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Python: OOP Features

 Classes, Methods, and Instances
 Methods Dispatching and Binding
 Inheritance
 Polymorphism
 Operators Handling
 Exception handling
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Classes, Methods, and Instances

Part 2 – OOP Features: Classes, Methods, and Instances
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Classes, Methods and Instances

a class 

 a reference to an object

>>> from math import sqrt
>>> class Point(object):
...   def __init__(self,x=0,y=0):
...     self.x, self.y = x,y
...   def distance(self,p):
...     d2 = (self.x-p.x)**2 + (self.y-p.y)**2
...     return sqrt(d2)
...

>>> p1 = Point()

>>> print(p1.x,p1.y)

0 0

>>> p1.distance(Point(1,1))

 a method
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Classes, Methods, and Instances

 Encapsulation (= class construct)     YESYES 
 Information hiding   ~NONO
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Classes, Methods and Instances

>>> class Blob(object):
...   def __init__(self):
...     self.public = 'I am public'
...     self.__private = 'I am private'
...

>>> b = Blob()
>>> b.public
'I am public'
>>> b.__private

Traceback (most recent call last):
  File "<pyshell#13>", line 1, in -toplevel- b.__private
AttributeError: Blob instance has no attribute '__private'

>>> 

Information hiding: private and public slots

This slot is “private” ...
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 Methods Dispatching and Binding

Part 2 – OOP Features: Methods
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Method Dispatching and Binding

 Method dispatching (single vs. multiple)   SINGLESINGLE 
 Method binding (static vs. dynamic)       DYNAMICDYNAMIC 
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Method Dispatching

>>> class Point(object):
...   def __init__(self,x=0,y=0):
...     self.x = x
...     self.y = y
...   def distance(self,p):
...     return sqrt( (self.x-p.x)**2 + (self.y-p.y)**2 )
...

>>> p1 = Point(1,2)
>>> p2 = Point(10,20)
>>> p1.distance(p2)
20.124611797498108
>>> Point.distance(p1,p2)
20.124611797498108
>>> 
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Method Binding

>>> class Point(object):

...   def __init__(self,x=0,y=0):

...     self.x, self.y = x,y

...   def distance(self,p):

...     return sqrt((self.x-p.x)**2+(self.y-p.y)**2)

...

>>> class CPoint(Point):

...   def __init__(self,x=0,y=0,color=0):

...     Point.__init__(self,x,y)

...     self.color = color

...
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Method Binding

>>> from math import *

>>> p1 = CPoint()

>>> p2 = Cpoint(2,2)

>>>

>>> print p1.distance(p2)

2.82842712475

>>>

>>> CPoint.distance(p1,p2)

2.82842712475

>>>

>>> Point.distance(p1,p2)

2.82842712475
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Method Binding

>>> class Blob(object):

...   def foo(self):

...     print('This is Blob')

...

>>> class BlobOne(Blob):

...   def foo(self):

...     print('This is BlobOne')

...
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Method Binding

>>> def oops(x):

...   x.foo()

...

>>> a = Blob()

>>> b = BlobOne()

>>> 

>>> oops(a)

This is Blob

>>>

>>> oops(b)

This is BlobOne

>>> 
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Inheritance

Part 2 – OOP Features: Inheritance
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Inheritance

 Interfaces ~NONO 
 Constructors inheritance    NONO 
 Multiple inheritance        YESYES 

NB A way to simulate interfaces is to make use of abstract base classes (see 
the abc library)
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Inheritance

 The Python new programming style requires 
that a class is directly or indirectly derived from 
the class named “object”

 Thus, “object” becomes the root of the whole 
hierarchy of classes
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Inheritance (MRO)

 Python new-style subclassing resorts to 
linearization 

 The MRO algorithm merges the local precedence 
order of a class with the linearization of its 
direct superclasses

 When there are several possible choices for the 
next element of the linearization, the class that 
has a direct subclass closest to the end of the 
output sequence is selected

MRO = Method Resolution Order
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Inheritance (MRO)

 Be C a class
 Be B1, B2, ..., Bn superclasses of C

 A MRO is monotonic when the following is true
 if Bk precedes Bh in the linearization of C, then Bk 

precedes Bh in the linearization of any subclass  
of C
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Inheritance (MRO)

 Under the assumption of monotonicity, the 
linearization of C, say L[C], is obtained by 
appending to C the result of merging the 
linearization performed over the parents with 
the list of parents
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Inheritance (MRO)

 In symbols:
 L[C(B1, …, BN)] = 

             [C] + merge(L[B1], ... ,L[BN], [B1, … , BN])

    where
 L[object] = [ object ] (root of the hierarchy)
 merge(L[x],[x]) = L[x] (single inheritance)
 merge(X, Y, ...,, Z) ? (recursive step)
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Inheritance (MRO)

 What about merge(X, Y, … , Z) ?

First, we need to define the concepts of head 
and tail …

With W list of items, e.g. W = [a, b, c, d, e]
 head(W) = a
 tail(W) = [b, c, d, e]
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Inheritance (MRO)

 What about merge(X, Y, … , Z) ?

Then, we need to define the concept of “good 
head”

With W list of items (assume that each item is 
in fact a list), e.g. W = [A, B, C, D, E]

 Be h = head(A)
 h is a “good head” if it is not in the tail of any of 

the other lists ...
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Inheritance (MRO)

 Merge algorithm
 Be h the head of the first list found (otherwise 

stop)
 If h is not a good head then try to find a good 

head on the next list and so on until a good head 
is found (otherwise stop)

 Add the good head found to the linearization of C 
and remove it from the lists in the merge

 Repeat the operations above until all lists are 
removed or it is impossible to find good heads

 If it is impossible to construct the merge, Python 
will refuse to create the class C and will raise an 
exception
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MRO: MRO: [ D, B, C, A ]

Inheritance – MRO

MRO = method resolution order

A

B(A) C(A)

D(B,C)

An example ...
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Inheritance (MRO)

 Beyond formalizations and algorithms …
 The previous implementation of class inheritance 

handling was following a depth first approach

For instance, in the previous example, the MRO 
would be: [ D, B, A, C ]

 The current implementation of class inheritance 
handling follows a breadth first approach

For instance, in the previous example, the MRO 
would be: [ D, B, C, A ]
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Inheritance (MRO)

 Let us solve the MRO problem .. 

(now going forward)

L[D(B,C)]
 L[D(B,C)] = [D] + merge(L[B],L[C],[B,C])

L[B] = L[B(A)]
 L[B(A)] = [B] + merge(L[A],[A])

L[C] = L[C(A)]
 L[C(A)] = [C] + merge(L[A],[A])

L[A]
 L[A] = [A]
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Inheritance (MRO)

 Solving the MRO problem …

(now going backwards)

L[A]
 L[A] = [A]

L[B(A)]
 L[B(A)] = [B] + merge(L[A],[A])

            = [B] + merge([A],[A]) = [B,A]

L[C(A)]
 L[C(A)] = [C] + merge(L[A],[A])

           = [C] + merge([A],[A]) = [C,A]
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Inheritance (MRO)

 Solving the MRO problem …

(still going backwards)

L[D(B,C)]
 L[D(B,C)] = [D] + merge(L[B],L[C],[B,C])

               = [D] + merge([B,A],[C,A],[B,C])

    B is a good head, hence select it:
 L[D(B,C)] = [D,B] + merge([A],[C,A],[C])
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Inheritance (MRO)

 Solving the MRO problem

(still going backwards)

L[D(B,C)]
 L[D(B,C)] = [D,B] + merge([A],[C,A],[C])

    A is NOT a good head, hence try with another head.

    C is a good head, hence select it:
 L[D(B,C)] = [D,B,C] + merge([A],[A],[])

    A is NOW a good head, hence select it:
 L[D(B,C)] = [D,B,C,A] + merge([],[],[]) = [D,B,C,A]

See also: http://en.wikipedia.org/wiki/C3_linearization
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           Polymorphism

Part 2 – OOP Features: Polymorphism
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Polymorphism

 Universal
 Parametric Class NONO
 By Inclusion     YESYES

 Ad-Hoc
 Overloading        ~NO~NO
 Coercion   ~YES~YES
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Inclusion Polymorphism

>>> class B(object):

...   def method1(self):

...     print('method1 of B')

...

>>> class D(B):

...   def method1(self):

...     print('method1 of D')

...

>>> d = D()

>>> d.method1()

method1 of D
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Inclusion Polymorphism

>>> class B(object):

...   def method1(self):

...     print('method1 of B')

...

>>> class D(B):

...   def method1(self):

...     print('method1 of D')

...

>>> b = B()

>>> b.method1()

method1 of B
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Overloading

>>> class bop(object):

...   def goo(self):

...     print('This is goo w/out parameters')

...   def goo(self,w,z):

...     print('This is goo with parameters')

...

>>> b = bop()

>>> b.goo(100,200)

This is goo with parameters

>>> o.goo() # NOT WORKING ...

TypeError: goo() missing 2 required positional 
arguments: 'w' and 'z'
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Overloading

>>> class bip(object):

...   def foo(self,x,y):

...     print('This is bip.foo, with parameters')

...

>>> class oops(bip):

...   def foo(self):

...     print('This is oops.foo, w/out parameters')

...

>>> o = oops()

>>> bip.foo(o,10,20)

This is bip.foo, with parameters  

>>> o.foo(10,20) # NOT WORKING ...

TypeError: foo() takes 1 positional argument but 3 were 
given
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Coercion/Conversion

 Conversion: 
>>> a = 10

>>> b = float(a)

>>> b

10.0

 Coercion: 
>>> x = 1

>>> y = 2.3

>>> print(x+y)

3.3

>>> 
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Operators Handling

Part 2 – OOP Features: Exceptions Handling
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Comparison Operators

__lt__(a, b)  # a < b

__le__(a, b) # a ≤ b

__eq__(a, b) # a == b

__ne__(a, b) # a != b

__ge__(a, b) # a ≥ b

__gt__(a, b) # a > b
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Logical Operators

__and__(a, b)  # a and b

__or__(a, b) # a or b

__xor__(a, b) # a xor b

__not__(a, b) # not a
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Arithmetic Operators

__add__(a, b)  # a + b

__sub__(a, b) # a - b

__mul__(a, b) # a * b

__div__(a, b) # a / b

__abs__(a) # abs(a)

__mod__(a, b) # a % b
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Operators Redefinition (an example)

 Many operators can be redefined like C++ 
does ...

>>> class Blob(object):

...   def __init__(self,x=0):

...     self.x = x

...   def __add__(self,y):

...     return self.x + y

...

# continues on next slide ... 
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Operators Redefinition (an example)

 Many operators can be redefined like C++ 
does ...

# now let’s define a Blob object an try the “+” op ... 

>>> a = Blob()

>>> print(a.__add__(1))

1

>>> print(a+1)

1 
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