
Giuliano Armano 1

OOP and Scripting in PythonOOP and Scripting in Python

Part 2 - OOP Features

DMI - Università degli Studi di Cagliari

Giuliano Armano – DMI Univ. di Cagliari

AA 2020-21AA 2020-21

Giuliano Armano 1

Part 2 – OOP FeaturesPart 2 – OOP Features

Giuliano Armano 1

Python: OOP Features

 Classes, Methods, and Instances
 Methods Dispatching and Binding
 Inheritance
 Polymorphism
 Operators Handling
 Exception handling

Giuliano Armano 1

Classes, Methods, and Instances

Part 2 – OOP Features: Classes, Methods, and Instances

Giuliano Armano 1

Classes, Methods and Instances

a class

 a reference to an object

>>> from math import sqrt
>>> class Point(object):
... def __init__(self,x=0,y=0):
... self.x, self.y = x,y
... def distance(self,p):
... d2 = (self.x-p.x)**2 + (self.y-p.y)**2
... return sqrt(d2)
...

>>> p1 = Point()

>>> print(p1.x,p1.y)

0 0

>>> p1.distance(Point(1,1))

 a method

Giuliano Armano 1

Classes, Methods, and Instances

 Encapsulation (= class construct) YESYES
 Information hiding ~NONO

Giuliano Armano 1

Classes, Methods and Instances

>>> class Blob(object):
... def __init__(self):
... self.public = 'I am public'
... self.__private = 'I am private'
...

>>> b = Blob()
>>> b.public
'I am public'
>>> b.__private

Traceback (most recent call last):
 File "<pyshell#13>", line 1, in -toplevel- b.__private
AttributeError: Blob instance has no attribute '__private'

>>>

Information hiding: private and public slots

This slot is “private” ...

Giuliano Armano 1

 Methods Dispatching and Binding

Part 2 – OOP Features: Methods

Giuliano Armano 1

Method Dispatching and Binding

 Method dispatching (single vs. multiple) SINGLESINGLE
 Method binding (static vs. dynamic) DYNAMICDYNAMIC

Giuliano Armano 1

Method Dispatching

>>> class Point(object):
... def __init__(self,x=0,y=0):
... self.x = x
... self.y = y
... def distance(self,p):
... return sqrt((self.x-p.x)**2 + (self.y-p.y)**2)
...

>>> p1 = Point(1,2)
>>> p2 = Point(10,20)
>>> p1.distance(p2)
20.124611797498108
>>> Point.distance(p1,p2)
20.124611797498108
>>>

Giuliano Armano 1

Method Binding

>>> class Point(object):

... def __init__(self,x=0,y=0):

... self.x, self.y = x,y

... def distance(self,p):

... return sqrt((self.x-p.x)**2+(self.y-p.y)**2)

...

>>> class CPoint(Point):

... def __init__(self,x=0,y=0,color=0):

... Point.__init__(self,x,y)

... self.color = color

...

Giuliano Armano 1

Method Binding

>>> from math import *

>>> p1 = CPoint()

>>> p2 = Cpoint(2,2)

>>>

>>> print p1.distance(p2)

2.82842712475

>>>

>>> CPoint.distance(p1,p2)

2.82842712475

>>>

>>> Point.distance(p1,p2)

2.82842712475

Giuliano Armano 1

Method Binding

>>> class Blob(object):

... def foo(self):

... print('This is Blob')

...

>>> class BlobOne(Blob):

... def foo(self):

... print('This is BlobOne')

...

Giuliano Armano 1

Method Binding

>>> def oops(x):

... x.foo()

...

>>> a = Blob()

>>> b = BlobOne()

>>>

>>> oops(a)

This is Blob

>>>

>>> oops(b)

This is BlobOne

>>>

Giuliano Armano 1

Inheritance

Part 2 – OOP Features: Inheritance

Giuliano Armano 1

Inheritance

 Interfaces ~NONO
 Constructors inheritance NONO
 Multiple inheritance YESYES

NB A way to simulate interfaces is to make use of abstract base classes (see
the abc library)

Giuliano Armano 1

Inheritance

 The Python new programming style requires
that a class is directly or indirectly derived from
the class named “object”

 Thus, “object” becomes the root of the whole
hierarchy of classes

Giuliano Armano 1

Inheritance (MRO)

 Python new-style subclassing resorts to
linearization

 The MRO algorithm merges the local precedence
order of a class with the linearization of its
direct superclasses

 When there are several possible choices for the
next element of the linearization, the class that
has a direct subclass closest to the end of the
output sequence is selected

MRO = Method Resolution Order

Giuliano Armano 1

Inheritance (MRO)

 Be C a class
 Be B1, B2, ..., Bn superclasses of C

 A MRO is monotonic when the following is true
 if Bk precedes Bh in the linearization of C, then Bk

precedes Bh in the linearization of any subclass
of C

Giuliano Armano 1

Inheritance (MRO)

 Under the assumption of monotonicity, the
linearization of C, say L[C], is obtained by
appending to C the result of merging the
linearization performed over the parents with
the list of parents

Giuliano Armano 1

Inheritance (MRO)

 In symbols:
 L[C(B1, …, BN)] =

 [C] + merge(L[B1], ... ,L[BN], [B1, … , BN])

 where
 L[object] = [object] (root of the hierarchy)
 merge(L[x],[x]) = L[x] (single inheritance)
 merge(X, Y, ...,, Z) ? (recursive step)

Giuliano Armano 1

Inheritance (MRO)

 What about merge(X, Y, … , Z) ?

First, we need to define the concepts of head
and tail …

With W list of items, e.g. W = [a, b, c, d, e]
 head(W) = a
 tail(W) = [b, c, d, e]

Giuliano Armano 1

Inheritance (MRO)

 What about merge(X, Y, … , Z) ?

Then, we need to define the concept of “good
head”

With W list of items (assume that each item is
in fact a list), e.g. W = [A, B, C, D, E]

 Be h = head(A)
 h is a “good head” if it is not in the tail of any of

the other lists ...

Giuliano Armano 1

Inheritance (MRO)

 Merge algorithm
 Be h the head of the first list found (otherwise

stop)
 If h is not a good head then try to find a good

head on the next list and so on until a good head
is found (otherwise stop)

 Add the good head found to the linearization of C
and remove it from the lists in the merge

 Repeat the operations above until all lists are
removed or it is impossible to find good heads

 If it is impossible to construct the merge, Python
will refuse to create the class C and will raise an
exception

Giuliano Armano 1

MRO: MRO: [D, B, C, A]

Inheritance – MRO

MRO = method resolution order

A

B(A) C(A)

D(B,C)

An example ...

Giuliano Armano 1

Inheritance (MRO)

 Beyond formalizations and algorithms …
 The previous implementation of class inheritance

handling was following a depth first approach

For instance, in the previous example, the MRO
would be: [D, B, A, C]

 The current implementation of class inheritance
handling follows a breadth first approach

For instance, in the previous example, the MRO
would be: [D, B, C, A]

Giuliano Armano 1

Inheritance (MRO)

 Let us solve the MRO problem ..

(now going forward)

L[D(B,C)]
 L[D(B,C)] = [D] + merge(L[B],L[C],[B,C])

L[B] = L[B(A)]
 L[B(A)] = [B] + merge(L[A],[A])

L[C] = L[C(A)]
 L[C(A)] = [C] + merge(L[A],[A])

L[A]
 L[A] = [A]

Giuliano Armano 1

Inheritance (MRO)

 Solving the MRO problem …

(now going backwards)

L[A]
 L[A] = [A]

L[B(A)]
 L[B(A)] = [B] + merge(L[A],[A])

 = [B] + merge([A],[A]) = [B,A]

L[C(A)]
 L[C(A)] = [C] + merge(L[A],[A])

 = [C] + merge([A],[A]) = [C,A]

Giuliano Armano 1

Inheritance (MRO)

 Solving the MRO problem …

(still going backwards)

L[D(B,C)]
 L[D(B,C)] = [D] + merge(L[B],L[C],[B,C])

 = [D] + merge([B,A],[C,A],[B,C])

 B is a good head, hence select it:
 L[D(B,C)] = [D,B] + merge([A],[C,A],[C])

Giuliano Armano 1

Inheritance (MRO)

 Solving the MRO problem

(still going backwards)

L[D(B,C)]
 L[D(B,C)] = [D,B] + merge([A],[C,A],[C])

 A is NOT a good head, hence try with another head.

 C is a good head, hence select it:
 L[D(B,C)] = [D,B,C] + merge([A],[A],[])

 A is NOW a good head, hence select it:
 L[D(B,C)] = [D,B,C,A] + merge([],[],[]) = [D,B,C,A]

See also: http://en.wikipedia.org/wiki/C3_linearization

Giuliano Armano 1

 Polymorphism

Part 2 – OOP Features: Polymorphism

Giuliano Armano 1

Polymorphism

 Universal
 Parametric Class NONO
 By Inclusion YESYES

 Ad-Hoc
 Overloading ~NO~NO
 Coercion ~YES~YES

Giuliano Armano 1

Inclusion Polymorphism

>>> class B(object):

... def method1(self):

... print('method1 of B')

...

>>> class D(B):

... def method1(self):

... print('method1 of D')

...

>>> d = D()

>>> d.method1()

method1 of D

Giuliano Armano 1

Inclusion Polymorphism

>>> class B(object):

... def method1(self):

... print('method1 of B')

...

>>> class D(B):

... def method1(self):

... print('method1 of D')

...

>>> b = B()

>>> b.method1()

method1 of B

Giuliano Armano 1

Overloading

>>> class bop(object):

... def goo(self):

... print('This is goo w/out parameters')

... def goo(self,w,z):

... print('This is goo with parameters')

...

>>> b = bop()

>>> b.goo(100,200)

This is goo with parameters

>>> o.goo() # NOT WORKING ...

TypeError: goo() missing 2 required positional
arguments: 'w' and 'z'

Giuliano Armano 1

Overloading

>>> class bip(object):

... def foo(self,x,y):

... print('This is bip.foo, with parameters')

...

>>> class oops(bip):

... def foo(self):

... print('This is oops.foo, w/out parameters')

...

>>> o = oops()

>>> bip.foo(o,10,20)

This is bip.foo, with parameters

>>> o.foo(10,20) # NOT WORKING ...

TypeError: foo() takes 1 positional argument but 3 were
given

Giuliano Armano 1

Coercion/Conversion

 Conversion:
>>> a = 10

>>> b = float(a)

>>> b

10.0

 Coercion:
>>> x = 1

>>> y = 2.3

>>> print(x+y)

3.3

>>>

Giuliano Armano 1

Operators Handling

Part 2 – OOP Features: Exceptions Handling

Giuliano Armano 1

Comparison Operators

__lt__(a, b) # a < b

__le__(a, b) # a ≤ b

__eq__(a, b) # a == b

__ne__(a, b) # a != b

__ge__(a, b) # a ≥ b

__gt__(a, b) # a > b

Giuliano Armano 1

Logical Operators

__and__(a, b) # a and b

__or__(a, b) # a or b

__xor__(a, b) # a xor b

__not__(a, b) # not a

Giuliano Armano 1

Arithmetic Operators

__add__(a, b) # a + b

__sub__(a, b) # a - b

__mul__(a, b) # a * b

__div__(a, b) # a / b

__abs__(a) # abs(a)

__mod__(a, b) # a % b

Giuliano Armano 1

Operators Redefinition (an example)

 Many operators can be redefined like C++
does ...

>>> class Blob(object):

... def __init__(self,x=0):

... self.x = x

... def __add__(self,y):

... return self.x + y

...

continues on next slide ...

Giuliano Armano 1

Operators Redefinition (an example)

 Many operators can be redefined like C++
does ...

now let’s define a Blob object an try the “+” op ...

>>> a = Blob()

>>> print(a.__add__(1))

1

>>> print(a+1)

1

	Title
	OOP Features
	Summary
	Classes, etc.
	Slide 5
	Slide 6
	Slide 7
	Methods
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Inheritance
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	PowerPoint Presentation
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Polymorphism
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Operators
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

