Pure Language and Library Documentation, Release 0.56

If you find it awkward to evaluate Lisp forms in Pure, you can also achieve the same with
the declare function which covers most of the common Reduce declarations that might be
needed:

> declare operator myop;

[1
> declare odd myop;

[]
> simplify (myop (-x));
-myop X

This example shows how you can do a simple plot using Reduce’s gnuplot module:

> simplify $ plot [sin x/x, x=='(-20..20), terminal=="wxt"];
0

This pops up a wxWidgets window (terminal=="wxt") with a plot of the given function in
it. The x=="(-20..20) argument specifies the desired range of the x variable (note that the
range needs to be quoted so that it gets through to Reduce rather than being evaluated on
the Pure side). The same plot can be written to a PostScript file sinc.ps as follows:

> simplify $ plot [sin x/x, x=='(-20..20), terminal=="postscript", output=="sinc.ps"];
0

Many more examples can be found in the reduce_examp.pure and tests.pure scripts included
in the distribution.

19.5 Examples By Topic

19.5.1 Differentiation

The operator df is used to represent partial differentiation with respect to one or more vari-
ables.

syntax: df exprn [var <num>]+.

Differentiation of the function x2y3z4 with respect to x, y, z, two, three and four times respec-
a9 x2y3z4 .

thely, 1.e m

> simplify $ df (x"2xy"3*xz"4) x 2y 3 z 4 ;
288

The derivative of log sin(x)?:

> simplify $ df (log(sin x)”"2) x;
2xcos xxlog (sin x)/sin x

Note the parentheses.

Suppose z(cos(x),y): Let’s calculate aa ng;g)) and aa—zj :

674 19.5 Examples By Topic



Pure Language and Library Documentation, Release 0.56

> declare depend [z,cos Xx,y];

[]

> simplify (df (sin z) (cos x));
cos zxdf z (cos x)

> simplify (df (z72) x);

2xdf z xx*xz

Note how to declare dependencies.

0z
d cos(x)

The results are cos(z) and 22%) respectively, as expected.

19.5.2 Integration

int is an operator in REDUCE for indefinite integration using a combination of the Risch-
Norman algorithm and pattern matching.

syntax: 1intg exprn var.

Note that in Pure the operator is called intg in order not to clash with the integer type int.

1
/ax+bdx

Example 1:

> simplify $ intg (1/(axx+b)) x;
log (axx+b)/a

Example 2:

I(a,b,n) = /xz(ax—i—b)”dx

>T1 abn=simplify $ intg (x"2x(a*x+b)”n) x;

>Iabn;

((axx+b)*n*xa”3xn"2xx"3+3* (axx+b) *nxa”3xnxx"3+2* (axx+b) *nxa”3xx"3+
(axx+b) *nxa”2xbxn"2xX"2+ (axXx+b) “nxa”2xbxn*xx"2- 2% (axx+b) “nxaxb”™2x
nxx+2* (axx+b)*nxb”*3) / (a”3*xn"3+6*xa”3xn"2+11*xa”3*xn+6*a"3)

>ITabo;

Xx~3/3

>I10bn;

b*nxx"~3/3

>1 a0 k;

x"k*xa”k*xx"3/ (k+3)

19.5.2 Integration 675



Pure Language and Library Documentation, Release 0.56

Example 3:
/ x+vVxr+1

X

> simplify $ intg (sqrt(x+sqrt(x”2+1))/x) x ;
intg (sqrt (sqrt (x*2+1)+x)/x) X

Apparently no solution was found. There is a package ALGINT in REDUCE, that is specialized
to deal with algebraic functions. The [UserGuide] says

.. will analytically integrate a wide range of expressions involving square roots where
the answer exists in that class of functions. It is an implementation of the work described
in |.H. Davenport [LNCS5102]

> reduce::load "algint" ;

0

> simplify $ intg (sqrt(x+sqrt(x”2+1))/x) x ;

atan ((sqrt (sqrt (x"2+1)+x)*sqrt (x"2+1)-sqrt (sqrt (x"2+1)+x)*x-sqrt
(sqrt (x™2+1)+x))/2)+2xsqrt (sqrt (x*2+1)+x)+log (sqrt (sqrt
(x*2+1)+x)-1)-log (sqrt (sqrt (x*2+1)+x)+1)

Note how to load packages.

676 19.5 Examples By Topic



