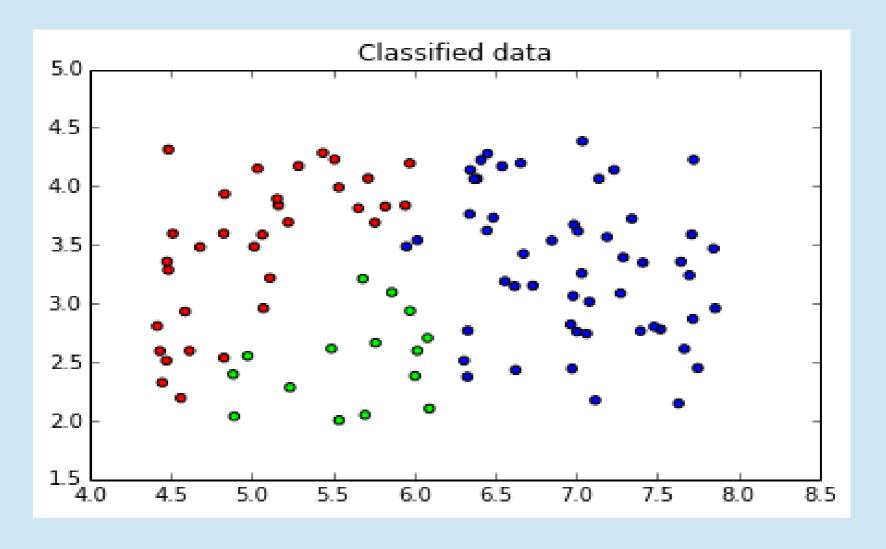
Iris dataset



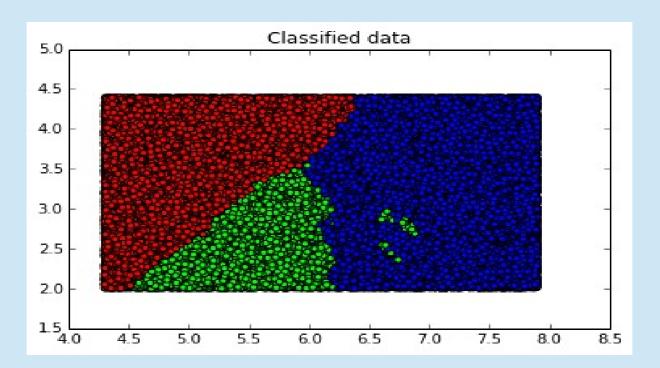
Classification

```
>>> points = np.array(zip(xx, yy)) #test points
>>> Z = clf.predict(points) #classification
>>> plt.scatter(xx, yy, c=Z, cmap=cmap_bold)
>>> matplotlib.scatter(xx, yy)
>>> matplotlib.title('Classified data')
>>> matplotlib.show()
```

Classification



Increasing the test points allows to clearly see the classification regions



For a complete example see

```
http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html#example-neighbors-plot-classification-py
```

Naive Bayes methods are a set of algorithms based on applying the Bayes theorem with the "naive" assumption of independence between every pair of features

Given a class variable y and a dependent feature vector x, Bayes' theorem states the following relationship:

$$P(y \mid x_1, ..., x_n) = \frac{P(y)P(x_1, ..., x_n \mid y)}{P(x_1, ..., x_n)}$$

Using the feature independence assumption:

$$P(y \mid x_1, \dots, x_n) = \frac{P(y) \prod_{i=1}^n P(x_i \mid y)}{P(x_1, \dots, x_n)}$$

Since P(x₁, ..., x_n) is constant given the input, we can use the following classification rule:

$$P(y \mid x_1, \dots, x_n) \propto P(y) \prod_{i=1}^n P(x_i \mid y)$$

$$\downarrow \downarrow$$

$$\hat{y} = \arg \max_{y} P(y) \prod_{i=1}^n P(x_i \mid y),$$

- We can use Maximum A Posteriori (MAP) estimation to estimate P(y) and P(x_i | y)
- The former is the relative frequency of class y in the training set
- The various kinds of naive Bayes classifiers differ mainly on the assumptions made regarding the distribution of P(x_i | y)

```
>>> from sklearn import naive_bayes
```

Gaussian Naive Bayes

GaussianNB implements the Gaussian Naive Bayes algorithm for classification. The likelihood of the features is assumed to be Gaussian:

$$P(x_i \mid y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp\left(-\frac{(x_i - \mu_y)^2}{2\sigma_y^2}\right)$$

The parameters s_y and m_y are estimated using maximum likelihood.

Gaussian Naive Bayes

Example 1

```
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2],
[1, 1], [2, 1], [3, 2]])
>>> Y = np.array([1, 1, 1, 2, 2, 2])
>>> from sklearn.naive_bayes import GaussianNB
>>> clf = GaussianNB()
>>> clf.fit(X, Y)
>>> print(clf.predict([[-0.8, -1]]))
[1]
```

Gaussian Naive Bayes

Example 2

```
>>> from sklearn import datasets
>>> iris = datasets.load iris()
>>> from sklearn.naive bayes import GaussianNB
>>> qnb = GaussianNB()
>>> data, target = iris.data, iris.target
>>> y pred = gnb.fit(data, target).predict(data)
>>> nrows, ncols = data.shape
>>> nerrors = (target != y pred).sum()
>>> frmt = "Number of mislabeled points %d (%d)"
>>> print(frmt % (nrows, nerrors))
   Number of mislabeled points 6 (150)
```

Multinomial Naive Bayes

- MultinomialNB implements naive Bayes for multinomially distributed data,
- It is one of the two classic naive Bayes variants used in text classification (where data are typically represented as word vector counts).
- The distribution is parametrized by vectors $q_y = (q_{y1}, ..., q_n)$ for each class y, where n is the number of features (in text classification, it is the size of the vocabulary) and q_{yi} is the probability $P(x_i | y)$ for feature i to appear in a sample belonging to class y.
- The parameters q_y are estimated according to a smoothed version of maximum likelihood

Multinomial Naive Bayes

Example

```
>>> import numpy as np
>>> X = np.random.randint(5, size=(6, 100))
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> from sklearn.naive_bayes import MultinomialNB
>>> clf = MultinomialNB()
>>> clf.fit(X, y)
>>> print(clf.predict(X[2]))
[3]
```

Bernoulli Naive Bayes

BernoullinB implements the naive Bayes training and classification algorithms for data that is distributed according to multivariate Bernoulli distributions; i.e., there may be multiple features but each one is assumed to be a binary-valued (Bernoulli, boolean) variable. Therefore, this class requires samples to be represented as binary-valued feature vectors; if handed any other kind of data, a BernoulliNB instance may binarize its input (depending on the binarize parameter).

Bernoulli Naive Bayes

Example

```
>>> import numpy as np
>>> X = np.random.randint(2, size=(5, 100))
>>> y = np.array([1, 2, 3, 4, 5])
>>> from sklearn.naive_bayes import BernoulliNB
>>> clf = BernoulliNB()
>>> clf.fit(X, y)
>>> print(clf.predict(X[2]))
[3]
```

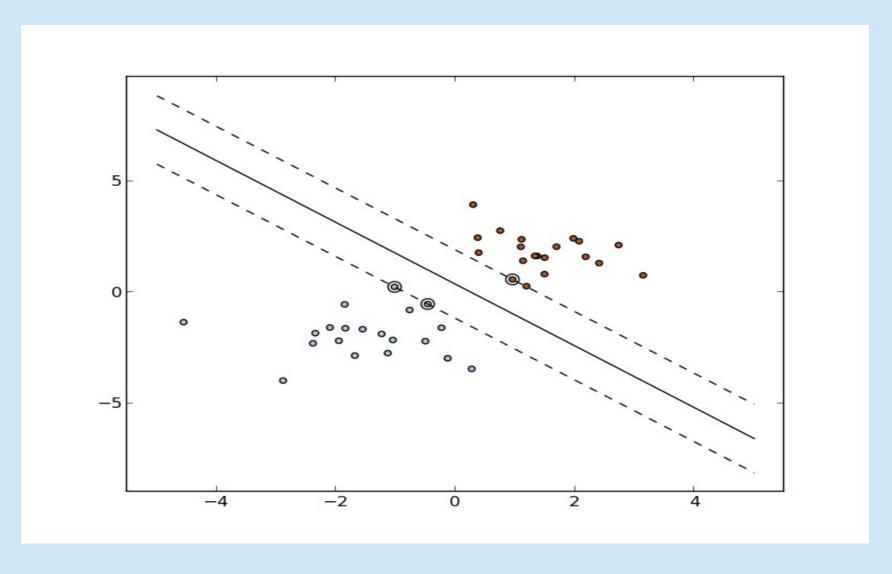
If X is not binary, the object should be instantiated with the binarize parameter

```
>>> clf = BernoulliNB(binarize=th)
>>> # th is the threshold for binarization
```

Support Vector Machines (SVMs) are models with associated learning algorithms that analyze data and recognize patterns. Given a set of training examples, each marked as belonging to a distinct category, an SVM training algorithm builds a model that assigns new examples into one category, making it a nonprobabilistic binary linear classifier.

A SVM constructs a hyper-plane (or a set of hyper-planes) in a high dimensional space. Intuitively, a good separation is achieved by the hyper-plane that has the largest distance to the nearest training data points of any class (so-called functional margin), since in general the larger the margin the lower the generalization error of the classifier.

SVM



- SVC, NuSVC and LinearSVC are classes capable of performing multi-class classification on a dataset.
- SVC and NuSVC are similar methods, but accept slightly different sets of parameters and have different mathematical formulations (see http://scikit-learn.org/stable/modules/svm.html for the documentation). LinearSVC is another implementation of Support Vector Classification for the case of a linear kernel.

Example: binary classification

```
>>> from sklearn import svm
>>> X = [[0, 0], [1, 1]]
>>> y = [0, 1]
>>> clf = svm.SVC()
>>> clf.fit(X, y)
>>> clf.predict([[2., 2.]])
    array([1])
```

SVMs decision function depends on some subset of the training data, called the support vectors. Some properties of these support vectors can be found with the following methods:

```
>>> #get support vectors
>>> clf.support vectors
    array([[ 0., 0.],
           [ 1., 1.]])
>>> #get indices of support vectors
>>> clf.support
   array([0, 1])
>>> #get number of support vectors for each class
>>> clf.n support
   array([1, 1])
```

Multi-class classifications: SVC and NuSVC implement the "one-against-one" approach for multi- class classification. If C is the number of classes, then C (C - 1)/2 classifiers are constructed and each one trains data from two classes:

```
>>> #get support vectors
>>> X = [[0], [1], [2], [3]]
>>> Y = [0, 1, 2, 3]
>>> clf = svm.SVC()
>>> clf.fit(X, Y)
>>> dec = clf.decision function([[0.3]])
>>> dec.shape[1] #4 classes: 4*3/2 = 6
    6
>>> clf.predict([0.3])
    [0]
```

Multi-class classifications: LinearSVC implements "one-vs-the-rest" multi-class strategy, thus training C models. If there are only two classes, only one model is trained:

```
>>> #get support vectors
>>> X = [[0], [1], [2], [3]]
>>> Y = [0, 1, 2, 3]
>>> clf = svm.SVC()
>>> clf.fit(X, Y)
>>> dec = clf.decision function([[0.3]])
>>> dec.shape[1]#4 classes: 4 models
>>> clf.predict([0.3])
    [0]
```

Ensemble methods

Ensemble: combination of the predictions of several base estimators built with a given learning algorithm in order to improve generalizability / robustness over a single estimator.

Ensemble methods

- Two families of ensemble methods are usually distinguished:
 - Averaging: the driving principle is to build several estimators independently and then to average their predictions. On average, the combined estimator is usually better than any of the single base estimator because its variance is reduced.
 Examples: Bagging, Bandom Forest
 - Examples: Bagging, Random Forest,...
 - Boosting: base estimators are built sequentially and one tries to reduce the bias of the combined estimator. The motivation is to combine several weak models to produce a powerful ensemble.

Examples: AdaBoost, Gradient Tree Boosting, ...

Bagging classifier

- Each classifier is trained on random subsets of the original training set, with replacement (bootstraping) or not.
- BaggingClassifier offers a unique class for performing the bagging algorithms:
 - Pasting: each training set is a random subset of original training set
 - Bagging: each random subset is drawn with replacements of original samples
 - Random Subspacing: each training set is drawn as random subset of features (with bootstraping on feature or not)
 - Random Patches: each classifier is built on subsets of both samples and features

Bagging classifier

- BaggingClassifier parameters:
 - base_estimator (optional, default=None): the base estimator to fit on random subsets of the dataset. If None, then the base estimator is a decision tree.
 - n_estimators (optional, default=10): the number of base estimators in the ensemble.
 - max_samples (optional, default=1.0): the number of samples to draw from X to train each base estimator.
 - max_features (optional, default=1.0): the number of features to draw from X to train each base estimator.
 - bootstrap (optional; default=True): whether samples are drawn with replacement.
 - bootstrap_features (optional; default=False): whether features are drawn with replacement.

Bagging classifier

Example:

```
>>> from sklearn.ensemble import BaggingClassifier
>>> from sklearn.neighbors import
KNeighborsClassifier as KNeighbors
>>> from sklearn import datasets
>>> iris = datasets.load iris()
>>> X, y = iris.data[:, :2], iris.target
>>> bagging = BaggingClassifier(KNeighbors(15))
>>> bagging.fit(X, y)
>>> bagging.predict([[5.4, 1.5], [3.6, 5.1]])
    array([1, 0])
```

The algorithm is based on randomized decision trees. It fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Each tree in the ensemble is built from a sample drawn with replacement (i.e., a bootstrap sample) from the training set.

- RandomForestClassifier main parameters:
 - n_estimators (optional, default=10): the number of trees in the forest.
 - max_features (optional, default='auto'): the number of features to consider when looking for the best split (values are integers, float, 'sqrt', 'log2', 'None', 'auto')
 - bootstrap (optional; default=True): whether bootstrap samples are used when building trees.

Example:

```
>>> from sklearn.ensemble import
RandomForestClassifier as RandomForest
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> X, y = iris.data[:, :2], iris.target
>>> rf = RandomForest(n_estimators = 10)
>>> rf.fit(X, y)
>>> rf.predict([[5.4, 1.5], [3.6, 5.1]])
array([1, 0])
```

AdaBoost classifier

- Fitting sequence of weak learners (i.e., models that are only slightly better than random guessing, such as small decision trees) on repeatedly modified versions of the data.
- The predictions are combined through a weighted majority vote (or sum) to produce the final prediction.
- The data modifications at each iteration consist of applying weights to each of the training samples. Initially, those weights are all set for simply training a weak learner on the original data.
- For each successive iteration, the sample weights are individually modified and the learning algorithm is reapplied to the re-weighted data (boosting).

AdaBoost classifier

- At a given step, those training examples that were incorrectly predicted at the previous step have their weights increased
- Weights are decreased for those that were predicted correctly
- Examples that are difficult to predict receive everincreasing influence. Each subsequent weak learner is thereby forced to concentrate on the examples that are missed by the previous ones in the sequence training set

Example:

```
>>> from sklearn.ensemble import
AdaBoostClassifier as AdaBoost
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> X, y = iris.data[:, :2], iris.target
>>> ada = AdaBoost(n_estimators = 100)
>>> ada.fit(X, y)
>>> ada.predict([[5.4, 1.5], [3.6, 5.1]])
array([1, 0])
```

Multi-class vs multi-label classification

- Multiclass: classification with more than two classes. Each sample is assigned to one (and only one) label.
- Multilabel: each sample is assigned at a set of target labels.
- Multioutput-multiclass / multi-task: a single estimator has to handle several joint classification tasks. This is a generalization of the multi-label classification task, where the set of classification problem is restricted to binary classification, and of the multi-class classification task. The output format is a 2d numpy array.

Multi-class vs multi-label classification

sklearn.multiclass: meta-estimators to solve multiclass and multilabel classification problems by decomposition into binary classification problems. Warning! All classifiers in scikit-learn do multiclass classification out-of-the-box.

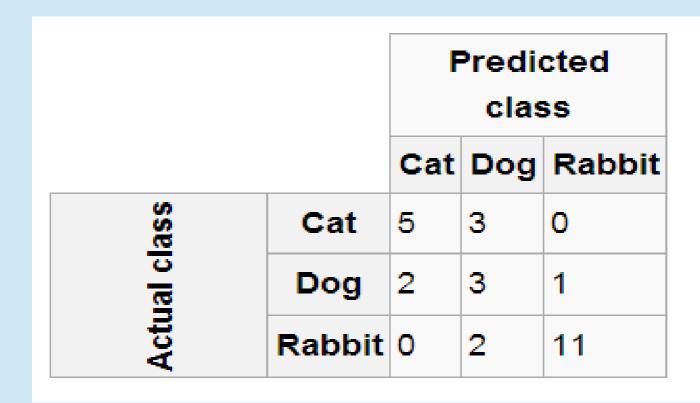
End of part II

Classifier evaluation

- Evaluation is necessary in order to compare different classifiers. How do we measure their performance? The module metrics offers objects and functions aimed at the evaluation for classification, regression, clustering, etc.
- Most well-known metrics relies on the confusion matrix

Classifier evaluation

Confusion Matrix



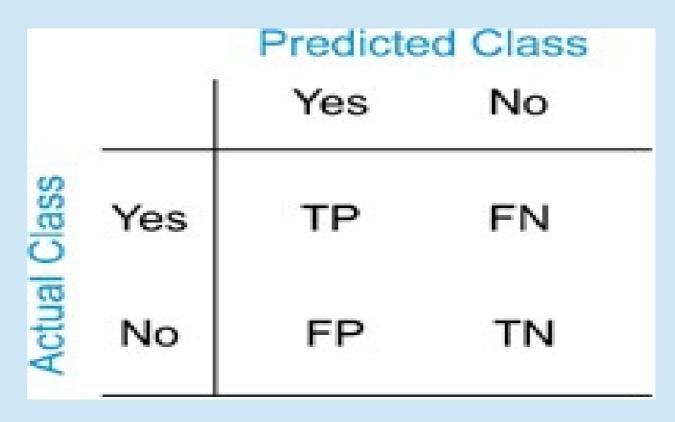
Each column of the represents the instances in a predicted class, while each row represents the instances in an actual class.

Classifier evaluation: confusion matrix

Exampe of confusion matrix code:

Classifier evaluation: confusion matrix

For a given category, the term confusion matrix is referred to a table 2x2 that reports the number of false positives (FP), false negatives (FN), true positives (TP), and true negatives (TN).



For binary classifiers ...

$$a = \frac{TP + TN}{TP + FP + FN + TN}$$

$$p = \frac{TP}{TP + FP}$$

$$r = \frac{TP}{TP + FN}$$

$$f = \frac{2 \cdot p \cdot r}{p+r}$$

• Multiclass classifiers: there are 2 conventional methods for calculating precision and recall (let C be the number of classes, and i ranging from 1 to C)

Micro-precision

$$p = \frac{\sum_{i} TP_{i}}{\sum_{i} (TP_{i} + FP_{i})}$$

Micro-recall

$$r = \frac{\sum_{i} TP_{i}}{\sum_{i} (TP_{i} + FN_{i})}$$

Macro-precision

$$P = \frac{\sum_{i} p_{i}}{C}$$

Macro-recall

$$R = \frac{\sum_{i} r_{i}}{C}$$

Accuracy:

```
>>> from sklearn.metrics import accuracy score
as accuracy
>>> y true = [0, 2, 1, 3]
>>> y pred = [0, 1, 2, 3]
>>> #percentage of correctly classified
samples
>>> accuracy(y true, y pred)
    0.5
>>> #number of correctly classified samples
>>> accuracy(y true,y pred,normalize='False')
    0.5
```

- Precision: the parameter average determines the type of averaging performed on the data. It can assume the values
 - None: the scores for each class are returned
 - micro: micro-precision is computed
 - macro: macro-precision is computed
 - weighted: the default value; the terms in the macroprecision are weighted by the number of correct instances for each class
 - samples: calculates metrics for each instance, and finds their average (only meaningful for multilabel classification)

Precision

Recall (same parameters of precision):

F1-score (same parameters of precision)

The main classification metrics are summarized by the method classification_score

```
>>> from sklearn.metrics import
classification_report
>>> y_true = [0, 1, 2, 0, 2, 2]
>>> y_pred = [0, 2, 1, 1, 0, 1]
>>> names = ['class 0', 'class 1', 'class 2']
#names matching the labels (optional)
```

>>> classification_report(y_true, y_pred, target_names = names)

```
precision recall f1-score
    support
                 0.50
                           0.50
                                     0.50
   class 0
                 0.33
                           1.00
                                     0.50
   class 1
                 1.00
                           0.33
   class 2
                                     0.50
avg / total
                 0.72
                           0.50
                                     0.50
```

(support is the number of of occurrences of each class in y_true)

Dataset Splitting

- Definition of a dataset to test the model in the training phase (validation set), in order to avoid overfitting.
- Module cross_validation.

Dataset Splitting

Training set splitting

```
>>> from sklearn import cross validation,
datasets
>>> iris = datasets.load iris()
>> X train, X test, y train, y test =
cross validation.train test split(iris.data,
iris.target, test size=0.4) #40% of training
set is randomly taken as validation set
>>> X train.shape, y train.shape
    ((90, 4), (90,))
>>> X test.shape, y test.shape
    ((60, 4), (60,))
```

Cross validation

- Splitting the training set is often not the best choice:
 - the number of samples which can be used for learning the model is drastically reduced
 - the results can depend on a particular random choice for the pair of (train, validation) sets.
- K-Fold cross validation: the training set is split into k smaller sets (folds).
- For each of the k "folds":
 - a model is trained using k-1 folds as training data;
 - the remaining fold is used as a test set to validate the model (e.g., by computing the accuracy).
 - the performance measure for each fold is then the averaged.

Cross validation

K-Fold cross validation:

```
>>> from sklearn import cross validation,
datasets, svm
>>> iris = datasets.load iris()
>>> X, y = iris.data, iris.target
>>> clf = svm.SVC()
>>> cross validation.cross val score(clf, X,
v, cv=5) #cv is the number of folds, I it is
integer
    array([ 0.96666667, 1., 0.96666667,
0.96666667, 1.])
#the result array contains the accuracies
(default) of each fold
```

Cross validation

The parameter scoring permits to compute different metrics (e.g., giving the values 'precision', 'recall', or 'f1')

```
>>> from sklearn import cross validation,
datasets, svm
>>> iris = datasets.load iris()
>>> X, y = iris.data, iris.target
>>> clf = svm.SVC()
>>> cross validation.cross val score(clf, X,
y, cv=5, scoring = 'precision') #cv is the
number of folds, I it is integer
    array([ 0.96969697, 1., 0.96969697,
0.96969697, 1.])
```

Cross validation: iterators

- The module cross_validation provides utilities to generate indices useful for splitting datasets for different cross validation methods
 - Kfold: creates arrays of indices for k-fold c.v.
 - LeaveOneOut: each test set fold contains only one sample.
- The LOO is equal to a n-fold c.v., n being the number of data samples.
 - LeavePOut: similar to LOO, but each test set contains p samples.

Cross validation: iterators

```
>>> from sklearn.cross_validation import KFold
>>> kf = KFold(4,n_folds=2) #4 samples,2 folds
>>> for train, test in kf:
... print("%s %s" % (train, test))
[2 3] [0 1]
[0 1] [2 3]
```

Regression

The target value is expected to be a linear combination of the input variables. In mathematical notion, if ŷ is the predicted value.

$$\hat{y}(w,x) = w_0 + w_1 x_1 + ... + w_p x_p$$

Across the module, we designate the vector $w=(w_1,...,w_p)$ as **coef**_ and w_0 as **intercept**_.

Linear regression: fits a linear model with coefficients w=(w₁,...,w_p) to minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation.

Regression

Example of linear regression

```
>>> from sklearn import linear_model
>>> clf = linear_model.LinearRegression()
>>> clf.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
>>> clf.coef_
      [0.5  0.5]
>>> clf.intercept_
      2.22044604925e-16
```

Regression: evaluation metrics

- Evaluation metrics for regression models (in module metrics):
 - explained_variance_score(y_true, y_pred): explained variance regression score function
 - mean_absolute_error(y_true, y_pred): mean absolute error regression loss
 - mean_squared_error(y_true, y_pred[,...]) Mean squared error regression loss

Clustering

- In machine learning, clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters).
- Clustering is an instance of unsupervised learning, i.e., learning where the data are unlabeled.

Clustering

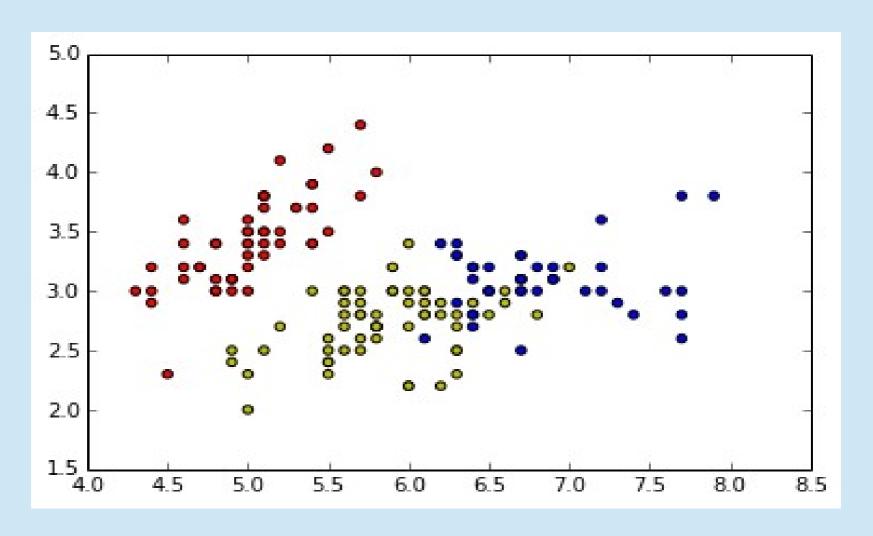
- Clustering of unlabeled data can be performed with the module sklearn.cluster.
- Each clustering algorithm comes in two variants: a class, that implements the fit method to learn the clusters on train data, and a function, that, given train data, returns an array of integer labels corresponding to the different clusters. For the class, the labels over the training data can be found in the labels_ attribute.

- The KMeans algorithm clusters data by trying to separate samples in n groups of equal variance, in which each sample belongs to the cluster with the nearest mean.
- The means are commonly called the cluster "centroids".
- Number of clusters (k) need to be specified.

The KMeans algorithm

- 1) Centroids are initially selected from the samples.
- 2) Each sample is assigned to the nearest centroid.
- 3) New centroids are created with the mean of all samples assigned to each previous centroid
- 4) Iteration of (2) and (3) until centroids do not move significantly

```
>>> import matplotlib.pyplot as plt
>>> from sklearn import datasets
>>> from sklearn.cluster import KMeans
>>> from matplotlib.colors import
ListedColormap as ColorMap
>>> iris = datasets.load iris()
>>> X = iris.data[:, :2]
>>> cmap light = ColorMap(['r','b', 'y'])
>>> k means = KMeans(n clusters = 3)
>>> k means.fit(X)
>>> y pred = k means.predict(X)
>>> plt.scatter(X[:, 0], X[:, 1], c =
y pred, cmap = cmap light);
```

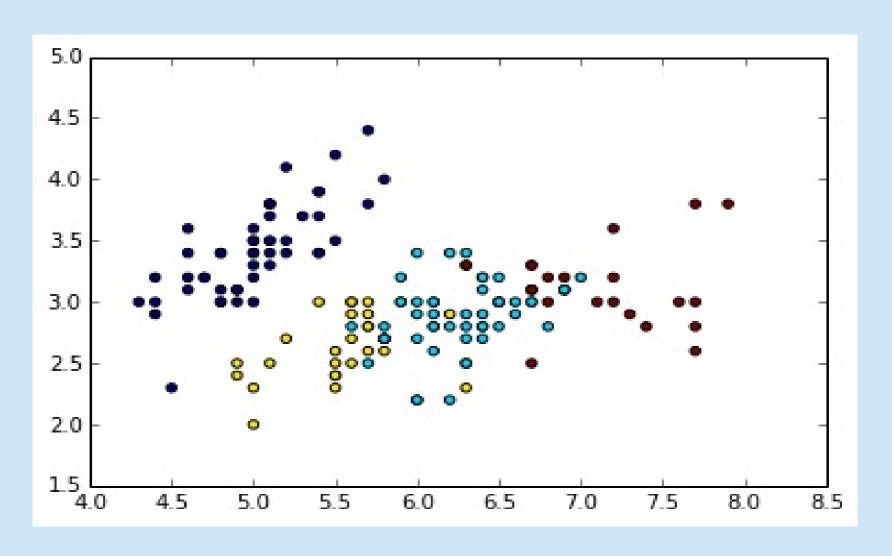


Spectral clustering

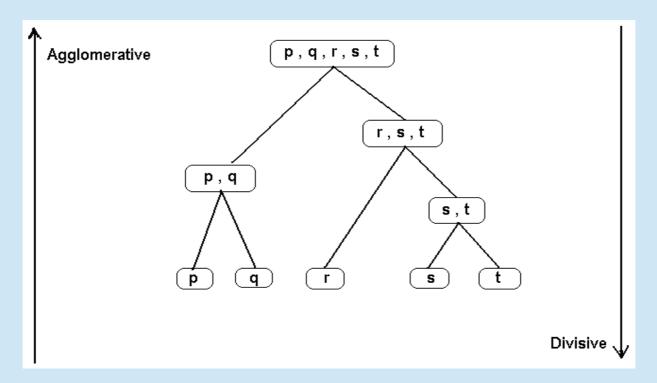
- SpectralClustering does a low-dimension embedding of the affinity matrix between samples, followed by a KMeans in the low dimensional space.
- The number of clusters needs to be specified.
- When calling fit, an affinity matrix is constructed. Alternatively, using 'precomputed' for the affinity parameter, a user-provided affinity matrix can be used.

Spectral clustering

```
>>> import matplotlib.pyplot as plt
>>> from sklearn import datasets
>>> from sklearn.cluster import SpectralClustering
>>> iris = datasets.load_iris()
>>> X = iris.data[:, :2]
>>> sc = SpectralClustering(n_clusters = 4)
>>> y_pred = sc.fit_predict(X)
>>> plt.scatter(X[:, 0], X[:, 1], c = y_pred)
```



Clustering algorithms that build nested clusters by merging or splitting them successively. This hierarchy of clusters is represented as a binary tree (or dendrogram). The root of the tree is the unique cluster that gathers all the samples, the leaves being the clusters with only one sample.

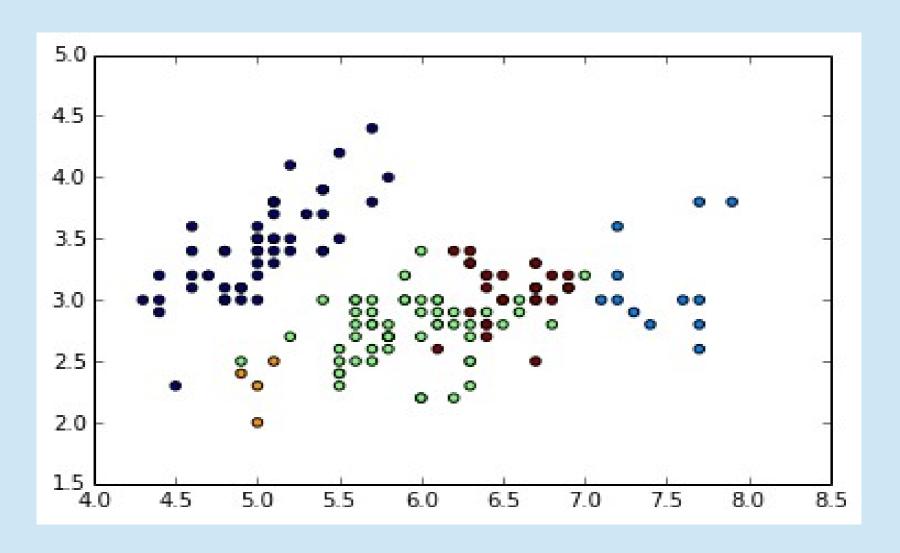


Approaches

- Agglomerative: "bottom up" approach; each sample starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
- Divisive: "top down" approach; all samples start in one cluster, and splits are performed recursively as one moves down the hierarchy.

- AgglomerativeClustering follows a bottom-up approach: it recursively merges the pair of clusters that minimally increases a given linkage distance.
- The linkage parameter determines the metric used for the merge strategy (default value is 'ward'):
 - ward: minimizes the sum of squared differences within all clusters.
 - complete: minimizes the maximum distance between samples of pairs of clusters.
 - average: minimizes the average of the distances between all samples of pairs of clusters.

```
>>> import matplotlib.pyplot as plt
>>> from sklearn import datasets
>>> from sklearn.cluster import
AgglomerativeClustering as Aggregator
>>> iris = datasets.load iris()
>>> X = iris.data[:, :2]
>>> ac = Aggregator(n clusters = 5)
>>> y pred = ac.fit predict(X)
>>> plt.scatter(X[:, 0], X[:, 1], c = y pred,
linkage='average');
```



The end

