Reference Manual
 REDUCE

Version July 2010

LATEX'ed by $\widehat{\mathcal{S C I O S}}$

REDUCE is an interactive system for general algebraic computations of interest to mathematicians, scientists and engineers. It has been produced by a collaborative effort involving many contributors.
REDUCE traces its origins to work begun by Anthony Hearn in 1963 and continued ever since. The first distribution occurred in 1968. Since that time, over a hundred people have been involved in various ways in its development.

A small number of these people have made sustained contributions to the REDUCE core and associated packages over many years, namely John Fitch, Herbert Melenk, Winfried Neun, Arthur Norman and Eberhard Schrüfer.
Others who have contributed to either documentation or packages for REDUCE include John Abbott, Paul Abbott, Victor Adamchik, Werner Antweiler, Alan Barnes, Andreas Bernig, Yuri A. Blinkov, Harald Boeing, W.N. Borst, F. Brackx, Russell Bradford, Andreas Brand, Fran Burstall, Chris Cannam, Hubert Caprasse, D. Constales, Caroline Cotter, James Davenport, Michael Dewar, C. Dicrescenzo, Andreas Dolzmann, Alain Dresse, Ladislav Drska, James Eastwood, Bruce A. Florman, Kerry Gaskell, Karin Gatermann, Barbara L. Gates, R. Gebauer, Vladimir Gerdt, John Gottschalk, Hans-Gert Graebe, Martin Griss, A.G. Grozin, David Harper, John Harper, Steve Harrington, David Hartley, M.C. van Heerwaarden, Friedrich Hehl, Daniel Hobbs, Joachim Hollman, B.J.A. Hulshof, J.A. van Hulzen, V. Ilyin, N. Ito, F. Kako, Stan Kameny, C. Kazasov, Nancy Kirkwood, K. Kishimoto, Wolfram Koepf, H. Kredel, A.P. Kryukov, Neil Langmead, A. Lasaruk, D. Lewien, Richard Liska, Ruediger Loos, Malcolm MacCallum, Norman MacDonald, Jed Marti, Kevin McIsaac, H. Meyer, H. Michael Moeller, Mary Ann Moore, Shuichi Moritsugu, Donald Morrison, Alain Moussiaux, C.J. Neerdaels, K. Onaga, Julian Padget, Gerhard Rayna, Matt Rebbeck, Francoise Richard, F. Richard-Jung, A.J. Roberts, A.Ya. Rodionov, T. Sasaki, Carsten Schoebel, Franziska Schoebel, Rainer Schoepf, Fritz Schwarz, Andreas Seidl, James Sherring, Luis Alvarez Sobreviela, D. Stauffer, Gregor Stoelting, David R. Stoutemyer, Stephen Scowcroft, Yves Siret, M. Spiridonova, H. Steeb, Andreas Strotmann, Thomas Sturm, Takeyuki Takahashi, A. Taranov, Lisa Temme, Walter Tietze, V. Tomov, Evelyne Tournier, Arrigo Triulzi, R.W. Tucker, Philip A Tuckey, Gokturk Ucoluk, J. Ueberberg, J.B. van Veelen, Mathias Warns, Volker Winkelmann, Thomas Wolf, Francis Wright, K. Yamamoto, J.G. Zabolitzky, Alexey Yu. Zharkov and Vadim V. Zhytnikov.
and many others ...

Contents

Contents 3
1 Preface 18
2 Concepts 20
2.1 IDENTIFIER 21
2.2 KERNEL 22
2.3 STRING 23
3 Variables 24
3.1 assumptions 25
$3.2 \quad$ CARD NO 26
3.3 E 27
3.4 EVAL_MODE 28
3.5 FORT_WIDTH 29
3.6 HIGH_POW 30
3.7 I 31
3.8 INFINITY 32
3.9 LOW_POW 33
3.10 NIL 34
3.11 PI 35
3.12 requirements 36
3.13 ROOT_MULTIPLICITIES 37
3.14 T 38
4 Syntax 39
4.1 semicolon 40
4.2 dollar 41
4.3 percent 42
4.4 dot 43
4.5 assign 44
4.6 equalsign 46
4.7 replace 47
4.8 plussign 48
4.9 minussign 49
4.10 asterisk 50
4.11 slash 51
4.12 power 52
4.13 caret 53
4.14 geqsign 54
4.15 greater 55
4.16 leqsign 56
4.17 less 57
4.18 tilde 58
4.19 group 59
4.20 AND 60
4.21 BEGIN 61
4.22 block 62
4.23 COMMENT 63
4.24 CONS 64
4.25 END 65
4.26 EQUATION 66
4.27 FIRST 67
4.28 FOR 68
4.29 FOREACH 71
4.30 GEQ 72
4.31 GOTO 73
4.32 GREATERP 74
4.33 IF 75
4.34 LIST 77
4.35 OR 78
4.36 PROCEDURE 79
4.37 REPEAT 82
4.38 REST 83
4.39 RETURN 84
4.40 REVERSE 86
4.41 RULE 87
4.42 Free Variable 88
4.43 Optional Free Variable 89
4.44 SECOND 90
4.45 SET 91
4.46 SETQ 92
4.47 THIRD 94
4.48 WHEN 95
5 Arithmetic Operations 96
5.1 ARITHMETIC_OPERATIONS 97
5.2 ABS 98
5.3 ADJPREC 99
5.4 ARG 100
5.5 CEILING 101
5.6 CHOOSE 102
5.7 DEG2DMS 103
5.8 DEG2RAD 104
5.9 DIFFERENCE 105
5.10 DILOG 106
5.11 DMS2DEG 107
5.12 DMS2RAD 108
5.13 FACTORIAL 109
5.14 FIX 110
5.15 FIXP 111
5.16 FLOOR 112
5.17 EXPT 113
5.18 GCD 114
5.19 LN 115
5.20 LOG 116
5.21 LOGB 117
5.22 MAX 118
5.23 MIN 119
5.24 MINUS 120
5.25 NEXTPRIME 121
5.26 NOCONVERT 122
5.27 NORM 123
5.28 PERM 124
5.29 PLUS 125
5.30 QUOTIENT 126
5.31 RAD2DEG 128
5.32 RAD2DMS 129
5.33 RECIP 130
5.34 REMAINDER 131
5.35 ROUND 132
5.36 SETMOD 133
5.37 SIGN 134
5.38 SQRT 135
5.39 TIMES 136
6 Boolean Operators 137
6.1 boolean value 138
6.2 EQUAL 139
6.3 EVENP 140
6.4 false 141
6.5 FREEOF 142
6.6 LEQ 143
6.7 LESSP 144
6.8 MEMBER 145
6.9 NEQ 146
6.10 NOT 147
6.11 NUMBERP 148
6.12 ORDP 149
6.13 PRIMEP 150
6.14 TRUE 151
7 General Commands 152
7.1 BYE 153
7.2 CONT 154
7.3 DISPLAY 155
7.4 LOAD_PACKAGE 156
7.5 PAUSE 157
7.6 QUIT 159
7.7 RECLAIM 160
7.8 REDERR 161
7.9 RETRY 162
7.10 SAVEAS 163
7.11 SHOWTIME 164
7.12 WRITE 165
8 Algebraic Operators 167
8.1 APPEND 168
8.2 ARBINT 169
8.3 ARBCOMPLEX 170
8.4 ARGLENGTH 171
8.5 COEFF 172
8.6 COEFFN 174
8.7 CONJ 175
8.8 CONTINUED_FRACTION 176
8.9 DECOMPOSE 177
8.10 DEG 178
8.11 DEN 179
8.12 DF 180
8.13 EXPAND_CASES 181
8.14 EXPREAD 182
8.15 FACTORIZE 183
8.16 HYPOT 185
8.17 IMPART 186
8.18 INT 187
8.19 INTERPOL 189
8.20 LCOF 190
8.21 LENGTH 191
8.22 LHS 193
8.23 LIMIT 194
8.24 LPOWER 195
8.25 LTERM 196
8.26 MAINVAR 197
8.27 MAP 198
8.28 MKID 200
8.29 NPRIMITIVE 201
8.30 NUM 202
8.31 ODESOLVE 203
8.32 ONE_OF 204
8.33 PART 205
8.34 PF 207
8.35 PROD 208
8.36 REDUCT 209
8.37 REPART 210
8.38 RESULTANT 211
8.39 RHS 213
8.40 ROOT_OF 214
8.41 SELECT 215
8.42 SHOWRULES 217
8.43 SOLVE 218
8.44 SORT 221
8.45 STRUCTR 222
8.46 SUB 224
8.47 SUM 225
8.48 WS 226
9 Declarations 228
9.1 ALGEBRAIC 229
9.2 ANTISYMMETRIC 230
9.3 ARRAY 231
9.4 CLEAR 233
9.5 CLEARRULES 235
9.6 DEFINE 236
9.7 DEPEND 237
9.8 EVEN 238
9.9 FACTOR 239
9.10 FORALL 241
9.11 INFIX 243
9.12 INTEGER 244
9.13 KORDER 245
9.14 LET 246
9.15 LINEAR 250
9.16 LINELENGTH 252
9.17 LISP 253
9.18 LISTARGP 254
9.19 NODEPEND 255
9.20 MATCH 256
9.21 NONCOM 258
9.22 NONZERO 259
9.23 ODD 260
9.24 OFF 261
9.25 ON 262
9.26 OPERATOR 263
9.27 ORDER 265
9.28 PRECEDENCE 266
9.29 PRECISION 267
9.30 PRINT_PRECISION 268
9.31 REAL 269
9.32 REMFAC 270
9.33 SCALAR 271
9.34 SCIENTIFIC NOTATION 272
9.35 SHARE 273
9.36 SYMBOLIC 274
9.37 SYMMETRIC 275
9.38 TR 276
9.39 UNTR 278
9.40 VARNAME 279
9.41 WEIGHT 280
9.42 WHERE 282
9.43 WHILE 284
9.44 WTLEVEL 285
10 Input and Output 286
10.1 IN 287
10.2 INPUT 288
10.3 OUT 289
10.4 SHUT 290
11 Elementary Functions 291
11.1 ACOS 292
11.2 ACOSH 293
11.3 ACOT 294
11.4 ACOTH 295
11.5 ACSC 296
11.6 ACSCH 297
11.7 ASEC 298
11.8 ASECH 299
11.9 ASIN 300
11.10 ASINH 301
11.11 ATAN 302
11.12 ATANH 303
11.13 ATAN2 304
11.14 COS 305
11.15 COSH 306
11.16 COT 307
11.17 COTH 308
11.18 CSC 309
11.19 CSCH 310
11.20 ERF 311
11.21 EXP 312
11.22 SEC 313
11.23 SECH 314
11.24 SIN 315
11.25 SINH 316
11.26 TAN 317
11.27 TANH 318
12 General Switches 319
12.1 SWITCHES 320
12.2 ALGINT 321
12.3 ALLBRANCH 322
12.4 ALLFAC 323
12.5 ARBVARS 324
12.6 BALANCED_MOD 325
12.7 BFSPACE 326
12.8 COMBINEEXPT 327
12.9 COMBINELOGS 328
12.10 COMP 329
12.11 COMPLEX 331
12.12 CREF 332
12.13 CRAMER 333
12.14 DEFN 334
12.15 DEMO 336
12.16 DFPRINT 337
12.17 DIV 338
12.18 ECHO 339
12.19 ERRCONT 340
12.20 EVALLHSEQP 341
12.21 EXP 342
12.22 EXPANDLOGS 343
12.23 EZGCD 344
12.24 FACTOR 345
12.25 FAILHARD 347
12.26 FORT 348
12.27 FORTUPPER 349
12.28 FULLPREC 350
12.29 FULLROOTS 351
12.30 GC 352
12.31 GCD 353
12.32 HORNER 354
12.33 IFACTOR 355
12.34 INT 356
12.35 INTSTR 357
12.36 LCM 358
12.37 LESSSPACE 360
12.38 LIMITEDFACTORS 361
12.39 LIST 362
12.40 LISTARGS 363
12.41 MCD 364
12.42 MODULAR 365
12.43 MSG 366
12.44 MULTIPLICITIES 367
12.45 NAT 368
12.46 NERO 369
12.47 NOARG 370
12.48 NOLNR 371
12.49 NOSPLIT 372
12.50 NUMVAL 373
12.51 OUTPUT 374
12.52 OVERVIEW 375
12.53 PERIOD 376
12.54 PRECISE 377
12.55 PRET 378
12.56 PRI 379
12.57 RAISE 380
12.58 RAT 381
12.59 RATARG 382
12.60 RATIONAL 383
12.61 RATIONALIZE 384
12.62 RATPRI 385
12.63 REVPRI 386
12.64 RLISP88 387
12.65 ROUNDALL 388
12.66 ROUNDBF 389
12.67 ROUNDED 390
12.68 SAVESTRUCTR 391
12.69 SOLVESINGULAR 392
12.70 TIME 393
12.71 TRALLFAC 394
12.72 TRFAC 395
12.73 TRIGFORM 396
12.74 TRINT 397
12.75 TRNONLNR 398
12.76 VAROPT 399
13 Matrix Operations 400
13.1 COFACTOR 401
13.2 DET 402
13.3 MAT 403
13.4 MATEIGEN 404
13.5 MATRIX 406
13.6 NULLSPACE 408
13.7 RANK 410
13.8 TP 411
13.9 TRACE 412
14 Groebner package 413
14.1 Groebner bases 414
14.2 Ideal Parameters 415
14.3 Term order 415
14.4 Term order 416
14.5 torder 417
14.6 torder_compile 418
14.7 lex term order 419
14.8 gradlex term order 420
14.9 revgradlex term order 421
14.10 gradlexgradlex term order 422
14.11 gradlexrevgradlex term order 423
14.12 lexgradlex term order 424
14.13 lexrevgradlex term order 425
14.14 weighted term order 426
14.15 graded term order 427
14.16 matrix term order 428
14.17 Basic Groebner operators 428
14.18 gvars 429
14.19 groebner 430
14.20 groebner_walk 431
14.21 groebopt 432
14.22 gvarslast 433
14.23 groebprereduce 434
14.24 groebfullreduction 435
14.25 gltbasis 436
14.26 gltb 437
14.27 glterms 438
14.28 groebstat 439
14.29 trgroeb 440
14.30 trgroebs 441
14.31 gzerodim? 442
14.32 gdimension 443
14.33 gindependent_sets 444
14.34 dd_groebner 445
14.35 glexconvert 446
14.36 greduce 447
14.37 preduce 448
14.38 idealquotient 449
14.39 hilbertpolynomial 450
14.40 saturation 451
14.41 Factorizing Groebner bases 451
14.42 groebnerf 452
14.43 groebmonfac 454
14.44 groebresmax 455
14.45 groebrestriction 456
14.46 Tracing Groebner bases 456
14.47 groebprot 457
14.48 groebprotfile 458
14.49 groebnert 459
14.50 preducet 460
14.51 Groebner Bases for Modules 460
14.52 Module 461
14.53 gmodule 462
14.54 Computing with distributive polynomials 462
14.55 gsort 463
14.56 gsplit 464
14.57 gspoly 465
15 High Energy Physics 466
15.1 HEPHYS 467
15.2 HE-dot 468
15.3 EPS 469
15.4 G 470
15.5 INDEX 472
15.6 MASS 473
15.7 MSHELL 474
15.8 NOSPUR 475
15.9 REMIND 476
15.10 SPUR 477
15.11 VECDIM 478
15.12 VECTOR 479
16 Numeric Package 481
16.1 Numeric Package 482
16.2 Interval 483
16.3 numeric accuracy 484
16.4 TRNUMERIC 485
16.5 num_min 486
16.6 num_solve 487
16.7 num_int 488
16.8 num_odesolve 489
16.9 bounds 490
16.10 Chebyshev fit 491
16.11 num_fit 493
17 Roots Package 494
17.1 Roots Package 495
17.2 MKPOLY 496
17.3 NEARESTROOT 497
17.4 REALROOTS 498
17.5 ROOTACC 499
17.6 ROOTS 500
17.7 ROOT_VAL 501
17.8 ROOTSCOMPLEX 502
17.9 ROOTSREAL 503
18 Special Functions 504
18.1 Special Function Package 505
18.2 Constants 507
18.3 Bernoulli Euler Zeta 507
18.4 BERNOULLI 508
18.5 BERNOULLIP 509
18.6 EULER 510
18.7 EULERP 511
18.8 ZETA 512
18.9 Bessel Functions 512
18.10 BESSELJ 513
18.11 BESSELY 514
18.12 HANKEL1 515
18.13 HANKEL2 516
18.14 BESSELI 517
18.15 BESSELK 518
18.16 StruveH 519
18.17 StruveL 520
18.18 KummerM 521
18.19 KummerU 522
18.20 WhittakerW 523
18.21 Airy Functions 523
18.22 Airy_Ai 524
18.23 Airy_Bi 525
18.24 Airy_Aiprime 526
18.25 Airy_Biprime 527
18.26 Jacobi's Elliptic Functions and Elliptic Integrals 527
18.27 JacobiSN 528
18.28 JacobiCN 529
18.29 JacobiDN 530
18.30 JacobiCD 531
18.31 JacobiSD 532
18.32 JacobiND 533
18.33 JacobiDC 534
18.34 JacobiNC 535
18.35 JacobiSC 536
18.36 JacobiNS 537
18.37 JacobiDS 538
18.38 JacobiCS 539
18.39 JacobiAMPLITUDE 540
18.40 AGM_FUNCTION 541
18.41 LANDENTRANS 542
18.42 EllipticF 543
18.43 EllipticK 544
18.44 EllipticKprime 545
18.45 EllipticE 546
18.46 EllipticTHETA 547
18.47 JacobiZETA 548
18.48 Gamma and Related Functions 548
18.49 POCHHAMMER 549
18.50 GAMMA 550
18.51 BETA 551
18.52 PSI 552
18.53 POLYGAMMA 553
18.54 Miscellaneous Functions 553
18.55 DILOG extended 554
18.56 Lambert_W function 555
18.57 Orthogonal Polynomials 555
18.58 ChebyshevT 556
18.59 ChebyshevU 557
18.60 HermiteP 558
18.61 LaguerreP 559
18.62 LegendreP 560
18.63 JacobiP 561
18.64 GegenbauerP 562
18.65 SolidHarmonicY 563
18.66 SphericalHarmonicY 564
18.67 Integral Functions 564
18.68 Si 565
18.69 Shi 566
18.70 s_i 567
18.71 Ci 568
18.72 Chi 569
18.73 ERF extended 570
18.74 erfc 571
18.75 Ei 572
18.76 Fresnel_C 573
18.77 Fresnel_S 574
18.78 Combinatorial Operators 574
18.79 BINOMIAL 575
18.80 STIRLING1 576
18.81 STIRLING2 577
18.823 j and 6 j symbols 577
18.83 ThreejSymbol 578
18.84 Clebsch_Gordan 579
18.85 SixjSymbol 580
18.86 Miscellaneous 580
18.87 HYPERGEOMETRIC 581
18.88 MeijerG 582
18.89 Heaviside 583
18.90 erfi 584
19 Taylor series 585
19.1 TAYLOR 586
19.2 taylor 587
19.3 taylorautocombine 589
19.4 taylorautoexpand 590
19.5 taylorcombine 591
19.6 taylorkeeporiginal 593
19.7 taylororiginal 594
19.8 taylorprintorder 595
19.9 taylorprintterms 596
19.10 taylorrevert 597
19.11 taylorseriesp 598
19.12 taylortemplate 599
19.13 taylortostandard 600
Index 601

1 Preface

This manual describes the REDUCE symbolic mathematics system. REDUCE has two modes of operation: the algebraic mode, which deals with polynomials and mathematical functions in a simple procedural syntax, and the symbolic mode, which allows Lisp-like syntax and operations. The commands, declarations, switches and operators available in algebraic-mode REDUCE are arranged in this manual in alphabetical order. Symbols are listed before the letter A.

Following the general alphabetical reference section is a similar reference section for the High-Energy Physics operators. After that, you can find several cross-reference sections. The first section contains lists of reserved words and an Instant Function Cross-Reference. Next you will find brief explanations of the common REDUCE error messages. The next section is organized by type into Commands, Declarations, Operators, Switches and Variables, with a brief listing for each operation.

For a general introduction to using algebraic-mode REDUCE, see the REDUCE User's Guide, which also contains information on symbolic mode. The The Standard Lisp Report is a technical reference on REDUCE's Lisp language.

The following symbols are used to describe syntax in this manual:
This font means you must type an item exactly as you see it.
This font indicates a descriptive name for a type of REDUCE expression. You may choose any REDUCE expression of the appropriate type.
\{\} Braces surround an item or set of items that may be followed by an asterisk or plus. Do not type the braces.

* An italic asterisk indicates that the preceding item may be repeated zero or more times. Do not type the asterisk. It does not indicate multiplication.
+ An italic plus indicates that the preceding item must appear once, and may be repeated one or more times. Do not type the plus. It does not indicate addition.
Eoption(...) Eoption indicates that the parameters that follow are optional. Eoptions indicates that options are available and explained in the text below the command line. Eoption(s) is not to be typed.

The switch settings for REDUCE in the examples in this manual are assumed to be the default settings, unless specifically given otherwise. See the cross-reference section Switches in the back of this volume.

The examples in this manual should exactly reproduce the results you get by typing in the statements given. Any non-default switch settings are shown. Be sure that the variables or operators used have no prior definition by using the clear command. The numbered line prompts have generally been left out. You can find executable files of all the examples shown here in your \$reduce/refex directory, named alphabetically. If you are working your way through this manual, you can run the examples as you go by starting a new REDUCE session, and entering the command, for example:

```
in "reduce/refex/a-ex";
```

There are numerous pauses in the files so that you can enter your own examples and commands. If you change any switch settings or assign values to variables in one of the pauses, make sure to restore everything to its original state before you continue the file (see the entry under CLEAR if you need help in clearing variables and operators).
REDUCE converts all input to upper case, and all its responses are in upper case. You can type input in upper case, lower case, or mixed, as you wish. In the examples, the input is lower case, and REDUCE's responses are shown in upper case. This protocol makes it easy to distinguish input from results. You can tell whether you are in algebraic or symbolic mode by looking at the numbered prompt statement REDUCE gives you: the algebraic prompt contains a colon (:), while the symbolic prompt contains an asterisk (*).

2 Concepts

2.1 IDENTIFIER

IDENTIFIER

Type
Identifiers in REDUCE consist of one or more alphanumeric characters, of which the first must be alphabetical. The maximum number of characters allowed is system dependent, but is usually over 100 . However, printing is simplified if they are kept under 25 characters.
You can also use special characters in your identifiers, but each must be preceded by an exclamation point ! as an escape character. Useful special characters are \# \$ \% ~ \& * $++=$? < > ~ \| / ! and the space. Note that the use of the exclamation point as a special character requires a second exclamation point as an escape character. The underscore - is special in this regard. It must be preceded by an escape character in the first position in an identifier, but is treated like a normal letter within an identifier.
Other characters, such as () \# ; ' , " can also be used if preceded by a !, but as they have special meanings to the Lisp reader it is best to avoid them to avoid confusion.
Many system identifiers have * before or after their names, or - between words. If you accidentally pick one of these names for your own identifier, it could have disastrous effects. For this reason it is wise not to include * or - anywhere in your identifiers.

You will notice that REDUCE does not use the escape characters when it prints identifiers containing special characters; however, you still must use them when you refer to these identifiers. Be careful when editing statements containing escaped special characters to treat the character and its escape as an inseparable pair.
Identifiers are used for variable names, labels for go to statements, and names of arrays, matrices, operators, and procedures. Once an identifier is used as a matrix, array, scalar or operator identifier, it may not be used again as a matrix, array or operator. An operator or array identifier may later be used as a scalar without problems, but a matrix identifier cannot be used as a scalar. All procedures are entered into the system as operators, so the name of a procedure may not be used as a matrix, array, or operator identifier either.

2.2 KERNEL

KERNEL

Type
A kernel is a form that cannot be modified further by the REDUCE canonical simplifier. Scalar variables are always kernels. The other important class of kernels are operators with their arguments. Some examples should help clarify this concept:

Expression	Kernel?
x	Yes
varname	Yes
$\cos (\mathrm{a})$	Yes
$\log (\sin (\mathrm{x} * * 2))$	Yes
$\mathrm{a} * \mathrm{~b}$	No
$(\mathrm{x}+\mathrm{y}) * * 4$	No
matrix identifier	No

Many REDUCE operators expect kernels among their arguments. Error messages result from attempts to use non-kernel expressions for these arguments.

2.3 STRING

STRING
 Type

A string is any collection of characters enclosed in double quotation marks ("). It may be used as an argument for a variety of commands and operators, such as in, rederr and write.
Examples
write "this is a string"; $\quad \Rightarrow \quad$ this is a string
write a, " ", b, " ", c,"!"; \Rightarrow A B C!

3 Variables

3.1 assumptions

ASSUMPTIONS

Variable

After solving a linear or polynomial equation system with parameters, the variable assumptions contains a list of side relations for the parameters. The solution is valid only as long as none of these expression is zero.
Examples
solve ($\{a * x-b * y+x, y-c\},\{x, y\})$;

$$
\Rightarrow \quad\left\{\left\{x=-\frac{b * c}{a+1}, y=c\right\}\right\}
$$

assumptions; $\quad \Rightarrow \quad\{a+1\}$

3.2 CARD_NO

CARD_NO

card_no sets the total number of cards allowed in a Fortran output statement when fort is on. Default is 20 .

Examples

```
on fort;
```

card_no := 4; $\quad \Rightarrow \quad$ CARD_NO=4.
$\mathrm{z}:=(\mathrm{x}+\mathrm{y}) * * 15 ; \quad \Rightarrow$
ANS1 $=5005 . * \mathrm{X} * * 6 * \mathrm{Y} * * 9+3003 . * \mathrm{X} * * 5 * \mathrm{Y} * * 10+1365 . * \mathrm{X} * * 4 * \mathrm{Y} * *$
. $11+455 . * \mathrm{X} * * 3 * \mathrm{Y} * * 12+105 . * \mathrm{X} * * 2 * \mathrm{Y} * * 13+15 . * \mathrm{X} * \mathrm{Y} * * 14+\mathrm{Y} * * 15$
$\mathrm{Z}=\mathrm{X} * * 15+15 . * \mathrm{X} * * 14 * \mathrm{Y}+105 . * \mathrm{X} * * 13 * \mathrm{Y} * * 2+455 . * \mathrm{X} * * 12 * \mathrm{Y} * * 3+$
. 1365. $* \mathrm{X} * * 11 * \mathrm{Y} * * 4+3003 . * \mathrm{X} * * 10 * \mathrm{Y} * * 5+5005 . * \mathrm{X} * * 9 * \mathrm{Y} * * 6+$
. 6435. $* \mathrm{X} * * 8 * \mathrm{Y} * * 7+6435 . * \mathrm{X} * * 7 * \mathrm{Y} * * 8+$ ANS1

Comments

Twenty total cards means 19 continuation cards. You may set it for more if your Fortran system allows more. Expressions are broken apart in a Fortran-compatible way if they extend for more than card_no continuation cards.

3.3 E

Constant

The constant e is reserved for use as the base of the natural logarithm. Its value is approximately 2.71828284590 , which REDUCE gives to the current decimal precision when the switch rounded is on.

Comments

e may be used as an iterative variable in a for statement, or as a local variable or a procedure. If e is defined as a local variable inside the procedure, the normal definition as the base of the natural logarithm would be suspended inside the procedure.

3.4 EVAL_MODE

EVAL_MODE

Variable
The system variable eval_mode contains the current mode, either algebraic or symbolic.
Examples
EVAL_MODE; \Rightarrow ALGEBRAIC
Comments
Some commands do not behave the same way in algebraic and symbolic modes.

3.5 FORT_WIDTH

FORT_WIDTH

The fort_width variable sets the number of characters in a line of Fortran-compatible output produced when the fort switch is on. Default is 70 .

Examples

fort_width := $30 ; \quad \Rightarrow \quad$ FORT_WIDTH $:=30$
on fort;
$\mathrm{df}(\sin (\mathrm{x} * * 3 * \mathrm{y}), \mathrm{x}) ; \quad \Rightarrow \quad$ ANS $=3 . * \operatorname{COS}(\mathrm{X}$
. $* * 3 * \mathrm{Y}) * \mathrm{X} * * 2 *$

- Y

Comments

fort_width includes the usually blank characters at the beginning of the card. As you may notice above, it is conservative and makes the lines even shorter than it was told.

3.6 HIGH_POW

HIGH_POW

Variable

The variable high_pow is set by coeff to the highest power of the variable of interest in the given expression. You can access this variable for use in further computation or display.
Examples
$\operatorname{coeff}\left((x+1)^{\wedge} 5 *(x *(y+3) \wedge 2) \wedge 2, x\right)$;
\Rightarrow
\{0,
0 ,
$Y^{4}+12 * Y^{3}+54 * Y^{2}+108 * Y+81$,
$5 *\left(Y^{4}+12 * Y^{3}+54 * Y^{2}+108 * Y+81\right)$,
$10 *\left(Y^{4}+12 * Y^{3}+54 * Y^{2}+108 * Y+81\right)$,
$10 *\left(Y^{4}+12 * Y^{3}+54 * Y^{2}+108 * Y+81\right)$,
$\left.5 * Y^{4}+12 * Y^{3}+54 * Y^{2}+108 * Y+81\right)$,
$\left.Y^{4}+12 * Y^{3}+54 * Y^{2}+108 * Y+81\right\}$
high_pow; $\quad \Rightarrow \quad 7$

3.7 I

Constant

REDUCE knows i is the square root of -1 , and that $i^{2}=-1$.

Examples

$(\mathrm{a}+\mathrm{b} * \mathrm{i}) *(\mathrm{c}+\mathrm{d} * \mathrm{i}) ; \Rightarrow \mathrm{A} * \mathrm{C}+\mathrm{A} * \mathrm{D} * \mathrm{I}+\mathrm{B} * \mathrm{C} * \mathrm{I}-\mathrm{B} * \mathrm{D}$
$\mathrm{i} * * 2 ; \quad \Rightarrow \quad-1$

Comments

i cannot be used as an identifier. It is all right to use i as an index variable in a for loop, or as a local (scalar) variable inside a begin. . .end block, but it loses its definition as the square root of -1 inside the block in that case.
Only the simplest properties of i are known by REDUCE unless the switch complex is turned on, which implements full complex arithmetic in factoring, simplification, and functional values. complex is ordinarily off.

3.8 INFINITY

INFINITY

Constant

The name infinity is used to represent the infinite positive number. However, at the present time, arithmetic in terms of this operator reflects finite arithmetic, rather than true operations on infinity.

3.9 LOW POW

LOW_POW

Variable

The variable low_pow is set by coeff to the lowest power of the variable of interest in the given expression. You can access this variable for use in further computation or display.
Examples
$\operatorname{coeff}((\mathrm{x}+2 * \mathrm{y}) * * 6, \mathrm{y}) ; \quad \Rightarrow \quad\left\{\mathrm{X}^{6}\right.$,

3.10 NIL

Constant

nil represents the truth value false in symbolic mode, and is a synonym for 0 in algebraic mode. It cannot be used for any other purpose, even inside procedures or for loops.

3.11 PI

Constant

The identifier pi is reserved for use as the circular constant. Its value is given by $3.14159265358 \ldots$, which REDUCE gives to the current decimal precision when REDUCE is in a floating-point mode.

Comments

pi may be used as a looping variable in a for statement, or as a local variable in a procedure. Its value in such cases will be taken from the local environment.

3.12 requirements

REQUIREMENTS

Variable
After an attempt to solve an inconsistent equation system with parameters, the variable requirements contains a list of expressions. These expressions define a set of conditions implicitly equated with zero. Any solution to this system defines a setting for the parameters sufficient to make the original system consistent.

Examples
solve($\{x-a, x-y, y-1\},\{x, y\}) ; \quad \Rightarrow \quad\{ \}$
requirements; $\quad \Rightarrow\{a-1\}$

3.13 ROOT_MULTIPLICITIES

ROOT_MULTIPLICITIES
 Variable

The root_multiplicities variable is set to the list of the multiplicities of the roots of an equation by the solve operator.
Comments
solve returns its solutions in a list. The multiplicities of each solution are put in the corresponding locations of the list rootmultiplicities.

3.14 T

T

Constant

The constant t stands for the truth value true. It cannot be used as a scalar variable in a block, as a looping variable in a for statement or as an operator name.

4 Syntax

4.1 semicolon

$;$

Command

The semicolon is a statement delimiter, indicating results are to be printed when used in interactive mode.

Examples

```
\((\mathrm{x}+1) * * 2 ; \quad \Rightarrow \quad \mathrm{X}^{2}+2 * \mathrm{X}+1\)
\(\mathrm{df}(\mathrm{x} * * 2+1, \mathrm{x}) ; \Rightarrow 2 * \mathrm{X}\)
```


Comments

Entering a Return without a semicolon or dollar sign results in a prompt on the following line. A semicolon or dollar sign can be added at this point to execute the statement. In interactive mode, a statement that is ended with a semicolon and Return has its results printed on the screen.
Inside a group statement <<...>> or a begin. .. end block, a semicolon or dollar sign separates individual REDUCE statements. Since results are not printed from a block without a specific return statement, there is no difference between using the semicolon or dollar sign. In a group statement, the last value produced is the value returned by the group statement. Thus, if a semicolon or dollar sign is placed between the last statement and the ending brackets, the group statement returns the value 0 or nil, rather than the value of the last statement.

4.2 dollar

Command

The dollar sign is a statement delimiter, indicating results are not to be printed when used in interactive mode.

```
Examples
\((\mathrm{x}+1) * * 2 \$ \Rightarrow\)
    The workspace is set to \(x^{2}+2 x+1\)
    but nothing shows on the screen
    \(\Rightarrow \quad X^{2}+2 * X+1\)
```

Comments
Entering a Return without a semicolon or dollar sign results in a prompt on the following line. A semicolon or dollar sign can be added at this point to execute the statement. In interactive mode, a statement that ends with a dollar sign $\$$ and a Return is executed, but the results not printed.

Inside a group statement <<...>> or a begin...end block, a semicolon or dollar sign separates individual REDUCE statements. Since results are not printed from a block without a specific return statement, there is no difference between using the semicolon or dollar sign.

In a group statement, the last value produced is the value returned by the group statement. Thus, if a semicolon or dollar sign is placed between the last statement and the ending brackets, the group statement returns the value 0 or nil, rather than the value of the last statement.

4.3 percent

Command

The percent sign is used to precede comments; everything from a percent to the end of the line is ignored.
Examples
$\mathrm{df}(\mathrm{x} * * 3+\mathrm{y}, \mathrm{x}) ; \%$ This is a comment Return

$$
\Rightarrow \quad 3 * X^{2}
$$

$\operatorname{int}(3 * x * * 2, x) \%$ This is a comment; Return
A prompt is given, waiting for the semicolon that was not detected in the comment

Comments

Statement delimiters ; and $\$$ are not detected between a percent sign and the end of the line.

$4.4 \operatorname{dot}$

Operator

The . (dot) infix binary operator adds a new item to the beginning of an existing list. In high energy physics expressions, it can also be used to represent the scalar product of two Lorentz four-vectors.
item . list
item can be any REDUCE scalar expression, including a list; list must be a list to avoid producing an error message. The dot operator is right associative.

Examples

```
liss := a . {}; }=>\quad\mathrm{ LISS := {A}
liss := b . liss; }\quad=>\mathrm{ LISS := {B,A}
newliss := liss . liss; }=>\mathrm{ NEWLISS := {{B,A},B,A}
firstlis := a . b . {c}; }=>\mathrm{ FIRSTLIS := {A,B,C}
secondlis := x . y . {z}; => SECONDLIS := {X,Y,Z}
for i := 1:3 sum part(firstlis,i)*part(secondlis,i);
# A*X + B*Y + C*Z
```


4.5 assign

$:=$

Operator

The := is the assignment operator, assigning the value on the right-hand side to the identifier or other valid expression on the left-hand side.

```
restricted_expression := expression
```

restricted_expression is ordinarily a single identifier, though simple expressions may be used (see Comments below). expression is any valid REDUCE expression. If expression is a matrix identifier, then restricted_expression can be a matrix identifier (redimensioned if necessary) which has each element set to the corresponding elements of the identifier on the right-hand side.

Examples

```
\(\mathrm{a}:=\mathrm{x} * * 2+1 ; \quad \Rightarrow \quad \mathrm{A}:=\mathrm{X}^{2}+1\)
\(\mathrm{a} ; \quad \Rightarrow \mathrm{X}+1\)
first \(:=\) second \(:=\) third; \(\Rightarrow\) FIRST \(:=\) SECOND \(:=\) THIRD
first; \(\quad \Rightarrow \quad\) THIRD
second; \(\quad \Rightarrow \quad\) THIRD
b := for i := 1:5 product i;
    \(\Rightarrow \quad B \quad:=120\)
b; \(\quad \Rightarrow \quad 120\)
w + (c := x + 3) + z; \(\quad \Rightarrow \quad W+X+Z+3\)
\(c ; \quad \Rightarrow \quad X+3\)
\(\mathrm{y}+\mathrm{b}:=\mathrm{c} ; \quad \Rightarrow \quad \mathrm{Y}+\mathrm{B}:=\mathrm{C}\)
\(y ; \quad \Rightarrow \quad-(B-C)\)
```


Comments

The assignment operator is right associative, as shown in the second and third examples. A string of such assignments has all but the last item set to the value of
the last item. Embedding an assignment statement in another expression has the side effect of making the assignment, as well as causing the given replacement in the expression.
Assignments of values to expressions rather than simple identifiers (such as in the last example above) can also be done, subject to the following remarks:
(i) If the left-hand side is an identifier, an operator, or a power, the substitution rule is added to the rule table.
(ii) If the operators $-+/$ appear on the left-hand side, all but the first term of the expression is moved to the right-hand side.
(iii) If the operator * appears on the left-hand side, any constant terms are moved to the right-hand side, but the symbolic factors remain.

Assignment is valid for array elements, but not for entire arrays. The assignment operator can also be used to attach functionality to operators.
A recursive construction such as a $:=\mathrm{a}+\mathrm{b}$ is allowed, but when a is referenced again, the process of resubstitution continues until the expression stack overflows (you get an error message). Recursive assignments can be done safely inside controlled loop expressions, such as for... or repeat... until.

4.6 equalsign

$=$
 Operator

The = operator is a prefix or infix equality comparison operator.

$$
=(\text { expression }, \text { expression }) \text { or expression }=\text { expression }
$$

expression can be any REDUCE scalar expression.
Examples

```
a := 4; }\quad=>\quadA:=
if =(a,10) then write "yes" else write "no";
    no
b := c; }\quad=>\quadB:= 
if b = c then write "yes" else write "no";
    # yes
on rounded;
if 4.0 = 4 then write "yes" else write "no";
    # yes
```

Comments
This logical equality operator can only be used inside a conditional statement, such as if...then...else or repeat... until. In other places the equal sign establishes an algebraic object of type equation.

4.7 replace

REPLACE

Operator

The following sign is used: =>
The $=>$ operator is a binary operator used in rule lists to denote replacements.
Examples
operator f;
let $f(x)=>x^{\wedge} 2$;
$f(x) ; \quad \Rightarrow \quad x^{2}$

4.8 plussign

$+$

Operator
The + operator is a prefix or infix n-ary addition operator.

$$
\begin{aligned}
& \text { expression }\{+ \text { expression }\}+ \\
& \text { or }+(\text { expression }\{, \text { expression }\}+)
\end{aligned}
$$

expression may be any valid REDUCE expression.

Examples

```
\(\mathrm{x} * * 4+4 * \mathrm{x} * * 2+17 * \mathrm{x}+1 ; \Rightarrow \mathrm{X}^{4}+4 * \mathrm{X}^{2}+17 * \mathrm{X}+1\)
\(14+15+x ; \quad \Rightarrow \quad X+29\)
\(+(1,2,3,4,5) ; \quad \Rightarrow \quad 15\)
```


Comments

+ is also valid as an addition operator for matrix variables that are of the same dimensions and for equations.

4.9 minussign

Operator

The - operator is a prefix or infix binary subtraction operator, as well as the unary minus operator.
expression - expression or - (expression, expression)
expression may be any valid REDUCE expression.

```
Examples
15-4; }\quad=>\quad1
x*(-5); }\quad=>\quad-5*
a - b - 15; }=>\mathrm{ A - B - 15
-(a,4); }\quad=>\quadA - 4
```


Comments

The subtraction operator is left associative, so that a-b-c is equivalent to (a b) - c, as shown in the third example. The subtraction operator is also valid with matrix expressions of the correct dimensions and with equations.

4.10 asterisk

*

Operator
The $*$ operator is a prefix or infix n-ary multiplication operator.

$$
\begin{aligned}
& \text { expression }\{* \text { expression }\}+ \\
& \text { or } *(\text { expression }\{, \text { expression }\}+)
\end{aligned}
$$

expression may be any valid REDUCE expression.

```
Examples
15*3; 列 45
24*x*yvalue*2; }=>\quad48*\textrm{X}*\textrm{YVALUE
*(6,x); 相 (
on rounded;
3*1.5*x*x*x; }\quad=>\quad4.5*\mp@subsup{X}{}{3
off rounded;
2x**2; }\quad=>\quad2*\mp@subsup{X}{}{2
```


Comments

REDUCE assumes you are using an implicit multiplication operator when an identifier is preceded by a number, as shown in the last line above. Since no valid identifiers can begin with numbers, there is no ambiguity in making this assumption.

The multiplication operator is also valid with matrix expressions of the proper dimensions: matrices A and B can be multiplied if A is $n \times m$ and B is $m \times p$. Matrices and equations can also be multiplied by scalars: the result is as if each element was multiplied by the scalar.

4.11 slash

Operator

The / operator is a prefix or infix binary division operator or prefix unary reciprocal operator.

$$
\begin{aligned}
& \text { expression / expression or / expression } \\
& \text { or /(expression, expression })
\end{aligned}
$$

expression may be any valid REDUCE expression.

Examples

```
20/5; }\quad=>\quad
100/6; }\quad=>\quad-\frac{50}{3
16/2/x; }\quad=>\quad\begin{array}{c}{\mp@subsup{8}{}{3}}\\{-\frac{x}{x}}
/b;
/(y,5); }\quad=>\quad-\frac{B}{5
on rounded;
35/4; }\quad=>\quad8.7
/20; }\quad=>\quad0.0
```


Comments

The division operator is left associative, so that $a / b / c$ is equivalent to $(a / b) / c$. The division operator is also valid with square matrix expressions of the same dimensions: With A and B both $n \times n$ matrices and B invertible, A / B is given by $A \times B^{-1}$. Division of a matrix by a scalar is defined, with the results being the division of each element of the matrix by the scalar. Division of a scalar by a matrix is defined if the matrix is invertible, and has the effect of multiplying the scalar by the inverse of the matrix. When / is used as a reciprocal operator for a matrix, the inverse of the matrix is returned if it exists.

4.12 power

**

Operator

The ** operator is a prefix or infix binary exponentiation operator.

$$
\text { expression } * * \text { expression or } * *(\text { expression, expression })
$$

expression may be any valid REDUCE expression.

$\mathrm{x} * * 15 ;$	$\Rightarrow \mathrm{X}^{15}$
$\mathrm{x} * * \mathrm{y} * * \mathrm{Z} ;$	$\Rightarrow \mathrm{X}^{\mathrm{Y} * \mathrm{Z}}$
$\mathrm{x} * *(\mathrm{y} * * \mathrm{z}) ;$	$\Rightarrow \mathrm{X}^{\mathrm{Z}}$
$* *(\mathrm{y}, 4) ;$	$\Rightarrow \mathrm{Y}^{4}$

on rounded;
$2 * *$ pi $\quad \Rightarrow \quad 8.82497782708$

Comments

The exponentiation operator is left associative, so that $\mathrm{a} * * \mathrm{~b} * * \mathrm{c}$ is equivalent to ($\mathrm{a} * * \mathrm{~b}$) $* * \mathrm{c}$, as shown in the second example. Note that this is not $\mathrm{a} * *(\mathrm{~b} * * \mathrm{c})$, which would be right associative.

When nat is on (the default), REDUCE output produces raised exponents, as shown. The symbol ${ }^{\wedge}$, which is the upper-case 6 on most keyboards, may be used in the place of $* *$.

A square matrix may also be raised to positive and negative powers with the exponentiation operator (negative powers require the matrix to be invertible). Scalar expressions and equations may be raised to fractional and floating-point powers.

4.13 caret

\wedge

Operator

The ^ operator is a prefix or infix binary exponentiation operator. It is equivalent to power or ${ }^{* *}$.

```
expression ^ expression or ^ (expression, expression)
```

expression may be any valid REDUCE expression.
Examples

Examples		15
$\mathrm{x}^{\wedge} 15$;	\Rightarrow	X
		$\mathrm{Y} * \mathrm{Z}$
$x^{\wedge} y^{\wedge} z ;$	\Rightarrow	X
		Y^{Z}
$\mathrm{x}^{\wedge}\left(\mathrm{y}^{\wedge} \mathrm{z}\right)$;	\Rightarrow	X
		4
- $(\mathrm{y}, 4)$;	\Rightarrow	Y
on rounded;		
2^pi;	\Rightarrow	8.82497782708

Comments

The exponentiation operator is left associative, so that $\mathrm{a}^{\wedge} \mathrm{b}^{\wedge} \mathrm{c}$ is equivalent to ($\left.\mathrm{a}^{\wedge} \mathrm{b}\right)^{\wedge} \mathrm{c}$, as shown in the second example. Note that this is not $\mathrm{a}^{\wedge}\left(\mathrm{b}^{\wedge} \mathrm{c}\right)$, which would be right associative.

When nat is on (the default), REDUCE output produces raised exponents, as shown.
A square matrix may also be raised to positive and negative powers with the exponentiation operator (negative powers require the matrix to be invertible). Scalar expressions and equations may be raised to fractional and floating-point powers.

4.14 geqsign

GEQ

Operator

The following sign is used: $>=$
>= is an infix binary comparison operator, which returns true if its first argument is greater than or equal to its second argument.

```
expression >= expression
```

expression must evaluate to an integer or floating-point number.

Examples

if (3 $>=2$) then yes; \Rightarrow yes
a $:=15 ; \quad \Rightarrow \quad A:=15$
if a >= 20 then big else small;
$\Rightarrow \quad$ small

Comments

The binary comparison operators can only be used for comparisons between numbers or variables that evaluate to numbers. The truth values returned by such a comparison can only be used inside programming constructs, such as if... then. . . else or repeat... until or while...do.

4.15 greater

GREATER

Operator

The following sign is used: >
The > is an infix binary comparison operator that returns true if its first argument is strictly greater than its second.

```
expression > expression
```

expression must evaluate to a number, e.g., integer, rational or floating point number.

Examples

on rounded;
if 3.0 > 3 then write "different" else write "same";
\Rightarrow same
off rounded;
a $:=20 ; \quad \Rightarrow \quad \mathrm{A}:=20$
if a > 20 then write "bigger" else write "not bigger";
\Rightarrow not bigger

Comments

The binary comparison operators can only be used for comparisons between numbers or variables that evaluate to numbers. The truth values returned by such a comparison can only be used inside programming constructs, such as if...then. . .else or repeat... until or while...do.

4.16 leqsign

LEQ

Operator

The following sign is used: <=
<= is an infix binary comparison operator that returns true if its first argument is less than or equal to its second argument.
expression <= expression
expression must evaluate to a number, e.g., integer, rational or floating point number.

Examples

a $:=10 ; \quad \Rightarrow \quad A:=10$
if $\mathrm{a}<=10$ then true; \Rightarrow true

Comments

The binary comparison operators can only be used for comparisons between numbers or variables that evaluate to numbers. The truth values returned by such a comparison can only be used inside programming constructs, such as if...then. ..else or repeat... until or while...do.

4.17 less

LESS

Operator

The following sign is used: $<$
< is an infix binary logical comparison operator that returns true if its first argument is strictly less than its second argument.

expression < expression

expression must evaluate to a number, e.g., integer, rational or floating point number.
Examples

$$
\begin{aligned}
& \text { f :=-3; } \quad \Rightarrow \quad F:=-3 \\
& \text { if } f<-3 \text { then write "yes" else write "no"; } \\
& \quad \Rightarrow \text { no }
\end{aligned}
$$

Comments

The binary comparison operators can only be used for comparisons between numbers or variables that evaluate to numbers. The truth values returned by such a comparison can only be used inside programming constructs, such as if...then...else or repeat... until or while...do.

4.18 tilde

~

Operator
The ${ }^{\sim}$ is used as a unary prefix operator in the left-hand sides of rules to mark free variables. A double tilde marks an optional free variable.

4.19 group

GROUP

Command

The following signs are used: \ll and \gg
The <<... >> command is a group statement, used to group statements together where REDUCE expects a single statement.
<<statement $\{$ statement or $\$$ statement $\} * \gg$
statement may be any valid REDUCE statement or expression.

Examples

```
a := 2;
    A A := 2
```

if $\mathrm{a}<5$ then $\ll \mathrm{b}:=\mathrm{a}+10$; write $\mathrm{b} \gg$;
$\Rightarrow \quad 12$
<<d := c/15; f := d + 3; f**2>>;
$\Rightarrow \quad-\frac{C^{2}+90 * C+202}{225}$

Comments

The value returned from a group statement is the value of the last individual statement executed inside it. Note that when a semicolon is placed between the last statement and the closing brackets, 0 or nil is returned. Group statements are often used in the consequence portions of if...then, repeat... until, and while...do clauses. They may also be used in interactive operation to execute several statements at one time. Statements inside the group statement are separated by semicolons or dollar signs.

4.20 AND

AND

Operator

The and binary logical operator returns true if both of its arguments are true.
logical_expression and logical_expression
logical_expression must evaluate to true or nil.
Examples

```
a := 12; }\quad=>\quad\textrm{A}:=1
if numberp a and a < 15 then write a**2 else write "no";
    # 144
clear a;
if numberp a and a < 15 then write a**2 else write "no";
    no
```


Comments

Logical operators can only be used inside conditional statements, such as while... do or if...then...else. and examines each of its arguments in order, and quits, returning nil, on finding an argument that is not true. An error results if it is used in other contexts.
and is left associative: x and y and z is equivalent to (x and y) and z .

4.21 BEGIN

BEGIN

Command

begin is used to start a block statement, which is closed with end.

```
begin statement {; statement }* end
```

statement is any valid REDUCE statement.
Examples

```
begin for i := 1:3 do write i end;
            # 1
                                    2
                            3
begin scalar n;n:=1;b:=for i:=1:4 product(x-i);return n end;
    # 1
b; }=>\mp@subsup{X}{}{4}-10*\mp@subsup{X}{}{3}+35*\mp@subsup{X}{}{2}-50*X+2
```


Comments

A begin...end block can do actions (such as write), but does not return a value unless instructed to by a return statement, which must be the last statement executed in the block. It is unnecessary to insert a semicolon before the end.

Local variables, if any, are declared in the first statement immediately after begin, and may be defined as scalar, integer, or real. array variables declared within a begin. . . end block are global in every case, and let statements have global effects. A let statement involving a formal parameter affects the calling parameter that corresponds to it. let statements involving local variables make global assignments, overwriting outside variables by the same name or creating them if they do not exist. You can use this feature to affect global variables from procedures, but be careful that you do not do it inadvertently.

4.22 block

BLOCK

Command
A block is a sequence of statements enclosed by commands begin and end.
begin statement $\{$; statement $\} *$ end
For more details see begin.

4.23 COMMENT

COMMENT

Command

Beginning with the word comment, all text until the next statement terminator (; or $\$$) is ignored.

Examples

```
x := a**2 comment--a is the velocity of the particle;;
    # X := A
```


Comments

Note that the first semicolon ends the comment and the second one terminates the original REDUCE statement.
Multiple-line comments are often needed in interactive files. The comment command allows a normal-looking text to accompany the REDUCE statements in the file.

4.24 CONS

CONS

Operator

The cons operator adds a new element to the beginning of a list. Its operation is identical to the symbol dot (dot). It can be used infix or prefix.

```
cons(item, list) or item cons list
```

item can be any REDUCE scalar expression, including a list; list must be a list.

Examples

```
liss := cons(a,{b}); }\quad=>\quad{A,B
liss := c cons liss; }\quad=>\quad{C,A,B
newliss := for each y in liss collect cons(y,list x);
    NEWLISS := {{C,X},{A,X},{B,X}}
for each y in newliss sum (first y)*(second y);
    # X*(A + B + C)
```


Comments

If you want to use cons to put together two elements into a new list, you must make the second one into a list with curly brackets or the list command. You can also start with an empty list created by $\}$.

The cons operator is right associative: a cons b cons c is valid if c is a list; b need not be a list. The list produced is $\{a, b, c\}$.

4.25 END

END

Command

The command end has two main uses:
(i) as the ending of a begin...end block; and
(ii) to end input from a file.

Comments

In a begin...end block, there need not be a delimiter (; or \$) before the end, though there must be one after it, or a right bracket matching an earlier left bracket.

Files to be read into REDUCE should end with end; , which must be preceded by a semicolon (usually the last character of the previous line). The additional semicolon avoids problems with mistakes in the files. If you have suspended file operation by answering n to a pause command, you are still, technically speaking, "in" the file. Use end to exit the file.

An end at the top level of a program is ignored.

4.26 EQUATION

EQUATION

An equation is an expression where two algebraic expressions are connected by the (infix) operator equal or by $=$. For access to the components of an equation the operators lhs, rhs or part can be used. The evaluation of the left-hand side of an equation is controlled by the switch evallhseqp, while the right-hand side is evaluated unconditionally. When an equation is part of a logical expression, e.g. in a if or while statement, the equation is evaluated by subtracting both sides can comparing the result with zero.

Equations occur in many contexts, e.g. as arguments of the sub operator and in the arguments and the results of the operator solve. An equation can be member of a list and you may assign an equation to a variable. Elementary arithmetic is supported for equations: if evallhseqp is on, you may add and subtract equations, and you can combine an equation with a scalar expression by addition, subtraction, multiplication, division and raise an equation to a power.

```
Examples
on evallhseqp;
u:=x+y=1$
v:=2x-y=0$
2*u-v; }\quad=>\quad-3*y=-
ws/3; }\quad=>\quady=-\frac{2}{3
```

Important: the equation must occur in the leftmost term of such an expression. For other operations, e.g. taking function values of both sides, use the map operator.

4.27 FIRST

FIRST

Operator

The first operator returns the first element of a list.
first(list) or first list
list must be a non-empty list to avoid an error message.

Examples

alist $:=\{a, b, c, d\} ; \quad \Rightarrow \quad$ ALIST $:=\{A, B, C, D\}$
first alist; $\Rightarrow A$
blist := $\{\mathrm{x}, \mathrm{y},\{\mathrm{ww}, \mathrm{aa}, \mathrm{qq}\}, \mathrm{z}\}$;
$\Rightarrow \quad \mathrm{BLIST}:=\{\mathrm{X}, \mathrm{Y},\{\mathrm{WW}, \mathrm{AA}, \mathrm{QQ}\}, \mathrm{Z}\}$
first third blist; $\quad \Rightarrow \quad$ WW

4.28 FOR

FOR

Command

The for command is used for iterative loops. There are many possible forms it can take.

$$
\text { for }\left\{\begin{array}{l}
\text { var }:=\text { start }: \text { stop } \\
\operatorname{var}:=\text { start step inc until stop } \\
\text { each var in list }
\end{array}\right\}\left\{\begin{array}{l}
\text { collect } \\
\text { do } \\
\text { join } \\
\text { product } \\
\text { sum }
\end{array}\right\} \text { expression }
$$

var can be any valid REDUCE identifier except t or nil, inc, start and stop can be any expression that evaluates to a positive or negative integer. list must be a valid list structure. The action taken must be one of the actions shown above, each of which is followed by a single REDUCE expression, statement or a group (<<...>>) or block (begin...end) statement.

Examples

```
for i := 1:10 sum i; }\quad=>\quad5
```

for a := -2 step 3 until 6 product a;
$\Rightarrow \quad-8$
$\mathrm{a}:=3 ; \quad \Rightarrow \mathrm{A}:=3$
for iter := 4:a do write iter;
$\mathrm{m}:=0 ; \quad \Rightarrow \quad \mathrm{M}:=0$
for $\mathrm{s}:=10$ step -1 until 3 do <<d $:=10 * \mathrm{~s} ; \mathrm{m}:=\mathrm{m}+\mathrm{d} \gg$;
$\mathrm{m} ; \quad \Rightarrow \quad 520$
for each x in $\{q, r, s\}$ sum $x * * 2$;
$\Rightarrow \quad Q^{2}+R^{2}+S^{2}$
for $i:=1: 4$ collect $1 / i ; \quad \Rightarrow \quad\left\{1,-\frac{1}{2}-,-\frac{1}{3}-,-\frac{1}{4}-\right\}$
for i := 1:3 join list solve($x * * 2+i * x+1, x)$;

Comments

The behavior of each of the five action words follows:

Action Word Behavior			
Keyword	Argument Type	Action	
do collect	statement, command, group or block expression, statement, com- mand, group, block, list	Evaluates its argument once for each iteration of the loop, not saving results Evaluates its argument once for each iteration of the loop, stor- ing the results in a list which is returned by the for statement when done product join list or an operator which pro- duces a list expression, statement, com- mand, group or block each iteration of the loop, ap- pending the elements in each in- dividual result list onto the over- all result list Evaluates its argument once for each iteration of the loop, mul- tiplying the results together and returning the overall product	
sum	Evaluates its argument once for each iteration of the loop, adding expression, statement, com- mand, group or block		
ing the overall sum			

For number-driven for statements, if the ending limit is smaller than the beginning limit (larger in the case of negative steps) the action statement is not executed at all. The iterative variable is local to the for statement, and does not affect the value of an identifier with the same name. For list-driven for statements, if the list is empty, the action statement is not executed, but no error occurs.
You can use nested for statements, with the inner for statement after the action keyword. You must make sure that your inner statement returns an expression that the outer statement can handle.

4.29 FOREACH

FOREACH

Command

foreach is a synonym for the for each variant of the for construct. It is designed to iterate down a list, and an error will occur if a list is not used. The use of for each is preferred to foreach.
foreach variable in list action expression
where action $::=$ do | product | sum | collect | join
Examples
foreach x in $\{q, r, s\}$ sum $x * * 2$;

$$
\Rightarrow \quad Q^{2}+R^{2}+S^{2}
$$

4.30 GEQ

GEQ

Operator

The geq operator is a binary infix or prefix logical operator. It returns true if its first argument is greater than or equal to its second argument. As an infix operator it is identical with >=.
geq(expression, expression) or expression geq expression
expression can be any valid REDUCE expression that evaluates to a number.

Examples

```
a := 20; }\quad=>\quad\textrm{A}:=2
if geq(a,25) then write "big" else write "small";
    m small
if a geq 20 then write "big" else write "small";
    # big
if (a geq 18) then write "big" else write "small";
    # big
```


Comments

Logical operators can only be used in conditional statements such as if...then...else or repeat...until.

4.31 GOTO

GOTO

Command

Inside a begin...end block, goto, or preferably, go to, transfers flow of control to a labeled statement.

go to labeled_statement or goto labeled_statement

labeled_statement is of the form label : statement
Examples

```
    procedure dumb(a);
        begin scalar q;
            go to lab;
            q := df(a**2 - sin(a),a);
            write q;
        lab: return a
        end;
            # DUMB
dumb(17); }\quad=>\quad1
```


Comments

go to can only be used inside a begin...end block, and inside the block only statements at the top level can be labeled, not ones inside <<... >>, while...do, etc.

4.32 GREATERP

GREATERP

Operator

The greaterp logical operator returns true if its first argument is strictly greater than its second argument. As an infix operator it is identical with $>$. greaterp(expression, expression) or expression greaterp expression expression can be any valid REDUCE expression that evaluates to a number.

Examples

```
a := 20;
    A A := 20
if greaterp(a,25) then write "big" else write "small";
    m small
if a greaterp 20 then write "big" else write "small";
    m small
if (a greaterp 18) then write "big" else write "small";
    # big
```


Comments

Logical operators can only be used in conditional statements such as if...then...else or repeat...while.

4.33 IF

IF

Command

The if command is a conditional statement that executes a statement if a condition is true, and optionally another statement if it is not.

if condition then statement \&option(else statement)

condition must be a logical or comparison operator that evaluates to a boolean value. statement must be a single REDUCE statement or a group (<<...>>) or block (begin...end) statement.

Examples

```
if x = 5 then a := b+c else a := d+f;
    # D + F
x := 9; }\quad=>\quad\textrm{X}:=
if numberp x and x<20 then y := sqrt(x) else write "illegal";
    # 3
clear x;
if numberp x and x<20 then y := sqrt(x) else write "illegal";
    # illegal
x := 12; }\quad=>\quadX := 12
a := if x < 5 then 100 else 150;
```

$$
\Rightarrow \quad \mathrm{A} \quad:=150
$$

$\mathrm{b}:=\mathrm{u} * *($ if $\mathrm{x}<10$ then 2$) ; \Rightarrow \mathrm{B}:=1$
bb := $u * *($ if $x>10$ then 2);

$$
\Rightarrow \quad \mathrm{BB}:=\mathrm{U}^{2}
$$

Comments

An if statement may be used inside an assignment statement and sets its value depending on the conditions, or used anywhere else an expression would be valid,
as shown in the last example. If there is no else clause, the value is 0 if a number is expected, and nothing otherwise.

The else clause may be left out if no action is to be taken if the condition is false.
The condition may be a compound conditional statement using and or or. If a non-conditional statement, such as a constant, is used by accident, it is assumed to have value true.

Be sure to use group or block statements after then or else.
The if operator is right associative. The following constructions are examples:
(1) if condition then if condition then action else action
which is equivalent to
if condition then (if condition then action else action);
(2) if condition then action else if condition then action else action
which is equivalent to
if condition then action else
(if condition then action else action).

4.34 LIST

LIST

Operator

The list operator constructs a list from its arguments.
list (item $\{$, item $\} *$) or list () to construct an empty list.
item can be any REDUCE scalar expression, including another list. Left and right curly brackets can also be used instead of the operator list to construct a list.

Examples

liss := list(c,b, c, \{xx,yy\}, $3 x * * 2+7 x+3, d f(\sin (2 * x), x))$;
\Rightarrow
LISS $:=\left\{C, B, C,\{X X, Y Y\}, 3 * X^{2}+7 * X+3,2 * \operatorname{COS}(2 * X)\right\}$
length liss; $\quad \Rightarrow \quad 6$
liss $:=\{c, b, c,\{x x, y y\}, 3 x * * 2+7 x+3, d f(\sin (2 * x), x)\} ;$
\Rightarrow
LISS := $\left\{C, B, C,\{X X, Y Y\}, 3 * X^{2}+7 * X+3,2 * \operatorname{COS}(2 * X)\right\}$
emptylis := list(); $\quad \Rightarrow \quad$ EMPTYLIS $:=\{ \}$
a . emptylis; $\quad \Rightarrow \quad\{A\}$
Comments
Lists are ordered, hierarchical structures. The elements stay where you put them, and only change position in the list if you specifically change them. Lists can have nested sublists to any (reasonable) level. The part operator can be used to access elements anywhere within a list hierarchy. The length operator counts the number of top-level elements of its list argument; elements that are themselves lists still only count as one element.

4.35 OR

OR

Operator

The or binary logical operator returns true if either one or both of its arguments is true.
logical expression or logical expression
logical expression must evaluate to true or nil.
Examples

$$
\text { a }:=10 ; \quad \Rightarrow \quad A:=10
$$

if $\mathrm{a}<0$ or $\mathrm{a}>140$ then write "not a valid human age" else write "age = ", a;

$$
\Rightarrow \quad \text { age }=10
$$

a $:=200 ; \quad \Rightarrow \quad A:=200$
if $\mathrm{a}<0$ or a > 140 then write "not a valid human age";

$$
\Rightarrow \text { not a valid human age }
$$

Comments

The or operator is left associative: x or y or z is equivalent to (x or y) or z.
Logical operators can only be used in conditional expressions, such as if...then...else and while...do. or evaluates its arguments in order and quits, returning true, on finding the first true statement.

4.36 PROCEDURE

PROCEDURE

Command

The procedure command allows you to define a mathematical operation as a function with arguments.

\&option procedure identifier ($\arg \{, \arg \}+$); body

The option may be algebraic or symbolic, indicating the mode under which the procedure is executed, or real or integer, indicating the type of answer expected. The default is algebraic. Real or integer procedures are subtypes of algebraic procedures; type-checking is done on the results of integer procedures, but not on real procedures (in the current REDUCE release). identifier may be any valid REDUCE identifier that is not already a procedure name, operator, array or matrix. arg is a formal parameter that may be any valid REDUCE identifier. body is a single statement (a group or block statement may be used) with the desired activities in it.

Examples

```
procedure fac(n);
    if not (fixp(n) and n>=0)
        then rederr "Choose nonneg. integer only"
        else for i := 0:n-1 product i+1;
            F FAC
fac(0); }\quad=>\quad
fac(5); }\quad=>\quad12
fac(-5); }\quad=>\quad***** choose nonneg. integer onl
```


Comments

Procedures are automatically declared as operators upon definition. When REDUCE has parsed the procedure definition and successfully converted it to a form for its own use, it prints the name of the procedure. Procedure definitions cannot be nested. Procedures can call other procedures, or can recursively call themselves. Procedure identifiers can be cleared as you would clear an operator. Unlike let statements, new definitions under the same procedure name replace the previous
definitions completely.
Be careful not to use the name of a system operator for your own procedure. REDUCE may or may not give you a warning message. If you redefine a system operator in your own procedure, the original function of the system operator is lost for the remainder of the REDUCE session.
Procedures may have none, one, or more than one parameter. A REDUCE parameter is a formal parameter only; the use of x as a parameter in a procedure definition has no connection with a value of x in the REDUCE session, and the results of calling a procedure have no effect on the value of x. If a procedure is called with x as a parameter, the current value of x is used as specified in the computation, but is not changed outside the procedure. Making an assignment statement by := with a formal parameter on the left-hand side only changes the value of the calling parameter within the procedure.
Using a let statement inside a procedure always changes the value globally: a let with a formal parameter makes the change to the calling parameter. let statements cannot be made on local variables inside begin...end blocks. When clear statements are used on formal parameters, the calling variables associated with them are cleared globally too. The use of let or clear statements inside procedures should be done with extreme caution.
Arrays and operators may be used as parameters to procedures. The body of the procedure can contain statements that appropriately manipulate these arguments. Changes are made to values of the calling arrays or operators. Simple expressions can also be used as arguments, in the place of scalar variables. Matrices may not be used as arguments to procedures.

A procedure that has no parameters is called by the procedure name, immediately followed by empty parentheses. The empty parentheses may be left out when writing a procedure with no parameters, but must appear in a call of the procedure. If this is a nuisance to you, use a let statement on the name of the procedure (i.e., let noargs $=$ noargs()) after which you can call the procedure by just its name.
Procedures that have a single argument can leave out the parentheses around it both in the definition and procedure call. (You can use the parentheses if you wish.) Procedures with more than one argument must use parentheses, with the arguments separated by commas.
Procedures often have a begin. . . end block in them. Inside the block, local variables are declared using scalar, real or integer declarations. The declarations must be made immediately after the word begin, and if more than one type of declaration is
made, they are separated by semicolons. REDUCE currently does no type checking on local variables; real and integer are treated just like scalar. Actions take place as specified in the statements inside the block statement. Any identifiers that are not formal parameters or local variables are treated as global variables, and activities involving these identifiers are global in effect.
If a return value is desired from a procedure call, a specific return command must be the last statement executed before exiting from the procedure. If no return is used, a procedure returns a zero or no value.

Procedures are often written in a file using an editor, then the file is input using the command in. This method allows easy changes in development, and also allows you to load the named procedures whenever you like, by loading the files that contain them.

4.37 REPEAT

REPEAT

Command

The repeat command causes repeated execution of a statement until the given condition is found to be true. The statement is always executed at least once.

```
repeat statement until condition
```

statement can be a single statement, group statement, or a begin...end block. condition must be a logical operator that evaluates to true or nil.

Examples

<<m := 4; repeat <<write 100*x*m;m := m-1>> until m = 0>>;

$$
\Rightarrow \quad 400 * X
$$

$300 * X$
200*X
100*X
<<m := -1; repeat <<write m; m := m-1>> until m <= 0>>;

$$
\Rightarrow \quad-1
$$

Comments

repeat must always be followed by an until with a condition. Be careful not to generate an infinite loop with a condition that is never true. In the second example, if the condition had been $m=0$, it would never have been true since m already had value -2 when the condition was first evaluated.

4.38 REST

REST

Operator

The rest operator returns a list containing all but the first element of the list it is given.

```
rest(list) or rest list
```

list must be a non-empty list, but need not have more than one element.
Examples

```
alist := {a,b,c,d}; }\quad=>\quad\mathrm{ ALIST := {A,B,C,D};
rest alist; }\quad=>\quad{B,C,D
blist := {x,y,{aa,bb,cc},z};
    # BLIST := {X,Y,{AA,BB,CC},Z}
second rest blist; }\quad=>\quad{AA,BB,CC
clist := {c}; }\quad=>\quad\mathrm{ CLIST := C
rest clist; }\quad=>\quad{
```


4.39 RETURN

RETURN

Command

The return command causes a value to be returned from inside a begin...end block.
begin statements return Eoption(expression) end
statements can be any valid REDUCE statements. The value of expression is returned.
Examples
begin write "yes"; return a end;
$\Rightarrow \quad$ yes
procedure dumb(a);
begin if numberp(a) then return a else return 10 end;
\Rightarrow DUMB
$\operatorname{dumb}(\mathrm{x}) ; \quad \Rightarrow \quad 10$
dumb $(-5) ; \quad \Rightarrow \quad-5$
procedure dumb2(a); begin $c:=a * * 2+2 * a+1 ; d:=17 ; c * d ;$ return end;
$\Rightarrow \quad$ DUMB2
dumb2(4);
c; $\quad \Rightarrow \quad 25$
$\mathrm{d} ; \quad \Rightarrow \quad 17$
Comments
Note in dumb2 above that the assignments were made as requested, but the product $c * d$ cannot be accessed. Changing the procedure to read return $c * d$ would remedy this problem.

The return statement is always the last statement executed before leaving the block. If return has no argument, the block is exited but no value is returned. A block statement does not need a return ; the statements inside terminate in their normal fashion without one. In that case no value is returned, although the specified actions inside the block take place.
The return command can be used inside <<. . . >> group statements and if. . . then. . . else commands that are inside begin. . . end blocks. It is not valid in these constructions that are not inside a begin. . . end block. It is not valid inside for, repeat. . . until or while...do loops in any construction. To force early termination from loops, the go to(goto) command must be used. When you use nested block statements, a return from an inner block exits returning a value to the next-outermost block, rather than all the way to the outside.

4.40 REVERSE

REVERSE

Operator

The reverse operator returns a list that is the reverse of the list it is given.
reverse(list) or reverse list
list must be a list.

Examples

aa := $\{\mathrm{c}, \mathrm{b}, \mathrm{a},\{\mathrm{x} * * 2, \mathrm{z} * * 3\}, \mathrm{y}\}$;

$$
\Rightarrow \quad \mathrm{AA}:=\left\{\mathrm{C}, \mathrm{~B}, \mathrm{~A},\left\{\mathrm{X}^{2}, \mathrm{Z}^{3}\right\}, \mathrm{Y}\right\}
$$

23
reverse aa; $\quad \Rightarrow \quad\{Y,\{X, Z\}, A, B, C\}$
reverse(q . reverse aa) ; $\Rightarrow\left\{C, B, A,\left\{X^{2}, Z^{3}\right\}, Y, Q\right\}$

Comments

reverse and cons can be used together to add a new element to the end of a list (. adds its new element to the beginning). The reverse operator uses a noticeable amount of system resources, especially if the list is long. If you are doing much heavy-duty list manipulation, you should probably design your algorithms to avoid much reversing of lists. A moderate amount of list reversing is no problem.

4.41 RULE

RULE

Type

A rule is an instruction to replace an algebraic expression or a part of an expression by another one.

$$
l h s=i \text { rhs or } l h s=¿ r h s \text { when cond }
$$

lhs is an algebraic expression used as search pattern and $r h s$ is an algebraic expression which replaces matches of rhs. $\Rightarrow>$ is the operator replace.
lhs can contain free variables which are symbols preceded by a tilde ~ in their leftmost position in lhs. A double tilde marks an optional free variable. If a rule has a when cond part it will fire only if the evaluation of cond has a result true. cond may contain references to free variables of lhs.

Rules can be collected in a list which then forms a rule list. Rule lists can be used to collect algebraic knowledge for a specific evaluation context.

Rules and rule lists are globally activated and deactivated by let, forall, clearrules. For a single evaluation they can be locally activate by where. The active rules for an operator can be visualized by showrules.

Examples

operator f,g,h;
let $f(x)=>x^{\wedge} 2$;
$f(x) ; \quad \Rightarrow \quad x^{2}$
g_rules: $=\left\{\mathrm{g}\left({ }^{\sim} \mathrm{n},{ }^{\sim} \mathrm{x}\right)=>\mathrm{h}(\mathrm{n} / 2, \mathrm{x})\right.$ when evenp n ,
$\mathrm{g}\left({ }^{\sim} \mathrm{n},{ }^{\sim} \mathrm{x}\right)=>\mathrm{h}((1-\mathrm{n}) / 2, \mathrm{x})$ when not evenp n$\}$
let g_rules;
$g(3, x) ; \quad \Rightarrow \quad h(-1, x)$

4.42 Free Variable

FREE VARIABLE

Type
A variable preceded by a tilde is considered as free variable and stands for an arbitrary part in an algebraic form during pattern matching. Free variables occur in the left-hand sides of rules, in the side relations for compact and in the first arguments of map and select calls. See rule for examples.
In rules also optional free variables may occur.

4.43 Optional Free Variable

OPTIONAL FREE VARIABLE

A variable preceded by a double tilde is considered as optional free variable and stands for an arbitrary part part in an algebraic form during pattern matching. In contrast to ordinary free variables an operator pattern with an optional free variable matches also if the operand for the variable is missing. In such a case the variable is bound to a neutral value. Optional free variables can be used as term in a sum: set to 0 if missing,
factor in a product: set to 1 if missing, exponent: set to 1 if missing
Examples
$\sin (\sim \sim u+\sim \sim n * p i) \Rightarrow \sin (u)$ when evenp $u ;$
\Rightarrow
Optional free variables are allowed only in the left-hand sides of rules.

4.44 SECOND

SECOND

Operator

The second operator returns the second element of a list.

```
second(list) or second list
```

list must be a list with at least two elements, to avoid an error message.

Examples

alist $:=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\} ; \quad \Rightarrow \quad$ ALIST $:=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
second alist; $\quad \Rightarrow \quad B$
blist $:=\{\mathrm{x},\{\mathrm{aa}, \mathrm{bb}, \mathrm{cc}\}, \mathrm{z}\} ; \Rightarrow \operatorname{BLIST}:=\{\mathrm{X},\{\mathrm{AA}, \mathrm{BB}, \mathrm{CC}\}, \mathrm{Z}\}$
second second blist; $\quad \Rightarrow \quad B B$

4.45 SET

SET

Operator

The set operator is used for assignments when you want both sides of the assignment statement to be evaluated.

```
set(restricted_expression, expression)
```

expression can be any REDUCE expression; restricted_expression must be an identifier or an expression that evaluates to an identifier.

Examples

```
a := y; }\quad=>\quad\textrm{A}:= 
set(a,\operatorname{sin}(\mp@subsup{x}{}{\wedge}2)); 列 SIN(X )
a; }\quad=>\quad\operatorname{SIN}(X
y; }\quad=>\quad\operatorname{SIN}(X
a := b + c; }\quad=>\quad\textrm{A}:= \textrm{B}+\textrm{C
set (a-c,z); }\quad=>\quad
b; }\quad=>\quad
```


Comments

Using an array or matrix reference as the first argument to set has the result of setting the contents of the designated element to set's second argument. You should be careful to avoid unwanted side effects when you use this facility.

4.46 SETQ

SETQ

Operator

The setq operator is an infix or prefix binary assignment operator. It is identical to : $=$.

$$
\begin{aligned}
& \text { setq }(\text { restricted_expression, expression }) \text { or } \\
& \text { restricted_expression setq expression }
\end{aligned}
$$

restricted expression is ordinarily a single identifier, though simple expressions may be used (see Comments below). expression can be any valid REDUCE expression. If expression is a matrix identifier, then restricted_expression can be a matrix identifier (redimensioned if necessary), which has each element set to the corresponding elements of the identifier on the right-hand side.

Examples

```
setq(b,6); }\quad=>\quadB:=
c setq \operatorname{sin}(\textrm{x}); 列:= SIN(X)
w + setq(c,x+3) + z; => W + X + Z + 3
c; }\quad=>\quadX + 3
setq(a1 + a2,25); }\quad=>\quad\textrm{A}1+\textrm{A}2:=2
a1; }\quad=>\quad-(A2 - 25
```


Comments

Embedding a setq statement in an expression has the side effect of making the assignment, as shown in the third example above.

Assignments are generally done for identifiers, but may be done for simple expressions as well, subject to the following remarks:
(i) If the left-hand side is an identifier, an operator, or a power, the rule is added to the rule table.
(ii) If the operators $-+/$ appear on the left-hand side, all but the first term of the expression is moved to the right-hand side.
(iii) If the operator $*$ appears on the left-hand side, any constant terms are moved to the right-hand side, but the symbolic factors remain.
Be careful not to make a recursive setq assignment that is not controlled inside a loop statement. The process of resubstitution continues until you get a stack overflow message. setq can be used to attach functionality to operators, as the $:=$ does.

4.47 THIRD

THIRD

Operator

The third operator returns the third item of a list.
third(list) or third list
list must be a list containing at least three items to avoid an error message.

Examples

alist $:=\{a, b, c, d\} ; \quad \Rightarrow \quad$ ALIST $:=\{A, B, C, D\}$
third alist; $\quad \Rightarrow \quad C$
blist := $\{\mathrm{x},\{\mathrm{aa}, \mathrm{bb}, \mathrm{cc}\}, \mathrm{y}, \mathrm{z}\}$;

$$
\Rightarrow \quad \mathrm{BLIST}:=\{\mathrm{X},\{\mathrm{AA}, \mathrm{BB}, \mathrm{CC}\}, \mathrm{Y}, \mathrm{Z}\} ;
$$

third second blist; $\quad \Rightarrow \quad C C$
third blist; $\quad \Rightarrow \quad Y$

4.48 WHEN

WHEN

Operator
The when operator is used inside a rule to make the execution of the rule depend on a boolean condition which is evaluated at execution time. For the use see rule.

5 Arithmetic Operations

5.1 ARITHMETIC_OPERATIONS

ARITHMETIC_OPERATIONS
 Introduction

This section considers operations defined in REDUCE that concern numbers, or operators that can operate on numbers in addition, in most cases, to more general expressions.

5.2 ABS

ABS

Operator

The abs operator returns the absolute value of its argument.
abs(expression)
expression can be any REDUCE scalar expression.

Examples

```
abs(-a); }=>\mathrm{ ABS(A)
```

abs $(-5) ; \quad \Rightarrow \quad 5$
a $:=-10 ; \Rightarrow A \quad:=-10$
abs(a); $\quad \Rightarrow \quad 10$
abs (-a) ; $\quad \Rightarrow \quad 10$

Comments

If the argument has had no numeric value assigned to it, such as an identifier or polynomial, abs returns an expression involving abs of its argument, doing as much simplification of the argument as it can, such as dropping any preceding minus sign.

5.3 ADJPREC

ADJPREC Switch

When a real number is input, it is normally truncated to the precision in effect at the time the number is read. If it is desired to keep the full precision of all numbers input, the switch adjprec (for adjust precision) can be turned on. While on, adjprec will automatically increase the precision, when necessary, to match that of any integer or real input, and a message printed to inform the user of the precision increase.
Examples
on rounded;
$1.23456789012345 ; \quad \Rightarrow \quad 1.23456789012$
on adjprec;
1.23456789012345;
*** precision increased to 15
$1.23456789012345 \quad \Rightarrow$

5.4 ARG

ARG
Operator
If complex and rounded are on, and arg evaluates to a complex number, arg returns the polar angle of arg, measured in radians. Otherwise an expression in arg is returned.
Examples
$\arg (3+4 i) \quad \Rightarrow \quad \operatorname{ARG}(3+4 * I)$
on rounded, complex;
ws; $\quad \Rightarrow \quad 0.927295218002$
$\arg \mathrm{a} ; \quad \Rightarrow \quad \operatorname{ARG}(\mathrm{A})$

5.5 CEILING

CEILING

Operator

ceiling(expression)

This operator returns the ceiling (i.e., the least integer greater than or equal to its argument) if its argument has a numerical value. For negative numbers, this is equivalent to fix. For non-numeric arguments, the value is an expression in the original operator.
Examples
ceiling 3.4; $\quad \Rightarrow \quad 4$
fix 3.4; $\quad \Rightarrow \quad 3$
ceiling (-5.2); $\Rightarrow \quad-5$
fix(-5.2); $\quad \Rightarrow \quad-5$
ceiling a; $\quad \Rightarrow \quad \operatorname{CEILING}(A)$

5.6 CHOOSE

CHOOSE

Operator

choose (m, m) returns the number of ways of choosing m objects from a collection of n distinct objects - in other words the binomial coefficient. If m and n are not positive integers, or $m>n$, the expression is returned unchanged. than or equal to
Examples

```
choose (2,3); = 3
choose (3,2); = CHOOSE (3,2)
choose(a,b); m CHOOSE(A,B)
```


5.7 DEG2DMS

DEG2DMS

Operator

```
deg2dms(expression)
```

In rounded mode, if expression is a real number, the operator deg 2 dms will interpret it as degrees, and convert it to a list containing the equivalent degrees, minutes and seconds. In all other cases, an expression in terms of the original operator is returned.
Examples
deg2dms 60; $\quad \Rightarrow \quad$ DEG2DMS (60)
on rounded;

```
ws; }\quad=>\quad{60,0,0
deg2dms 42.4; }=>\mathrm{ {42,23,60.0}
deg2dms a; }\quad=>\quad\mathrm{ DEG2DMS(A)
```


5.8 DEG2RAD

DEG2RAD

Operator

deg2rad(expression)

In rounded mode, if expression is a real number, the operator deg2rad will interpret it as degrees, and convert it to the equivalent radians. In all other cases, an expression in terms of the original operator is returned.

```
Examples
deg2rad 60; = DEG2RAD(60)
on rounded;
ws; }\quad=>\quad1.047197551
deg2rad a; }=>\mathrm{ DEG2RAD(A)
```


5.9 DIFFERENCE

DIFFERENCE

Operator

The difference operator may be used as either an infix or prefix binary subtraction operator. It is identical to - as a binary operator.

```
difference(expression, expression) or
expression difference expression {difference expression}*
```

expression can be a number or any other valid REDUCE expression. Matrix expressions are allowed if they are of the same dimensions.
Examples
difference $(10,4) ; \quad \Rightarrow \quad 6$
15 difference 5 difference 2;
$\Rightarrow \quad 8$
a difference b; $\quad \Rightarrow \quad A-B$

Comments

The difference operator is left associative, as shown in the second example above.

5.10 DILOG

DILOG

Operator

The dilog operator is known to the differentiation and integration operators, but has numeric value attached only at dilog(0). Dilog is defined by

$$
\operatorname{dilog}(x)=-\int \frac{\log (x) d x}{x-1}
$$

Examples

$$
\begin{array}{llc}
\operatorname{df}(\operatorname{dilog}(\mathrm{x} * * 2), \mathrm{x}) ; & \Rightarrow & \frac{2 * \operatorname{LOG}\left(\mathrm{X}^{2}\right) * \mathrm{X}}{2} \\
\operatorname{int}(\operatorname{dilog}(\mathrm{x}), \mathrm{x}) ; & \Rightarrow & \mathrm{X}^{2}-1 \\
\operatorname{DILOG}(\mathrm{X}) * \mathrm{X} & -\operatorname{DILOG}(\mathrm{X})+\operatorname{LOG}(\mathrm{X}) * \mathrm{X}-\mathrm{X} \\
\operatorname{dilog}(0) ; & \Rightarrow & -\frac{\mathrm{PI}}{6}
\end{array}
$$

5.11 DMS2DEG

DMS2DEG

Operator

dms2deg(list)

In rounded mode, if list is a list of three real numbers, the operator dms2deg will interpret the list as degrees, minutes and seconds and convert it to the equivalent degrees. In all other cases, an expression in terms of the original operator is returned.
Examples
dms2deg $\{42,3,7\} ; \Rightarrow \operatorname{DMS} 2 \operatorname{DEG}(\{42,3,7\})$
on rounded;

ws;	$\Rightarrow 42.0519444444$
dms2deg a;	$\Rightarrow \quad$ DMS2DEG (A)

5.12 DMS2RAD

DMS2RAD

Operator

dms2rad(list)

In rounded mode, if list is a list of three real numbers, the operator dms2rad will interpret the list as degrees, minutes and seconds and convert it to the equivalent radians. In all other cases, an expression in terms of the original operator is returned.
Examples
dms2rad $\{42,3,7\} ; \Rightarrow \operatorname{DMS} 2 R A D(\{42,3,7\})$
on rounded;
ws; $\quad \Rightarrow \quad 0.733944887421$
dms2rad a; $\quad \Rightarrow \quad$ DMS2RAD (A)

5.13 FACTORIAL

FACTORIAL

Operator

factorial(expression)

If the argument of factorial is a positive integer or zero, its factorial is returned. Otherwise the result is expressed in terms of the original operator. For more general operations, the gamma operator is available in the Special Function Package.

Examples

factorial 4;	$\Rightarrow 24$
factorial $30 ;$	$\Rightarrow 265252859812191058636308480000000$
factorial (a) ; FACTORIAL(A)	\Rightarrow

5.14 FIX

FIX

Operator

```
fix(expression)
```

The operator fix returns the integer part of its argument, if that argument has a numerical value. For positive numbers, this is equivalent to floor, and, for negative numbers, ceiling. For non-numeric arguments, the value is an expression in the original operator.

Examples

```
fix 3.4; }\quad=>\quad
floor 3.4; }\quad=>\quad
ceiling 3.4; }\quad=\quad
fix(-5.2); }\quad=>\quad-
floor(-5.2); }\quad=>\quad-
ceiling(-5.2); m -5
fix(a); }\quad=>\quadFIX(A
```


5.15 FIXP

FIXP

Operator

The fixp logical operator returns true if its argument is an integer.
fixp(expression) or fixp simple_expression
expression can be any valid REDUCE expression, simple_expression must be a single identifier or begin with a prefix operator.

Examples

if fixp 1.5 then write "ok" else write "not";
\Rightarrow not
if $\operatorname{fixp}(a)$ then write "ok" else write "not";
\Rightarrow not
a $:=15 ; \quad \Rightarrow \quad A:=15$
if fixp(a) then write "ok" else write "not";

$$
\Rightarrow \quad \mathrm{ok}
$$

Comments

Logical operators can only be used inside conditional expressions such as if... then or while...do.

5.16 FLOOR

FLOOR

Operator

floor(expression)

This operator returns the floor (i.e., the greatest integer less than or equal to its argument) if its argument has a numerical value. For positive numbers, this is equivalent to fix. For non-numeric arguments, the value is an expression in the original operator.

```
Examples
floor 3.4; }\quad=\quad
fix 3.4; }\quad=>\quad
floor(-5.2); 列 -6
fix(-5.2); }\quad=>\quad-
floor a; }\quad=>\quad\mathrm{ FLOOR(A)
```


5.17 EXPT

EXPT

Operator

The expt operator is both an infix and prefix binary exponentiation operator. It is identical to ^ or **.
expt(expression, expression) or expression expt expression
Examples

```
a expt b; \(\quad \Rightarrow \quad A^{B}\)
\(\operatorname{expt}(a, b) ; \quad \Rightarrow \quad A^{B}\)
\((x+y) \operatorname{expt} 4 ; \Rightarrow X^{4}+4 * X^{3} * Y+6 * X^{2} * Y^{2}+4 * X * Y^{3}+Y^{4}\)
```


Comments

Scalar expressions may be raised to fractional and floating-point powers. Square matrix expressions may be raised to positive powers, and also to negative powers if non-singular.
expt is left associative. In other words, $a \operatorname{expt} b \operatorname{expt} c$ is equivalent to $a \operatorname{expt}(b * c)$, not a expt (b expt c), which would be right associative.

5.18 GCD

GCD

Operator

The gcd operator returns the greatest common divisor of two polynomials.

```
gcd(expression, expression)
```

expression must be a polynomial (or integer), otherwise an error occurs.

```
Examples
gcd(2*x**2 - 2*y**2,4*x + 4*y);
    m 2*(X + Y)
gcd(\operatorname{sin}(x),x**2 + 1); }\quad=>\quad
gcd(765,68); }\quad=>\quad1
```

Comments
The operator gcd described here provides an explicit means to find the gcd of two expressions. The switch gcd described below simplifies expressions by finding and canceling gcd's at every opportunity. When the switch ezgcd is also on, gcd's are figured using the EZ GCD algorithm, which is usually faster.

5.19 LN

LN

Operator

$\ln ($ expression $)$
expression can be any valid scalar REDUCE expression.
The \ln operator returns the natural logarithm of its argument. However, unlike log, there are no algebraic rules associated with it; it will only evaluate when rounded is on, and the argument is a real number.

Examples

$\ln (\mathrm{x}) ; \quad \Rightarrow \quad \mathrm{LN}(\mathrm{X})$
$\ln 4 ; \quad \Rightarrow \quad \operatorname{LN}(4)$
$\ln (\mathrm{e}) ; \quad \Rightarrow \quad \operatorname{LN}(\mathrm{E})$
$\mathrm{df}(\ln (\mathrm{x}), \mathrm{x}) ; \quad \Rightarrow \quad \mathrm{DF}(\operatorname{LN}(\mathrm{X}), \mathrm{X})$
on rounded;
$\ln 4 ; \quad \Rightarrow \quad 1.38629436112$
$\ln \mathrm{e} ; \quad \Rightarrow \quad 1$

Comments

Because of the restricted algebraic properties of ln, users are advised to use log whenever possible.

5.20 LOG

LOG

Operator

The log operator returns the natural logarithm of its argument.
$\log ($ expression $)$ or log expression
expression can be any valid scalar REDUCE expression.

Examples

$\log (\mathrm{x}) ; \quad \Rightarrow \quad \operatorname{LOG}(\mathrm{X})$
$\log 4 ; \quad \Rightarrow \quad$ LOG (4)
$\log (\mathrm{e}) ; \quad \Rightarrow \quad 1$
on rounded;
$\log 4 ; \quad \Rightarrow \quad 1.38629436112$
Comments
log returns a numeric value only when rounded is on. In that case, use of a negative argument for log results in an error message. No error is given on a negative argument when REDUCE is not in that mode.

5.21 LOGB

LOGB

Operator

$\operatorname{logb}($ expression integer $)$
expression can be any valid scalar REDUCE expression.
The logb operator returns the logarithm of its first argument using the second argument as base. However, unlike log, there are no algebraic rules associated with it; it will only evaluate when rounded is on, and the first argument is a real number.
Examples
$\operatorname{logb}(x, 2) ; \quad \Rightarrow \quad \operatorname{LOGB}(X, 2)$
$\operatorname{logb}(4,3) ; \quad \Rightarrow \quad \operatorname{LOGB}(4,3)$
$\operatorname{logb}(2,2) ; \quad \Rightarrow \quad \operatorname{LOGB}(2,2)$
$\mathrm{df}(\operatorname{logb}(\mathrm{x}, 3), \mathrm{x}) ; \quad \Rightarrow \quad \mathrm{DF}(\operatorname{LOGB}(\mathrm{X}, 3), \mathrm{x})$
on rounded;
$\operatorname{logb}(4,3) ; \quad \Rightarrow \quad 1.26185950714$
$\operatorname{logb}(2,2) ; \quad \Rightarrow \quad 1$

5.22 MAX

MAX
Operator
The operator max is an n-ary prefix operator, which returns the largest value in its arguments.

$$
\max (\text { expression }\{, \text { expression }\} *)
$$

expression must evaluate to a number. max of an empty list returns 0 .
Examples
$\max (4,6,10,-1) ; \quad \Rightarrow \quad 10$
$\ll \mathrm{a}:=23 ; \mathrm{b}:=2 * \mathrm{a} ; \mathrm{c}:=4 * * 2 ; \max (\mathrm{a}, \mathrm{b}, \mathrm{c}) \gg$;
$\Rightarrow \quad 46$
$\max (-5,-10,-\mathrm{a}) ; \quad \Rightarrow \quad-5$

5.23 MIN

The operator min is an n-ary prefix operator, which returns the smallest value in its arguments.

```
min(expression{, expression}*)
```

expression must evaluate to a number. min of an empty list returns 0 .
Examples
$\min (-3,0,17,2) ; \quad \Rightarrow \quad-3$
$\ll \mathrm{a}:=23 ; \mathrm{b}:=2 * \mathrm{a} ; \mathrm{c}:=4 * * 2 ; \min (\mathrm{a}, \mathrm{b}, \mathrm{c}) \gg$;
$\Rightarrow \quad 16$
$\min (5,10, a) ; \quad \Rightarrow \quad 5$

5.24 MINUS

MINUS Operator

The minus operator is a unary minus, returning the negative of its argument. It is equivalent to the unary -.
minus(expression)
expression may be any scalar REDUCE expression.
Examples
minus $(\mathrm{a}) ; \quad \Rightarrow \quad-\mathrm{A}$
minus $(-1) ; \quad \Rightarrow \quad 1$
$\operatorname{minus}((\mathrm{x}+1) * * 4) ; \Rightarrow-\left(\mathrm{X}^{4}+4 * \mathrm{X}^{3}+6 * \mathrm{X}^{2}+4 * \mathrm{X}+1\right)$

5.25 NEXTPRIME

NEXTPRIME

Operator

nextprime(expression)
If the argument of nextprime is an integer, the least prime greater than that argument is returned. Otherwise, a type error results.

Examples

nextprime 5001; $\quad \Rightarrow \quad 5003$
nextprime(10~30); $\Rightarrow 1000000000000000000000000000057$
nextprime a; $\quad \Rightarrow \quad * * * * *$ A invalid as integer

5.26 NOCONVERT

NOCONVERT

Switch

Under normal circumstances when rounded is on, REDUCE converts the number 1.0 to the integer 1. If this is not desired, the switch noconvert can be turned on.

Examples
on rounded;
$1.0000000000001 ; \Rightarrow 1$
on noconvert;
$1.0000000000001 ; \Rightarrow 1.0$

5.27 NORM

NORM

Operator

norm(expression)
If rounded is on, and the argument is a real number, norm returns its absolute value. If complex is also on, norm returns the square root of the sum of squares of the real and imaginary parts of the argument. In all other cases, a result is returned in terms of the original operator.

Examples

```
norm (-2); }\quad=>\quad\mathrm{ NORM(-2)
on rounded;
ws; }\quad=>\quad2.
norm(3+4i); }=>\quad\operatorname{NORM(4*I+3)
on complex;
ws; }\quad=>\quad5.
```


5.28 PERM

PERM

Operator

perm(expression1, expression2)
If expression1 and expression2 evaluate to positive integers, perm returns the number of permutations possible in selecting expression1 objects from expression2 objects. In other cases, an expression in the original operator is returned.

Examples

$\operatorname{perm}(1,1) ; \quad \Rightarrow \quad 1$
$\operatorname{perm}(3,5) ; \quad \Rightarrow \quad 60$
$\operatorname{perm}(-3,5) ; \quad \Rightarrow \quad \operatorname{PERM}(-3,5)$
$\operatorname{perm}(a, b) ; \quad \Rightarrow \quad \operatorname{PERM}(A, B)$

5.29 PLUS

PLUS

Operator

The plus operator is both an infix and prefix n-ary addition operator. It exists because of the way in which REDUCE handles such operators internally, and is not recommended for use in algebraic mode programming. plussign, which has the identical effect, should be used instead.

$$
\begin{aligned}
& \text { plus(expression, expression }\{, \text { expression }\} *) \text { or } \\
& \text { expression plus expression }\{\text { plus expression }\} *
\end{aligned}
$$

expression can be any valid REDUCE expression, including matrix expressions of the same dimensions.

Examples

a plus b plus c plus $d ; \Rightarrow A+B+C+D$
4.5 plus $10 ; \quad \Rightarrow \quad \begin{gathered}29 \\ -29\end{gathered}$
$\operatorname{plus}(x * * 2, y * * 2) ; \quad \Rightarrow \quad X^{2}+Y^{2}$

5.30 QUOTIENT

QUOTIENT

Operator

The quotient operator is both an infix and prefix binary operator that returns the quotient of its first argument divided by its second. It is also a unary reciprocal operator. It is identical to / and slash.
quotient(expression, expression) or expression quotient expression or quotient(expression) or quotient expression
expression can be any valid REDUCE scalar expression. Matrix expressions can also be used if the second expression is invertible and the matrices are of the correct dimensions.

```
Examples
quotient (a,x+1); }\quad=>\quad\begin{array}{c}{------}\\{\mp@subsup{X}{7}{+}}
7 quotient 17; }\quad=>\quad-
on rounded;
4.5 quotient 2; }\quad|\quad2.2
quotient(x**2 + 3*x + 2,x+1);
    # X + 2
matrix m,inverse;
m := mat((a,b), (c,d)); 的 M(1,1) := A;
    M (1,2) := B;
    M(2,1) := C
    M (2,2) := D
```

inverse $:=$ quotient $m ; \Rightarrow \operatorname{INVERSE}(1,1):=-\frac{D}{A * D-B *--C}$

$$
\operatorname{INVERSE}(1,2):=-\frac{B}{A * D-B * C}
$$

$$
\operatorname{INVERSE}(2,1):=-\frac{C}{A * D-B * C}
$$

$$
\operatorname{INVERSE}(2,2):=\frac{\mathrm{A}}{\mathrm{~A} * \mathrm{D}-\mathrm{B} * \mathrm{C}}
$$

Comments

The quotient operator is left associative: a quotient b quotient c is equivalent to (a quotient b) quotient c.
If a matrix argument to the unary quotient is not invertible, or if the second matrix argument to the binary quotient is not invertible, an error message is given.

5.31 RAD2DEG

RAD2DEG

Operator

$$
\text { rad2deg(expression })
$$

In rounded mode, if expression is a real number, the operator rad2deg will interpret it as radians, and convert it to the equivalent degrees. In all other cases, an expression in terms of the original operator is returned.

```
Examples
rad2deg 1; }\quad=>\quad\mathrm{ RAD2DEG(1)
on rounded;
ws; }\quad=>\quad57.295779513
rad2deg a; }=>\mathrm{ RAD2DEG(A)
```


5.32 RAD2DMS

RAD2DMS

Operator

rad2dms(expression)

In rounded mode, if expression is a real number, the operator rad2dms will interpret it as radians, and convert it to a list containing the equivalent degrees, minutes and seconds. In all other cases, an expression in terms of the original operator is returned.
Examples

```
rad2dms 1; }\quad=>\quad\mathrm{ RAD2DMS(1)
```

on rounded;
ws; $\quad \Rightarrow \quad\{57,17,44.8062470964\}$
rad2dms a; $\quad \Rightarrow \quad$ RAD2DMS (A)

5.33 RECIP

RECIP
Operator
recip is the alphabetical name for the division operator / or slash used as a unary operator. The use of / is preferred.

Examples
$\begin{array}{lll}\text { recip } a ; & \Rightarrow & -\frac{1}{-} \\ \text { recip } 2 ; & \Rightarrow & -\frac{1}{2}\end{array}$

5.34 REMAINDER

REMAINDER

Operator

The remainder operator returns the remainder after its first argument is divided by its second argument.

```
remainder(expression, expression)
```

expression can be any valid REDUCE polynomial, and is not limited to numeric values.
Examples

```
remainder (13,6); }\quad=>\quad
remainder(x**2 + 3*x + 2,x+1);
```

 \(\Rightarrow \quad 0\)
 remainder $(\mathrm{x} * * 3+12 * \mathrm{x}+4, \mathrm{x} * * 2+1)$;
$\Rightarrow \quad 11 * X+4$
remainder $(\sin (2 * x), x * y) ; \quad \Rightarrow \quad \operatorname{SIN}(2 * X)$

Comments

In the default case, remainders are calculated over the integers. If you need the remainder with respect to another domain, it must be declared explicitly.

If the first argument to remainder contains a denominator not equal to 1 , an error occurs.

5.35 ROUND

ROUND

Operator

round(expression)

If its argument has a numerical value, round rounds it to the nearest integer. For non-numeric arguments, the value is an expression in the original operator.

Examples

round $3.4 ; 3$
round $3.5 ; \quad \Rightarrow 4$
round $\mathrm{a} ; \quad \Rightarrow \quad$ ROUND (A)

5.36 SETMOD

SETMOD

Command

The setmod command sets the modulus value for subsequent modular arithmetic.

```
setmod integer
```

integer must be positive, and greater than 1 . It need not be a prime number.

```
Examples
setmod 6; }\quad=>\quad
on modular;
16; }\quad=>\quad
x^2 + 5x + 7; => ( X 
x/3; }\quad=>\quad-\frac{X}{3
setmod 2; }\quad=>\quad
(x+1)^4; }\quad=>\quad\mp@subsup{X}{}{4}+
x/3; }\quad=>\quad
```


Comments

setmod returns the previous modulus, or 1 if none has been set before. setmod only has effect when modular is on.

Modular operations are done only on numbers such as coefficients of polynomials, not on the exponents. The modulus need not be prime. Attempts to divide by a power of the modulus produces an error message, since the operation is equivalent to dividing by 0 . However, dividing by a factor of a non-prime modulus does not produce an error message.

5.37 SIGN

SIGN

Operator
sign expression
sign tries to evaluate the sign of its argument. If this is possible sign returns one of 1,0 or -1 . Otherwise, the result is the original form or a simplified variant.
Examples
$\operatorname{sign}(-5) \quad \Rightarrow \quad-1$
$\operatorname{sign}(-\mathrm{a} \wedge 2 * \mathrm{~b}) \quad \Rightarrow \quad-\operatorname{SIGN}(\mathrm{B})$

Comments

Even powers of formal expressions are assumed to be positive only as long as the switch complex is off.

5.38 SQRT

SQRT

Operator

The sqrt operator returns the square root of its argument.
sqrt(expression)
expression can be any REDUCE scalar expression.

```
Examples
sqrt(16*a^3); }\quad=>\quad4*SQRT(A)*
sqrt(17); }\quad=>\quad\mathrm{ SQRT(17)
on rounded;
sqrt(17); }\quad=>\quad4.1231056256
off rounded;
sqrt(a*b*c^5*d^3*27); }
    3*SQRT (D) *SQRT (C) *SQRT (B)*SQRT (A)*SQRT (3) *C 2 *D
```


Comments

sqrt checks its argument for squared factors and removes them.
Numeric values for square roots that are not exact integers are given only when rounded is on.

Please note that $\operatorname{sqrt}(\mathrm{a} * * 2)$ is given as a, which may be incorrect if a eventually has a negative value. If you are programming a calculation in which this is a concern, you can turn on the precise switch, which causes the absolute value of the square root to be returned.

5.39 TIMES

TIMES

Operator

The times operator is an infix or prefix n-ary multiplication operator. It is identical to *.
expression times expression \{times expression\}* or times(expression, expression $\{$, expression $\} *$)
expression can be any valid REDUCE scalar or matrix expression. Matrix expressions must be of the correct dimensions. Compatible scalar and matrix expressions can be mixed.

```
Examples
var1 times var2; }\quad=>\quad\mathrm{ VAR1*VAR2
times (6,5); }\quad=>\quad3
matrix aa,bb;
aa := mat((1),(2),(x))$
bb := mat((0,3,1))$
aa times bb times 5; }=>\quad[\begin{array}{llll}{0}&{15}&{5}\end{array}
    [0 30 10]
    [ ]
    [0 15*X 5*X]
```


6 Boolean Operators

6.1 boolean value

BOOLEAN VALUE

Concept
There are no extra symbols for the truth values true and false. Instead, nil and the number zero are interpreted as truth value false in algebraic programs (see false), while any different value is considered as true (see true).

6.2 EQUAL

EQUAL

Operator

The operator equal is an infix binary comparison operator. It is identical with $=$. It returns true if its two arguments are equal.

```
expression equal expression
```

Equality is given between floating point numbers and integers that have the same value.

Examples

on rounded;

```
a := 4; }\quad=>\quad\textrm{A}:=
b := 4.0; }\quad=>\quadB:=4.
if a equal b then write "true" else write "false";
    # true
if a equal 5 then write "true" else write "false";
    f false
if a equal sqrt(16) then write "true" else write "false";
    # true
```

Comments
Comparison operators can only be used as conditions in conditional commands such as if...then and repeat... until. equal can also be used as a prefix operator. However, this use is not encouraged.

6.3 EVENP

EVENP

Operator

The evenp logical operator returns true if its argument is an even integer, and nil if its argument is an odd integer. An error message is returned if its argument is not an integer.

```
evenp(integer) or evenp integer
```

integer must evaluate to an integer.

Examples

```
aа := 1782; }\quad=>\quadAA := 178
if evenp aa then yes else no;
    # YES
if evenp(-3) then yes else no;
    NO
```


Comments

Although you would not ordinarily enter an expression such as the last example above, note that the negative term must be enclosed in parentheses to be correctly parsed. The evenp operator can only be used in conditional statements such as if...then...else or while...do.

6.4 false

FALSE

Concept

The symbol nil and the number zero are considered as boolean value false if used in a place where a boolean value is required. Most builtin operators return nil as false value. Algebraic programs use better zero. Note that nil is not printed when returned as result to a top level evaluation.

6.5 FREEOF

FREEOF

Operator

The freeof logical operator returns true if its first argument does not contain its second argument anywhere in its structure.

```
freeof(expression, kernel) or expression freeof kernel
```

expression can be any valid scalar REDUCE expression, kernel must be a kernel expression (see kernel).

Examples

```
a := x + sin(y)**2 + log sin z;
    A := LOG(SIN(Z)) + SIN(Y) }\mp@subsup{}{}{2}+\textrm{X
if freeof(a,sin(y)) then write "free" else write "not free";
    m not free
if freeof(a,sin(x)) then write "free" else write "not free";
    free
if a freeof sin z then write "free" else write "not free";
    # not free
```

Comments
Logical operators can only be used in conditional expressions such as if...then or while...do.

6.6 LEQ

LEQ

Operator

The leq operator is a binary infix or prefix logical operator. It returns true if its first argument is less than or equal to its second argument. As an infix operator it is identical with <=.
leq(expression, expression) or expression leq expression expression can be any valid REDUCE expression that evaluates to a number.

Examples

```
a := 15; }\quad=>\quad\textrm{A}:=1
if leq(a,25) then write "yes" else write "no";
    # yes
if leq(a,15) then write "yes" else write "no";
    # yes
if leq(a,5) then write "yes" else write "no";
    # no
```


Comments

Logical operators can only be used in conditional statements such as if...then...else or while...do.

6.7 LESSP

LESSP

Operator

The lessp operator is a binary infix or prefix logical operator. It returns true if its first argument is strictly less than its second argument. As an infix operator it is identical with < .
lessp(expression, expression) or expression lessp expression expression can be any valid REDUCE expression that evaluates to a number.

Examples

```
a := 15; }\quad=>\quad\textrm{A}:=1
if lessp(a,25) then write "yes" else write "no";
    m yes
if lessp(a,15) then write "yes" else write "no";
    no
if lessp(a,5) then write "yes" else write "no";
    no
```


Comments

Logical operators can only be used in conditional statements such as if...then...else or while...do.

6.8 MEMBER

MEMBER

Operator

expression member list

member is an infix binary comparison operator that evaluates to true if expression is equal to a member of the list list.

Examples

if a member $\{a, b\}$ then 1 else 0 ;
$\Rightarrow \quad 1$
if 1 member $(1,2,3)$ then a else $b ;$
$\Rightarrow \quad \mathrm{a}$
if 1 member $(1.0,2)$ then a else $b ;$
$\Rightarrow \quad \mathrm{b}$

Comments

Logical operators can only be used in conditional statements such as if...then...else or while...do. member can also be used as a prefix operator. However, this use is not encouraged. Finally, equal $(=)$ is used for the test within the list, so expressions must be of the same type to match.

6.9 NEQ

The operator neq is an infix binary comparison operator. It returns true if its two arguments are not equal.

```
expression neq expression
```

An inequality is satisfied between floating point numbers and integers that have the same value.

Examples

on rounded;

```
a := 4;
    A A := 4
b := 4.0; }\quad=>\quadB:=4.
if a neq b then write "true" else write "false";
    f false
if a neq 5 then write "true" else write "false";
    # true
```


Comments

Comparison operators can only be used as conditions in conditional commands such as if...then and repeat... until. neq can also be used as a prefix operator. However, this use is not encouraged.

6.10 NOT

NOT

Operator

The not operator returns true if its argument evaluates to nil, and nil if its argument is true.

```
not(logicalexpression)
```


Examples

```
if not numberp(a) then write "indeterminate" else write a;
    # indeterminate;
a := 10; }\quad=>\quadA := 1
if not numberp(a) then write "indeterminate" else write a;
    # 10
if not(numberp(a) and a < 0) then write "positive number";
    # positive number
```


Comments

Logical operators can only be used in conditional statements such as if...then...else or while...do.

6.11 NUMBERP

NUMBERP

Operator

The numberp operator returns true if its argument is a number, and nil otherwise. numberp (expression) or numberp expression expression can be any REDUCE scalar expression.

```
Examples
cc := 15.3; }\quad=>\quadCC := 15.
if numberp(cc) then write "number" else write "nonnumber";
    number
if numberp(cb) then write "number" else write "nonnumber";
        # nonnumber
```


Comments

Logical operators can only be used in conditional expressions, such as if...then...else and while...do.

6.12 ORDP

ORDP

Operator

The ordp logical operator returns true if its first argument is ordered ahead of its second argument in canonical internal ordering, or is identical to it.

```
ordp(expression1, expression2)
```

expression1 and expression2 can be any valid REDUCE scalar expression.
Examples
if $\operatorname{ordp}(\mathrm{x} * * 2+1, \mathrm{x} * * 3+3)$ then write "yes" else write "no";
\Rightarrow no
if $\operatorname{ordp}(101,100)$ then write "yes" else write "no";
$\Rightarrow \quad$ yes
if $\operatorname{ordp}(x, x)$ then write "yes" else write "no";
$\Rightarrow \quad$ yes

Comments

Logical operators can only be used in conditional expressions, such as if...then...else and while...do.

6.13 PRIMEP

PRIMEP

Operator

```
primep(expression) or primep simple_expression
```

If expression evaluates to a integer, primep returns true if expression is a prime number (i.e., a number other than 0 and plus or minus 1 which is only exactly divisible by itself or a unit) and nil otherwise. If expression does not have an integer value, a type error occurs.

Examples

if primep 3 then write "yes" else write "no";
$\Rightarrow \quad$ YES
if primep a then $1 ; \quad \Rightarrow \quad * * * * *$ A invalid as integer

6.14 TRUE

TRUE

Concept
Any value of the boolean part of a logical expression which is neither nil nor 0 is considered as true. Most builtin test and compare functions return t for true and nil for false.

Examples

if member ($3,\{1,2,3\}$) then 1 else -1 ;
$\Rightarrow \quad 1$
if floor(1.7) then 1 else -1 ;
$\Rightarrow \quad 1$
if floor(0.7) then 1 else -1;
$\Rightarrow \quad-1$

7 General Commands

7.1 BYE

BYE

Command
The bye command ends the REDUCE session, returning control to the program (e.g., the operating system) that called REDUCE. When you are at the top level, the bye command exits REDUCE. quit is a synonym for bye.

7.2 CONT

CONT

Command

The command cont returns control to an interactive file after a pause command that has been answered with n .

Examples

Suppose you are in the middle of an interactive file.

```
factorize(x**2 + 17*x + 60);
=> {{X + 12,1},{X + 5,1}}
pause; }\quad=>\quad\mathrm{ Cont? (Y or N)
n
saveas results;
factor1 := first results; }=>\mathrm{ FACTOR1 := {X + 12,1}
factor2 := second results; }=>\mathrm{ FACTOR2 := {X + 5,1}
cont;
    the file resumes
```


Comments

A pause allows you to enter your own REDUCE commands, change switch values, inquire about results, or other such activities. When you wish to resume operation of the interactive file, use cont.

7.3 DISPLAY

DISPLAY

Command

When given a numeric argument n, display prints the n most recent input statements, identified by prompt numbers. If an empty pair of parentheses is given, or if n is greater than the current number of statements, all the input statements since the beginning of the session are printed.

$$
\text { display }(n) \text { or display(}
$$

n should be a positive integer. However, if it is a real number, the truncated integer value is used, and if a non-numeric argument is used, all the input statements are printed.

Comments

The statements are displayed in upper case, with lines split at semicolons or dollar signs, as they are in editing. If long files have been input during the session, the display command is slow to format these for printing.

7.4 LOAD_PACKAGE

LOAD_PACKAGE

Command

The load_package command is used to load REDUCE packages, such as gentran that are not automatically loaded by the system.
load_package "package_name"
A package is only loaded once; subsequent calls of load_package for the same package name are ignored.

7.5 PAUSE

PAUSE

Command

The pause command, given in an interactive file, stops operation and asks if you want to continue or not.

Examples

An interactive file is running, and at some point you see the question
Cont? (Y or N)
If you type
y Return
the file continues to run until the next pause or the end.
If you type
n Return
you will get a numbered REDUCE prompt, and be allowed to enter and execute any REDUCE statements. If you later wish to continue with the file, type
cont;
and the file resumes.
To use pause in your own interactive files, type
pause;
in the file wherever you want it.

Comments

pause does not allow you to continue without typing either y or n . Its use is to slow down scrolling of interactive files, or to let you change parameters or switch settings for the calculations.
If you have stopped an interactive file at a pause, and do not wish to resume the file, type end; This does not end the REDUCE session, but stops input from the file. A second end; ends the REDUCE session. However, if you have pauses from more than one file stacked up, an end; brings you back to the top level, not the file directly above.

A pause typed from the terminal has no effect.

7.6 QUIT

QUIT

Command

The quit command ends the REDUCE session, returning control to the program (e.g., the operating system) that called REDUCE. When you are at the top level, the quit command exits REDUCE. bye is a synonym for quit.

7.7 RECLAIM

RECLAIM

Operator

Comments

REDUCE's memory is in a storage structure called a heap. As REDUCE statements execute, chunks of memory are used up. When these chunks are no longer needed, they remain idle. When the memory is almost full, the system executes a garbage collection, reclaiming space that is no longer needed, and putting all the free space at one end. Depending on the size of the image REDUCE is using, garbage collection needs to be done more or less often. A larger image means fewer but longer garbage collections. Regardless of memory size, if you ask REDUCE to do something ridiculous, like factorial (2000), it may garbage collect many times.

7.8 REDERR

REDERR

Command

The rederr command allows you to print an error message from inside a procedure or a block statement. The calculation is gracefully terminated.

```
rederr message
```

message is an error message, usually inside double quotation marks (a string).
Examples
procedure fac(n); if not ($\mathrm{fixp}(\mathrm{n})$ and $\mathrm{n}>=0$)
then rederr "Choose nonneg. integer only" else for i := 0:n-1 product i+1;
$\Rightarrow \quad \mathrm{fac}$
fac a; $\quad \Rightarrow \quad * * * * *$ Choose nonneg. integer only

```
fac 5; }\quad=>\quad12
```


Comments

The above procedure finds the factorial of its argument. If n is not a positive integer or 0 , an error message is returned.

If your procedure is executed in a file, the usual error message is printed, followed by Cont? (Y or N), just as any other error does from a file. Although the procedure is gracefully terminated, any switch settings or variable assignments you made before the error occurred are not undone. If you need to clean up such items before exiting, use a group statement, with the rederr command as its last statement.

7.9 RETRY

RETRY

Command

The retry command allows you to retry the latest statement that resulted in an error message.

```
Examples
matrix a;
det a; }\quad=>\quad***** Matrix A not se
a := mat((1,2),(3,4)); # A(1,1) := 1
        A(1,2) := 2
        A(2,1) := 3
        A(2,2) := 4
retry; }\quad=>\quad-
```


Comments

retry remembers only the most recent statement that resulted in an error message. It allows you to stop and fix something obvious, then continue on your way without retyping the original command.

7.10 SAVEAS

SAVEAS

Command

The saveas command saves the current workspace under the name of its argument.

saveas identifier

identifier can be any valid REDUCE identifier.

Examples

(The numbered prompts are shown below, unlike in most examples)
1: solve ($\mathrm{x}^{\wedge} 2-3$) ; $\Rightarrow\{x=\operatorname{sqrt}(3), \mathrm{x}=-\operatorname{sqrt}(3)\}$
2: saveas rts(0)\$
3: rts $(0) ; \quad \Rightarrow \quad\{x=\operatorname{sqrt}(3), x=-\operatorname{sqrt}(3)\}$

Comments

saveas works only for the current workspace, the last algebraic expression produced by REDUCE. This allows you to save a result that you did not assign to an identifier when you originally typed the input. For access to previous output use ws.

7.11 SHOWTIME

SHOWTIME

Command

The showtime command prints the elapsed system time since the last call of this command or since the beginning of the session, if it has not been called before.

Examples

```
showtime; }\quad=>\quad\mathrm{ Time: 1020 ms
factorize(x^4 - 8x^4 + 8x^2 - 136x - 153);
    => {X-9, X + 17,X + 1}
showtime; }\quad=>\quad\mathrm{ Time: 920 ms
```


Comments

The time printed is either the elapsed cpu time or the elapsed wall clock time, depending on your system. showtime allows you to see the system time resources REDUCE uses in its calculations. Your time readings will of course vary from this example according to the system you use.

7.12 WRITE

WRITE

Command

The write command explicitly writes its arguments to the output device (terminal or file).

```
write item{,item}*
```

item can be an expression, an assignment or a string enclosed in double quotation
marks (").
Examples

```
write a, sin x, "this is a string";
    A ASIN(X)this is a string
write a," ",sin x," this is a string";
    A A SIN(X) this is a string
if not numberp(a) then write "the symbol ",a;
    the symbol A
array m(10);
for i := 1:5 do write m(i) := 2*i;
    M M(1) := 2
    M(2) := 4
    M(3) := 6
    M(4) := 8
    M(5) := 10
m(4); }\quad=>\quad
```


Comments

The items specified by a single write statement print on a single line unless they are too long. A printed line is always ended with a carriage return, so the next item printed starts a new line.

When an assignment statement is printed, the assignment is also made. This allows you to get feedback on filling slots in an array with a for statement, as shown in
the last example above.

8 Algebraic Operators

8.1 APPEND

APPEND

Operator

The append operator constructs a new list from the elements of its two arguments (which must be lists).
append(list, list)
list must be a list, though it may be the empty list (\{\}). Any arguments beyond the first two are ignored.

Examples

```
alist := {1,2,{a,b}}; }\quad=>\quad\operatorname{ALIST := {1,2,{A,B}}
blist := {3,4,5,\operatorname{sin}(y)}; => BLIST := {3,4,5,SIN(Y)}
append(alist,blist); }\quad=>\quad{1,2,{A,B},3,4,5,SIN(Y)
append(alist,{}); }\quad=>\quad{1,2,{A,B}
append(list z,blist); }\quad=>\quad{Z,3,4,5,SIN(Y)
```


Comments

The new list consists of the elements of the second list appended to the elements of the first list. You can append new elements to the beginning or end of an existing list by putting the new element in a list (use curly braces or the operator list). This is particularly helpful in an iterative loop.

8.2 ARBINT

ARBINT
 Operator

The operator arbint is used to express arbitrary integer parts of an expression, e.g. in the result of solve when allbranch is on.

Examples
solve $(\log (\sin (x+3)), x) ; \quad \Rightarrow$
$\{\mathrm{X}=2 * \operatorname{ARBINT}(1) * \mathrm{PI}-\operatorname{ASIN}(1)-3$, $\mathrm{X}=2 * \operatorname{ARBINT}(1) * \mathrm{PI}+\operatorname{ASIN}(1)+\mathrm{PI}-3\}$

8.3 ARBCOMPLEX

ARBCOMPLEX
 Operator

The operator arbcomplex is used to express arbitrary scalar parts of an expression, e.g. in the result of solve when the solution is parametric in one of the variable.

Examples
solve $(\{x+3=y-2 z, y-3 x=0\},\{x, y, z\})$;

$$
\begin{gathered}
\Rightarrow \quad\left\{\mathrm{X}=-\frac{2 * \text { ARBCOMPLEX }(1)+3}{2}\right. \\
\mathrm{Y}=-3 * \operatorname{ARBCOMPLEX}(1)+3 \\
2 \\
Z=\text { ARBCOMPLEX }(1)\}
\end{gathered}
$$

8.4 ARGLENGTH

ARGLENGTH

Operator

The operator arglength returns the number of arguments of the top-level operator in its argument.

```
arglength(expression)
```

expression can be any valid REDUCE algebraic expression.

```
Examples
arglength(a + b + c + d); }=>
arglength(a/b/c); }\quad=>\quad
arglength(log(sin(df(r**3*x,x))));
    # 1
```


Comments

In the first example, + is an n-ary operator, so the number of terms is returned. In the second example, since / is a binary operator, the argument is actually (a/b)/c, so there are two terms at the top level. In the last example, no matter how deeply the operators are nested, there is still only one argument at the top level.

8.5 COEFF

COEFF

Operator

The coeff operator returns the coefficients of the powers of the specified variable in the given expression, in a list.

```
coeff(expression,variable)
```

expression is expected to be a polynomial expression, not a rational expression. Rational expressions are accepted when the switch ratarg is on. variable must be a kernel. The results are returned in a list.

Examples

```
coeff ((x+y)**3,x); }=>\quad{\mp@subsup{Y}{}{3},3*\mp@subsup{Y}{}{2},3*Y,1
coeff((x+2)**4 + sin(x),x); 稙 {SIN(X) + 16,32,24,8,1}
high_pow; }\quad=>\quad
low_pow; }\quad=>\quad
ab := x**9 + sin(x)*x**7 + sqrt(y);
    A AB := SQRT(Y) + SIN (X)*X }\mp@subsup{}{}{7}+\mp@subsup{X}{}{9
coeff(ab,x); }\quad=>\quad{SQRT(Y),0,0,0,0,0,0,SIN(X),0,1
```


Comments

The variables high_pow and low_pow are set to the highest and lowest powers of the variable, respectively, appearing in the expression.

The coefficients are put into a list, with the coefficient of the lowest (constant) term first. You can use the usual list access methods (first, second, third, rest, length, and part) to extract them. If a power does not appear in the expression, the corresponding element of the list is zero. Terms involving functions of the specified variable but not including powers of it (for example in the expression $\mathrm{x} * * 4+3 * \mathrm{x} * * 2+\tan (\mathrm{x}))$ are placed in the constant term.

Since the coeff command deals with the expanded form of the expression, you may get unexpected results when exp is off, or when factor or ifactor are on.

If you want only a specific coefficient rather than all of them, use the coeffn operator.

8.6 COEFFN

COEFFN

Operator

The coeffn operator takes three arguments: an expression, a kernel, and a nonnegative integer. It returns the coefficient of the kernel to that integer power, appearing in the expression.

```
coeffn(expression, kernel, integer)
```

expression must be a polynomial, unless ratarg is on which allows rational expressions. kernel must be a kernel, and integer must be a non-negative integer.

Examples

ff : $=\mathrm{x} * * 7+\sin (\mathrm{y}) * \mathrm{x} * * 5+\mathrm{y} * * 4+\mathrm{x}+7$;

$$
\Rightarrow \quad \mathrm{FF}:=\operatorname{SIN}(\mathrm{Y}) * \mathrm{X}^{5}+\mathrm{X}^{7}+\mathrm{X}+\mathrm{Y}^{4}+7
$$

$$
\operatorname{coeffn}(f f, x, 5) ; \quad \Rightarrow \quad \operatorname{SIN}(Y)
$$

$$
\operatorname{coeffn}(f f, z, 3) ; \quad \Rightarrow \quad 0
$$

$$
\operatorname{coeffn}(f f, y, 0) ; \quad \Rightarrow \quad \operatorname{SIN}(Y) * X^{b}+X^{7}+X+7
$$

$$
\mathrm{rr}:=1 / \mathrm{y} * * 2+\mathrm{y} * * 3+\sin (\mathrm{y}) ; \Rightarrow \quad \mathrm{RR}:=\frac{\operatorname{SIN}(\mathrm{Y}) * \mathrm{Y}^{2}+\mathrm{Y}^{5}+1}{\mathrm{Y}^{2}}
$$

on ratarg;

```
coeffn(rr,y,-2); }\quad=>\quad***** -2 invalid as COEFFN index
coeffn(rr,y,5)
    # - - %-
    Y
```


Comments

If the given power of the kernel does not appear in the expression, coeffn returns 0 . Negative powers are never detected, even if they appear in the expression and ratarg are on. coeffn with an integer argument of 0 returns any terms in the expression that do not contain the given kernel.

8.7 CONJ

CONJ

Operator

$$
\text { conj }(\text { expression) or conj simple_expression }
$$

This operator returns the complex conjugate of an expression, if that argument has an numerical value. A non-numerical argument is returned as an expression in the operators repart and impart.

```
Examples
conj(1+i); 位 1-I
conj(a+i*b); =
    REPART(A) - REPART(B)*I - IMPART(A)*I - IMPART(B)
```


8.8 CONTINUED_FRACTION

CONTINUED_FRACTION

Operator

continued_fraction(num) or continued_fraction(num, size)
This operator approximates the real number num (rational number, rounded number) into a continued fraction. The result is a list of two elements: the first one is the rational value of the approximation, the second one is the list of terms of the continued fraction which represents the same value according to the definition t0 $+1 /(\mathrm{t} 1+1 /(\mathrm{t} 2+\ldots))$. Precision: the second optional parameter size is an upper bound for the absolute value of the result denominator. If omitted, the approximation is performed up to the current system precision.

Examples

```
continued_fraction pi; }\quad
    {-1146408
        364913 ,{3,7,15,1,292,1,1,1,2,1}}
continued_fraction(pi,100); }=>\quad{-\frac{22}{7},{3,7}
```


8.9 DECOMPOSE

DECOMPOSE

Operator

The decompose operator takes a multivariate polynomial as argument, and returns an expression and a list of equations from which the original polynomial can be found by composition.
decompose(expression) or decompose simple_expression

Examples

```
decompose(x^8-88*x^7+2924*x^6-43912*x^5+263431*x^4-
        218900*x^3+65690*x^2-7700*x+234)
            #
        U')
```

decompose $\left(u^{\wedge} 2+v^{\wedge} 2+2 u * v+1\right) \Rightarrow W^{2}+1, W=U+V$

Comments

Unlike factorization, this decomposition is not unique. Further details can be found in V.S. Alagar, M.Tanh, Fast Polynomial Decomposition, Proc. EUROCAL 1985, pp 150-153 (Springer) and J. von zur Gathen, Functional Decomposition of Polynomials: the Tame Case, J. Symbolic Computation (1990) 9, 281-299.

8.10 DEG

DEG

Operator

The operator deg returns the highest degree of its variable argument found in its expression argument.
deg(expression, kernel)
expression is expected to be a polynomial expression, not a rational expression. Rational expressions are accepted when the switch ratarg is on. variable must be a kernel. The results are returned in a list.

```
Examples
deg((x+y)**5,x); 列
deg((a+b)*(c+2*d)**2,d); 列 2
deg(x**2 + cos(y),sin(x));
deg((x**2 + sin(x))**5, sin(x));
```

 \(\Rightarrow \quad 5\)

8.11 DEN

DEN

Operator

The den operator returns the denominator of its argument.

```
den(expression)
```

expression is ordinarily a rational expression, but may be any valid scalar REDUCE expression.
Examples

```
\(\mathrm{a}:=\mathrm{x} * * 3+3 * \mathrm{x} * * 2+12 * \mathrm{x} ; \Rightarrow \mathrm{A}:=\mathrm{X} *\left(\mathrm{X}^{2}+3 * \mathrm{X}+12\right)\)
\(\mathrm{b}:=4 * \mathrm{x} * \mathrm{y}+\mathrm{x} * \sin (\mathrm{x}) ; \quad \Rightarrow \quad \mathrm{B}:=\mathrm{X} *(\operatorname{SIN}(\mathrm{X})+4 * \mathrm{Y})\)
\(\operatorname{den}(a / b) ; \quad \Rightarrow \quad \operatorname{SIN}(X)+4 * Y\)
\(\operatorname{den}(\mathrm{aa} / 4+\mathrm{bb} / 5) ; \quad \Rightarrow \quad 20\)
den \((100 / 6) ; \quad \Rightarrow \quad 3\)
\(\operatorname{den}(\sin (x)) ; \quad \Rightarrow \quad 1\)
```


Comments

den returns the denominator of the expression after it has been simplified by REDUCE. As seen in the examples, this includes putting sums of rational expressions over a common denominator, and reducing common factors where possible. If the expression does not have any other denominator, 1 is returned.
Switch settings, such as mcd or rational, have an effect on the denominator of an expression.

8.12 DF

DF

Operator

The df operator finds partial derivatives with respect to one or more variables.

$$
\text { df(expression }, \operatorname{var\& optional}(, \text { number })\{, \operatorname{var\& option}(, \text { number })\} *)
$$

expression can be any valid REDUCE algebraic expression. var must be a kernel, and is the differentiation variable. number must be a non-negative integer.
Examples

```
df (x**2,x); }\quad=>\quad2*
df(x**2*y + sin}(\textrm{y}),\textrm{y});\quad=>\quad\operatorname{COS}(Y)+\mp@subsup{X}{}{2
df((x+y)**10,z); }\quad=>\quad
df(1/x**2,x,2); }\quad=>\quad\begin{array}{c}{-}\\{4}
df(x**4*y + sin(y),y,x,3); 盾 24*X
for all x let df(tan(x),x) = sec(x)**2;
df (tan (3*x),x); }\quad=>\quad3*\operatorname{SEC}(3*X)\mp@subsup{)}{}{2
```


Comments

An error message results if a non-kernel is entered as a differentiation operator. If the optional number is omitted, it is assumed to be 1 . See the declaration depend to establish dependencies for implicit differentiation.

You can define your own differentiation rules, expanding REDUCE's capabilities, using the let command as shown in the last example above. Note that once you add your own rule for differentiating a function, it supersedes REDUCE's normal handling of that function for the duration of the REDUCE session. If you clear the rule (clearrules), you don't get back to the previous rule.

8.13 EXPAND_CASES

EXPAND_CASES

Operator
When a root_of form in a result of solve has been converted to a one_of form, expand_cases can be used to convert this into form corresponding to the normal explicit results of solve. See root_of.

8.14 EXPREAD

EXPREAD

Operator

expread()
expread reads one well-formed expression from the current input buffer and returns its value.

Examples
expread () ; a+b; $\Rightarrow A+B$

8.15 FACTORIZE

FACTORIZE

Operator

The factorize operator factors a given expression into a list of \{factor,power\} pairs.

```
factorize(expression)
```

expression should be a polynomial, otherwise an error will result.
Examples
fff := factorize(x^3-y^3);

$$
\Rightarrow \quad\left\{\left\{X^{2}+X * Y+Y^{2}, 1\right\},\{X-Y, 1\}\right\}
$$

fac1 $:=$ first fff; $\quad \Rightarrow \quad$ FAC1 $:=\left\{\left\{X^{2}+X * Y+Y^{2}, 1\right\}\right.$
factorize(x^15-1); $\quad \Rightarrow$
$\left\{\left\{x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x+1,1\right\}\right.$,
$\left\{x^{4}+x^{3}+x^{2}+x+1,1\right\}$,
$\left\{x^{2}+x+1,1\right\}$, \{X-1,1\}\}
lastone := part(ws,length ws);
\Rightarrow LASTONE := $\{\mathrm{X}-1,1\}$
setmod 2; $\quad \Rightarrow \quad 1$
on modular;

$$
\begin{aligned}
\text { factorize }\left(x^{\wedge} 15-1\right) ; & \\
& \left\{X^{4}+X^{3}+X^{2}+X+1,1\right\} \\
& \left\{X^{4}+X^{3}+1,1\right\} \\
& \left\{X^{4}+X+1,1\right\} \\
& \\
& \left\{X^{2}+X+1,1\right\} \\
& \{X+1,1\}\}
\end{aligned}
$$

Comments

The factorize command returns the factor, power pairs as a list. You can therefore use the usual list access methods (first, second, third, rest, length and part) to extract these pairs.

If the expression given to factorize is an integer, it will be factored into its prime components. To factor any integer factor of a non-numerical expression, the switch if actor should be turned on. Its default is off. ifactor has effect only when factoring is explicitly done by factorize, not when factoring is automatically done with the factor switch. If full factorization is not needed the switch limitedfactors allows you to reduce the computing time of calls to factorize.

Factoring can be done in a modular domain by calling factorize when modular is on. You can set the modulus with the setmod command. The last example above shows factoring modulo 2 .
For general comments on factoring, see comments under the switch factor.

8.16 HYPOT

HYPOT

Operator

hypot(expression, expression)
If rounded is on, and the two arguments evaluate to numbers, this operator returns the square root of the sums of the squares of the arguments in a manner that avoids intermediate overflow. In other cases, an expression in the original operator is returned.
Examples

```
hypot(3,4); = HYPOT(3,4)
```

on rounded;
ws; $\quad \Rightarrow \quad 5.0$
$\operatorname{hypot}(\mathrm{a}, \mathrm{b}) ; \quad \Rightarrow \quad \operatorname{HYPOT}(\mathrm{A}, \mathrm{B})$

8.17 IMPART

IMPART

Operator

impart(expression) or impart simple_expression
This operator returns the imaginary part of an expression, if that argument has an numerical value. A non-numerical argument is returned as an expression in the operators repart and impart.

Examples

impart(1+i); $\quad \Rightarrow \quad 1$
impart(a+i*b); $\Rightarrow \quad$ REPART(B) $+\operatorname{IMPART(A)~}$

8.18 INT

INT

Operator

The int operator performs analytic integration on a variety of functions.
int(expression, kernel)
expression can be any scalar expression. involving polynomials, log functions, exponential functions, or tangent or arctangent expressions. int attempts expressions involving error functions, dilogarithms and other trigonometric expressions. Integrals involving algebraic extensions (such as square roots) may not succeed. kernel must be a REDUCE kernel.

Examples

$$
\operatorname{int}(x * * 3+3, x) ; \quad \Rightarrow \quad X *\left(X^{3}+12\right)
$$

$$
\operatorname{int}(\sin (x) * \exp (2 * x), x) ; \Rightarrow \quad-\frac{E^{2 * X} *(\operatorname{COS}(X)-2 * \operatorname{SIN}(X))}{5}
$$

$$
\operatorname{int}\left(1 /\left(x^{\wedge} 2-2\right), x\right) ; \quad \Rightarrow
$$

$$
\operatorname{SQRT}(2) *(\operatorname{LOG}(-\operatorname{SQRT}(2)+X)-\operatorname{LOG}(\operatorname{SQRT}(2)+X))
$$

$$
4
$$

$$
\operatorname{int}(\sin (x) /(4+\cos (x) * * 2), x) ;
$$

$$
\operatorname{int}\left(1 / \operatorname{sqrt}\left(x^{\wedge} 2-x\right), x\right) ; \quad \operatorname{INT}(-\operatorname{SQRT}(X) * \operatorname{SQRT}(X-1), X)
$$

Comments

Note that REDUCE couldn't handle the last integral with its default integrator, since the integrand involves a square root. However, the integral can be found using
the algint package. Alternatively, you could add a rule using the let statement to evaluate this integral.

The arbitrary constant of integration is not shown. Definite integrals can be found by evaluating the result at the limits of integration (use rounded) and subtracting the lower from the higher. Evaluation can be easily done by the sub operator.

When int cannot find an integral it returns an expression involving formal int expressions unless the switch failhard has been set. If not all of the expression can be integrated, the switch nolnr controls whether a partially integrated result should be returned or not.

8.19 INTERPOL

INTERPOL

Operator

interpol generates an interpolation polynomial.
interpol(values, variable, points)
values and points are lists of equal length and variable is an algebraic expression (preferably a kernel). The interpolation polynomial is generated in the given variable of degree length(values)-1. The unique polynomial f is defined by the property that for corresponding elements v of values and p of points the relation $f(p)=v$ holds.
Examples
f := for $i:=1: 4$ collect (i**3-1);

$$
\Rightarrow \quad F:=0,7,26,63
$$

$$
p:=\{1,2,3,4\} ; \quad \Rightarrow \quad P:=1,2,3,4
$$

$$
\text { interpol }(f, x, p) ; \quad \Rightarrow \quad x^{0}-1
$$

Comments

The Aitken-Neville interpolation algorithm is used which guarantees a stable result even with rounded numbers and an ill-conditioned problem.

8.20 LCOF

LCOF

Operator

The lcof operator returns the leading coefficient of a given expression with respect to a given variable.
lcof(expression, kernel)
expression is ordinarily a polynomial. If ratarg is on, a rational expression may also be used, otherwise an error results. kernel must be a kernel.

Examples

$\operatorname{lcof}((\mathrm{x}+2 * \mathrm{y}) * * 5, \mathrm{y}) ; \quad \Rightarrow \quad 32$
$\operatorname{lcof}((\mathrm{x}+\mathrm{y} * \sin (\mathrm{x})) * * 2+\cos (\mathrm{x}) * \sin (\mathrm{x}) * * 2, \sin (\mathrm{x})) ;$
$\Rightarrow \quad \operatorname{COS}(X)^{2}+Y$
$1 \operatorname{cof}(\mathrm{x} * * 2+3 * \mathrm{x}+17, \mathrm{y}) ; \Rightarrow \mathrm{X}^{2}+3 * \mathrm{X}+17$

Comments

If the kernel does not appear in the expression, lcof returns the expression.

8.21 LENGTH

LENGTH

Operator

The length operator returns the number of items in a list, the number of terms in an expression, or the dimensions of an array or matrix.

```
length(expr) or length expr
```

expr can be a list structure, an array, a matrix, or a scalar expression.

Examples

```
alist := {a,b,{ww,xx,yy,zz}};
    A ALIST := {A,B,{WW,XX,YY,ZZ}}
length alist; }\quad=>\quad
length third alist; }\quad=>\quad
dlist := {d}; }\quad=>\quad\mathrm{ DLIST := {D}
length rest dlist; }\quad=>\quad
matrix mmm(4,5);
length mmm; }\quad=>\quad{4,5
array aaa(5,3,2);
length aaa; }\quad=>\quad{6,4,3
eex := (x+3)**2/(x-y); => EEX := -\frac{X}{2}+\frac{+6*X+9}{X-Y}
length eex; }\quad=>\quad
```


Comments

An item in a list that is itself a list only counts as one item. An error message will be printed if length is called on a matrix which has not had its dimensions set. The length of an array includes the zeroth element of each dimension, showing the full number of elements allocated. (Declaring an array A with n elements allocates $A(0), A(1), \ldots, A(n)$.$) The length of an expression is the total number of additive$
terms appearing in the numerator and denominator of the expression. Note that subtraction of a term is represented internally as addition of a negative term.

8.22 LHS

LHS

Operator

The lhs operator returns the left-hand side of an equation, such as those returned in a list by solve.
lhs(equation) or lhs equation
equation must be an equation of the form
left-hand side = right-hand side.
Examples

```
polly := (x+3)*(\mp@subsup{x}{}{\wedge}4+2x+1); => POLLY := X 
pollyroots := solve(polly,x);
                    =>
    POLLYROOTS :={X=ROOT_OF(X_
    X=-1,
    X=-3}
variable := lhs first pollyroots;
                                    # VARIABLE := X
```


8.23 LIMIT

LIMIT

Operator

LIMITS is a fast limit package for REDUCE for functions which are continuous except for computable poles and singularities, based on some earlier work by Ian Cohen and John P. Fitch. The Truncated Power Series package is used for noncritical points, at which the value of the function is the constant term in the expansion around that point. l'Hopital's rule is used in critical cases, with preprocessing of 1-1 forms and reformatting of product forms in order to apply l'Hopital's rule. A limited amount of bounded arithmetic is also employed where applicable.

$$
\begin{aligned}
& \text { limit(expr, var, limpoint) or } \\
& \text { limit!+(expr, var, limpoint) or } \\
& \text { limit!-(expr, var, limpoint })
\end{aligned}
$$

where expr is an expression depending of the variable var (a kernel) and limpoint is the limit point. If the limit depends upon the direction of approach to the limpoint, the operators limit!+ and limit!- may be used.

```
Examples
limit(x*\operatorname{cot}(x),x,0); }\quad=>\quad
limit((2x+5)/(3x-2),x,infinity);
    # -- 2-
```


8.24 LPOWER

LPOWER

Operator

The lpower operator returns the leading power of an expression with respect to a kernel. 1 is returned if the expression does not depend on the kernel.
lpower(expression, kernel)
expression is ordinarily a polynomial. If ratarg is on, a rational expression may also be used, otherwise an error results. kernel must be a kernel.

Examples

```
lpower \(((\mathrm{x}+2 * \mathrm{y}) * * 6, \mathrm{y}) ; \quad \Rightarrow \quad \mathrm{Y}^{6}\)
lpower \(((x+\cos (x)) * * 8+d f(x * * 2, x), \cos (x))\);
    \(\Rightarrow \quad \operatorname{COS}(X)^{8}\)
lpower \((\mathrm{x} * * 3+3 * \mathrm{x}, \mathrm{y}) ; \quad \Rightarrow \quad 1\)
```


8.25 LTERM

LTERM

Operator

The lterm operator returns the leading term of an expression with respect to a kernel. The expression is returned if it does not depend on the kernel.
lterm(expression, kernel)
expression is ordinarily a polynomial. If ratarg is on, a rational expression may also be used, otherwise an error results. kernel must be a kernel.

Examples

```
lterm((x+2*y)**6,y); 列 64*Y
lterm((x + cos(x))**8 + df(x**2,x),\operatorname{cos(x));}
    => COS(X)
lterm(x**3 + 3*x,y); }=>\quad\textrm{X}+3\textrm{X
```


8.26 MAINVAR

MAINVAR

Operator

The mainvar operator returns the main variable (in the system's internal representation) of its argument.

```
mainvar(expression)
```

expression is usually a polynomial, but may be any valid REDUCE scalar expression. In the case of a rational function, the main variable of the numerator is returned. The main variable returned is a kernel.

Examples

```
test := (a + b + c)**2; =>
```



```
mainvar(test); }\quad=>\quad
korder c,b,a;
mainvar(test); }\quad=>\quad
mainvar(2*\operatorname{cos}(x)**2); }\quad=>\quad\operatorname{COS}(\textrm{X}
mainvar(17); }\quad=>\quad
```


Comments

The main variable is the first variable in the canonical ordering of kernels. Generally, alphabetically ordered functions come first, then alphabetically ordered identifiers (variables). Numbers come last, and as far as mainvar is concerned belong in the family 0 . The canonical ordering can be changed by the declaration korder, as shown above.

8.27 MAP

MAP

Operator

The map operator applies a uniform evaluation pattern to all members of a composite structure: a matrix, a list or the arguments of an operator expression. The evaluation pattern can be a unary procedure, an operator, or an algebraic expression with one free variable.

$$
\operatorname{map}(f u n c t i o n, \text { object })
$$

object is a list, a matrix or an operator expression.
function is the name of an operator for a single argument: the operator is evaluated once with each element of object as its single argument,
or an algebraic expression with exactly one free variable, that is a variable preceded by the tilde symbol: the expression is evaluated for each element of object where the element is substituted for the free variable,
or a replacement rule of the form

```
var =i rep
```

where var is a variable (a kernel without subscript) and rep is an expression which contains var. Here rep is evaluated for each element of object where the element is substituted for var. var may be optionally preceded by a tilde.
The rule form for function is needed when more than one free variable occurs.

Examples

$\operatorname{map}(a b s,\{1,-2, a,-a\}) ; \quad \Rightarrow \quad 1,2, a b s(a), a b s(a)$
$\operatorname{map}\left(\operatorname{int}(\sim \mathrm{w}, \mathrm{x}), \operatorname{mat}\left(\left(\mathrm{x}^{\wedge} 2, \mathrm{x}^{\wedge} 5\right),\left(\mathrm{x}^{\wedge} 4, \mathrm{x}^{\wedge} 5\right)\right)\right)$;

```
    #}[\begin{array}{lll}{3}&{6}\end{array}
        [ x 
        [---- ----]
        [ 3 % 6 ]
        [ ]
        [ 5 6 ]
        [ x 
        [---- ----]
        [ 5 等 % ]
map(~w*6, x^2/3 = y^3/2 -1);
    # 2*x 2}=3*(\mp@subsup{y}{}{3}-2
```


Comments

You can use map in nested expressions. It is not allowed to apply map for a noncomposed object, e.g. an identifier or a number.

8.28 MKID

MKID

Command

The mkid command constructs an identifier, given a stem and an identifier or an integer.
mkid(stem, leaf)
stem can be any valid REDUCE identifier that does not include escaped special characters. leaf may be an integer, including one given by a local variable in a for loop, or any other legal group of characters.

Examples

```
mkid(x,3); }\quad=>\quadX
factorize(x^15 - 1); }\quad=>\quad{X - 1,
    x
    x
        X }\mp@subsup{}{}{8}-\mp@subsup{X}{}{7}+\mp@subsup{X}{}{5}-\mp@subsup{X}{}{4}+\mp@subsup{X}{}{3}-X + 1
for i := 1:length ws do write set(mkid(f,i),part(ws,i));
            => }\mp@subsup{X}{}{8}-\mp@subsup{X}{}{7}+\mp@subsup{X}{}{5}-\mp@subsup{X}{}{4}+\mp@subsup{X}{}{3}-X+
            x
            2
            X + X + 1
            X - 1
```


Comments

You can use mkid to construct identifiers from inside procedures. This allows you to handle an unknown number of factors, or deal with variable amounts of data. It is particularly helpful to attach identifiers to the answers returned by factorize and solve.

8.29 NPRIMITIVE

NPRIMITIVE

Operator

nprimitive(expression) or nprimitive simple_expression
This operator returns the numerically-primitive part of any scalar expression. In other words, any overall integer factors in the expression are removed.

Examples

nprimitive $\left.((2 x+2 y))^{\wedge}\right) ; \Rightarrow X^{2}+2 * X * Y+Y^{2}$
nprimitive ($3 * a * b * c$) ; $\quad \Rightarrow \quad 3 * A * B * C$

8.30 NUM

NUM

Operator

The num operator returns the numerator of its argument.

```
num(expression) or num simple_expression
```

expression can be any valid REDUCE scalar expression.

```
Examples
num(100/6); }\quad=>\quad5
num(a/5 + b/6); }=>\quad6*\textrm{A}+5*\textrm{B
num(sin(x)); }\quad|\quad\operatorname{SIN}(X
```


Comments

num returns the numerator of the expression after it has been simplified by REDUCE. As seen in the examples, this includes putting sums of rational expressions over a common denominator, and reducing common factors where possible. If the expression is not a rational expression, it is returned unchanged.

8.31 ODESOLVE

ODESOLVE

Operator

The odesolve package is a solver for ordinary differential equations. At the present time it has still limited capabilities:

1. it can handle only a single scalar equation presented as an algebraic expression or equation, and
2. it can solve only first-order equations of simple types, linear equations with constant coefficients and Euler equations.

These solvable types are exactly those for which Lie symmetry techniques give no useful information.

```
odesolve(expr,var1,var2)
```

expr is a single scalar expression such that expr $=0$ is the ordinary differential equation (ODE for short) to be solved, or is an equivalent equation.
var1 is the name of the dependent variable, var2 is the name of the independent variable.

A differential in expr is expressed using the df operator. Note that in most cases you must declare explicitly var1 to depend of var2 using a depend declaration otherwise the derivative might be evaluated to zero on input to odesolve.

The returned value is a list containing the equation giving the general solution of the ODE (for simultaneous equations this will be a list of equations eventually). It will contain occurrences of the operator arbconst for the arbitrary constants in the general solution. The arguments of arbconst should be new. A counter ! ! arbconst is used to arrange this.

Examples

depend y, x;
\% A first-order linear equation, with an initial condition
ode: $=d f(y, x)+y * \sin x / \cos x-1 / \cos x$
odesolve(ode $, \mathrm{y}, \mathrm{x}) ; \quad \Rightarrow \quad\{y=\operatorname{arbconst}(1) * \cos (\mathrm{x})+\sin (\mathrm{x})\}$

8.32 ONE_OF

ONE_OF

Type
The operator one_of is used to represent an indefinite choice of one element from a finite set of objects.

Examples

$\mathrm{x}=$ one_of $\{1,2,5\}$
this equation encodes that x can take one of the values 1,2 or 5
REDUCE generates a one_of form in cases when an implicit root_of expression could be converted to an explicit solution set. A one_of form can be converted to a solve solution using expand_cases. See root_of.

8.33 PART

PART

Operator

The operator part permits the extraction of various parts or operators of expressions and lists.

```
part(expression,integer {, integer }*)
```

expression can be any valid REDUCE expression or a list, integer may be an expression that evaluates to a positive or negative integer or 0 . A positive integer n picks up the nth term, counting from the first term toward the end. A negative integer n picks up the nth term, counting from the back toward the front. The integer 0 picks up the operator (which is LIST when the expression is a ??).

```
Examples
\(\operatorname{part}((\mathrm{x}+\mathrm{y}) * * 5,4) ; \quad \Rightarrow \quad 10 * \mathrm{X}^{2} * \mathrm{Y}^{3}\)
\(\operatorname{part}((\mathrm{x}+\mathrm{y}) * * 5,4,2) ; \quad \Rightarrow \quad \mathrm{X}^{2}\)
\(\operatorname{part}((\mathrm{x}+\mathrm{y}) * * 5,4,2,1) ; \quad \Rightarrow \quad \mathrm{X}\)
\(\operatorname{part}((\mathrm{x}+\mathrm{y}) * * 5,0) ; \quad \Rightarrow \quad\) PLUS
\(\operatorname{part}((\mathrm{x}+\mathrm{y}) * * 5,-5) ; \quad \Rightarrow \quad 5 * \mathrm{X} * \mathrm{Y}^{4}\)
\(\operatorname{part}((\mathrm{x}+\mathrm{y}) * * 5,4):=\sin (\mathrm{x})\);
    \(\Rightarrow\)
    \(X^{5}+5 * X^{4} * Y+10 * X^{3} * Y^{2}+\operatorname{SIN}(X)+5 * X * Y^{4}+Y^{5}\)
alist \(:=\{\mathrm{x}, \mathrm{y},\{\mathrm{aa}, \mathrm{bb}, \mathrm{cc}\}, \mathrm{x} * * 2 * \operatorname{sqrt}(\mathrm{y})\}\);
    \(\Rightarrow\)
    ALIST \(:=\left\{\mathrm{X}, \mathrm{Y},\{\mathrm{AA}, \mathrm{BB}, \mathrm{CC}\}, \operatorname{SQRT}(\mathrm{Y}) * \mathrm{X}^{2}\right\}\)
part (alist, 3,2 ) ; \(\quad \Rightarrow \quad B B\)
part(alist,4,0); \(\quad \Rightarrow \quad\) TIMES
```


Comments

Additional integer arguments after the first one examine the terms recursively, as shown above. In the third line, the fourth term is picked from the original polynomial, $10 x^{2} y^{3}$, then the second term from that, x^{2}, and finally the first component, x. If an integer's absolute value is too large for the appropriate expression, a message is given.
part works on the form of the expression as printed, or as it would have been printed at that point of the calculation, bearing in mind the current switch settings. It is important to realize that the switch settings change the operation of part. pri must be on when part is used.
When part is used on a polynomial expression that has minus signs, the + is always returned as the top-level operator. The minus is found as a unary operator attached to the negative term.
part can also be used to change the relevant part of the expression or list as shown in the sixth example line. The part operator returns the changed expression, though original expression is not changed. You can also use part to change the operator.

8.34 PF

PF

Operator

pf(expression, variable)
pf transforms expression into a list of partial fraction s with respect to the main variable, variable. pf does a complete partial fraction decomposition, and as the algorithms used are fairly unsophisticated (factorization and the extended Euclidean algorithm), the code may be unacceptably slow in complicated cases.

Examples

Comments

If you want the denominators in factored form, turn exp off, as shown in the second example above. As shown in the final example, the for each construct can be used to recombine the terms. Alternatively, one can use the operations on lists to extract any desired term.

8.35 PROD

PROD

Operator

The operator prod returns the indefinite or definite product of a given expression. $\operatorname{prod}(\operatorname{expr}, k[, \operatorname{lolim}[$, uplim $]])$
where expr is the expression to be multiplied, k is the control variable (a kernel), and lolim and uplim uplim are the optional lower and upper limits. If uplim is not supplied the upper limit is taken as k. The Gosper algorithm is used. If there is no closed form solution, the operator returns the input unchanged.

```
Examples
prod(k/(k-2),k); }=>\textrm{k}*(-k+1
```


8.36 REDUCT

REDUCT

Operator

The reduct operator returns the remainder of its expression after the leading term with respect to the kernel in the second argument is removed.
reduct(expression, kernel)
expression is ordinarily a polynomial. If ratarg is on, a rational expression may also be used, otherwise an error results. kernel must be a kernel.

Examples

```
reduct ((x+y)**3,x); }\quad=>\quad\textrm{Y}*(3*\mp@subsup{\textrm{X}}{}{2}+3*\textrm{X}*\textrm{Y}+\mp@subsup{\textrm{Y}}{}{2}
reduct(x + sin(x)**3,\operatorname{sin}(\textrm{x}))}\mathrm{ ;
    # X
reduct(x + sin(x)**3,y); }=>\quad
```


Comments

If the expression does not contain the kernel, reduct returns 0 .

8.37 REPART

REPART

Operator

repart(expression) or repart simple_expression
This operator returns the real part of an expression, if that argument has an numerical value. A non-numerical argument is returned as an expression in the operators repart and impart.

```
Examples
repart(1+i); = 1
repart(a+i*b); = R REPART(A) - IMPART(B)
```


8.38 RESULTANT

RESULTANT

Operator

The resultant operator computes the resultant of two polynomials with respect to a given variable. If the resultant is 0 , the polynomials have a root in common.

```
resultant(expression, expression, kernel)
```

expression must be a polynomial containing kernel ; kernel must be a kernel.

Examples

resultant $(x * * 2+2 * x+1, x+1, x)$;
$\Rightarrow \quad 0$
resultant $(x * * 2+2 * x+1, x-3, x)$;
$\Rightarrow \quad 16$
resultant $(z * * 3+z * * 2+5 * z+5$,
z**4-6*z**3 + 16*z**2-30*z + 55,
z) ;
$\Rightarrow \quad 0$
resultant $(\mathrm{x} * * 3 * \mathrm{y}+4 * \mathrm{x} * \mathrm{y}+10, \mathrm{y} * * 2+6 * \mathrm{y}+4, \mathrm{y})$;
\Rightarrow
$Y^{6}+18 * Y^{5}+120 * Y^{4}+360 * Y^{3}+480 * Y^{2}+288 * Y+64$

Comments

The resultant is the determinant of the Sylvester matrix, formed from the coefficients of the two polynomials in the following way:
Given two polynomials:

$$
a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}
$$

and

$$
b_{0} x^{n}+b_{1} x^{n-1}+\cdots+b_{n}
$$

form the $(m+n) x(m+n-1)$ Sylvester matrix by the following means:

$$
\left(\begin{array}{cccccccc}
0 & \ldots & 0 & 0 & a_{0} & a_{1} & \ldots & a_{n} \\
0 & \ldots & 0 & a_{0} & a_{1} & \ldots & a_{n} & 0 \\
\vdots & & & \vdots & & & \vdots & \\
a_{0} & a_{1} & \ldots & a_{n} & 0 & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & b_{0} & b_{1} & \ldots & b_{n} \\
\vdots & & & \vdots & & & \vdots & \\
b_{0} & b_{1} & \ldots & b_{n} & 0 & 0 & \ldots & 0
\end{array}\right)
$$

If the determinant of this matrix is 0 , the two polynomials have a common root. Finding the resultant of large expressions is time-consuming, due to the time needed to find a large determinant.

The sign conventions resultant uses are those given in the article, "Computing in Algebraic Extensions," by R. Loos, appearing in Computer Algebra-Symbolic and Algebraic Computation, 2nd ed., edited by B. Buchberger, G.E. Collins and R. Loos, and published by Springer-Verlag, 1983. These are:

$$
\begin{aligned}
\operatorname{resultant}(p(x), q(x), x) & =(-1)^{\operatorname{deg} p(x) * \operatorname{deg} q(x)} \cdot \operatorname{resultant}(q(x), p(x), x) \\
\operatorname{resultant}(a, p(x), x) & =a^{\operatorname{deg} p(x)} \\
\operatorname{resultant}(a, b, x) & =1
\end{aligned}
$$

where $p(x)$ and $q(x)$ are polynomials which have x as a variable, and a and b are free of x.

Error messages are given if resultant is given a non-polynomial expression, or a non-kernel variable.

8.39 RHS

RHS

Operator

The rhs operator returns the right-hand side of an equation, such as those returned in a list by solve.
rhs(equation) or rhs equation
equation must be an equation of the form left-hand side $=$ right-hand side.
Examples

```
roots := solve(x**2 + 6*x*y + 5x + 3y**2,x);
                        #
```



```
root1 := rhs first roots; }
```



```
root2 := rhs second roots; }
    ROOT2 := SQRT(24*Y + + %0*Y + 25)-6*Y - 5
Comments
```

An error message is given if r hs is applied to something other than an equation.

8.40 ROOT_OF

ROOT_OF

Operator

When the operator solve is unable to find an explicit solution or if that solution would be too complicated, the result is presented as formal root expression using the internal operator root_of and a new local variable. An expression with a top level root_of is implicitly a list with an unknown number of elements since we can't always know how many solutions an equation has. If a substitution is made into such an expression, closed form solutions can emerge. If this occurs, the root_of construct is replaced by an operator one_of. At this point it is of course possible to transform the result if the original solve operator expression into a standard solve solution. To effect this, the operator expand_cases can be used.
Examples

```
solve(a*x^7- x^2+1,x); => {x=root_of(a*\mp@subsup{x}{-}{\prime}-\mp@subsup{x}{-}{\prime}
sub(a=0,ws); }\quad=>\quad{x=one_of(1,-1)
expand_cases ws; }\quad=>\quad\textrm{x}=1,\textrm{x}=-
```

The components of root_of and one_of expressions can be processed as usual with operators arglength and part. A higher power of a root_of expression with a polynomial as first argument is simplified by using the polynomial as a side relation.

8.41 SELECT

SELECT
 Operator

The select operator extracts from a list or from the arguments of an n-ary operator elements corresponding to a boolean predicate. The predicate pattern can be a unary procedure, an operator or an algebraic expression with one free variable.

```
select(function,object)
```

object is a list.
function is the name of an operator for a single argument: the operator is evaluated once with each element of object as its single argument,
or an algebraic expression with exactly one free variable, that is a variable preceded by the tilde symbol: the expression is evaluated for each element of object where the element is substituted for the free variable,
or a replacement rule of the form

```
var =i rep
```

where var is a variable (a kernel without subscript) and rep is an expression which contains var. Here rep is evaluated for each element of object where the element is substituted for var. var may be optionally preceded by a tilde.

The rule form for function is needed when more than one free variable occurs. The evaluation result of function is interpreted as boolean value corresponding to the conventions of REDUCE. The result value is built with the leading operator of the input expression.

Examples

```
select( \({ }^{\sim}\) w>0 , \{1,-1, \(\left.2,-3,3\right\}\) )
    \(\Rightarrow \quad\{1,2,3\}\)
\(\mathrm{q}:=(\mathrm{part}((\mathrm{x}+\mathrm{y}) \wedge 5,0):=\) list)
select (evenp \(\left.\operatorname{deg}(\sim \mathrm{w}, \mathrm{y}), \mathrm{q}) ; \Rightarrow \quad \mathrm{xx}^{5}, 10 * \mathrm{x}^{3} * \mathrm{y}^{2}, 5 * \mathrm{x} * \mathrm{y}^{4}\right\}\)
select(evenp \(\left.\operatorname{deg}(\sim w, x), 2 x^{\wedge} 2+3 x^{\wedge} 3+4 x^{\wedge} 4\right)\);
```

$$
\Rightarrow \quad 2 x^{2}+4 x^{4}
$$

8.42 SHOWRULES

SHOWRULES

Operator

showrules(expression) or showrules simple_expression
showrules returns in rule-list form any operator rules associated with its argument.
Examples
showrules log; $\Rightarrow \quad\{\operatorname{LOG}(E)=>1$,

$$
\operatorname{LOG}(1)=>0,
$$

$$
\operatorname{LOG}\left(E^{X}\right) \Rightarrow X,
$$

$$
\operatorname{DF}(\operatorname{LOG}(X), X)=>-1
$$

Such rules can then be manipulated further as with any list. For example rhs first ws; has the value 1 .

Comments

An operator may have properties that cannot be displayed in such a form, such as the fact it is an ?? function, or has a definition defined as a procedure.

8.43 SOLVE

SOLVE

Operator

The solve operator solves a single algebraic equation or a system of simultaneous equations.

```
solve(expression&option(, kernel)) or
solve({expression&option(, expression)*}&option(, {kernel)*}})
```

If the number of equations equals the number of distinct kernels, the optional kernel argument(s) may be omitted. expression is either a scalar expression or an equation. When more than one expression is given, the list of expressions is surrounded by curly braces. The optional list of kernels follows, also in curly braces.

Examples

```
sss := solve(x^2 + 7); # Unknown: X
                                SSS := {X= - SQRT(7)*I,
                        X=SQRT (7)*I}
rhs first sss; }\quad=>\quad-\operatorname{SQRT}(7)*
solve(sin (x^2*y),y); =
    {Y=-2*ARBINT (1)*PI
        X
        Y=- PI*(2*ARBINT(1)+1)
off allbranch;
solve(\operatorname{sin}(\textrm{x}**2*y),y); 列 {Y=0}
solve({3x + 5y = -4, 2*x + y = -10},{x,y});
    => {{X= - --22-- ,Y=--\frac{46}{7}}}
solve({x + a*y + z,2x + 5},{x,y});
    => {{X= - - - - - ,Y= - - 2*Z-- - - 2*A
```

```
ab := (x+2)^2*(x^6 + 17x + 1);
                    =>
    AB := X }\mp@subsup{}{}{8}+4*\mp@subsup{X}{}{7}+4*\mp@subsup{X}{}{6}+17*\mp@subsup{X}{}{3}+69*\mp@subsup{X}{}{2}+72*X+
                            6
www := solve(ab,x); 列 {X=ROOT_OF(X_ + 17*X_+ 1),X=-2}
root_multiplicities; }\quad=>\quad{1,2
```


Comments

Results of the solve operator are returned as equations in a list. You can use the usual list access methods (first, second, third, rest and part) to extract the desired equation, and then use the operators rhs and lhs to access the right-hand or left-hand expression of the equation. When solve is unable to solve an equation, it returns the unsolved part as the argument of root_of, with the variable renamed to avoid confusion, as shown in the last example above.
For one equation, solve uses square-free factorization, roots of unity, and the known inverses of the log, sin, cos, acos, asin, and exponentiation operators. The quadratic, cubic and quartic formulas are used if necessary, but these are applied only when the switch fullroots is set on; otherwise or when no closed form is available the result is returned as root_of expression. The switch trigform determines which type of cubic and quartic formula is used. The multiplicity of each solution is given in a list as the system variable root_multiplicities. For systems of simultaneous linear equations, matrix inversion is used. For nonlinear systems, the Groebner basis method is used.

Linear equation system solving is influenced by the switch cramer.
Singular systems can be solved when the switch solvesingular is on, which is the default setting. An empty list is returned the system of equations is inconsistent. For a linear inconsistent system with parameters the variable requirements constraints conditions for the system to become consistent.

For a solvable linear and polynomial system with parameters the variable assumptions contains a list side relations for the parameters: the solution is valid only as long as none of these expressions is zero.
If the switch varopt is on (default), the system rearranges the variable sequence for minimal computation time. Without varopt the user supplied variable sequence is maintained.

If the solution has free variables (dimension of the solution is greater than zero), these are represented by arbcomplex expressions as long as the switch arbvars is on (default). Without arbvars no explicit equations are generated for free variables.
Related information
allbranch switch
arbvars switch
assumptions variable
fullroots switch
requirements variable
roots operator
root_of operator
trigform switch
varopt switch

8.44 SORT

SORT

Operator

The sort operator sorts the elements of a list according to an arbitrary comparison operator.

```
sort(lst, comp)
```

lst is a list of algebraic expressions. comp is a comparison operator which defines a partial ordering among the members of lst. comp may be one of the builtin comparison operators like <(lessp), <=(leq) etc., or comp may be the name of a comparison procedure. Such a procedure has two arguments, and it returns true if the first argument ranges before the second one, and 0 or nil otherwise. The result of sort is a new list which contains the elements of $l s t$ in a sequence corresponding to comp.

```
Examples
procedure ce(a,b);
if evenp a and not evenp b then 1 else 0;
for i:=1:10 collect random(50)
sort(ws,>=); }\quad=>\quad{41,38,33,30,28,25,20,17,8,5
sort(ws,<); }\quad=>\quad{5,8,17,20,25,28,30,33,38,41
sort(ws,ce); }\quad=>\quad{8,20,28,30,38,5,17,25,33,41
procedure cd(a,b);
if deg(a,x)>\operatorname{deg}(b,x) then 1 else
if deg(a,x)<deg(b,x) then 0 else
if deg(a,y)>deg(b,y) then 1 else 0;
sort({x^2, y^2,x*y},cd); => {x ', x*y,y ' }
```


8.45 STRUCTR

STRUCTR

Operator

The structr operator breaks its argument expression into named subexpressions.

```
structr(expression&option(, identifier&option(, identifier)))
structr(expression[, identifier[,identifier...]])
```

expression may be any valid REDUCE scalar expression. identifier may be any valid REDUCE identifier. The first identifier is the stem for subexpression names, the second is the name to be assigned to the structured expression.

Examples

structr $(\operatorname{sqrt}(x * * 2+2 * x)+\sin (x * * 2 * z))$;
$\Rightarrow \quad$ ANS1 + ANS2
where
ANS2 $:=\operatorname{SIN}\left(X^{2} * Z\right)$
ANS1 $:=((X+2) * X)^{1 / 2}$

```
ans3; }\quad=>\quad\mathrm{ ANS3
```

on fort;
structr $((\mathrm{x}+1) * * 5+\tan (\mathrm{x} * \mathrm{y} * \mathrm{z})$, var, aa) ;
\Rightarrow
VAR1 $=$ TAN $(X * Y * Z)$
$\mathrm{AA}=\mathrm{VAR} 1+\mathrm{X} * * 5+5 . * \mathrm{X} * * 4+10 . * \mathrm{X} * * 3+10 . \mathrm{X} * * 2+5 . * \mathrm{X}+1$

Comments

The second argument to structr is optional. If it is not given, the default stem ANS is used by REDUCE to construct names for the subexpression. The names are only for display purposes: REDUCE does not store the names and their values unless the switch savestructr is on.

If a third argument is given, the structured expression as a whole is named by this argument, when fort is on. The expression is not stored under this name. You can send these structured Fortran expressions to a file with the out command.

8.46 SUB

SUB

Operator

The sub operator substitutes a new expression for a kernel in an expression.

$$
\begin{aligned}
& \operatorname{sub}(\text { kernel }=\text { expression }\{, \text { kernel }=\text { expression }\} * \text {, expression }) \text { or } \\
& \text { sub }(\{\text { kernel }=\text { expression } *, \text { kernel }=\text { expression }\} \text {, expression })
\end{aligned}
$$

kernel must be a kernel, expression can be any REDUCE scalar expression.

Examples

```
sub (x=3,y=4,(x+y)**3); 列 343
x; }\quad=>\quad
```

$\operatorname{sub}(\{\cos =\sin , \sin =\cos \}, \cos a+\sin b)$
$\Rightarrow \quad \operatorname{COS}(\mathrm{B})+\operatorname{SIN}(\mathrm{A})$

Comments

Note in the second example that operators can be replaced using the sub operator.

8.47 SUM

SUM

Operator

The operator sum returns the indefinite or definite summation of a given expression.

$$
\operatorname{sum}(\operatorname{expr}, k[, \operatorname{lolim}[, \text { uplim}]])
$$

where expr is the expression to be added, k is the control variable (a kernel), and lolim and uplim are the optional lower and upper limits. If uplim is not supplied the upper limit is taken as k. The Gosper algorithm is used. If there is no closed form solution, the operator returns the input unchanged.

```
Examples
sum (4n**3,n); }\quad=>\mp@subsup{n}{}{2}*(\mp@subsup{n}{}{2}+2*n+1
sum(2a+2k*r,k,0,n-1); 夏 (2*a + n*r - r)
```


8.48 WS

WS

Operator

The ws operator alone returns the last result; ws with a number argument returns the results of the REDUCE statement executed after that numbered prompt.

```
ws or ws(number)
```

number must be an integer between 1 and the current REDUCE prompt number.

Examples

(In the following examples, unlike most others, the numbered prompt is shown.)

```
1: \(\operatorname{df}(\sin y, y) ; \quad \operatorname{COS}(Y)\)
2: ws^2; \(\quad \Rightarrow \quad \operatorname{COS}(\mathrm{Y})^{2}\)
3: \(\mathrm{df}(\mathrm{ws} 1, \mathrm{y}) ; \quad \Rightarrow \quad-\operatorname{SIN}(\mathrm{Y})\)
```


Comments

ws and ws (number) can be used anywhere the expression they stand for can be used. Calling a number for which no result was produced, such as a switch setting, will give an error message.
The current workspace always contains the results of the last REDUCE command that produced an expression, even if several input statements that do not produce expressions have intervened. For example, if you do a differentiation, producing a result expression, then change several switches, the operator ws; returns the results of the differentiation. The current workspace (ws) can also be used inside files, though the numbered workspace contains only the in command that input the file.

There are three history lists kept in your REDUCE session. The first stores raw input, suitable for the statement editor. The second stores parsed input, ready to execute and accessible by input. The third stores results, when they are produced by statements, which are accessible by the ws n operator. If your session is very long, storage space begins to fill up with these expressions, so it is a good idea to end the session once in a while, saving needed expressions to files with the saveas and out commands.

An error message is given if a reference number has not yet been used.

9 Declarations

9.1 ALGEBRAIC

ALGEBRAIC

Command

The algebraic command changes REDUCE's mode of operation to algebraic. When algebraic is used as an operator (with an argument inside parentheses) that argument is evaluated in algebraic mode, but REDUCE's mode is not changed.

Examples

algebraic;

```
symbolic; }\quad=>\quad\mathrm{ NIL
algebraic(x**2); # X
x**2; }\quad=>\quad***** The symbol X has no value
```


Comments

REDUCE's symbolic mode does not know about most algebraic commands. Error messages in this mode may also depend on the particular Lisp used for the REDUCE implementation.

9.2 ANTISYMMETRIC

ANTISYMMETRIC
 Declaration

When an operator is declared antisymmetric, its arguments are reordered to conform to the internal ordering of the system. If an odd number of argument interchanges are required to do this ordering, the sign of the expression is changed.

```
antisymmetric identifier{,identifier}*
```

identifier is an identifier that has been declared as an operator.

Examples

operator m,n;
antisymmetric m,n;
$m(x, n(1,2)) ; \quad \Rightarrow \quad-M(-N(2,1), X)$
operator p;
antisymmetric p;
$\mathrm{p}(\mathrm{a}, \mathrm{b}, \mathrm{c}) ; \quad \Rightarrow \quad \mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C})$
$\mathrm{p}(\mathrm{b}, \mathrm{a}, \mathrm{c}) ; \quad \Rightarrow \quad-\mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C})$

Comments

If identifier has not been declared an operator, the flag antisymmetric is still attached to it. When identifier is subsequently used as an operator, the message Declare identifier operator? (Y or N) is printed. If the user replies y, the antisymmetric property of the operator is used.
Note in the first example, identifiers are customarily ordered alphabetically, while numbers are ordered from largest to smallest. The operators may have any desired number of arguments (less than 128).

9.3 ARRAY

ARRAY

Declaration

The array declaration declares a list of identifiers to be of type array, and sets all their entries to 0 .

```
array identifier(dimensions) {,identifier(dimensions)}*
```

identifier may be any valid REDUCE identifier. If the identifier was already an array, a warning message is given that the array has been redefined. dimensions are of form integer $\{$, integer $\} *$.

Examples

array $a(2,5), b(3,3,3), c(200)$;
array a $(3,5) ; \quad \Rightarrow \quad * * *$ ARRAY A REDEFINED
$\mathrm{a}(3,4) ; \quad \Rightarrow \quad 0$
length a; $\quad \Rightarrow \quad\{4,6\}$

Comments

Arrays are always global, even if defined inside a procedure or block statement. Their status as an array remains until the variable is reset by clear. Arrays may not have the same names as operators, procedures or scalar variables.
Array elements are referred to by the usual notation: $a(i, j)$ returns the j th element of the ith row. The assignment operator $:=$ is used to put values into the array. Arrays as a whole cannot be subject to assignment by let or := ; the assignment operator := is only valid for individual elements.

When you use let on an array element, the contents of that element become the argument to let. Thus, if the element contains a number or some other expression that is not a valid argument for this command, you get an error message. If the element contains an identifier, the identifier has the substitution rule attached to it globally. The same behavior occurs with clear. If the array element contains an identifier or simple_expression, it is cleared. Do not use clear to try to set an array element to 0 . Because of the side effects of either let or clear, it is unwise to apply either of these to array elements.

Array indices always start with 0 , so that the declaration array a(5) sets aside 6 units of space, indexed from 0 through 5 , and initializes them to 0 . The length command returns a list of the true number of elements in each dimension.

9.4 CLEAR

CLEAR

Command

The clear command is used to remove assignments or remove substitution rules from any expression.

```
clear identifier{,identifier}+ or
let-type statement clear identifier
```

identifier can be any scalar, matrix, or array variable or procedure name. lettype statement can be any general or specific let statement (see below in Comments).
Examples
array a(2,3);
$\mathrm{a}(2,2):=15 ; \Rightarrow \mathrm{A}(2,2):=15$
clear a;
$\mathrm{a}(2,2) ; \quad \Rightarrow \quad$ Declare A operator? (Y or N)
let $\mathrm{x}=\mathrm{y}+\mathrm{z}$;
$\sin (x) ; \quad \Rightarrow \quad \operatorname{SIN}(Y+Z)$
clear x ;
$\sin (x) ; \quad \Rightarrow \quad \operatorname{SIN}(X)$
let $\mathrm{x} * * 5=7$;
clear x;
$\mathrm{x} * * 5 ; \quad \Rightarrow \quad 7$
clear $\mathrm{x} * * 5$;
$\mathrm{x} * * 5 ; \quad \Rightarrow \quad \mathrm{X}^{5}$

Comments

Although it is not a good idea, operators of the same name but taking different numbers of arguments can be defined. Using a clear statement on any of these
operators clears every one with the same name, even if the number of arguments is different.

The clear command is used to "forget" matrices, arrays, operators and scalar variables, returning their identifiers to the pristine state to be used for other purposes. When clear is applied to array elements, the contents of the array element becomes the argument for clear. Thus, you get an error message if the element contains a number, or some other expression that is not a legal argument to clear. If the element contains an identifier, it is cleared. When clear is applied to matrix elements, an error message is returned if the element evaluates to a number, otherwise there is no effect. Do not try to use clear to set array or matrix elements to 0 . You will not be pleased with the results.
If you are trying to clear power or product substitution rules made with either let or forall...let, you must reproduce the rule, exactly as you typed it with the same arguments, up to but not including the equal sign, using the word clear instead of the word let. This is shown in the last example. Any other type of let or forall... let substitution can be cleared with just the variable or operator name. match behaves the same as let in this situation. There is a more complicated example under forall.

9.5 CLEARRULES

CLEARRULES

Command

clearrules list $\{$, list $\}+$

The operator clearrules is used to remove previously defined rule lists from the system. list can be an explicit rule list, or evaluate to a rule list.

Examples

```
trig1 := {cos(~}~~)*\operatorname{cos(~y) => (cos(x+y)+\operatorname{cos}(x-y))/2, cos(~}x)*\operatorname{sin}(~y) => (sin (x+y)-\operatorname{sin}(x-y))/2
let trig1; \operatorname{cos}(a)*\operatorname{cos}(\textrm{b});=>\quad\operatorname{COS}(\textrm{A}-\textrm{B})+\operatorname{COS}(\textrm{A}+\textrm{B})
clearrules trig1; cos(a)*cos(b);
    C COS(A)*COS(B)
```


9.6 DEFINE

DEFINE

Command

The command define allows you to supply a new name for an identifier or replace it by any valid REDUCE expression.

```
define identifier=substitution {,identifier=substitution}*
```

identifier is any valid REDUCE identifier, substitution can be a number, an identifier, an operator, a reserved word, or an expression.
Examples
define is= :=, $x x=y+z ;$

```
a is 10;
A A := 10
xx**2; }\quad=>\quad\mp@subsup{Y}{}{2}+2*Y*Z+\mp@subsup{Z}{}{2
xx := 10; }\quad=>\quadY+Z := 1
```


Comments

The renaming is done at the input level, and therefore takes precedence over any other replacement or substitution declared for the same identifier. It remains in effect until the end of the REDUCE session. Be careful with it, since you cannot easily undo it without ending the session.

9.7 DEPEND

DEPEND

Declaration

depend declares that its first argument depends on the rest of its arguments.

$$
\text { depend kernel\{, kernel\}+ }
$$

kernel must be a legal variable name or a prefix operator (see kernel).
Examples
depend y, x;

```
df(y**2,x); }\quad=>\quad2*DF(Y,X)*
depend z,cos(x),y;
df(\operatorname{sin}(\textrm{z}),\operatorname{cos}(\textrm{x})); = COS(Z)*DF(Z,COS(X))
df(z**2,x); }\quad=>\quad2*DF(Z,X)*
nodepend z,y;
df(z**2,x); }\quad=>\quad2*DF(Z,X)*
cc := df(y**2,x); 列 CC := 2*DF(Y,X)*Y
```



```
cc; }\quad=>\quad2*TAN(X)*(TAN(X) + 1
```


Comments

Dependencies can be removed by using the declaration nodepend. The differentiation operator uses this information, as shown in the examples above. Linear operators also use knowledge of dependencies (see linear). Note that dependencies can be nested: Having declared y to depend on x, and z to depend on y, we see that the chain rule was applied to the derivative of a function of z with respect to x. If the explicit function of the dependency is later entered into the system, terms with $\mathrm{DF}(\mathrm{Y}, \mathrm{X})$, for example, are expanded when they are displayed again, as shown in the last example. The boolean operator freeof allows you to check the dependency between two algebraic objects.

9.8 EVEN

EVEN

Declaration

even identifier $\{$, identifier $\} *$
This declaration is used to declare an operator even in its first argument. Expressions involving an operator declared in this manner are transformed if the first argument contains a minus sign. Any other arguments are not affected.

Examples

even f;
$\mathrm{f}(-\mathrm{a}) \quad \Rightarrow \quad \mathrm{F}(\mathrm{A})$
$\mathrm{f}(-\mathrm{a},-\mathrm{b}) \Rightarrow \mathrm{F}(\mathrm{A},-\mathrm{B})$

9.9 FACTOR

FACTOR

Declaration

When a kernel is declared by factor, all terms involving fixed powers of that kernel are printed as a product of the fixed powers and the rest of the terms.

$$
\text { factor kernel }\{, \text { kernel }\} *
$$

kernel must be a kernel or a list of kernels.

Examples

```
a \(:=(\mathrm{x}+\mathrm{y}+\mathrm{z}) * * 2 ; \quad \Rightarrow\)
    \(A:=X^{2}+2 * X * Y+2 * X * Z+Y^{2}+2 * Y * Z+Z^{2}\)
```

factor y;
a;
$\Rightarrow \quad Y^{2}+2 * Y *(X+Z)+X^{2}+2 * X * Z+Z^{2}$
factor $\sin (x)$;
$c:=\mathrm{df}(\sin (\mathrm{x}) * * 4 * \mathrm{x} * * 2 * \mathrm{z}, \mathrm{x})$;
\Rightarrow
$\mathrm{C}:=2 * \operatorname{SIN}(\mathrm{X})^{4} * \mathrm{X} * \mathrm{Z}+4 * \operatorname{SIN}(\mathrm{X})^{3} * \operatorname{COS}(\mathrm{X}) * \mathrm{X}^{2} * \mathrm{Z}$
remfac $\sin (x)$;
c; $\quad \Rightarrow \quad 2 * \operatorname{SIN}(\mathrm{X}) * \mathrm{X} * \mathrm{Z} *(2 * \operatorname{COS}(\mathrm{X}) * \mathrm{X}+\operatorname{SIN}(\mathrm{X}))$

Comments

Use the factor declaration to display variables of interest so that you can see their powers more clearly, as shown in the example. Remove this special treatment with the declaration remfac. The factor declaration is only effective when the switch pri is on.
The factor declaration is not a factoring command; to factor expressions use the factor switch or the factorize command.

The factor declaration is helpful in such cases as Taylor polynomials where the explicit powers of the variable are expected at the top level, not buried in various factored forms.
Note that factor does not affect the order of its arguments. You should also use order if this is important.

9.10 FORALL

FORALL

Command

The forall or (preferably) for all command is used as a modifier for let statements, indicating the universal applicability of the rule, with possible qualifications.

```
for all identifier{,identifier}* let let statement
or
for all identifier{,identifier}* such that condition let let state-
ment
identifier may be any valid REDUCE identifier, let statement can be an operator, a product or power, or a group or block statement. condition must be a logical or comparison operator returning true or false.
```

Examples
for all x let $f(x)=\sin (x * * 2)$;
$\Rightarrow \quad$ Declare F operator ? (Y or N)
y
f(a);

$$
\Rightarrow \quad \operatorname{SIN}\left(A^{2}\right)
$$

```
operator pos;
```

for all x such that $\mathrm{x}>=0$ let $\operatorname{pos}(\mathrm{x})=\operatorname{sqrt}(\mathrm{x}+1)$;
$\operatorname{pos}(5) ; \quad \Rightarrow \quad \operatorname{SQRT}(6)$
$\operatorname{pos}(-5) ; \quad \Rightarrow \quad \operatorname{POS}(-5)$
clear pos;
pos (5) ; $\quad \Rightarrow \quad$ Declare POS operator ? (Y or N)
for all a such that numberp a let $\mathrm{x} * * \mathrm{a}=1$;
$\mathrm{x} * * 4 ; \quad \Rightarrow \quad 1$
clear $\mathrm{x} * * \mathrm{a} ; \quad \Rightarrow \quad * * * \mathrm{X} * * \mathrm{~A}$ not found

```
for all a clear x**a;
x**4; }\quad=>\quad
for all a such that numberp a clear x**a;
x**4; }=>\quad\mp@subsup{X}{}{4
```

Comments
Substitution rules defined by for all or for all...such that commands that involve products or powers are cleared by reproducing the command, with exactly the same variable names used, up to but not including the equal sign, with clear replacing let, as shown in the last example. Other substitutions involving variables or operator names can be cleared with just the name, like any other variable.

The match command can also be used in product and power substitutions. The syntax of its use and clearing is exactly like let. A match substitution only replaces the term if it is exactly like the pattern, for example match $\mathrm{x} * * 5=1$ replaces only terms of $\mathrm{x} * * 5$ and not terms of higher powers.
It is easier to declare your potential operator before defining the for all rule, since the system will ask you to declare it an operator anyway. Names of declared arrays or matrices or scalar variables are invalid as operator names, to avoid ambiguity. Either for all...let statements or procedures are often used to define operators. One difference is that procedures implement "call by value" meaning that assignments involving their formal parameters do not change the calling variables that replace them. If you use assignment statements on the formal parameters in a for all...let statement, the effects are seen in the calling variables. Be careful not to redefine a system operator unless you mean it: the statement for all x let $\sin (x)=0$; has exactly that effect, and the usual definition for $\sin (\mathrm{x})$ has been lost for the remainder of the REDUCE session.

9.11 INFIX

INFIX

Declaration

infix declares identifiers to be infix operators.

$$
\text { infix identifier }\{, i d e n t i f i e r\} *
$$

identifier can be any valid REDUCE identifier, which has not already been declared an operator, array or matrix, and is not reserved by the system.

```
Examples
infix aa;
for all x,y let aa(x,y) = cos(x)*\operatorname{cos}(y) - sin(x)*\operatorname{sin}(y);
x aa y; }\quad=>\quad\operatorname{COS}(\textrm{X})*\operatorname{COS}(\textrm{Y})-\operatorname{SIN}(\textrm{X})*\operatorname{SIN}(Y
pi/3 aa pi/2; }\quad=>\quad-\frac{SQRT(3)}{2
aa(pi,pi); }\quad=>\quad
```


Comments

A let statement must be used to attach functionality to the operator. Note that the operator is defined in prefix form in the let statement. After its definition, the operator may be used in either prefix or infix mode. The above operator $a a$ finds the cosine of the sum of two angles by the formula

$$
\cos (x+y)=\cos x \cos y-\sin x \sin y
$$

Precedence may be attached to infix operators with the precedence declaration.
User-defined infix operators may be used in prefix form. If they are used in infix form, a space must be left on each side of the operator to avoid ambiguity. Infix operators are always binary.

9.12 INTEGER

INTEGER

Declaration

The integer declaration must be made immediately after a begin (or other variable declaration such as real and scalar) and declares local integer variables. They are initialized to 0 .

```
integer identifier{,identifier}*
```

identifier may be any valid REDUCE identifier, except t or nil.

Comments

Integer variables remain local, and do not share values with variables of the same name outside the begin...end block. When the block is finished, the variables are removed. You may use the words real or scalar in the place of integer. integer does not indicate typechecking by the current REDUCE; it is only for your own information. Declaration statements must immediately follow the begin, without a semicolon between begin and the first variable declaration.
Any variables used inside begin. . . end blocks that were not declared scalar, real or integer are global, and any change made to them inside the block affects their global value. Any array or matrix declared inside a block is always global.

9.13 KORDER

KORDER

Declaration

The korder declaration changes the internal canonical ordering of kernels.

$$
\text { korder } \operatorname{kernel}\{, \text { kernel }\} *
$$

kernel must be a REDUCE kernel or a list of kernels.

Comments

The declaration korder changes the internal ordering, but not the print ordering, so the effects cannot be seen on output. However, in some calculations, the order of the variables can have significant effects on the time and space demands of a calculation. If you are doing a demanding calculation with several kernels, you can experiment with changing the canonical ordering to improve behavior.

The first kernel in the argument list is given the highest priority, the second gets the next highest, and so on. Kernels not named in a korder ordering otherwise. A new korder declaration replaces the previous one. To return to canonical ordering, use the command korder nil.

To change the print ordering, use the declaration order.

9.14 LET

LET

The let command defines general or specific substitution rules.
let identifier $=$ expression $\{$, identifier $=$ expression $\} *$
identifier can be any valid REDUCE identifier except an array, and in some cases can be an expression; expression can be any valid REDUCE expression.
Examples
let $\mathrm{a}=\sin (\mathrm{x})$;
$\mathrm{b}:=\mathrm{a} ; \quad \Rightarrow \quad \mathrm{B}:=$ SIN X ;
let $c=a$;
$\exp (a) ; \quad \Rightarrow \quad E^{\operatorname{SIN}(X)}$
a $:=\mathrm{x} * * 2 ; \quad \Rightarrow \quad A:=X^{2}$
$\exp (a) ; \quad \Rightarrow \quad E^{X^{2}}$
$\exp (b) ; \quad \Rightarrow \quad E^{\operatorname{SIN}(X)}$
$\exp (c) ; \quad \Rightarrow \quad E^{X}$
let $m+n=p$;
$(\mathrm{m}+\mathrm{n}) * * 5 ; \quad \Rightarrow \quad \mathrm{P}^{5}$
operator h ;
let $h(u, v)=u-v$;
$\mathrm{h}(\mathrm{u}, \mathrm{v}) ; \quad \Rightarrow \quad \mathrm{U}-\mathrm{V}$
$\mathrm{h}(\mathrm{x}, \mathrm{y}) ; \quad \Rightarrow \quad \mathrm{H}(\mathrm{X}, \mathrm{Y})$
array $q(10)$;

```
let q(1) = 15; }\quad
    ***** Substitution for 0 not allowed
```

The let command is also used to activate a rule sets.
let list $\{$, list $\}+$
list can be an explicit rule list, or evaluate to a rule list.
Examples
$\operatorname{trig} 1:=\left\{\cos \left({ }^{\sim} x\right) * \cos (\sim y) \Rightarrow(\cos (x+y)+\cos (x-y)) / 2, \cos \left({ }^{\sim} x\right) * \sin (\sim y)=>(\sin (x+y)-\sin (x-y)) / 2\right.$,
let trig1; $\cos (\mathrm{a}) * \cos (\mathrm{~b}) ; \Rightarrow \quad \operatorname{COS}(\mathrm{A}-\mathrm{B})+\operatorname{COS}(\mathrm{A}+\mathrm{B})$

Comments

A let command returns no value, though the substitution rule is entered. Assignment rules made by assign and let rules are at the same level, and cancel each other. There is a difference in their operation, however, as shown in the first example: a let assignment tracks the changes in what it is assigned to, while a := assignment is fixed at the value it originally had.

The use of expressions as left-hand sides of let statements is a little complicated. The rules of operation are:
(i) Expressions of the form $A * B=C$ do not change A, B or C, but set $A * B$ to C.
(ii) Expressions of the form $\mathrm{A}+\mathrm{B}=\mathrm{C}$ substitute $\mathrm{C}-\mathrm{B}$ for A , but do not change B or C.
(iii) Expressions of the form $\mathrm{A}-\mathrm{B}=\mathrm{C}$ substitute $\mathrm{B}+\mathrm{C}$ for A , but do not change B or C.
(iv) Expressions of the form $A / B=C$ substitute $B^{*} C$ for A, but do not change B or C.
(v) Expressions of the form $\mathrm{A}^{* *} \mathrm{~N}=\mathrm{C}$ substitute C for $\mathrm{A}^{* *} \mathrm{~N}$ in every expression of a power of A to N or greater. An asymptotic command such as $\mathrm{A}^{* *} \mathrm{~N}$ $=0$ sets all terms involving A to powers greater than or equal to N to 0 . Finite fields may be generated by requiring modular arithmetic (the modular switch) and defining the primitive polynomial via a let statement.
let substitutions involving expressions are cleared by using the clear command with exactly the same expression.

Note when a simple let statement is used to assign functionality to an operator, it is valid only for the exact identifiers used. For the use of the let command to attach more general functionality to an operator, see forall.
Arrays as a whole cannot be arguments to let statements, but matrices as a whole can be legal arguments, provided both arguments are matrices. However, it is important to note that the two matrices are then linked. Any change to an element of one matrix changes the corresponding value in the other. Unless you want this behavior, you should not use let for matrices. The assignment operator assign can be used for non-tracking assignments, avoiding the side effects. Matrices are redimensioned as needed in let statements.

When array or matrix elements are used as the left-hand side of let statements, the contents of that element is used as the argument. When the contents is a number or some other expression that is not a valid left-hand side for let, you get an error message. If the contents is an identifier or simple expression, the let rule is globally attached to that identifier, and is in effect not only inside the array or matrix, but everywhere. Because of such unwanted side effects, you should not use let with array or matrix elements. The assignment operator := can be used to put values into array or matrix elements without the side effects.

Local variables declared inside begin. . . end blocks cannot be used as the left-hand side of let statements. However, begin...end blocks themselves can be used as the right-hand side of let statements. The construction:

```
for all vars letoperator(vars)=block
```

is an alternative to the

```
procedure name(vars); block
```

construction. One important difference between the two constructions is that the vars as formal parameters to a procedure have their global values protected against change by the procedure, while the vars of a let statement are changed globally by its actions.

Be careful in using a construction such as let $\mathrm{x}=\mathrm{x}+1$ except inside a controlled loop statement. The process of resubstitution continues until a stack overflow message is given.
The let statement may be used to make global changes to variables from inside procedures. If x is a formal parameter to a procedure, the command let $\mathrm{x}=\ldots$ makes the change to the calling variable. For example, if a procedure was defined by

```
procedure f(x,y);
let x = 15;
```

and the procedure was called as

```
f(a,b);
```

a would have its value changed to 15 . Be careful when using let statements inside procedures to avoid unwanted side effects.
It is also important to be careful when replacing let statements with other let statements. The overlapping of these substitutions can be unpredictable. Ordinarily the latest-entered rule is the first to be applied. Sometimes the previous rule is superseded completely; other times it stays around as a special case. The order of entering a set of related let expressions is very important to their eventual behavior. The best approach is to assume that the rules will be applied in an arbitrary order.

9.15 LINEAR

LINEAR

Declaration

An operator can be declared linear in its first argument over powers of its second argument by the declaration linear.

linear operator $\{$, operator $\} *$

operator must have been declared to be an operator. Be careful not to use a system operator name, because this command may change its definition. The operator being declared must have at least two arguments, and the second one must be a kernel.

Examples
operator f;
linear f;
$\mathrm{f}(0, \mathrm{x}) ; \quad \Rightarrow \quad 0$
$f(-y, x) ; \quad \Rightarrow \quad-F(1, X) * Y$
$f(y+z, x) ; \quad \Rightarrow \quad F(1, X) *(Y+Z)$
$\mathrm{f}(\mathrm{y} * \mathrm{z}, \mathrm{x}) ; \quad \Rightarrow \quad \mathrm{F}(1, \mathrm{X}) * \mathrm{Y} * \mathrm{Z}$
depend z, x;
$f(y * z, x) ; \quad \Rightarrow \quad F(Z, X) * Y$
$f(y / z, x) ; \quad \Rightarrow \quad F\left(-\frac{1}{Z}-, X\right) * Y$
depend y, x;
$f(y / z, x) ; \quad \Rightarrow \quad\left(-\frac{Y}{Z}, X\right)$
nodepend z, x;
$f(y / z, x) ; \quad \Rightarrow \frac{F(Y, X)}{Z}$
$f(2 * e * * \sin (x), x) ; \quad 2 * F\left(E^{\operatorname{SIN}(X)}, X\right)$

Comments

Even when the operator has not had its functionality attached, it exhibits linear properties as shown in the examples. Notice the difference when dependencies are added. Dependencies are also in effect when the operator's first argument contains its second, as in the last line above.

For a fully-developed example of the use of linear operators, refer to the article in the Journal of Computational Physics, Vol. 14 (1974), pp. 301-317, "Analytic Computation of Some Integrals in Fourth Order Quantum Electrodynamics," by J.A. Fox and A.C. Hearn. The article includes the complete listing of REDUCE procedures used for this work.

9.16 LINELENGTH

LINELENGTH
 Declaration

The linelength declaration sets the length of the output line. Default is 80 .
linelength expression
To change the linelength, expression must evaluate to a positive integer less than 128 (although this varies from system to system), and should not be less than 20 or so for proper operation.

Comments

linelength returns the previous linelength. If you want the current linelength value, but not change it, say linelength nil.

9.17 LISP

LISP

Command

The lisp command changes REDUCE's mode of operation to symbolic. When lisp is followed by an expression, that expression is evaluated in symbolic mode, but REDUCE's mode is not changed. This command is equivalent to symbolic.

Examples

lisp;	\Rightarrow NIL
car ' (a b c d e);	$\Rightarrow \mathrm{A}$

algebraic;
c := (lisp car '(first second))**2;

$$
\Rightarrow \quad \mathrm{C}:=\mathrm{FIRST}^{2}
$$

9.18 LISTARGP

LISTARGP

Declaration

listargp operator $\{$, operator $\} *$
If an operator other than those specifically defined for lists is given a single argument that is a list, then the result of this operation will be a list in which that operator is applied to each element of the list. This process can be inhibited for a specific operator, or list of operators, by using the declaration listargp.
Examples
$\log \{a, b, c\} ; \quad \Rightarrow \quad \operatorname{LOG}(A), L O G(B), L O G(C)$
listargp log;
$\log \{a, b, c\} ; \quad \Rightarrow \quad \operatorname{LOG}(A, B, C)$
Comments
It is possible to inhibit such distribution globally by turning on the switch listargs. In addition, if an operator has more than one argument, no such distribution occurs, so listargp has no effect.

9.19 NODEPEND

NODEPEND
 Declaration

The nodepend declaration removes the dependency declared with depend. nodepend dep-kernel\{,kernel $\}+$
dep-kernel must be a kernel that has had a dependency declared upon the one or more other kernels that are its other arguments.

Examples

depend y, x, z;
$\mathrm{df}(\sin \mathrm{y}, \mathrm{x}) ; \quad \Rightarrow \quad \operatorname{COS}(\mathrm{Y}) * \operatorname{DF}(\mathrm{Y}, \mathrm{X})$
$d f(\sin y, x, z) ; \quad \Rightarrow$
$\operatorname{COS}(\mathrm{Y}) * \operatorname{DF}(\mathrm{Y}, \mathrm{X}, \mathrm{Z})-\mathrm{DF}(\mathrm{Y}, \mathrm{X}) * \operatorname{DF}(\mathrm{Y}, \mathrm{Z}) * \operatorname{SIN}(\mathrm{Y})$
nodepend y, z;
$\mathrm{df}(\sin \mathrm{y}, \mathrm{x}) ; \quad \Rightarrow \quad \operatorname{COS}(\mathrm{Y}) * \mathrm{DF}(\mathrm{Y}, \mathrm{X})$
$\mathrm{df}(\sin \mathrm{y}, \mathrm{x}, \mathrm{z}) ; \Rightarrow 0$

Comments

A warning message is printed if the dependency had not been declared by depend.

9.20 MATCH

MATCH

Command

The match command is similar to the let command, except that it matches only explicit powers in substitution.

```
match expr = expression {, expr = expression }*
```

expr is generally a term involving powers, and is limited by the rules for the let command. expression may be any valid REDUCE scalar expression.

Examples

match $\mathrm{c} * * 2 * a * * 2=\mathrm{d} ;(\mathrm{a}+\mathrm{c}) * * 4$;

match $\mathrm{a}+\mathrm{b}=\mathrm{c}$;

```
a + 2*b; }\quad=>\quadB+
(a+b + c)**2; }\quad=>\quad\mp@subsup{A}{}{2}-\mp@subsup{B}{}{2}+2*B*C+3*
clear a+b;
(a + b + c)**2; }\quad
    A }\mp@subsup{}{}{2}+2*A*B+2*A*C+\mp@subsup{B}{}{2}+2*B*C+C\mp@subsup{C}{}{2
let p*r = s;
match p*q = ss;
(a + p*r)**2; }\quad=>\quad\mp@subsup{A}{}{2}+2*A*S+
```


Comments

Note in the last example that $\mathrm{a}+\mathrm{b}$ has been explicitly matched after the squaring was done, replacing each single power of a by c - b. This kind of substitution, although following the rules, is confusing and could lead to unrecognizable results.

It is better to use match with explicit powers or products only. match should not be used inside procedures for the same reasons that let should not be.
Unlike let substitutions, match substitutions are executed after all other operations are complete. The last example shows the difference. match commands can be cleared by using clear, with exactly the expression that the original match took. match commands can also be done more generally with for all or forall... such that commands.

9.21 NONCOM

NONCOM
 Declaration

noncom declares that already-declared operators are noncommutative under multiplication.

```
noncom operator{,operator}*
```

operator must have been declared an operator, or a warning message is given.
Examples
operator f,h;
noncom f;
$\mathrm{f}(\mathrm{a}) * \mathrm{f}(\mathrm{b})-\mathrm{f}(\mathrm{b}) * \mathrm{f}(\mathrm{a}) ; \Rightarrow \mathrm{F}(\mathrm{A}) * \mathrm{~F}(\mathrm{~B})-\mathrm{F}(\mathrm{B}) * \mathrm{~F}(\mathrm{~A})$
$\mathrm{h}(\mathrm{a}) * \mathrm{~h}(\mathrm{~b})-\mathrm{h}(\mathrm{b}) * \mathrm{~h}(\mathrm{a}) ; \quad \Rightarrow \quad 0$
operator comm;
for all x, y such that x neq y and $\operatorname{ordp}(x, y)$
let $f(x) * f(y)=f(y) * f(x)+\operatorname{comm}(x, y)$;
$\mathrm{f}(1) * \mathrm{f}(2) ; \quad \Rightarrow \quad \mathrm{F}(1) * \mathrm{~F}(2)$
$\mathrm{f}(2) * \mathrm{f}(1) ; \quad \Rightarrow \quad \operatorname{COMM}(2,1)+\mathrm{F}(1) * \mathrm{~F}(2)$

Comments

The last example introduces the commutator of $f(x)$ and $f(y)$ for all x and y . The equality check is to prevent an infinite loop. The operator f can have other functionality attached to it if desired, or it can remain an indeterminate operator.

9.22 NONZERO

NONZERO

Declaration

nonzero identifier $\{$, identifier $\} *$
If an operator f is declared odd, then $f(0)$ is replaced by zero unless f is also declared non zero by the declaration nonzero.

Examples

odd f;
$\mathrm{f}(0) \quad \Rightarrow \quad 0$
nonzero f;
$\mathrm{f}(0) \quad \Rightarrow \quad \mathrm{F}(0)$

9.23 ODD

ODD

Declaration

odd identifier $\{$, identifier $\} *$
This declaration is used to declare an operator odd in its first argument. Expressions involving an operator declared in this manner are transformed if the first argument contains a minus sign. Any other arguments are not affected.

Examples

odd f;
$\mathrm{f}(-\mathrm{a}) \quad \Rightarrow \quad-\mathrm{F}(\mathrm{A})$
$\mathrm{f}(-\mathrm{a},-\mathrm{b}) \quad \Rightarrow \quad-\mathrm{F}(\mathrm{A},-\mathrm{B})$
$\mathrm{f}(\mathrm{a},-\mathrm{b}) \quad \Rightarrow \quad \mathrm{F}(\mathrm{A},-\mathrm{B})$
Comments
If say f is declared odd, then $f(0)$ is replaced by zero unless f is also declared non zero by the declaration nonzero.

9.24 OFF

OFF

The off command is used to turn switches off
off switch $\{$, switch $\} *$
switch can be any switch name. There is no problem if the switch is already off. If the switch name is mistyped, an error message is given.

9.25 ON

ON

The on command is used to turn switches on.
on switch $\{$,switch $\} *$
switch can be any switch name. There is no problem if the switch is already on. If the switch name is mistyped, an error message is given.

9.26 OPERATOR

OPERATOR

Declaration

Use the operator declaration to declare your own operators.

```
operator identifier{,identifier}*
```

identifier can be any valid REDUCE identifier, which is not the name of a matrix, array, scalar variable or previously-defined operator.

Examples

```
operator dis,fac;
```

let $\operatorname{dis}(\sim x, \sim y)=\operatorname{sqrt}\left(x^{\wedge} 2+y^{\wedge} 2\right)$;
$\operatorname{dis}(1,2) ; \quad \Rightarrow \quad \operatorname{SQRT}(5)$
$\operatorname{dis}(\mathrm{a}, 10) ; \quad \Rightarrow \quad \operatorname{SQRT}\left(\mathrm{A}^{2}+100\right)$
on rounded;
dis $(1.5,7.2) ; \quad \Rightarrow \quad 7.35459040329$
let $\mathrm{fac}\left({ }^{\sim} \mathrm{n}\right)=$ if $\mathrm{n}=0$ then 1
else if not (fixp n and $n>0$)
then rederr "choose non-negative integer"
else for i := 1:n product i;
fac (5) ; $\quad \Rightarrow \quad 120$
fac (-2); $\quad \Rightarrow \quad * * * * *$ choose non-negative integer

Comments

The first operator is the Euclidean distance metric, the distance of point (x, y) from the origin. The second operator is the factorial.

Operators can have various properties assigned to them; they can be declared infix, linear, symmetric, antisymmetric, or noncommutative. The default operator is prefix, nonlinear, and commutative. Precedence can also be assigned to operators using the declaration precedence.

Functionality is assigned to an operator by a let statement or a forall...let statement, (or possibly by a procedure with the name of the operator). Be careful not to redefine a system operator by accident. REDUCE permits you to redefine system operators, giving you a warning message that the operator was already defined. This flexibility allows you to add mathematical rules that do what you want them to do, but can produce odd or erroneous behavior if you are not careful.
You can declare operators from inside procedures, as long as they are not local variables. Operators defined inside procedures are global. A formal parameter may be declared as an operator, and has the effect of declaring the calling variable as the operator.

9.27 ORDER

ORDER

Declaration

The order declaration changes the order of precedence of kernels for display purposes only.

```
order identifier{,identifier}*
```

kernel must be a valid kernel or operator name complete with argument or a list of such objects.
Examples
$\mathrm{x}+\mathrm{y}+\mathrm{z}+\cos (\mathrm{a}) ; \Rightarrow \operatorname{COS}(\mathrm{A})+\mathrm{X}+\mathrm{Y}+\mathrm{Z}$
order $z, y, x, \cos (a)$;
$x+y+z+\cos (a) ; \Rightarrow Z+Y+X+\operatorname{COS}(A)$
$(\mathrm{x}+\mathrm{y}) * * 2 ; \quad \Rightarrow \quad \mathrm{Y}^{2}+2 * \mathrm{Y} * \mathrm{X}+\mathrm{X}^{2}$
order nil;
$(z+\cos (z)) * * 2 ; \quad \Rightarrow \quad \operatorname{COS}(Z)^{2}+2 * \operatorname{COS}(Z) * Z+Z^{2}$

Comments

order affects the printing order of the identifiers only; internal order is unchanged. Change internal order of evaluation with the declaration korder. You can use order to feature variables or functions you are particularly interested in.

Declarations made with order are cumulative: kernels in new order declarations are ordered behind those in previous declarations, and previous declarations retain their relative order. Of course, specific kernels named in new declarations are removed from previous ones and given the new priority. Return to the standard canonical printing order with the statement order nil.
The print order specified by order commands is not in effect if the switch pri is off.

9.28 PRECEDENCE

PRECEDENCE

Declaration

The precedence declaration attaches a precedence to an infix operator.

```
precedence operator,known_operator
```

operator should have been declared an operator but may be a REDUCE identifier that is not already an operator, array, or matrix. known_operator must be a system infix operator or have had its precedence already declared.

```
Examples
operator f,h;
precedence f,+;
precedence h,*;
a + f(1,2)*c; }=>\quad(1 F 2)*C + A
a + h(1,2)*c; }\quad=>\quad1\textrm{H 2*C + A
a*1 f 2*c; }\quad=>\quadA F 2*
a*1 h 2*c; }\quad=>\quad1 H 2*A*C
```


Comments

The operator whose precedence is being declared is inserted into the infix operator precedence list at the next higher place than known_operator.

Attaching a precedence to an operator has the side effect of declaring the operator to be infix. If the identifier argument for precedence has not been declared to be an operator, an attempt to use it causes an error message. After declaring it to be an operator, it becomes an infix operator with the precedence previously given. Infix operators may be used in prefix form; if they are used in infix form, a space must be left on each side of the operator to avoid ambiguity. Declared infix operators are always binary.

To see the infix operator precedence list, enter symbolic mode and type preclis!*; The lowest precedence operator is listed first.

All prefix operators have precedence higher than infix operators.

9.29 PRECISION

PRECISION

Declaration

The precision declaration sets the number of decimal places used when rounded is on. Default is system dependent, and normally about 12 .

```
precision(integer) or precision integer
```

integer must be a positive integer. When integer is 0 , the current precision is displayed, but not changed. There is no upper limit, but precision of greater than several hundred causes unpleasantly slow operation on numeric calculations.

```
Examples
on rounded;
```



```
precision 20; # 20
7/9; }\quad=>\quad0.777777777777777777
sin(pi/4); }\quad|\quad0.707106781186547524
```


Comments

Trailing zeroes are dropped, so sometimes fewer than 20 decimal places are printed as in the last example. Turn on the switch fullprec if you want to print all significant digits. The rounded mode carries calculations to two more places than given by precision, and rounds off.

9.30 PRINT_PRECISION

PRINT_PRECISION

print_precision(integer) or print_precision integer
In rounded mode, numbers are normally printed to the specified precision. If the user wishes to print such numbers with less precision, the printing precision can be set by the declaration print_precision.

Examples

on rounded;
$1 / 3 ; \quad \Rightarrow \quad 0.333333333333$
print_precision 5;
$1 / 3 \quad \Rightarrow \quad 0.33333$

9.31 REAL

REAL

Declaration

The real declaration must be made immediately after a begin (or other variable declaration such as integer and scalar) and declares local integer variables. They are initialized to zero.

```
real identifier{,identifier}*
```

identifier may be any valid REDUCE identifier, except t or nil.

Comments

Real variables remain local, and do not share values with variables of the same name outside the begin...end block. When the block is finished, the variables are removed. You may use the words integer or scalar in the place of real. real does not indicate typechecking by the current REDUCE; it is only for your own information. Declaration statements must immediately follow the begin, without a semicolon between begin and the first variable declaration.
Any variables used inside a begin...end block that were not declared scalar, real or integer are global, and any change made to them inside the block affects their global value. Any ?? or ?? declared inside a block is always global.

9.32 REMFAC

REMFAC
 Declaration

The remfac declaration removes the special factoring treatment of its arguments that was declared with factor.
remfac kernel $\{$, kernel $\}+$
kernel must be a kernel or operator name that was declared as special with the factor declaration.

9.33 SCALAR

SCALAR

Declaration

The scalar declaration must be made immediately after a begin (or other variable declaration such as integer and real) and declares local scalar variables. They are initialized to 0 .

scalar identifier $\{$, identifier $\} *$

identifier may be any valid REDUCE identifier, except t or nil.

Comments

Scalar variables remain local, and do not share values with variables of the same name outside the begin...end block. When the block is finished, the variables are removed. You may use the words real or integer in the place of scalar. real and integer do not indicate typechecking by the current REDUCE; they are only for your own information. Declaration statements must immediately follow the begin, without a semicolon between begin and the first variable declaration.
Any variables used inside begin. . . end blocks that were not declared scalar, real or integer are global, and any change made to them inside the block affects their global value. Arrays declared inside a block are always global.

9.34 SCIENTIFIC_NOTATION

SCIENTIFIC_NOTATION
 Declaration

scientific_notation (m) or scientific_notation($\{m, n\}$)
m and n are positive integers. scientific_notation controls the output format of floating point numbers. At the default settings, any number with five or less digits before the decimal point is printed in a fixed-point notation, e.g., 12345.6. Numbers with more than five digits are printed in scientific notation, e.g., 1.234567E+5. Similarly, by default, any number with eleven or more zeros after the decimal point is printed in scientific notation.
When scientific_notation is called with the numerical argument m a number with more than m digits before the decimal point, or m or more zeros after the decimal point, is printed in scientific notation. When scientific_notation is called with a list $\{m, n\}$, a number with more than m digits before the decimal point, or n or more zeros after the decimal point is printed in scientific notation.

Examples

on rounded;

```
12345.6; }\quad=>\quad12345.
123456.5; }\quad=>\quad1.234565e+
0.00000000000000012; }\quad=>\quad1.2\textrm{e}-1
scientific_notation 20; }=>\mathrm{ 5,11
5: 123456.7; }\quad=>\quad123456.
0.00000000000000012; }\quad=>\quad0.0000000000000001
```


9.35 SHARE

SHARE

Declaration

The share declaration allows access to its arguments by both algebraic and symbolic modes.

$$
\text { share identifier }\{, \text { identifier }\} *
$$

identifier can be any valid REDUCE identifier.

Comments

Programming in symbolic as well as algebraic mode allows you a wider range of techniques than just algebraic mode alone. Expressions do not cross the boundary since they have different representations, unless the share declaration is used. For more information on using symbolic mode, see the REDUCE User's Manual, and the Standard Lisp Report.
You should be aware that a previously-declared array is destroyed by the share declaration. Scalar variables retain their values. You can share a declared matrix that has not yet been dimensioned so that it can be used by both modes. Values that are later put into the matrix are accessible from symbolic mode too, but not by the usual matrix reference mechanism. In symbolic mode, a matrix is stored as a list whose first element is MAT, and whose next elements are the rows of the matrix stored as lists of the individual elements. Access in symbolic mode is by the operators first, second, third and rest.

9.36 SYMBOLIC

SYMBOLIC

The symbolic command changes REDUCE's mode of operation to symbolic. When symbolic is followed by an expression, that expression is evaluated in symbolic mode, but REDUCE's mode is not changed. It is equivalent to the lisp command.

Examples

```
symbolic; }\quad=>\quad\mathrm{ NIL
cdr '(a b c); }\quad=>\quad(B C
algebraic;
x + symbolic car '(y z); 知 + Y
```


9.37 SYMMETRIC

SYMMETRIC
 Declaration

When an operator is declared symmetric, its arguments are reordered to conform to the internal ordering of the system.

```
symmetric identifier{,identifier}*
```

identifier is an identifier that has been declared an operator.

```
Examples
operator m,n;
symmetric m,n;
m(y,a,\operatorname{sin}(x)); 㥯(SIN(X),A,Y)
n(z,m(b,a,q)); 寽(M(A,B,Q),Z)
```


Comments

If identifier has not been declared to be an operator, the flag symmetric is still attached to it. When identifier is subsequently used as an operator, the message Declareidentifier operator ? (Y or N) is printed. If the user replies y , the symmetric property of the operator is used.

9.38 TR

TR

Declaration

The tr declaration is used to trace system or user-written procedures. It is only useful to those with a good knowledge of both Lisp and the internal formats used by REDUCE.

$$
\operatorname{tr} \operatorname{name}\{, n a m e\} *
$$

name is the name of a REDUCE system procedure or one of your own procedures.

Examples

The system procedure prepsq is traced, which prepares REDUCE standard forms for printing by converting them to a Lisp prefix form.

```
tr prepsq; }\quad=>\quad(PREPSQ
x**2 + y; 列
    PREPSQ entry:
        Arg 1: (((((X . 2) . 1) ((Y . 1) . 1)) . 1)
    PREPSQ return value = (PLUS (EXPT X 2) Y)
    PREPSQ entry:
        Arg 1: (1 . 1)
    PREPSQ return value = 1
        X 2}+
untr prepsq; }=>\mathrm{ (PREPSQ)
```


Comments

This example is for a PSL-based system; the above format will vary if other Lisp systems are used.
When a procedure is traced, the first lines show entry to the procedure and the arguments it is given. The value returned by the procedure is printed upon exit. If you are tracing several procedures, with a call to one of them inside the other, the inner trace will be indented showing procedure nesting. There are no trace options. However, the format of the trace depends on the underlying Lisp system used. The
trace can be removed with the command untr. Note that trace, below, is a matrix operator, while tr does procedure tracing.

9.39 UNTR

UNTR

Declaration

The untr declaration is used to remove a trace from system or user-written procedures declared with tr. It is only useful to those with a good knowledge of both Lisp and the internal formats used by REDUCE.

```
untr name{,name}*
```

name is the name of a REDUCE system procedure or one of your own procedures that has previously been the argument of a tr declaration.

9.40 VARNAME

VARNAME

Declaration

The declaration varname instructs REDUCE to use its argument as the default Fortran (when fort is on) or structr identifier and identifier stem, rather than using ANS.

varname identifier

identifier can be any combination of one or more alphanumeric characters. Try to avoid REDUCE reserved words.

Examples

```
varname ident; }\quad=>\quad\mathrm{ IDENT
```

on fort;

```
x**2 + 1; }\quad=>\quad\mathrm{ IDENT=X**2+1.
```

off fort,exp;
structr $(((\mathrm{x}+\mathrm{y}) * * 2+\mathrm{z}) * * 3) ; \Rightarrow$ IDENT2 3
where

```
    IDENT2 := IDENT1 }\mp@subsup{}{}{2}+\textrm{Z
    IDENT1 := X + Y
```


Comments

exp was turned off so that structr could show the structure. If exp had been on, the expression would have been expanded into a polynomial.

9.41 WEIGHT

WEIGHT

Command

The weight command is used to attach weights to kernels for asymptotic constraints.

```
weight kernel = number
```

kernel must be a REDUCE kernel, number must be a positive integer, not 0 .

Examples

```
a := (x+y)**4; \(\Rightarrow\)
    \(\mathrm{A}:=\mathrm{X}^{4}+4 * \mathrm{X}^{3} * \mathrm{Y}+6 * \mathrm{X}^{2} * \mathrm{Y}^{2}+4 * \mathrm{X} * \mathrm{Y}^{3}+\mathrm{Y}^{4}\)
```

weight $\mathrm{x}=2, \mathrm{y}=3$;
wtlevel 8;
$\mathrm{a} ; \quad \Rightarrow \quad \mathrm{X}^{4}$
wtlevel 10;
$\begin{array}{ll}\text { a; } & \Rightarrow \quad \mathrm{X}^{2} *\left(6 * \mathrm{Y}^{2}+4 * \mathrm{X} * \mathrm{Y}+\mathrm{X}^{2}\right) \\ \operatorname{int}(\mathrm{x} * * 2, \mathrm{x}) ; & \Rightarrow \quad * * * * * \mathrm{X} \text { invalid as KERNEL }\end{array}$

Comments

Weights and wtlevel are used for asymptotic constraints, where higher-order terms are considered insignificant.

Weights are originally equivalent to 0 until set by a weight command. To remove a weight from a kernel, use the clear command. Weights once assigned cannot be changed without clearing the identifier. Once a weight is assigned to a kernel, it is no longer a kernel and cannot be used in any REDUCE commands or operators that require kernels, until the weight is cleared. Note that terms are ordered by greatest weight.

The weight level of the system is set by wtlevel, initially at 2 . Since no kernels have weights, no effect from wtlevel can be seen. Once you assign weights to kernels, you must set wtlevel correctly for the desired operation. When weighted
variables appear in a term, their weights are summed for the total weight of the term (powers of variables multiply their weights). When a term exceeds the weight level of the system, it is discarded from the result expression.

9.42 WHERE

WHERE

Operator

The where operator provides an infix notation for one-time substitutions for kernels in expressions.

```
expression where kernel =expression \(\{\), ,kernel \(=\) expression \(\} *\)
```

expression can be any REDUCE scalar expression, kernel must be a kernel. Alternatively a rule or a rule list can be a member of the right-hand part of a where expression.

Examples

```
x**2 + 17*x*y + 4*y**2 where x=1,y=2;
```

 \(\Rightarrow \quad 51\)
 for i := 1:5 collect $x * * i * q$ where $q=$ for j := 1:i product j;

$$
\Rightarrow \quad\left\{X, 2 * X^{2}, 6 * X^{3}, 24 * X^{4}, 120 * X^{5}\right\}
$$

$\mathrm{x} * * 2+\mathrm{y}+\mathrm{z}$ where $\mathrm{z}=\mathrm{y} * * 3, \mathrm{y}=3$;

$$
\Rightarrow \quad X^{2}+Y^{3}+3
$$

Comments

Substitution inside a where expression has no effect upon the values of the kernels outside the expression. The where operator has the lowest precedence of all the infix operators, which are lower than prefix operators, so that the substitutions apply to the entire expression preceding the where operator. However, where is applied before command keywords such as then, repeat, or do.

A rule or a rule set in the right-hand part of the where expression act as if the rules were activated by let immediately before the evaluation of the expression and deactivated by clearrules immediately afterwards.
where gives you a natural notation for auxiliary variables in expressions. As the second example shows, the substitute expression can be a command to be evaluated. The substitute assignments are made in parallel, rather than sequentially, as the last example shows. The expression resulting from the first round of substitutions
is not reexamined to see if any further such substitutions can be made. where can also be used to define auxiliary variables in procedure definitions.

9.43 WHILE

WHILE

Command

The while command causes a statement to be repeatedly executed until a given condition is true. If the condition is initially false, the statement is not executed at all.

while condition do statement

condition is given by a logical operator, statement must be a single REDUCE statement, or a group (<<...>>) or begin...end block.

Examples

```
a := 10;
    A A := 10
while a <= 12 do <<write a; a := a + 1>>;
    => 10
```

11
12
while a < 5 do <<write a; a := a + 1>>;
$\Rightarrow \quad$ nothing is printed

9.44 WTLEVEL

WTLEVEL

Command

In conjunction with weight, wtlevel is used to implement asymptotic constraints. Its default value is 2 .

```
wtlevel expression
```

To change the weight level, expression must evaluate to a positive integer that is the greatest weight term to be retained in expressions involving kernels with weight assignments. wtlevel returns the new weight level. If you want the current weight level, but not change it, say wtlevel nil.

```
Examples
(x+y)**4; }\quad=>\quad\mp@subsup{X}{}{4}+4*\mp@subsup{X}{}{3}*Y+6*\mp@subsup{X}{}{2}*\mp@subsup{Y}{}{2}+4*X*\mp@subsup{Y}{}{3}+\mp@subsup{Y}{}{4
weight x=2,y=3;
wtlevel 8;
(x+y)**4; }\quad=>\quad\mp@subsup{X}{}{4
wtlevel 10;
(x+y)**4; }\quad=>\quad\mp@subsup{X}{}{2}*(6*Y\mp@subsup{Y}{}{2}+4*X*Y + X () , 
int (x**2,x); 列 ***** X invalid as KERNEL
```


Comments

wtlevel is used in conjunction with the command weight to enable asymptotic constraints. Weight of a term is computed by multiplying the weights of each variable in it by the power to which it has been raised, and adding the resulting weights for each variable. If the weight of the term is greater than wtlevel, the term is dropped from the expression, and not used in any further computation involving the expression.

Once a weight has been attached to a kernel, it is no longer recognized by the system as a kernel, though still a variable. It cannot be used in REDUCE commands and operators that need kernels. The weight attachment can be undone with a clear command. wtlevel can be changed as desired.

10 Input and Output

10.1 IN

IN

Command

The in command takes a list of file names and inputs each file into the system.

$$
\text { in filename }\{, f i l e n a m e\} *
$$

filename must be in the current directory, or be a valid pathname. If the file name is not an identifier, double quote marks (") are needed around the file name.

Comments

A message is given if the file cannot be found, or has a mistake in it.
Ending the command with a semicolon causes the file to be echoed to the screen; ending it with a dollar sign does not echo the file. If you want some but not all of a file echoed, turn the switch echo on or off in the file.

An efficient way to develop procedures in REDUCE is to write them into a file using a system editor of your choice, and then input the files into an active REDUCE session. REDUCE reparses the procedure as it takes information from the file, overwriting the previous procedure definition. When it accepts the procedure, it echoes its name to the screen. Data can also be input to the system from files.
Files to be read in should always end in end; to avoid end-of-file problems. Note that this is an additional end; to any ending procedures in the file.

10.2 INPUT

INPUT

Command

The input command returns the input expression to the REDUCE numbered prompt that is its argument.

```
input(number) or input number
```

number must be between 1 and the current REDUCE prompt number.

Comments

An expression brought back by input can be reexecuted with new values or switch settings, or used as an argument in another expression. The command ws brings back the results of a numbered REDUCE statement. Two lists contain every input and every output statement since the beginning of the session. If your session is very long, storage space begins to fill up with these expressions, so it is a good idea to end the session once in a while, saving needed expressions to files with the saveas and out commands.

Switch settings and let statements can also be reexecuted by using input.
An error message is given if a number is called for that has not yet been used.

10.3 OUT

OUT

Command

The out command directs output to the filename that is its argument, until another out changes the output file, or shut closes it.

out filename or out "pathname " or out t

filename must be in the current directory, or be a valid complete file description for your system. If the file name is not in the current directory, quote marks are needed around the file name. If the file already exists, a message is printed allowing you to decide whether to supersede the contents of the file with new material.

Comments

To restore output to the terminal, type out t, or shut the file. When you use out t, the file remains available, and if you open it again (with another out), new material is appended rather than overwriting.
To write a file using out that can be input at a later time, the switch nat must be turned off, so that the standard linear form is saved that can be read in by in. If nat is on, exponents are printed on the line above the expression, which causes trouble when REDUCE tries to read the file.

There is a slight complication if you are using the out command from inside a file to create another file. The echo switch is normally off at the top-level and on while reading files (so you can see what is being read in). If you create a file using out at the top-level, the result lines are printed into the file as you want them. But if you create such a file from inside a file, the echo switch is on, and every line is echoed, first as you typed it, then as REDUCE parsed it, and then once more for the file. Therefore, when you create a file from a file, you need to turn echo off explicitly before the out command, and turn it back on when you shut the created file, so your executing file echoes as it should. This behavior also means that as you watch the file execute, you cannot see the lines that are being put into the out file. As soon as you turn echo on, you can see output again.

10.4 SHUT

SHUT

Command
The shut command closes output files.

$$
\text { shut filename }\{, \text { filename }\} *
$$

filename must have been a file opened by out.

Comments

A file that has been opened by out must be shut before it is brought in by in. Files that have been opened by out should always be shut before the end of the REDUCE session, to avoid either loss of information or the printing of extraneous information into the file. In most systems, terminating a session by bye closes all open output files.

11 Elementary Functions

11.1 ACOS

ACOS

Operator

The acos operator returns the arccosine of its argument.

acos(expression) or acos simple_expression

expression may be any scalar REDUCE expression, not an array, matrix or vector expression. simple_expression must be a single identifier or begin with a prefix operator name.

Examples

```
acos(ab); }\quad=>\quadACOS(AB
acos 15; }\quad=>\quad\operatorname{ACOS}(15
```


on rounded;
res $:=\operatorname{acos(sqrt(2)/2);~} \Rightarrow \quad$ RES $:=0.785398163397$
res-pi/4; $\quad \Rightarrow \quad 0$

Comments

An explicit numeric value is not given unless the switch rounded is on and the argument has an absolute numeric value less than or equal to 1 .

11.2 ACOSH

ACOSH

Operator

acosh represents the hyperbolic arccosine of its argument. It takes an arbitrary scalar expression as its argument. The derivative of acosh is known to the system. Numerical values may also be found by turning on the switch rounded.

acosh(expression) or acosh simple_expression

expression may be any scalar REDUCE expression, not an array, matrix or vector expression. simple_expression must be a single identifier or begin with a prefix operator name.

Examples

```
acosh a; }\quad=>\quad\operatorname{ACOSH}(A
acosh(0); }\quad=>\quad\mathrm{ ACOSH(0)
df(acosh(a**2),a); m - 2*SQRT(A4-1)*A
int(acosh(x),x); 列 (ANT(ACOSH(X),X)
```


Comments

You may attach functionality by defining acosh to be the inverse of cosh. This is done by the commands

```
put('cosh,'inverse,'acosh);
put('acosh,'inverse,'cosh);
```

You can write a procedure to attach integrals or other functions to acosh. You may wish to add a check to see that its argument is properly restricted.

11.3 ACOT

ACOT

Operator

acot represents the arccotangent of its argument. It takes an arbitrary scalar expression as its argument. The derivative of acot is known to the system. Numerical values may also be found by turning on the switch rounded.
acot(expression) or acot simple_expression
expression may be any scalar REDUCE expression, not an array, matrix or vector expression. simple_expression must be a single identifier or begin with a prefix operator name. You can add functionality yourself with let and procedures.

11.4 ACOTH

ACOTH

Operator

acoth represents the inverse hyperbolic cotangent of its argument. It takes an arbitrary scalar expression as its argument. The derivative of acoth is known to the system. Numerical values may also be found by turning on the switch rounded.

acoth(expression) or acoth simple_expression

expression may be any scalar REDUCE expression, not an array, matrix or vector expression. simple_expression must be a single identifier or begin with a prefix operator name. You can add functionality yourself with let and procedures.

11.5 ACSC

ACSC

Operator

The acsc operator returns the arccosecant of its argument.

acsc(expression) or acsc simple_expression

expression may be any scalar REDUCE expression, not an array, matrix or vector expression. simple_expression must be a single identifier or begin with a prefix operator name.
Examples

```
acsc(ab); }\quad=>\quad\operatorname{ACSC}(AB
acsc 15; }\quad=>\quad\operatorname{ACSC}(15
```



```
on rounded;
res := acsc(2/sqrt(3)); => RES := 1.0471975512
res-pi/3; }\quad=>\quad
```

Comments
An explicit numeric value is not given unless the switch rounded is on and the argument has an absolute numeric value less than or equal to 1 .

11.6 ACSCH

ACSCH

Operator

The acsch operator returns the hyperbolic arccosecant of its argument.

acsch(expression) or acsch simple_expression

expression may be any scalar REDUCE expression, not an array, matrix or vector expression. simple_expression must be a single identifier or begin with a prefix operator name.

Examples

```
acsch(ab); }\quad=>\quad\operatorname{ACSCH}(AB
acsch 15; }\quad=>\quad\operatorname{ACSCH}(15
    2 2
df(acsch(x*y),x); m - -SQRT(X *Y + 1)
```

on rounded;
res $:=\operatorname{acsch}(3) ; \quad \Rightarrow \quad$ RES $:=0.327450150237$

Comments

An explicit numeric value is not given unless the switch rounded is on and the argument has an absolute numeric value less than or equal to 1 .

11.7 ASEC

ASEC

Operator

The asec operator returns the arccosecant of its argument.

asec(expression) or asec simple_expression

expression may be any scalar REDUCE expression, not an array, matrix or vector expression. simple_expression must be a single identifier or begin with a prefix operator name.

Examples

```
asec(ab); }\quad=>\quad\operatorname{ASEC}(AB
asec 15; }\quad=>\quad\operatorname{ASEC(15)
```



```
on rounded;
res := asec sqrt(2); }=>\mathrm{ RES := 0.785398163397
res-pi/4; }\quad=>\quad
```

Comments
An explicit numeric value is not given unless the switch rounded is on and the argument has an absolute numeric value greater or equal to 1.

11.8 ASECH

ASECH

Operator

asech represents the hyperbolic arccosecant of its argument. It takes an arbitrary scalar expression as its argument. The derivative of asech is known to the system. Numerical values may also be found by turning on the switch rounded.
asech(expression) or asech simple_expression
expression may be any scalar REDUCE expression, not an array, matrix or vector expression. simple_expression must be a single identifier or begin with a prefix operator name.

Examples

```
asech a; }\quad=>\quad\operatorname{ASECH}(A
asech(1); }\quad=>\quad
df(acosh(a**2),a); =>\quad 2*SQRT(-\mp@subsup{A}{}{4}+1)
int(asech(x),x); 列 INT(ASECH(X),X)
```


Comments

You may attach functionality by defining asech to be the inverse of sech. This is done by the commands

```
put('sech,'inverse,'asech);
put('asech,'inverse,'sech);
```

You can write a procedure to attach integrals or other functions to asech. You may wish to add a check to see that its argument is properly restricted.

11.9 ASIN

ASIN

Operator

The asin operator returns the arcsine of its argument.

asin(expression) or asin simple_expression

expression may be any scalar REDUCE expression, not an array, matrix or vector expression. simple_expression must be a single identifier or begin with a prefix operator name.

Examples

asin(givenangle); \Rightarrow ASIN(GIVENANGLE)
$\operatorname{asin}(5) ; \quad \Rightarrow \quad \operatorname{ASIN}(5)$
$\operatorname{df(\operatorname {asin}(2*x),x);\Rightarrow \quad 2*\operatorname {SQRT}(-4*\mathrm {X}^{2}+1))} \begin{gathered}2 \\ 4 * \mathrm{X}^{2}-1\end{gathered}$
on rounded;
asin .5; $\quad \Rightarrow \quad 0.523598775598$
asin(sqrt(3)); $\quad \Rightarrow \quad \operatorname{ASIN}(1.73205080757)$
$\operatorname{asin}(\operatorname{sqrt}(3) / 2) ; \quad \Rightarrow \quad 1.04719755120$

Comments

A numeric value is not returned by asin unless the switch rounded is on and its argument has an absolute value less than or equal to 1 .

11.10 ASINH

ASINH

Operator

The asinh operator returns the hyperbolic arcsine of its argument. The derivative of asinh and some simple transformations are known to the system.

```
asinh(expression) or asinh simple_expression
```

expression may be any scalar REDUCE expression, not an array, matrix or vector expression. simple_expression must be a single identifier or begin with a prefix operator name.

```
Examples
asinh d; }\quad=>\quad\mathrm{ ASINH(D)
asinh(1); }\quad=>\quad\mathrm{ ASINH(1)
df(asinh (2*x),x); =>\quad}\frac{2*\operatorname{SQRT}(4*\mp@subsup{\textrm{X}}{}{2}+1))}{----
```


Comments

You may attach further functionality by defining asinh to be the inverse of sinh. This is done by the commands

```
put('sinh,'inverse,'asinh);
put('asinh,'inverse,'sinh);
```

A numeric value is not returned by asinh unless the switch rounded is on and its argument evaluates to a number.

11.11 ATAN

ATAN

Operator

The atan operator returns the arctangent of its argument.

atan(expression) or atan simple_expression

expression may be any scalar REDUCE expression, not an array, matrix or vector expression. simple_expression must be a single identifier or begin with a prefix operator name.

Examples

atan(middle); $\quad \Rightarrow \quad$ ATAN (MIDDLE)
on rounded;
atan 45; $\quad \Rightarrow \quad 1.54857776147$
off rounded;
$\operatorname{int}(\operatorname{atan}(x), x) ; \quad \Rightarrow \quad \begin{gathered}2 * \operatorname{ATAN}(X) * X-\operatorname{LOG}\left(X^{2}+1\right) \\ 2 * Y\end{gathered}$
$\begin{aligned} & \operatorname{df}(\operatorname{atan}(\mathrm{y} * * 2), \mathrm{y}) ; \Rightarrow 2 * \mathrm{Y} \\ &-\mathrm{Y} \\ & \mathrm{Y}^{4}+1\end{aligned}$
Comments
A numeric value is not returned by atan unless the switch rounded is on and its argument evaluates to a number.

11.12 ATANH

ATANH

Operator

The atanh operator returns the hyperbolic arctangent of its argument. The derivative of asinh and some simple transformations are known to the system.

```
atanh(expression) or atanh simple_expression
```

expression may be any scalar REDUCE expression, not an array, matrix or vector expression. simple_expression must be a single identifier or begin with a prefix operator name.

Examples

```
atanh aa; }\quad=>\quad\mathrm{ ATANH(AA)
atanh(1); }\quad=>\quad\mathrm{ ATANH(1)
df(atanh (x*y),y); m --------
```


Comments

A numeric value is not returned by asinh unless the switch rounded is on and its argument evaluates to a number. You may attach additional functionality by defining atanh to be the inverse of tanh. This is done by the commands

```
put('tanh,'inverse,' atanh);
put('atanh,'inverse,'tanh);
```


11.13 ATAN2

ATAN2

Operator

atan2(expression, expression)
expression is any valid scalar REDUCE expression. In rounded mode, if a numerical value exists, atan 2 returns the principal value of the arc tangent of the second argument divided by the first in the range $[-\mathrm{pi},+\mathrm{pi}]$ radians, using the signs of both arguments to determine the quadrant of the return value. An expression in terms of atan2 is returned in other cases.

Examples

```
atan2(3,2); }=>\quad\operatorname{ATAN2}(3,2)
```

on rounded;
$\operatorname{atan} 2(3,2) ; \quad 0.982793723247$
$\operatorname{atan} 2(\mathrm{a}, \mathrm{b}) ; \quad \Rightarrow \quad \operatorname{ATAN2}(\mathrm{A}, \mathrm{B})$;
$\operatorname{atan} 2(1,0) ; \quad 1.57079632679$

Comments

atan2 returns a numeric value only if rounded is on. Then atan2 is calculated to the current degree of floating point precision.

11.14 COS

cos

Operator

The cos operator returns the cosine of its argument.
cos(expression) or cos simple_expression
expression is any valid scalar REDUCE expression, simple_expression is a single identifier or begins with a prefix operator name.
Examples

```
cos abc; }\quad=>\quad\operatorname{COS}(ABC
cos(pi); }\quad=>\quad-
cos 4; }\quad=>\quad\operatorname{COS}(4
on rounded;
cos(4); }\quad=>\quad-0.65364362086
cos log 5; }\quad|\quad-0.038631969933
```


Comments

cos returns a numeric value only if rounded is on. Then the cosine is calculated to the current degree of floating point precision.

11.15 COSH

COSH

Operator

The cosh operator returns the hyperbolic cosine of its argument. The derivative of cosh and some simple transformations are known to the system.
cosh(expression) or cosh simple_expression
expression may be any scalar REDUCE expression, not an array, matrix or vector expression. simple_expression must be a single identifier or begin with a prefix operator name.

```
Examples
cosh b; }\quad=>\quad\operatorname{COSH}(B
cosh(0); }\quad=>\quad
df(\operatorname{cosh}(x*y),x); m SINH (X*Y)*Y
int (cosh(x),x); m SINH(X)
```


Comments

You may attach further functionality by defining its inverse (see acosh). A numeric value is not returned by cosh unless the switch rounded is on and its argument evaluates to a number.

11.16 COT

COT

Operator

cot represents the cotangent of its argument. It takes an arbitrary scalar expression as its argument. The derivative of acot and some simple properties are known to the system.

```
cot(expression) or cot simple_expression
```

expression may be any scalar REDUCE expression. simple_expression must be a single identifier or begin with a prefix operator name.

```
Examples
cot(a)*\operatorname{tan}(\textrm{a}); => COT(A)*TAN(A))
cot(1); }\quad=>\quad\operatorname{COT}(1
df(\operatorname{cot}(2*x),x); => - 2*(COT (2*X) }\mp@subsup{}{}{2}+1
```

Comments
Numerical values of expressions involving cot may be found by turning on the switch rounded.

11.17 COTH

COTH

Operator

The coth operator returns the hyperbolic cotangent of its argument. The derivative of coth and some simple transformations are known to the system.

```
coth(expression) or coth simple_expression
```

expression may be any scalar REDUCE expression. simple_expression must be a single identifier or begin with a prefix operator name.

Examples

$\mathrm{df}(\operatorname{coth}(\mathrm{x} * \mathrm{y}), \mathrm{x}) ; \Rightarrow \quad-\mathrm{Y} *\left(\operatorname{COTH}(\mathrm{X} * \mathrm{Y})^{2}-1\right)$
coth acoth $z ; \quad \Rightarrow \quad Z$
Comments
You can write let statements and procedures to add further functionality to coth if you wish. Numerical values of expressions involving coth may also be found by turning on the switch rounded.

11.18 CSC

CSC

Operator

The csc operator returns the cosecant of its argument. The derivative of csc and some simple transformations are known to the system.

```
csc(expression) or csc simple_expression
```

expression may be any scalar REDUCE expression. simple_expression must be a single identifier or begin with a prefix operator name.

Examples

$\csc (\mathrm{q}) * \sin (\mathrm{q}) ; \quad \Rightarrow \quad \operatorname{CSC}(\mathrm{Q}) * \operatorname{SIN}(\mathrm{Q})$
$\mathrm{df}(\csc (\mathrm{x} * \mathrm{y}), \mathrm{x}) ; \quad \Rightarrow \quad-\operatorname{COT}(\mathrm{X} * \mathrm{Y}) * \operatorname{CSC}(\mathrm{X} * \mathrm{Y}) * \mathrm{Y}$

Comments

You can write let statements and procedures to add further functionality to csc if you wish. Numerical values of expressions involving csc may also be found by turning on the switch rounded.

11.19 CSCH

CSCH

Operator

The cosh operator returns the hyperbolic cosecant of its argument. The derivative of csch and some simple transformations are known to the system.

```
csch(expression) or csch simple_expression
```

expression may be any scalar REDUCE expression, not an array, matrix or vector expression. simple_expression must be a single identifier or begin with a prefix operator name.

```
Examples
csch b; }\quad=>\quad\operatorname{CSCH}(B
csch(0); }\quad=>\quad
df(\operatorname{csch}(x*y),x); 夏 - COTH (X*Y)*CSCH}(X*Y)*
int(csch(x),x); m INT(CSCH (X),X)
```


Comments

A numeric value is not returned by csch unless the switch rounded is on and its argument evaluates to a number.

11.20 ERF

ERF

Operator

The erf operator represents the error function, defined by

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int e^{-x^{2}} d x
$$

A limited number of its properties are known to the system, including the fact that it is an odd function. Its derivative is known, and from this, some integrals may be computed. However, a complete integration procedure for this operator is not currently included.
Examples
$\begin{array}{llc}\operatorname{erf}(0) ; & \Rightarrow & 0 \\ \operatorname{erf}(-a) ; & \Rightarrow & -\operatorname{ERF}(A) \\ d f(\operatorname{erf}(x * * 2), x) ; & \Rightarrow & -4 * \operatorname{SQRT}(\mathrm{PI}) * X \\ & & \mathrm{E}^{4} \\ & & * \mathrm{PI}\end{array}$

11.21 EXP

EXP

Operator

The exp operator returns e raised to the power of its argument.
$\exp ($ expression $)$ or \exp simple_expression
expression can be any valid REDUCE scalar expression. simple_expression must be a single identifier or begin with a prefix operator.

```
Examples
```



```
exp(11); }\quad=>\quad\mp@subsup{E}{}{1
on rounded;
exp sin(pi/3); 列 2.37744267524
```


Comments

Numeric values are returned only when rounded is on. The single letter e with the exponential operator ~ or ** may be substituted for exp without change of function.

11.22 SEC

SEC

Operator

The sec operator returns the secant of its argument.
sec (expression) or sec simple_expression
expression is any valid scalar REDUCE expression, simple_expression is a single identifier or begins with a prefix operator name.
Examples

```
sec abc; }\quad=>\quad\operatorname{SEC}(ABC
sec(pi); }\quad=>\quad-
sec 4; }\quad=>\quad\operatorname{SEC}(4
on rounded;
sec(4); }\quad=>\quad-1.5298856564
sec log 5; }\quad|\quad-25.885296600
```

Comments
sec returns a numeric value only if rounded is on. Then the secant is calculated to the current degree of floating point precision.

11.23 SECH

SECH

Operator

The sech operator returns the hyperbolic secant of its argument.
sech(expression) or sech simple_expression
expression is any valid scalar REDUCE expression, simple_expression is a single identifier or begins with a prefix operator name.
Examples

```
sech abc; }\quad=>\quad\operatorname{SECH}(ABC
sech(0); }\quad=>\quad
sech 4; }\quad=>\quad\operatorname{SECH}(4
on rounded;
```



```
sech log 5; }=>\quad0.38461538461
```

Comments
sech returns a numeric value only if rounded is on. Then the expression is calculated to the current degree of floating point precision.

11.24 SIN

SIN

Operator

The sin operator returns the sine of its argument.
sin(expression) or sin simple_expression
expression is any valid scalar REDUCE expression, simple_expression is a single identifier or begins with a prefix operator name.

Examples

\sin aa; $\quad \Rightarrow \quad \operatorname{SIN}(A A)$
$\sin (\mathrm{pi} / 2) ; \quad \Rightarrow \quad 1$
on rounded;
$\sin 3 ; \quad \Rightarrow \quad 0.14112000806$
$\sin (\mathrm{pi} / 2) ; \quad \Rightarrow \quad 1.0$

Comments

sin returns a numeric value only if rounded is on. Then the sine is calculated to the current degree of floating point precision. The argument in this case is assumed to be in radians.

11.25 SINH

SINH

Operator

The sinh operator returns the hyperbolic sine of its argument. The derivative of sinh and some simple transformations are known to the system.

```
sinh(expression) or sinh simple_expression
```

expression may be any scalar REDUCE expression, not an array, matrix or vector expression. simple_expression must be a single identifier or begin with a prefix operator name.

Examples

```
sinh b; }\quad=>\quad\operatorname{SINH}(B
sinh(0); }\quad=>\quad
df(sinh (x**2),x); 稙 2*COSH (X }\mp@subsup{}{}{2})*\textrm{X
int(\operatorname{sinh}(4*x),x); =>
```

on rounded;
sinh $4 ; \quad \Rightarrow \quad 27.2899171971$
Comments
You may attach further functionality by defining its inverse (see asinh). A numeric value is not returned by sinh unless the switch rounded is on and its argument evaluates to a number.

11.26 TAN

Operator

The \tan operator returns the tangent of its argument.

$$
\tan (\text { expression }) \text { or } \tan \text { simple_expression }
$$

expression is any valid scalar REDUCE expression, simple_expression is a single identifier or begins with a prefix operator name.

Examples

```
tan a; }\quad=>\quad\mathrm{ TAN(A)
tan(pi/5); }\quad=>\quad\operatorname{TAN}(-\frac{\textrm{PI}}{5
on rounded; tan(pi/5); }=>0.72654252800
```


Comments

tan returns a numeric value only if rounded is on. Then the tangent is calculated to the current degree of floating point accuracy.
When rounded is on, no check is made to see if the argument of tan is a multiple of $\pi / 2$, for which the tangent goes to positive or negative infinity. (Of course, since REDUCE uses a fixed-point representation of $\pi / 2$, it produces a large but not infinite number.) You need to make a check for multiples of $\pi / 2$ in any program you use that might possibly ask for the tangent of such a quantity.

11.27 TANH

TANH

Operator

The tanh operator returns the hyperbolic tangent of its argument. The derivative of \tanh and some simple transformations are known to the system.
tanh (expression) or tanh simple_expression
expression may be any scalar REDUCE expression, not an array, matrix or vector expression. simple_expression must be a single identifier or begin with a prefix operator name.

Examples

```
tanh b; }\quad=>\quad\mathrm{ TANH(B)
tanh(0); }\quad=>\quad
df(tanh(x*y),x); }\quad=>\quad\textrm{Y}*(-\textrm{TANH}(\textrm{X}*\textrm{Y}\mp@subsup{)}{}{2}+1
int (tanh (x),x); }\quad=>\quad\operatorname{LOG}(\mp@subsup{E}{}{2*X}+1)-
on rounded; tanh 2; }=>0.96402758007
```


Comments

You may attach further functionality by defining its inverse (see atanh). A numeric value is not returned by tanh unless the switch rounded is on and its argument evaluates to a number.

12 General Switches

12.1 SWITCHES

SWITCHES
 Introduction

Switches are set on or off using the commands on or off, respectively. The default setting of the switches described in this section is off unless stated otherwise.

12.2 ALGINT

ALGINT
 Switch

When the algint switch is on, the algebraic integration module (which must be loaded from the REDUCE library) is used for integration.

Comments

Loading algint from the library automatically turns on the algint switch. An error message will be given if algint is turned on when the algint has not been loaded from the library.

12.3 ALLBRANCH

ALLBRANCH

Switch
When allbranch is on, the operator solve selects all branches of solutions. When allbranch is off, it selects only the principal branches. Default is on.

```
Examples
solve(log(sin}(x+3)),x); 
    {X=2*ARBINT(1)*PI - ASIN(1) - 3,
    X=2*ARBINT(1)*PI + ASIN(1) + PI - 3}
off allbranch;
solve(log(\operatorname{sin}(\textrm{x}+3)),x); 新 X=ASIN(1) - 3
```


Comments

arbint(1) indicates an arbitrary integer, which is given a unique identifier by REDUCE, showing that there are infinitely many solutions of this type. When allbranch is off, the single canonical solution is given.

12.4 ALLFAC

ALLFAC
 Switch

The allfac switch, when on, causes REDUCE to factor out automatically common products in the output of expressions. Default is on.

Examples

$\mathrm{x}+\mathrm{x} * \mathrm{y} * * 3+\mathrm{x} * * 2 * \cos (\mathrm{z}) ; \Rightarrow \mathrm{X} *\left(\operatorname{COS}(\mathrm{Z}) * \mathrm{X}+\mathrm{Y}^{3}+1\right)$
off allfac;
$\mathrm{x}+\mathrm{x} * \mathrm{y} * * 3+\mathrm{x} * * 2 * \cos (\mathrm{z}) ; \Rightarrow \operatorname{COS}(\mathrm{Z}) * \mathrm{X}^{2}+\mathrm{X} * \mathrm{Y}^{3}+\mathrm{X}$

Comments

The allfac switch has no effect when pri is off. Although the switch setting stays as it was, printing behavior is as if it were off.

12.5 ARBVARS

ARBVARS

Switch
When arbvars is on, the solutions of singular or underdetermined systems of equations are presented in terms of arbitrary complex variables (see arbcomplex). Otherwise, the solution is parametrized in terms of some of the input variables. Default is on.
Examples
solve (\{2x $+y, 4 x+2 y\},\{x, y\})$;
\Rightarrow
$\left\{\left\{x=-\frac{\operatorname{arbcomplex}(1)}{2}, y=\operatorname{arbcomplex}(1)\right\}\right\}$
solve(\{sqrt (x) $+\mathrm{y} * * 3-1\},\{\mathrm{x}, \mathrm{y}\})$;
$\Rightarrow \quad\left\{\left\{y=\operatorname{arbcomplex}(2), x=y^{6}-2 * y^{3}+1\right\}\right\}$
off arbvars;
solve (\{2x $+y, 4 x+2 y\},\{x, y\})$;

$$
\Rightarrow \quad\left\{\left\{x=-\frac{y}{2}\right\}\right\}
$$

solve(\{sqrt(x)+y**3-1\}, $\{\mathrm{x}, \mathrm{y}\})$; $\Rightarrow \quad\left\{\left\{\mathrm{x}=\mathrm{y}^{6}-2 * \mathrm{y}^{3}+1\right\}\right\}$

Comments

With arbvars off, the return value $\{\}\}$ means that the equations given to solve imply no relation among the input variables.

12.6 BALANCED_MOD

BALANCED_MOD

Switch

modular numbers are normally produced in the range $[0, \ldots n)$, where n is the current modulus. With balanced_mod on, the range $[-n / 2, n / 2]$, or more precisely [-floor ($(n$ $1) / 2)$, ceiling $((n-1) / 2)]$, is used instead.

Examples

```
setmod 7; }\quad=>\quad
on modular;
4; }\quad=>\quad
on balanced_mod;
4; =}\quad-
```


12.7 BFSPACE

BFSPACE
 Switch

Floating point numbers are normally printed in a compact notation (either fixed point or in scientific notation if SCIENTIFIC_NOTATION has been used). In some (but not all) cases, it helps comprehensibility if spaces are inserted in the number at regular intervals. The switch bfspace, if on, will cause a blank to be inserted in the number after every five characters.
Examples
on rounded;
$1.2345678 ; \quad \Rightarrow \quad 1.2345678$
on bfspace;
1.2345678; $\quad \Rightarrow \quad 1.2345678$

Comments
bfspace is normally off.

12.8 COMBINEEXPT

COMBINEEXPT

Switch

REDUCE is in general poor at surd simplification. However, when the switch combineexpt is on, the system attempts to combine exponentials whenever possible.

Examples
$3^{\wedge}(1 / 2) * 3^{\wedge}(1 / 3) * 3^{\wedge}(1 / 6) ; \Rightarrow \operatorname{SQRT}(3) * 3^{-\frac{1}{3}-\quad * 3^{-\frac{1}{6}}-1 .}$
on combineexpt;
ws; $\quad \Rightarrow \quad 3$

12.9 COMBINELOGS

COMBINELOGS

Switch

In many cases it is desirable to expand product arguments of logarithms, or collect a sum of logarithms into a single logarithm. Since these are inverse operations, it is not possible to provide rules for doing both at the same time and preserve the REDUCE concept of idempotent evaluation. As an alternative, REDUCE provides two switches expandlogs and combinelogs to carry out these operations.
Examples

```
on expandlogs;
log(x*y); }\quad=>\quadLOG(X)+LOG(Y
on combinelogs;
ws; }\quad=>\quadLOG(X*Y
```


Comments

At the present time, it is possible to have both switches on at once, which could lead to infinite recursion. However, an expression is switched from one form to the other in this case. Users should not rely on this behavior, since it may change in the next release.

12.10 COMP

COMP

Switch

When comp is on, any succeeding function definitions are compiled into a fasterrunning form. Default is off.
Examples
The following procedure finds Fibonacci numbers recursively. Create a new file "refib" in your current directory with the following lines in it:
procedure refib(n);
if fixp n and $\mathrm{n}>=0$ then
if n <= 1 then 1
else refib (n-1) + refib(n-2)
else rederr "nonnegative integer only";
end;
Now load REDUCE and run the following:

```
on time; }\quad=>\quad\mathrm{ Time: 100 ms
in "refib"$ }\quad=>\quad\mathrm{ Time: 0 ms
    # REFIB
    # Time: 260 ms
    # Time: 20 ms
refib(80); }\quad=>\quad3788906237314390
    # Time: 14840 ms
on comp; }\quad=>\quad\mathrm{ Time: 80 ms
in "refib"$ }\quad=>\quad\mathrm{ Time: 20 ms
    # REFIB
    # Time: 640 ms
refib(80); }\quad=>\quad3788906237314390
    # Time: 10940 ms
```


Comments

Note that the compiled procedure runs faster. Your time messages will differ depending upon which system you have. Compiled functions remain so for the duration of the REDUCE session, and are then lost. They must be recompiled if wanted in another session. With the switch time on as shown above, the CPU time used in executing the command is returned in milliseconds. Be careful not to leave comp on unless you want it, as it makes the processing of procedures much slower.

12.11 COMPLEX

COMPLEX

Switch

When the complex switch is on, full complex arithmetic is used in simplification, function evaluation, and factorization. Default is off.

Examples

```
factorize \((a * * 2+b * * 2) ; \quad \Rightarrow \quad\left\{\left\{A^{2}+B^{2}, 1\right\}\right\}\)
on complex;
factorize (a**2 \(+\mathrm{b} * * 2\) ) ; \(\quad \Rightarrow \quad\{\{\mathrm{A}+\mathrm{I} * \mathrm{~B}, 1\},\{\mathrm{A}-\mathrm{I} * \mathrm{~B}, 1\}\}\)
\((\mathrm{x} * * 2+\mathrm{y} * * 2) /(\mathrm{x}+\mathrm{i} * \mathrm{y}) ; \Rightarrow \mathrm{X}-\mathrm{I} * \mathrm{Y}\)
on rounded; \(\quad \Rightarrow\)
    *** Domain mode COMPLEX changed to COMPLEX_FLOAT
sqrt \((-17) ; \quad \Rightarrow \quad 4.12310562562 * I\)
\(\log (7 * i) ; \quad \Rightarrow \quad 1.94591014906+1.57079632679 * I\)
```


Comments

Complex floating-point can be done by turning on rounded in addition to complex. With complex off however, REDUCE knows that i is the square root of -1 but will not carry out more complicated complex operations. If you want complex denominators cleared by multiplication by their conjugates, turn on the switch rationalize.

12.12 CREF

CREF

Switch

The switch cref invokes the CREF cross-reference program that processes a set of procedure definitions to produce a summary of their entry points, undefined procedures, non-local variables and so on. The program will also check that procedures are called with a consistent number of arguments, and print a diagnostic message otherwise.

The output is alphabetized on the first seven characters of each function name.
To invoke the cross-reference program, cref is first turned on. This causes the program to load and the cross-referencing process to begin. After all the required definitions are loaded, turning cref off will cause a cross-reference listing to be produced.

Comments

Algebraic procedures in REDUCE are treated as if they were symbolic, so that algebraic constructs will actually appear as calls to symbolic functions, such as aeval.

12.13 CRAMER

CRAMER

Switch

When the cramer switch is on, matrix inversion and linear equation solving (operator solve) is done by Cramer's rule, through exterior multiplication. Default is off.

Examples

```
on time; }\quad=>\quad\mathrm{ Time: 80 ms
off output; }\quad=>\quad\mathrm{ Time: 100 ms
mm := mat((a,b,c,d,f),(a,a,c,f,b), (b,c,a,c,d), (c,c,a,b,f),
    (d,a,d,e,f));
    # Time: 300 ms
inverse := 1/mm; }\quad=>\quad\mathrm{ Time: 18460 ms
on cramer; }\quad=>\quad\mathrm{ Time: 80 ms
cramersinv := 1/mm; }\quad=>\quad\mathrm{ Time: 9260 ms
```


Comments

Your time readings will vary depending on the REDUCE version you use. After you invert the matrix, turn on output and ask for one of the elements of the inverse matrix, such as cramersinv $(3,2)$, so that you can see the size of the expressions produced.

Inversion of matrices and the solution of linear equations with dense symbolic entries in many variables is generally considerably faster with cramer on. However, inversion of numeric-valued matrices is slower. Consider the matrices you're inverting before deciding whether to turn cramer on or off. A substantial portion of the time in matrix inversion is given to formatting the results for printing. To save this time, turn output off, as shown in this example or terminate the expression with a dollar sign instead of a semicolon. The results are still available to you in the workspace associated with your prompt number, or you can assign them to an identifier for further use.

12.14 DEFN

DEFN

Switch
When the switch defn is on, the Standard Lisp equivalent of the input statement or procedure is printed, but not evaluated. Default is off.

```
Examples
on defn;
17/3; }\quad=>\quad(AEVAL (LIST 'QUOTIENT 17 3))
df(\operatorname{sin}(x),x,2); }\quad
    (AEVAL (LIST 'DF (LIST 'SIN 'X) 'X 2))
procedure coshval(a);
    begin scalar g;
        g := (exp(a) + exp(-a))/2;
        return g
    end;
                                    =>
        (AEVAL
            (PROGN
                    (FLAG '(COSHVAL) 'OPFN)
                    (DE COSHVAL (A)
                    (PROG (G)
                        (SETQ G
                            (AEVAL
                            (LIST
                                    'QUOTIENT
                                    (LIST
                                    'PLUS
                                    (LIST 'EXP A)
                                    (LIST 'EXP (LIST 'MINUS A)))
                                    2)))
                (RETURN G)))) )
coshval(1); (AEVAL (LIST 'COSHVAL 1))
```

off defn;
coshval(1); $\quad \Rightarrow \quad$ Declare COSHVAL operator? (Y or N)
n
procedure coshval(a);
begin scalar g;
$g:=(\exp (\mathrm{a})+\exp (-\mathrm{a})) / 2 ;$
return g
end;
\Rightarrow COSHVAL
on rounded;
coshval(1); $\quad \Rightarrow \quad 1.54308063482$

Comments

The above function coshval finds the hyperbolic cosine (cosh) of its argument. When defn is on, you can see the Standard Lisp equivalent of the function, but it is not entered into the system as shown by the message Declare COSHVAL operator?. It must be reentered with defn off to be recognized. This procedure is used as an example; a more efficient procedure would eliminate the unnecessary local variable with

```
procedure coshval(a);
    (exp(a) + exp(-a))/2;
```


12.15 DEMO

DEMO

Switch

The demo switch is used for interactive files, causing the system to pause after each command in the file until you type a Return. Default is off.

Comments

The switch demo has no effect on top level interactive statements. Use it when you want to slow down operations in a file so you can see what is happening.
You can either include the on demo command in the file, or enter it from the top level before bringing in any file. Unlike the pause command, on demo does not permit you to interrupt the file for questions of your own.

12.16 DFPRINT

DFPRINT

Switch

When dfprint is on, expressions in the differentiation operator df are printed in a more "natural" notation, with the differentiation variables appearing as subscripts. In addition, if the switch noarg is on (the default), the arguments of the differentiated operator are suppressed.
Examples
operator f;
$\mathrm{df}(\mathrm{f} x, \mathrm{x}) ; \quad \Rightarrow \quad \mathrm{DF}(\mathrm{F}(\mathrm{X}), \mathrm{X})$;
on dfprint;
ws; $\quad \Rightarrow \quad$ F_X
$\operatorname{df}(f(x, y), x, y) ; \quad \Rightarrow \quad F_{-} X_{-}, Y^{Y}$
off noarg;
ws; $\quad \Rightarrow \quad F(X, Y) _X$

12.17 DIV

DIV

Switch
When div is on, the system divides any simple factors found in the denominator of an expression into the numerator. Default is off.

Examples

on div;
$\mathrm{a}:=\mathrm{x} * * 2 / \mathrm{y} * * 2 ; \Rightarrow \mathrm{A}:=\mathrm{X}^{2} * \mathrm{Y}^{-2}$
$\mathrm{b}:=\mathrm{a} /(3 * \mathrm{z}) ; \quad \Rightarrow \quad \mathrm{B}:=-\frac{1}{3}-* \mathrm{X}^{2} * Y^{-2} * Z^{-1}$
off div;
a;

$$
\Rightarrow \quad \frac{\mathrm{X}}{--}
$$

$$
\begin{array}{ll}
\mathrm{Y} & 2
\end{array}
$$

b;

Comments

The div switch only has effect when the pri switch is on. When pri is off, regardless of the setting of div, the printing behavior is as if div were off.

12.18 ECHO

ECHO

Switch

The echo switch is normally off for top-level entry, and on when files are brought in. If echo is turned on at the top level, your input statements are echoed to the screen (thus appearing twice). Default off (but note default on for files).

Comments

If you want to display certain portions of a file and not others, use the commands off echo and on echo inside the file. If you want no display of the file, use the input command

```
in filename$
```

rather than using the semicolon delimiter.
Be careful when you use commands within a file to generate another file. Since echo is on for files, the output file echoes input statements (unlike its behavior from the top level). You should explicitly turn off echo when writing output, and turn it back on when you're done.

12.19 ERRCONT

ERRCONT

Switch

When the errcont switch is on, error conditions do not stop file execution. Error messages will be printed whether errcont is on or off.

Default is off.
Comments
The table below shows REDUCE behavior under the settings of errcont and int :

Behavior in Case of Error in Files		
errcont	int	Behavior when errors in files are encountered
off	off	Message is printed and parsing continues, but no further state- ments are executed; no commands from keyboard accepted ex- cept bye or end
off	on	Message is printed, and you are asked if you wish to continue. (This is the default behavior)
on	off	Message is printed, and file continues to execute without pause on on

12.20 EVALLHSEQP

EVALLHSEQP

Switch
Under normal circumstances, the right-hand-side of an equation is evaluated but not the left-hand-side. This also applies to any substitutions made by the sub operator. If both sides are to be evaluated, the switch evallhseqp should be turned on.

12.21 EXP

EXP

Switch

When the exp switch is on, powers and products of expressions are expanded. Default is on.

Examples

$\begin{array}{ll}(\mathrm{x}+1) * * 3 ; & \Rightarrow \mathrm{X}^{3}+3 * \mathrm{X}^{2}+3 * \mathrm{X}+1 \\ (\mathrm{a}+\mathrm{b} * \mathrm{i}) *(\mathrm{c}+\mathrm{d} * \mathrm{i}) ; & \Rightarrow \mathrm{A} * \mathrm{C}+\mathrm{A} * \mathrm{D} * \mathrm{I}+\mathrm{B} * \mathrm{C} * \mathrm{I}-\mathrm{B} * \mathrm{D}\end{array}$
off exp;
$(\mathrm{x}+1) * * 3 ; \quad \Rightarrow \quad(\mathrm{X}+1)^{3}$
$(\mathrm{a}+\mathrm{b} * \mathrm{i}) *(\mathrm{c}+\mathrm{d} * \mathrm{i}) ; \quad \Rightarrow \quad(\mathrm{A}+\mathrm{B} * \mathrm{I}) *(\mathrm{C}+\mathrm{D} * \mathrm{I})$
length $((x+1) * * 2 /(y+1)) ; \quad 2$

Comments

Note that REDUCE knows that $i^{2}=-1$. When exp is off, equivalent expressions may not simplify to the same form, although zero expressions still simplify to zero. Several operators that expect a polynomial argument behave differently when exp is off, such as length. Be cautious about leaving exp off.

12.22 EXPANDLOGS

EXPANDLOGS

Switch

In many cases it is desirable to expand product arguments of logarithms, or collect a sum of logarithms into a single logarithm. Since these are inverse operations, it is not possible to provide rules for doing both at the same time and preserve the REDUCE concept of idempotent evaluation. As an alternative, REDUCE provides two switches expandlogs and combinelogs to carry out these operations. Both are off by default.
Examples
on expandlogs;
$\log (\mathrm{x} * \mathrm{y}) ; \quad \Rightarrow \quad \mathrm{LOG}(\mathrm{X})+\operatorname{LOG}(\mathrm{Y})$
on combinelogs;
ws; $\quad \Rightarrow \quad$ LOG $(X * Y)$

Comments

At the present time, it is possible to have both switches on at once, which could lead to infinite recursion. However, an expression is switched from one form to the other in this case. Users should not rely on this behavior, since it may change in the next release.

12.23 EZGCD

EZGCD

Switch

When ezgcd and gcd are on, greatest common divisors are computed using the EZ GCD algorithm that uses modular arithmetic (and is usually faster). Default is off.

Comments

As a side effect of the gcd calculation, the expressions involved are factored, though not the heavy-duty factoring of factorize. The EZ GCD algorithm was introduced in a paper by J. Moses and D.Y.Y. Yun in Proceedings of the ACM, 1973, pp. 159166.

Note that the gcd switch must also be on for ezgcd to have effect.

12.24 FACTOR

FACTOR

Switch

When the factor switch is on, input expressions and results are automatically factored.

```
Examples
on factor;
aa := 3*x**3*a + 6*x**2*y*a + 3*x**3*b + 6*x**2*y*b
+ x*y*a + 2*y**2*a + x*y*b + 2*y**2*b;
    A AA := (A + B)*(3*X }\mp@subsup{}{}{2}+\textrm{Y})*(\textrm{X}+2*Y
off factor;
aa;
                            #
    3*A*X'*
+ B*X*Y + 2*B*Y^{2}
on factor;
ab := x**2 - 2; }\quad=>\quadAB:=\mp@subsup{X}{}{2}-
```


Comments

REDUCE factors univariate and multivariate polynomials with integer coefficients, finding any factors that also have integer coefficients. The factoring is done by reducing multivariate problems to univariate ones with symbolic coefficients, and then solving the univariate ones modulo small primes. The results of these calculations are merged to determine the factors of the original polynomial. The factorizer normally selects evaluation points and primes using a random number generator. Thus, the detailed factoring behavior may be different each time any particular problem is tackled.

When the factor switch is turned on, the exp switch is turned off, and when the factor switch is turned off, the exp switch is turned on, whether it was on previously or not.

When the switch trfac is on, informative messages are generated at each call to the factorizer. The trallfac switch causes the production of a more verbose trace message. It takes precedence over trfac if they are both on.
To factor a polynomial explicitly and store the results, use the operator factorize.

12.25 FAILHARD

FAILHARD

Switch

When the failhard switch is on, the integration operator int terminates with an error message if the integral cannot be done in closed terms. Default is off.

Comments

Use the failhard switch when you are dealing with complicated integrals and want to know immediately if REDUCE was unable to handle them. The integration operator sometimes returns a formal integration form that is more complicated than the original expression, when it is unable to complete the integration.

12.26 FORT

FORT

Switch
When fort is on, output is given Fortran-compatible syntax. Default is off.

```
Examples
on fort;
```



```
on rounded;
b := log(sin(pi/5 + n*pi)); =
    B=LOG(SIN(3.14159265359*N+0.628318530718))
```


Comments

REDUCE results can be written to a file (using out) and used as data by Fortran programs when fort is in effect. fort knows about correct statement length, continuation characters, defining a symbol when it is first used, and other Fortran details.

The GENTRAN package offers many more possibilities than the fort switch. It produces Fortran (or C or Ratfor) code from REDUCE procedures or structured specifications, including facilities for producing double precision output.

12.27 FORTUPPER

FORTUPPER
 Switch

When fortupper is on, any Fortran-style output appears in upper case. Default is off.

Examples
on fort;
$\mathrm{df}(\sin (7 * x+y), x) ; \quad$ ans $=7 . * \cos (7 * x+y)$
on fortupper;
$\mathrm{df}(\sin (7 * x+y), x) ; \quad \Rightarrow \quad$ ANS $=7 . * \operatorname{COS}(7 * X+Y)$

12.28 FULLPREC

FULLPREC

Switch

Trailing zeroes of rounded numbers to the full system precision are normally not printed. If this information is needed, for example to get a more understandable indication of the accuracy of certain data, the switch fullprec can be turned on.

Examples

on rounded;
$1 / 2 ; \quad \Rightarrow \quad 0.5$
on fullprec;
ws; $\quad \Rightarrow \quad 0.500000000000$
Comments
This is just an output options which neither influences the accuracy of the computation nor does it give additional information about the precision of the results. See also scientific_notation.

12.29 FULLROOTS

FULLROOTS

Switch

Since roots of cubic and quartic polynomials can often be very messy, a switch fullroots controls the production of results in closed form. solve will apply the formulas for explicit forms for degrees 3 and 4 only if fullroots is on. Otherwise the result forms are built using root_of. Default is off.

12.30 GC

GC
 Switch

With the gc switch, you can turn the garbage collection messages on or off. The form of the message depends on the particular Lisp used for the REDUCE implementation.

Comments

See reclaim for an explanation of garbage collection. REDUCE does garbage collection when needed even if you have turned the notices off.

12.31 GCD

GCD

Switch

When gcd is on, common factors in numerators and denominators of expressions are canceled. Default is off.

Examples

```
\((2 *(\mathrm{f} * \mathrm{~h}) * * 2-\mathrm{f} * * 2 * \mathrm{~g} * \mathrm{~h}-(\mathrm{f} * \mathrm{~g}) * * 2-\mathrm{f} * \mathrm{~h} * * 3+\mathrm{f} * \mathrm{~h} * \mathrm{~g} * * 2\)
    \(-\mathrm{h} * * 4+\mathrm{g} * \mathrm{~h} * * 3) /(\mathrm{f} * * 2 * \mathrm{~h}-\mathrm{f} * * 2 * \mathrm{~g}-\mathrm{f} * \mathrm{~h} * * 2+2 * \mathrm{f} * \mathrm{~g} * \mathrm{~h}\)
    - f*g**2 - g*h**2 + g**2*h);
        \(\Rightarrow\)
```



```
on gcd;
ws;
    \(\Rightarrow \frac{\mathrm{F} * \mathrm{G}+2 * \mathrm{~F} * \mathrm{H}+\mathrm{H}^{2}}{\mathrm{~F}+\mathrm{G}}\)
e2 := a*c + a*d + b*c + b*d;
    \(\Rightarrow \quad \mathrm{E} 2:=\mathrm{A} * \mathrm{C}+\mathrm{A} * \mathrm{D}+\mathrm{B} * \mathrm{C}+\mathrm{B} * \mathrm{D}\)
off exp;
e2; \(\quad \Rightarrow \quad(\mathrm{A}+\mathrm{B}) *(\mathrm{C}+\mathrm{D})\)
```


Comments

Even with gcd off, a check is automatically made for common variable and numerical products in the numerators and denominators of expression, and the appropriate cancellations made. Thus the example demonstrating the use of gcd is somewhat complicated. Note when exp is off, gcd has the side effect of factoring the expression.

12.32 HORNER

HORNER

Switch

When the horner switch is on, polynomial expressions are printed in Horner's form for faster and safer numerical evaluation. Default is off. The leading variable of the expression is selected as Horner variable. To select the Horner variable explicitly use the korder declaration.
Examples

```
on horner;
```

$(13 p-4 q)^{\wedge} 3 ; \quad \Rightarrow$
$(-64) * \mathrm{q}^{3}+\mathrm{p} *\left(624 * \mathrm{q}^{2}+\mathrm{p} *((-2028) * \mathrm{q}+\mathrm{p} * 2197)\right)$
korder q;
ws;

```
    2197*p }\mp@subsup{}{}{3}+\textrm{q}*((-2028)*\mp@subsup{p}{}{2}+q*(624*\textrm{p}+\textrm{q}*(-64))
```


12.33 IFACTOR

IFACTOR

Switch

When the ifactor switch is on, any integer terms appearing as a result of the factorize command are factored themselves into primes. Default is off. If the argument of factorize is an integer, ifactor has no effect, since the integer is always factored.

Examples

factorize(4*x**2 + 28*x + 48);
$\Rightarrow \quad\{\{4,1\},\{X+4,1\},\{X+3,1\}\}$
factorize(22587); $\quad \Rightarrow \quad\{\{3,1\},\{7529,1\}\}$
on ifactor;
factorize ($4 * x * * 2+28 * x+48)$; $\Rightarrow \quad\{\{2,2\},\{X+4,1\},\{X+3,1\}\}$
factorize (22587); $\quad \Rightarrow \quad\{\{3,1\},\{7529,1\}\}$

Comments

Constant terms that appear within nonconstant polynomial factors are not factored.
The ifactor switch affects only factoring done specifically with factorize, not on factoring done automatically when the factor switch is on.

12.34 INT

INT

Switch

The int switch specifies an interactive mode of operation. Default on.

Comments

There is no reason to turn int off during interactive calculations, since there are no benefits to be gained. If you do have int off while inputting a file, and REDUCE finds an error, it prints the message "Continuing with parsing only." In this state, REDUCE accepts only end; or bye; from the keyboard; everything else is ignored, even the command on int.

12.35 INTSTR

INTSTR

Switch
If intstr (for "internal structure") is on, arguments of an operator are printed in a more structured form.

Examples

operator f;
$\mathrm{f}(2 \mathrm{x}+2 \mathrm{y}) ; \quad \Rightarrow \quad \mathrm{F}(2 * \mathrm{X}+2 * \mathrm{Y})$
on intstr;
ws; $\quad \Rightarrow \quad \mathrm{F}(2 *(\mathrm{X}+\mathrm{Y}))$

12.36 LCM

LCM

Switch

The 1 cm switch instructs REDUCE to compute the least common multiple of denominators whenever rational expressions occur. Default is on.

Examples

off lcm;
$\mathrm{z}:=1 /(\mathrm{x} * * 2-\mathrm{y} * * 2)+1 /(\mathrm{x}-\mathrm{y}) * * 2$;

on lcm ;
z;
$\Rightarrow \quad 2 * X *(X-Y)$
$X^{4}-2 * X^{3} * Y+2 * X * Y^{3}-Y^{4}$
$\mathrm{zz}:=1 /(\mathrm{x} * * 2-\mathrm{y} * * 2)+1 /(\mathrm{x}-\mathrm{y}) * * 2$;

on gcd;
z;

Comments
Note that 1 cm has effect only when rational expressions are first combined. It does not examine existing structures for simplifications on display. That is shown above when z is entered with 1 cm off. It remains unsimplified even after 1 cm is turned back on. However, a new variable containing the same expression is simplified on entry. The switch gcd does examine existing structures, as shown in the last example line above.

Full greatest common divisor calculations become expensive if work with large rational expressions is required. A considerable savings of time can be had if a full gcd check is made only when denominators are combined, and only a partial check
for numerators. This is the effect of the 1 cm switch.

12.37 LESSSPACE

LESSSPACE
 Switch

You can turn on the switch lessspace if you want fewer blank lines in your output.

12.38 LIMITEDFACTORS

LIMITEDFACTORS
 Switch

To get limited factorization in cases where it is too expensive to use full multivariate polynomial factorization, the switch limitedfactors can be turned on. In that case, only "inexpensive" factoring operations, such as square-free factorization, will be used when factorize is called.
Examples
a : $=(\mathrm{y}-\mathrm{x})^{\wedge} 2 *\left(\mathrm{y}^{\wedge} 3+2 \mathrm{x} * \mathrm{y}+5\right) *\left(\mathrm{y}^{\wedge} 2-3 \mathrm{x} * \mathrm{y}+7\right)$
factorize a; $\quad \Rightarrow \quad\left\{-3 * X * Y+Y^{2}+7,1\right\}$

$$
\begin{aligned}
& \{2 * X * Y+Y+5,1\} \\
& \{X-Y, 2\}\}
\end{aligned}
$$

on limitedfactors;
factorize a; $\quad \Rightarrow$
$\left\{-6 * \mathrm{X}^{2} * \mathrm{Y}^{2}-3 * \mathrm{X} * \mathrm{Y}^{4}+2 * \mathrm{X} * \mathrm{Y}^{3}-\mathrm{X} * \mathrm{Y}+\mathrm{Y}^{5}+7 * \mathrm{Y}^{3}+5 * \mathrm{Y}^{2}+35,1\right\}$, $\{X-Y, 2\}\}$

12.39 LIST

LIST

Switch
The list switch causes REDUCE to print each term in any sum on separate lines.
Examples
$\mathrm{x} * * 2 *(\mathrm{y} * * 2+2 * \mathrm{y})+\mathrm{x} *(\mathrm{y} * * 2+\mathrm{z}) /(2 * \mathrm{a})$;
$\Rightarrow \quad \frac{X *\left(2 * A * X * Y^{2}+4 * A * X * Y+Y^{2}+Z\right)}{2 * A}$
on list;
ws ; $\quad \Rightarrow \quad\left(X *\left(2 * A * X * Y^{2}\right.\right.$
$+4 * \mathrm{~A} * \mathrm{X} * \mathrm{Y}$
$+{ }^{2}$
$+\mathrm{Y}$

+ Z))/(2*A)

12.40 LISTARGS

LISTARGS

Switch

If an operator other than those specifically defined for lists is given a single argument that is a list, then the result of this operation will be a list in which that operator is applied to each element of the list. This process can be inhibited globally by turning on the switch listargs.

Examples

$\log \{a, b, c\} ; \quad \Rightarrow \quad \operatorname{LOG}(A), L O G(B), L O G(C)$
on listargs;
$\log \{a, b, c\} ; \quad \Rightarrow \quad \operatorname{LOG}(A, B, C)$

Comments

It is possible to inhibit such distribution for a specific operator by using the declaration listargp. In addition, if an operator has more than one argument, no such distribution occurs, so listargs has no effect.

12.41 MCD

MCD

Switch

When mod is on, sums and differences of rational expressions are put on a common denominator. Default is on.

```
Examples
\(a /(x+1)+b / 5 ; \Rightarrow \frac{5 * A+B * X+B}{5 *(X+1)}\)
off mcd;
\(\mathrm{a} /(\mathrm{x}+1)+\mathrm{b} / 5 ; \Rightarrow(\mathrm{X}+1)^{-1} * \mathrm{~A}+1 / 5 * \mathrm{~B}\)
\(1 / 6+1 / 7 ; \quad \Rightarrow \quad 13 / 42\)
```


Comments

Even with mcd off, rational expressions involving only numbers are still put over a common denominator.

Turning mcd off is useful when explicit negative powers are needed, or if no greatest common divisor calculations are desired, or when differentiating complicated rational expressions. Results when mcd is off are no longer in canonical form, and expressions equivalent to zero may not simplify to 0 . Some operations, such as factoring cannot be done while mcd is off. This option should therefore be used with some caution. Turning mcd off is most valuable in intermediate parts of a complicated calculation, and should be turned back on for the last stage.

12.42 MODULAR

MODULAR

Switch

When modular is on, polynomial coefficients are reduced by the modulus set by setmod. If no modulus has been set, modular has no effect.

Examples

```
setmod 2; }\quad=>\quad
```

on modular;
$(\mathrm{x}+\mathrm{y}) * * 2 ; \quad \Rightarrow \quad \mathrm{X}^{2}+\mathrm{Y}^{2}$
$145 * x * * 2+20 * x * * 3+17+15 * x * y ;$
$\Rightarrow \quad X^{2}+X * Y+1$

Comments

Modular operations are only conducted on the coefficients, not the exponents. The modulus is not restricted to being prime. When the modulus is prime, division by a number not relatively prime to the modulus results in a Zero divisor error message. When the modulus is a composite number, division by a power of the modulus results in an error message, but division by an integer which is a factor of the modulus does not. The representation of modular number can be influenced by balanced_mod.

12.43 MSG

MSG Switch

When msg is off, the printing of warning messages is suppressed. Error messages are still printed.

Comments

Warning messages include those about redimensioning an array or declaring an operator where one is expected.

12.44 MULTIPLICITIES

MULTIPLICITIES

Switch

When solve is applied to a set of equations with multiple roots, solution multiplicities are normally stored in the global variable rootmultiplicities rather than the solution list. If you want the multiplicities explicitly displayed, the switch multiplicities should be turned on. In this case, rootmultiplicities has no value.

Examples

```
solve (x^2=2x-1,x); }\quad=>\quadX=
root_multiplicities; 列
on multiplicities;
solve(x^2=2x-1,x); }\quad=>\quadX=1,X=
root_multiplicities; =
```


12.45 NAT

NAT

Switch

When nat is on, output is printed to the screen in natural form, with raised exponents. nat should be turned off when outputting expressions to a file for future input. Default is on.

Examples

$(\mathrm{x}+\mathrm{y}) * * 3 ; \Rightarrow \mathrm{X}^{3}+3 * \mathrm{X}^{2} * \mathrm{Y}+3 * \mathrm{X} * \mathrm{Y}^{2}+\mathrm{Y}^{3}$
off nat;
$(\mathrm{x}+\mathrm{y}) * * 3 ; \Rightarrow \mathrm{X} * * 3+3 * \mathrm{X} * * 2 * \mathrm{Y}+3 * \mathrm{X} * \mathrm{Y} * * 2+\mathrm{Y} * * 3 \$$
on fort;
$(\mathrm{x}+\mathrm{y}) * * 3 ; \Rightarrow \mathrm{ANS}=\mathrm{X} * * 3+3 . * \mathrm{X} * * 2 * \mathrm{Y}+3 . * \mathrm{X} * \mathrm{Y} * * 2+\mathrm{Y} * * 3$

Comments

With nat off, a dollar sign is printed at the end of each expression. An output file written with nat off is ready to be read into REDUCE using the command in.

12.46 NERO

When nero is on, zero assignments (such as matrix elements) are not printed.

Examples

matrix $a ; a:=\operatorname{mat}((1,0),(0,1))$;

$$
\begin{aligned}
\Rightarrow \quad \mathrm{A}(1,1) & :=1 \\
\mathrm{~A}(1,2) & :=0 \\
\mathrm{~A}(2,1) & :=0 \\
\mathrm{~A}(2,2) & :=1
\end{aligned}
$$

on nero;
$\mathrm{a} ; \quad \Rightarrow \quad \operatorname{MAT}(1,1):=1$ $\operatorname{MAT}(2,2):=1$
$a(1,2)$;
\Rightarrow
nothing is printed.
b : = 0;
\Rightarrow
nothing is printed.
off nero;
$\mathrm{b}:=0 ; \quad \Rightarrow \quad \mathrm{B}:=0$

Comments

nero is often used when dealing with large sparse matrices, to avoid being overloaded with zero assignments.

12.47 NOARG

NOARG

Switch

When dfprint is on, expressions in the differentiation operator df are printed in a more "natural" notation, with the differentiation variables appearing as subscripts. When noarg is on (the default), the arguments of the differentiated operator are also suppressed.

Examples

operator f;
$\mathrm{df}(\mathrm{f} x, \mathrm{x}) ; \quad \Rightarrow \quad \mathrm{DF}(\mathrm{F}(\mathrm{X}), \mathrm{X})$;
on dfprint;
ws; $\quad \Rightarrow \quad$ F_X
off noarg;
ws; $\quad \Rightarrow \quad F(X)$ _

12.48 NOLNR

NOLNR

Switch

When nolnr is on, the linear properties of the integration operator int are suppressed if the integral cannot be found in closed terms.

Comments
REDUCE uses the linear properties of integration to attempt to break down an integral into manageable pieces. If an integral cannot be found in closed terms, these pieces are returned. When the nolnr switch is off, as many of the pieces as possible are integrated. When it is on, if any piece fails, the rest of them remain unevaluated.

12.49 NOSPLIT

NOSPLIT

Under normal circumstances, the printing routines try to break an expression across lines at a natural point. This is a fairly expensive process. If you are not overly concerned about where the end-of-line breaks come, you can speed up the printing of expressions by turning off the switch nosplit. This switch is normally on.

12.50 NUMVAL

NUMVAL
 Switch

With rounded on, elementary functions with numerical arguments will return a numerical answer where appropriate. If you wish to inhibit this evaluation, numval should be turned off. It is normally on.

```
Examples
on rounded;
cos 3.4; }\quad=>\quad-0.96679819257
off numval;
cos 3.4; }\quad=>\quad\operatorname{COS}(3.4
```


12.51 OUTPUT

OUTPUT

Switch

When output is off, no output is printed from any REDUCE calculation. The calculations have their usual effects other than printing. Default is on.

Comments

Turn output off if you do not wish to see output when executing large files, or to save the time REDUCE spends formatting large expressions for display. Results are still available with ws, or in their assigned variables.

12.52 OVERVIEW

OVERVIEW

Switch
When overview is on, the amount of detail reported by the factorizer switches trfac and trallfac is reduced.

12.53 PERIOD

PERIOD
 Switch

When period is on, periods are added after integers in Fortran-compatible output (when fort is on). There is no effect when fort is off. Default is on.

12.54 PRECISE

PRECISE

Switch

When the precise switch is on, simplification of roots of even powers returns absolute values, a more precise answer mathematically. Default is on.

```
Examples
sqrt(x**2); }\quad=\quad\textrm{X
(x**2)**(1/4); 列 SQRT(X)
on precise;
sqrt(x**2); }\quad=>\quad\operatorname{ABS}(X
(x**2)**(1/4); }=>\quad\operatorname{SQRT}(ABS(X)
```


Comments

In many types of mathematical work, simplification of powers and surds can proceed by the fastest means of simplifying the exponents arithmetically. When it is important to you that the positive root be returned, turn precise on. One situation where this is important is when graphing square-root expressions such as $\sqrt{x^{2}+y^{2}}$ to avoid a spike caused by REDUCE simplifying $\sqrt{y^{2}}$ to y when x is zero.

12.55 PRET

PRET

When pret is on, input is printed in standard REDUCE format and then evaluated.

```
Examples
on pret;
(x+1)^3; }\quad=>\quad(\textrm{x}+1)**3
    X }\mp@subsup{}{}{3}+3*\mp@subsup{X}{}{2}+3*X+
procedure fac(n);
    if not (fixp(n) and n>=0)
            then rederr "Choose nonneg. integer only"
        else for i := 0:n-1 product i+1;
                        #
            procedure fac n;
                if not (fixp n and n>=0)
                    then rederr "Choose nonneg. integer only"
                else for i := 0:n - 1 product i + 1;
            FAC
fac 5; }\quad=>\quad\mathrm{ fac 5;
                        120
```


Comments

Note that all input is converted to lower case except strings (which keep the same case) all operators with a single argument have had the parentheses removed, and all infix operators have had a space added on each side. In addition, syntactical constructs like if...then...else are printed in a standard format.

12.56 PRI

Switch

When pri is on, the declarations order and factor can be used, and the switches allfac, div, rat, and revpri take effect when they are on. Default is on.

Comments

Printing of expressions is faster with pri off. The expressions are then returned in one standard form, without any of the display options that can be used to feature or display various parts of the expression. You can also gain insight into REDUCE's representation of expressions with pri off.

12.57 RAISE

When raise is on, lower case letters are automatically converted to upper case on input. raise is normally on.

Comments

This conversion affects the internal representation of the letter, and is independent of the case with which a letter is printed, which is normally lower case.

12.58 RAT

RAT

Switch

When the rat switch is on, and kernels have been selected to display with the factor declaration, the denominator is printed with each term rather than one common denominator at the end of an expression.

Examples

$(\mathrm{x}+1) / \mathrm{x}+\mathrm{x} * * 2 / \sin \mathrm{y} ; \quad \Rightarrow$ $\frac{\operatorname{SIN}(Y) * X+\operatorname{SIN}(Y)+X^{3}}{\operatorname{SIN}(Y) * X \quad} \quad$ factor x;
$(x+1) / x+x * * 2 / \sin y ; \Rightarrow \quad \frac{X+X * \operatorname{SIN}(Y)+\operatorname{SIN}(Y)}{X * \operatorname{SIN}(Y)} \quad$ on rat;
$(x+1) / x+x * * 2 / \sin y ; \Rightarrow \frac{X^{2}}{-------1+1+X^{-1}}$

Comments

The rat switch only has effect when the pri switch is on. When pri is off, regardless of the setting of rat, the printing behavior is as if rat were off. rat only has effect upon the display of expressions, not their internal form.

12.59 RATARG

RATARG

Switch

When ratarg is on, rational expressions can be given to operators such as coeff and lterm that normally require polynomials in one of their arguments. When ratarg is off, rational expressions cause an error message.
Examples
aa := $\mathrm{x} / \mathrm{y} * * 2+1 / \mathrm{x}+\mathrm{y} / \mathrm{x} * * 2$;

$$
\Rightarrow \quad A A:=\frac{X^{3}+X^{2}+Y^{3}+Y^{2}}{X^{2} * Y^{2}}
$$

coeff(aa, x);
\Rightarrow

on ratarg;
coeff(aa, x);

$$
\begin{gathered}
\Rightarrow \quad\left\{---\frac{1}{2},-\frac{1}{2}, 0,---\frac{1}{2}{ }^{2}\right\} \\
X \quad X \quad X * Y
\end{gathered}
$$

12.60 RATIONAL

RATIONAL

Switch

When rational is on, polynomial expressions with rational coefficients are produced.

Examples

$\begin{array}{llc}\mathrm{x} / 2+3 * \mathrm{y} / 4 ; & & 2 * \mathrm{X}+3 * \mathrm{Y} \\ & & 2 \\ (\mathrm{x} * * 2+5 * \mathrm{x}+17) / 2 ; & \Rightarrow & \mathrm{X}+5 * \mathrm{X}+17 \\ -1 & 2\end{array}$
on rational;
$\mathrm{x} / 2+3 \mathrm{y} / 4 ; \quad \Rightarrow \quad-\frac{1}{2}-*\left(\mathrm{X}+-\frac{3}{2}-* \mathrm{Y}\right)$
$(\mathrm{x} * * 2+5 * \mathrm{x}+17) / 2 ; \Rightarrow-\frac{1}{2}-*\left(\mathrm{X}^{2}+5 * \mathrm{X}+17\right)$

Comments

By using rational, polynomial expressions with rational coefficients can be used in some commands that expect polynomials. With rational off, such a polynomial becomes a rational expression, with denominator the least common multiple of the denominators of the rational number coefficients.

12.61 RATIONALIZE

RATIONALIZE

Switch

When the rationalize switch is on, denominators of rational expressions that contain complex numbers or root expressions are simplified by multiplication by their conjugates.

Examples

qq := (1+sqrt(3))/(sqrt(3)-7);

$$
\Rightarrow \quad \mathrm{QQ}:=\frac{\mathrm{SQRT}(3)+1}{\mathrm{SQRT}(3)-7}
$$

on rationalize;
qq;

2/(4 + 6**(1/3));
$\quad-\quad 4 * \operatorname{SQRT}(3)-5$
$2 / 3 \quad 231 / 3$
\Rightarrow------------135
$(i-1) /(i+3)$;
$\Rightarrow \quad-\frac{2 * I-1}{5}$
off rationalize;
$(i-1) /(i+3) ; \quad \Rightarrow \quad \frac{I}{I+-1}$

12.62 RATPRI

RATPRI

Switch

When the ratpri switch is on, rational expressions and fractions are printed as two lines separated by a fraction bar, rather than in a linear style. Default is on.
Examples

12.63 REVPRI

REVPRI

Switch

When the revpri switch is on, terms are printed in reverse order from the normal printing order.
Examples
$\mathrm{x} * * 5+\mathrm{x} * * 2+18+\operatorname{sqrt}(\mathrm{y}) ; \Rightarrow \operatorname{SQRT}(\mathrm{Y})+\mathrm{X}^{5}+\mathrm{X}^{2}+18$
$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{w} ; \quad \Rightarrow \quad \mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{W}$
on revpri;
$\mathrm{x} * * 5+\mathrm{x} * * 2+18+\operatorname{sqrt}(\mathrm{y}) ; \Rightarrow 17+\mathrm{X}^{2}+\mathrm{X}^{5}+\operatorname{SQRT}(\mathrm{Y})$
$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{w} ; \quad \Rightarrow \mathrm{W}+\mathrm{C}+\mathrm{B}+\mathrm{A}$
Comments
Turn revpri on when you want to display a polynomial in ascending rather than descending order.

12.64 RLISP88

RLISP88

Switch

Rlisp ' 88 is a superset of the Rlisp that has been traditionally used for the support of REDUCE. It is fully documented in the book Marti, J.B., "RLISP '88: An Evolutionary Approach to Program Design and Reuse", World Scientific, Singapore (1993). It supports different looping constructs from the traditional Rlisp, and treats "-" as a letter unless separated by spaces. Turning on the switch rlisp88 converts to Rlisp '88 parsing conventions in symbolic mode, and enables the use of Rlisp '88 extensions. Turning off the switch reverts to the traditional Rlisp and the previous mode ((symbolic or algebraic) in force before rlisp88 was turned on.

12.65 ROUNDALL

ROUNDALL

Switch

In rounded mode, rational numbers are normally converted to a floating point representation. If roundall is off, this conversion does not occur. roundall is normally on.

Examples

on rounded;
$1 / 2 ; \quad \Rightarrow \quad 0.5$
off roundall;
$\left.1 / 2 ;-\frac{\{ }{1}-\right\}\{2\} \quad \Rightarrow$

12.66 ROUNDBF

ROUNDBF

Switch

When rounded is on, the normal defaults cause underflows to be converted to zero. If you really want the small number that results in such cases, roundbf can be turned on.
Examples
on rounded;
$\exp \left(-100000.1^{\wedge} 2\right) ; \quad \Rightarrow \quad 0$
on roundbf;
$\exp \left(-100000.1^{\wedge} 2\right) ; \quad \Rightarrow \quad 1.18441281937 \mathrm{E}-4342953505$

Comments

If a polynomial is input in rounded mode at the default precision into any roots function, and it is not possible to represent any of the coefficients of the polynomial precisely in the system floating point representation, the switch roundbf will be automatically turned on. All rounded computation will use the internal bigfloat representation until the user subsequently turns roundbf off. (A message is output to indicate that this condition is in effect.)

12.67 ROUNDED

ROUNDED

Switch

When rounded is on, floating-point arithmetic is enabled, with precision initially at a system default value, which is usually 12 digits. The precise number can be found by the command precision(0).
Examples
pi; $\quad \Rightarrow \quad \mathrm{PI}$
35/217; $\quad \Rightarrow \quad \begin{gathered}5 \\ 31\end{gathered}$
on rounded;
pi; $\quad \Rightarrow \quad 3.14159265359$
35/217; $\quad \Rightarrow \quad 0.161$
sqrt(3); $\quad \Rightarrow \quad 1.73205080756$

Comments

If more than the default number of decimal places are required, use the precision command to set the required number.

12.68 SAVESTRUCTR

SAVESTRUCTR

Switch

When savestructr is on, results of the structr command are returned as a list whose first element is the representation for the expression and the remaining elements are equations showing the relationships of the generated variables.

```
Examples
off exp;
structr((x+y)^3 + sin(x)^2);
            A ANS3
                where
                    ANS3 := ANS1 3 + ANS2 
                    ANS2 := SIN(X)
                    ANS1 := X + Y
ans3; }\quad=>\quad\mathrm{ ANS3
on savestructr;
structr((x+y)^{3} + sin(x)^{2});
            #
            3 2
        ANS3,ANS3=ANS1 + ANS2 ,ANS2=SIN(X),ANS1=X + Y
ans3 where rest ws; }\quad=>\quad(\textrm{X}+\textrm{Y}\mp@subsup{)}{}{3}+\operatorname{SIN(X)}\mp@subsup{}{}{2
```


Comments

In normal operation, structr is only a display command. With savestructr on, you can access the various parts of the expression produced by structr.

The generic system names use the stem ANS. You can change this to your own stem by the command varname. REDUCE adds integers to this stem to make unique identifiers.

12.69 SOLVESINGULAR

SOLVESINGULAR

Switch
When solvesingular is on, singular or underdetermined systems of linear equations are solved, using arbitrary real, complex or integer variables in the answer. Default is on.
Examples
solve($\{2 \mathrm{x}+\mathrm{y}, 4 \mathrm{x}+2 \mathrm{y}\},\{\mathrm{x}, \mathrm{y}\}$);
\Rightarrow
$\left\{\left\{\mathrm{X}=-\frac{\operatorname{ARBCOMPLEX}(1)}{2}, \mathrm{Y}=\operatorname{ARBCOMPLEX}(1)\right\}\right\}$
solve(\{7x + 15y-z,x-y-z\},\{x,y,z\});
$\Rightarrow \quad\{\{\mathrm{X}=-8 * \mathrm{ARBCOMPLEX}(3)$
$\mathrm{Y}=-\frac{3 * \text { ARBCOMPLEX (3) }}{11}$
Z=ARBCOMPLEX(3) \}\}
off solvesingular;
solve(\{2x $+\mathrm{y}, 4 \mathrm{x}+2 \mathrm{y}\},\{\mathrm{x}, \mathrm{y}\})$;
\Rightarrow
***** SOLVE given singular equations
solve(\{7x + 15y-z,x-y-z\},\{x,y,z\});
\Rightarrow
***** SOLVE given singular equations
Comments
The integer following the identifier arbcomplex above is assigned by the system, and serves to identify the variable uniquely. It has no other significance.

12.70 TIME

TIME

Switch

When time is on, the system time used in executing each REDUCE statement is printed after the answer is printed.

Examples

```
on time; }\quad=>\quad\mathrm{ Time: 4940 ms
df(\operatorname{sin}(x**2 + y),y); m cos(X + Y )
    Time: 180 ms
solve(x**2 - 6*y,x); m {X= - SQRT(Y)*SQRT(6),
    X=SQRT (Y)*SQRT (6)}
    Time: 320 ms
```


Comments

When time is first turned on, the time since the beginning of the REDUCE session is printed. After that, the time used in computation, (usually in milliseconds, though this is system dependent) is printed after the results of each command. Idle time or time spent typing in commands is not counted. If time is turned off, the first reading after it is turned on again gives the time elapsed since it was turned off. The time printed is CPU or wall clock time, depending on the system.

12.71 TRALLFAC

TRALLFAC

Switch

When trallfac is on, a more detailed trace of factorizer calls is generated.

Comments

The trallfac switch takes precedence over trfac if they are both on. trfac gives a factorization trace with less detail in it. When the factor switch is on also, all input polynomials are sent to the factorizer automatically and trace information is generated. The out command saves the results of the factoring, but not the trace.

12.72 TRFAC

TRFAC

Switch

When trfac is on, a narrative trace of any calls to the factorizer is generated. Default is off.

Comments
When the switch factor is on, and trfac is on, every input polynomial is sent to the factorizer, and a trace generated. With factor off, only polynomials that are explicitly factored with the command factorize generate trace information.

The out command saves the results of the factoring, but not the trace. The trallfac switch gives trace information to a greater level of detail.

12.73 TRIGFORM

TRIGFORM

Switch

When fullroots is on, solve will compute the roots of a cubic or quartic polynomial is closed form. When trigform is on, the roots will be expressed by trigonometric forms. Otherwise nested surds are used. Default is on.

12.74 TRINT

TRINT

Switch
When trint is on, a narrative tracing various steps in the integration process is produced.
Comments
The out command saves the results of the integration, but not the trace.

12.75 TRNONLNR

TRNONLNR

Switch

When trnonlnr is on, a narrative tracing various steps in the process for solving non-linear equations is produced.

Comments

trnonlnr can only be used after the solve package has been loaded (e.g., by an explicit call of load_package). The out command saves the results of the equation solving, but not the trace.

12.76 VAROPT

VAROPT

Switch

When varopt is on, the sequence of variables is optimized by solve with respect to execution speed. Otherwise, the sequence given in the call to solve is preserved. Default is on.

In combination with the switch arbvars, varopt can be used to control variable elimination.

```
Examples
off arbvars;
solve \((\{x+2 z, x-3 y\},\{x, y, z\}) ; \Rightarrow\left\{\left\{y=-\frac{x}{3}, z=-\frac{x}{2}\right\}\right\}\)
solve \((\{x * y=1, z=x\},\{x, y, z\}) ; \Rightarrow\left\{\left\{z=x, y=-\frac{1}{x}-\right\}\right\}\)
off varopt;
solve \((\{x+2 z, x-3 y\},\{x, y, z\}) ; \Rightarrow\left\{\left\{x=-2 * z, y=-\frac{2 * z}{3}\right\}\right.\)
solve \((\{x * y=1, z=x\},\{x, y, z\}) ; \quad \Rightarrow \quad\left\{\left\{y=-\frac{1}{z}-, x=z\right\}\right\}\)
```


13 Matrix Operations

13.1 COFACTOR

COFACTOR

Operator

The operator cofactor returns the cofactor of the element in row row and column column of a matrix. Errors occur if row or column do not evaluate to integer expressions or if the matrix is not square.

```
cofactor(matrix_expression,row, column)
Examples
cofactor(mat((a,b,c), (d,e,f), (p,q,r)),2,2);
    # A*R - C*P
cofactor(mat((a,b,c),(d,e,f)),1,1);
    # ***** non-square matrix
```


13.2 DET

DET

Operator

The det operator returns the determinant of its (square matrix) argument.
$\operatorname{det}($ expression $)$ or det expression
expression must evaluate to a square matrix.

Examples

matrix m,n;
$m:=\operatorname{mat}((a, b),(c, d)) ; \quad M(1,1):=A$
$\mathrm{M}(1,2):=\mathrm{B}$
$M(2,1):=C$
$M(2,2):=D$
det $m ; \quad \Rightarrow \quad A * D-B * C$
$\mathrm{n}:=\operatorname{mat}((1,2),(1,2)) ; \quad \Rightarrow \quad N(1,1):=1$
$N(1,2):=2$
$N(2,1):=1$
$N(2,2):=2$
$\operatorname{det}(\mathrm{n}) ; \quad \Rightarrow \quad 0$
$\operatorname{det}(5) ; \quad \Rightarrow \quad 5$

Comments

Given a numerical argument, det returns the number. However, given a variable name that has not been declared of type matrix, or a non-square matrix, det returns an error message.

13.3 MAT

MAT

Operator

The mat operator is used to represent a two-dimensional matrix.

$$
\operatorname{mat}((\operatorname{expr}\{, \operatorname{expr}\} *)\{(\operatorname{expr}\{, \operatorname{expr}\} *)\} *)
$$

expr may be any valid REDUCE scalar expression.

Examples

```
mat((1,2),(3,4)); }\quad=>\quad\operatorname{MAT}(1,1):=
        MAT (2,3) := 2
        MAT (2,1) := 3
        MAT (2,2) := 4
mat (2,1); }\quad=>\quad***** Matrix mismatch
        Cont? (Y or N)
matrix qt;
qt := ws; }\quad=>\quad\mathrm{ QT (1,1) := 1
    QT(1,2) := 2
    QT (2,1) := 3
    QT(2,2) := 4
```

matrix $a, b ;$

```
a := mat((x),(y),(z)); 列 A(1,1) := X
    A(2,1) := Y
    A(3,1) := Z
b := mat((\operatorname{sin}x,\operatorname{cos}x,1)); => B(1,1) := SIN(X)
    B (1,2) := COS(X)
    B}(1,3) := 
```


Comments

Matrices need not have a size declared (unlike arrays). mat redimensions a matrix variable as needed. It is necessary, of course, that all rows be the same length. An anonymous matrix, as shown in the first example, must be named before it can be referenced (note error message). When using mat to fill a $1 \times n$ matrix, the row of values must be inside a second set of parentheses, to eliminate ambiguity.

13.4 MATEIGEN

MATEIGEN

Operator

The mateigen operator calculates the eigenvalue equation and the corresponding eigenvectors of a matrix.

```
mateigen \((\) matrix \(-i d\), tag \(-i d)\)
```

matrix-id must be a declared matrix of values, and tag-id must be a legal REDUCE identifier.

Examples

```
aa := mat((2,5),(1,0))$
mateigen(aa,alpha); }\quad=>\quad{{\mp@subsup{ALPHA }{2}{2}-2*ALPHA - 5,
    MAT (1,1) := \frac{5*ARBCOMPLEX (1)}{--------}
    MAT(2,1) := ARBCOMPLEX(1)
    }}
charpoly := first first ws; => CHARPOLY := ALPHA 2}-2*ALPHA - 5
bb := mat((1,0,1),(1,1,0),(0,0,1))$
mateigen(bb,lamb); }\quad=>\quad{{LAMB - 1,3
    [ 0 ]
    [ARBCOMPLEX(2)]
    [ 0 ]
    }}
```


Comments

The mateigen operator returns a list of lists of three elements. The first element is a square free factor of the characteristic polynomial; the second element is its multiplicity; and the third element is the corresponding eigenvector. If the characteristic polynomial can be completely factored, the product of the first elements of all the sublists will produce the minimal polynomial. You can access the various parts of the answer with the usual list access operators.

If the matrix is degenerate, more than one eigenvector can be produced for the same eigenvalue, as shown by more than one arbitrary variable in the eigenvector. The identification numbers of the arbitrary complex variables shown in the examples above may not be the same as yours. Note that since lambda is a reserved word in REDUCE, you cannot use it as a tag-id for this operator.

13.5 MATRIX

MATRIX

Declaration

Identifiers are declared to be of type matrix.

```
matrix identifier &option (index, index)
{,identifier &option (index, index)}*
```

identifier must not be an already-defined operator or array or the name of a scalar variable. Dimensions are optional, and if used appear inside parentheses. index must be a positive integer.

Examples

matrix $\mathrm{a}, \mathrm{b}(1,4), \mathrm{c}(4,4)$;
$\mathrm{b}(1,1) ; \quad \Rightarrow \quad 0$
a(1,1); $\quad \Rightarrow \quad * * * * *$ Matrix A not set
$\mathrm{a}:=\operatorname{mat}((\mathrm{x} 0, \mathrm{y} 0),(\mathrm{x} 1, \mathrm{y} 1)) ; \Rightarrow \mathrm{A}(1,1):=\mathrm{X} 0$
$\mathrm{A}(1,2):=\mathrm{YO}$
$\mathrm{A}(2,1):=\mathrm{X} 0$
$\mathrm{A}(2,2):=\mathrm{X} 1$
length a; $\quad \Rightarrow \quad\{2,2\}$
$\mathrm{b}:=\mathrm{a} * * 2 ; \quad \Rightarrow \quad \mathrm{B}(1,1):=\mathrm{XO}+\mathrm{X} 1 * \mathrm{Y} 0$
$B(1,2):=Y 0 *(X 0+Y 1)$
$B(2,1):=X 1 *(X 0+Y 1)$
$B(2,2):=X 1 * Y 0+Y 1$

Comments

When a matrix variable has not been dimensioned, matrix elements cannot be referenced until the matrix is set by the mat operator. When a matrix is dimensioned in its declaration, matrix elements are set to 0 . Matrix elements cannot stand for themselves. When you use let on a matrix element, there is no effect unless the element contains a constant, in which case an error message is returned. The same behavior occurs with clear. Do not use clear to try to set a matrix element to 0 . let statements can be applied to matrices as a whole, if the right-hand side
of the expression is a matrix expression, and the left-hand side identifier has been declared to be a matrix.
Arithmetical operators apply to matrices of the correct dimensions. The operators + and - can be used with matrices of the same dimensions. The operator $*$ can be used to multiply $m \times n$ matrices by $n \times p$ matrices. Matrix multiplication is non-commutative. Scalars can also be multiplied with matrices, with the result that each element of the matrix is multiplied by the scalar. The operator / applied to two matrices computes the first matrix multiplied by the inverse of the second, if the inverse exists, and produces an error message otherwise. Matrices can be divided by scalars, which results in dividing each element of the matrix. Scalars can also be divided by matrices when the matrices are invertible, and the result is the multiplication of the scalar by the inverse of the matrix. Matrix inverses can by found by $1 / \mathrm{A}$ or $/ \mathrm{A}$, where A is a matrix. Square matrices can be raised to positive integer powers, and also to negative integer powers if they are nonsingular.
When a matrix variable is assigned to the results of a calculation, the matrix is redimensioned if necessary.

13.6 NULLSPACE

NULLSPACE

Operator

nullspace(matrix_expression)
nullspace calculates for its matrix argument, a, a list of linear independent vectors (a basis) whose linear combinations satisfy the equation $a x=0$. The basis is provided in a form such that as many upper components as possible are isolated.

Examples

nullspace $\operatorname{mat}((1,2,3,4),(5,6,7,8))$;

Comments

Note that with $\mathrm{b}:=$ nullspace a , the expression length b is the nullity of A , and that second length a - length b calculates the rank of A. The rank of a matrix expression can also be found more directly by the rank operator.
In addition to the REDUCE matrix form, nullspace accepts as input a matrix given as a list of lists, that is interpreted as a row matrix. If that form of input is chosen, the vectors in the result will be represented by lists as well. This additional
input syntax facilitates the use of nullspace in applications different from classical linear algebra.

13.7 RANK

RANK

Operator

rank(matrix_expression)
rank calculates the rank of its matrix argument.
Examples
rank mat ($(\mathrm{a}, \mathrm{b}, \mathrm{c}),(\mathrm{d}, \mathrm{e}, \mathrm{f})) ; \quad \Rightarrow 2$
Comments
The argument to rank can also be a list of lists, interpreted either as a row matrix or a set of equations. If that form of input is chosen, the vectors in the result will be represented by lists as well. This additional input syntax facilitates the use of rank in applications different from classical linear algebra.

13.8 TP

TP

Operator

The tp operator returns the transpose of its matrix argument.
tp identifier or tp (identifier)
identifier must be a matrix, which either has had its dimensions set in its declaration, or has had values put into it by mat.

Examples

matrix m,n;
$\mathrm{m}:=\operatorname{mat}((1,2,3),(4,5,6))$
n := tp m;

$$
\begin{aligned}
\Rightarrow \quad N(1,1) & :=1 \\
N(1,2) & :=4 \\
N(2,1) & :=2 \\
N(2,2) & :=5 \\
N(3,1) & :=3 \\
N(3,2) & :=6
\end{aligned}
$$

Comments

In an assignment statement involving tp, the matrix identifier on the left-hand side is redimensioned to the correct size for the transpose.

13.9 TRACE

TRACE

Operator

The trace operator finds the trace of its matrix argument. trace(expression) or trace simple_expression
expression or simple_expression must evaluate to a square matrix.
Examples
matrix a;
a $:=\operatorname{mat}((x 1, y 1),(x 2, y 2)) \$$
trace $\mathrm{a} ; \quad \Rightarrow \quad \mathrm{X} 1+\mathrm{Y} 2$

Comments

The trace is the sum of the entries along the diagonal of a square matrix. Given a non-matrix expression, or a non-square matrix, trace returns an error message.

14 Groebner package

14.1 Groebner bases

GROEBNER BASES
 Introduction

The GROEBNER package calculates Groebner bases using the Buchberger algorithm and provides related algorithms for arithmetic with ideal bases, such as ideal quotients, Hilbert polynomials (Hollmann algorithm), basis conversion (Faugere-Gianni-Lazard-Mora algorithn independent variable set (Kredel-Weispfenning algorithm).

Some routines of the Groebner package are used by solve - in that context the package is loaded automatically. However, if you want to use the package by explicit calls you must load it by
load_package groebner;
For the common parameter setting of most operators in this package see ideal parameters.

14.2 Ideal Parameters

IDEAL PARAMETERS

Concept

Most operators of the Groebner package compute expressions in a polynomial ring which given as $R[v a r, v a r, \ldots]$ where R is the current REDUCE coefficient domain. All algebraically exact domains of REDUCE are supported. The package can operate over rings and fields. The operation mode is distinguished automatically. In general the ring mode is a bit faster than the field mode. The factoring variant can be applied only over domains which allow you factoring of multivariate polynomials.
The variable sequence var is either declared explicitly as argument in form of a list in torder, or it is extracted automatically from the expressions. In the second case the current REDUCE system order is used (see korder) for arranging the variables. If some kernels should play the role of formal parameters (the ground domain R then is the polynomial ring over these), the variable sequences must be given explicitly.

All REDUCE kernels can be used as variables. But please note, that all variables are considered as independent. E.g. when using $\sin (a)$ and $\cos (a)$ as variables, the basic relation $\sin (a)^{\wedge} 2+\cos (a)^{\wedge} 2-1=0$ must be explicitly added to an equation set because the Groebner operators don't include such knowledge automatically.
The terms (monomials) in polynomials are arranged according to the current term order. Note that the algebraic properties of the computed results only are valid as long as neither the ordering nor the variable sequence changes.

The input expressions \exp can be polynomials p, rational functions n / d or equations $l h=r h$ built from polynomials or rational functions. Apart from the tracing algorithms groebnert and preducet, where the equations have a specific meaning, equations are converted to simple expressions by taking the difference of the left-hand and right-hand sides $l h-r h=i p$. Rational functions are converted to polynomials by converting the expression to a common denominator form first, and then using the numerator only $n=¿ p$. So eventual zeros of the denominators are ignored.

A basis on input or output of an algorithm is coded as list of expressions $\{\exp , \exp , \ldots\}$

14.3 Term order

14.4 Term order

TERM ORDER

Introduction

For all Groebner operations the polynomials are represented in distributive form: a sum of terms (monomials). The terms are ordered corresponding to the actual term order which is set by the torder operator, and to the actual variable sequence which is either given as explicit parameter or by the system kernel order.

14.5 torder

TORDER

Operator

The operator torder sets the actual variable sequence and term order.

1. simple term order:

$$
\text { torder }(v l, m)
$$

where $v l$ is a list of variables (kernels) and m is the name of a simple term order mode 14.7, 14.8, 14.9 or another implemented parameterless mode.
2. stepped term order:

$$
\text { torder }(v l, m, n)
$$

where m is the name of a two step term order, one of gradlexgradlex term order, gradlexrevgradlex term order, lexgradlex term order or lexrevgradlex term order, and n is a positive integer.
3. weighted term order

```
torder (vl,weighted, n, n, ..);
```

where the n are positive integers, see weighted term order.
4. matrix term order

```
torder (vl,matrix,m);
```

where m is a matrix with integer elements, see torder_compile.
5. compiled term order

```
torder (vl,co);
```

where $c o$ is the name of a routine generated by torder_compile.
torder sets the variable sequence and the term order mode. If the an empty list is used as variable sequence, the automatic variable extraction is activated. The defaults are the empty variable list an the lex term order. The previous setting is returned as a list.

Alternatively to the above syntax the arguments of torder may be collected in a list and passed as one argument to torder.

14.6 torder_compile

TORDER_COMPILE

Operator

A matrix can be converted into a compilable LISP program for faster execution by using

```
torder_compile(name,mat)
```

where name is an identifier for the new term order and mat is an integer matrix to be used as matrix term order. Afterwards the term order can be activated by using name in a torder expression. The resulting program is compiled if the switch comp is on, or if the torder_compile expression is part of a compiled module.

14.7 lex term order

LEX TERM ORDER

Concept
The terms are ordered lexicographically: two terms t1 t2 are compared for their degrees along the fixed variable sequence: t 1 is higher than t 2 if the first different degree is higher in t1. This order has the elimination property for groebner basis calculations. If the ideal has a univariate polynomial in the last variable the groebner basis will contain such polynomial. Lex is best suited for solving of polynomial equation systems.

14.8 gradlex term order

GRADLEX TERM ORDER

Concept

The terms are ordered first with their total degree, and if the total degree is identical the comparison is lex term order. With groebner basis calculations this term order produces polynomials of lowest degree.

14.9 revgradlex term order

REVGRADLEX TERM ORDER

Concept

The terms are ordered first with their total degree (degree sum), and if the total degree is identical the comparison is the inverse of lex term order. With groebner and groebnerf calculations this term order is similar to gradlex term order; it is known as most efficient ordering with respect to computing time.

14.10 gradlexgradlex term order

GRADLEXGRADLEX TERM ORDER
 Concept

The terms are separated into two groups where the second parameter of the torder call determines the length of the first group. For a comparison first the total degrees of both variable groups are compared. If both are equal gradlex term order comparison is applied to the first group, and if that does not decide gradlex term order is applied for the second group. This order has the elimination property for the variable groups. It can be used e.g. for separating variables from parameters.

14.11 gradlexrevgradlex term order

GRADLEXREVGRADLEX TERM ORDER Concept

Similar to gradlexgradlex term order, but using revgradlex term order for the second group.

14.12 lexgradlex term order

LEXGRADLEX TERM ORDER

Concept

Similar to gradlexgradlex term order, but using lex term order for the first group.

14.13 lexrevgradlex term order

LEXREVGRADLEX TERM ORDER

Concept

Similar to gradlexgradlex term order, but using lex term order for the first group revgradlex term order for the second group.

14.14 weighted term order

WEIGHTED TERM ORDER

Concept

establishes a graduated ordering similar to gradlex term order, where the exponents first are multiplied by the given weights. If there are less weight values than variables, the weight list is extended by ones. If the weighted degree comparison is not decidable, the lex term order is used.

14.15 graded term order

GRADED TERM ORDER

Concept

establishes a cascaded term ordering: first a graduated ordering similar to gradlex term order is used, where the exponents first are multiplied by the given weights. If there are less weight values than variables, the weight list is extended by ones. If the weighted degree comparison is not decidable, the term ordering described in the following parameters of the torder command is used.

14.16 matrix term order

MATRIX TERM ORDER
 Concept

Any arbitrary term order mode can be installed by a matrix with integer elements where the row length corresponds to the variable number. The matrix must have at least as many rows as columns. It must have full rank, and the top nonzero element of each column must be positive.

The matrix term order mode defines a term order where the exponent vectors of the monomials are first multiplied by the matrix and the resulting vectors are compared lexicographically.

If the switch comp is on, the matrix is converted into a compiled LISP program for faster execution. A matrix can also be compiled explicitly, see torder_compile.

14.17 Basic Groebner operators

14.18 gvars

GVARS

Operator
$\operatorname{gvars}(\{\exp , \exp , \ldots\})$
where exp are expressions or equations.
gvars extracts from the expressions the kernels which can play the role of variables for a groebner or groebnerf calculation.

14.19 groebner

GROEBNER

Operator

```
groebner({exp, ..})
```

where $\{\exp , \ldots\}$ is a list of expressions or equations.
The operator groebner implements the Buchberger algorithm for computing Groebner bases for a given set of expressions with respect to the given set of variables in the order given. As a side effect, the sequence of variables is stored as a REDUCE list in the shared variable gvarslast - this is important in cases where the algorithm rearranges the variable sequence because groebopt is on.

Examples

groebner $(\{x * * 2+y * * 2-1, x-y\}) \Rightarrow\{X-Y, 2 * Y * * 2-1\}$
Related information
groebnerf operator
gvarslast variable
groebopt switch
groebprereduce switch
groebfullreduction switch
gltbasis switch
gltb variable
glterms variable
groebstat switch
trgroeb switch
trgroebs switch
groebprot switch
groebprotfile variable
groebnert operator

14.20 groebner_walk

GROEBNER_WALK

The operator groebner_walk computes a lex basis from a given graded (or weighted) one.

```
groebner_walk(g)
```

where g is a graded basis (or weighted basis with a weight vector with one repeated element) of the polynomial ideal. Groebner_walk computes a sequence of monomial bases, each time lifting the full system to a complete basis. Groebner_walk should be called only in cases, where a normal kex computation would take too much computer time.
The operator torder has to be called before in order to define the variable sequence and the term order mode of g.

The variable gvarslast is not set.
Do not call groebner_walk with on groebopt.
Groebner_walk includes some overhead (such as e. g. computation with division). On the other hand, sometimes groebner_walk is faster than a direct lex computation.

14.21 groebopt

GROEBOPT

Switch
If groebopt is set ON, the sequence of variables is optimized with respect to execution speed of groebner calculations; note that the final list of variables is available in gvarslast. By default groebopt is off, conserving the original variable sequence.
An explicitly declared dependency using the depend declaration supersedes the variable optimization.

Examples

depend a, x, y; \Rightarrow
guarantees that a will be placed in front of x and y.

14.22 gvarslast

GVARSLAST

Variable
After a groebner or groebnerf calculation the actual variable sequence is stored in the variable gvarslast. If groebopt is on gvarslast shows the variable sequence after reordering.

14.23 groebprereduce

GROEBPREREDUCE

Switch
If groebprereduce set ON, groebner and groebnerf try to simplify the input expressions: if the head term of an input expression is a multiple of the head term of another expression, it can be reduced; these reductions are done cyclicly as long as possible in order to shorten the main part of the algorithm.

By default groebprereduce is off.

14.24 groebfullreduction

GROEBFULLREDUCTION

Switch

If groebfullreduction set off, the polynomial reduction steps during groebner and groebnerf are limited to the pure head term reduction; subsequent terms are reduced otherwise.

By default groebfullreduction is on.

14.25 gltbasis

GLTBASIS

Switch
If gltbasis set on, the leading terms of the result basis of a groebner or groebnerf calculation are extracted. They are collected as a basis of monomials, which is available as value of the global variable gltb.

14.26 gltb

GLTB
Variable
See gltbasis

14.27 glterms

GLTERMS

Variable
If the expressions in a groebner or groebnerf call contain parameters (symbols which are not member of the variable list), the share variable glterms is set to a list of expression which during the calculation were assumed to be nonzero. The calculated bases are valid only under the assumption that all these expressions do not vanish.

14.28 groebstat

GROEBSTAT

Switch

if groebstat is on, a summary of the groebner or groebnerf computation is printed at the end including the computing time, the number of intermediate H polynomials and the counters for the criteria hits.

$14.29 \quad$ trgroeb

TRGROEB

Switch

if trgroeb is on, intermediate H polynomials are printed during a groebner or groebnerf calculation.

14.30 trgroebs

TRGROEBS

Switch
if trgroebs is on, intermediate H and S polynomials are printed during a groebner or groebnerf calculation.

14.31 gzerodim?

GZERODIM?

Operator

gzerodim!?(basis)
where bas is a Groebner basis in the current term order with the actual setting (see ideal parameters).
gzerodim!? tests whether the ideal spanned by the given basis has dimension zero. If yes, the number of zeros is returned, nil otherwise.

14.32 gdimension

GDIMENSION

Operator

```
gdimension(bas)
```

where bas is a groebner basis in the current term order (see ideal parameters). gdimension computes the dimension of the ideal spanned by the given basis and returns the dimension as an integer number. The Kredel-Weispfenning algorithm is used: the dimension is the length of the longest independent variable set, see gindependent_sets

14.33 gindependent_sets

GINDEPENDENT SETS

Operator

```
gindependent_sets(bas)
```

where bas is a groebner basis in any term order (which must be the current term order) with the specified variables (see ideal parameters).
Gindependent_sets computes the maximal left independent variable sets of the ideal, that are the variable sets which play the role of free parameters in the current ideal basis. Each set is a list which is a subset of the variable list. The result is a list of these sets. For an ideal with dimension zero the list is empty. The KredelWeispfenning algorithm is used.

14.34 dd_groebner

DD_GROEBNER

Operator

For a homogeneous system of polynomials under graded term order, gradlex term order, revgradlex term order or weighted term order a Groebner Base can be computed with limiting the grade of the intermediate S polynomials:

```
dd_groebner(d1, d2, plist)
```

where $d 1$ is a non negative integer and $d 2$ is an integer or "infinity". A pair of polynomials is considered only if the grade of the lcm of their head terms is between $d 1$ and $d 2$. For the term orders graded or weighted the (first) weight vector is used for the grade computation. Otherwise the total degree of a term is used.

14.35 glexconvert

GLEXCONVERT

Operator

$$
\text { glexconvert }(b a s[, v a r s][, M A X D E G=m x][, N E W V A R S=n v])
$$

where bas is a groebner basis in the current term order, $m x$ (optional) is a positive integer and $n v l$ (optional) is a list of variables (see ideal parameters).
The operator glexconvert converts the basis of a zero-dimensional ideal (finite number of isolated solutions) from arbitrary ordering into a basis under lex term order.

The parameter newvars defines the new variable sequence. If omitted, the original variable sequence is used. If only a subset of variables is specified here, the partial ideal basis is evaluated.

If newvars is a list with one element, the minimal univariate polynomial is computed.
maxdeg is an upper limit for the degrees. The algorithm stops with an error message, if this limit is reached.

A warning occurs, if the ideal is not zero dimensional.

Comments

During the call the term order of the input basis must be active.

14.36 greduce

GREDUCE
 Operator
 greduce(exp, $\{\exp 1, \exp 2, \ldots, \operatorname{expm}\})$

where exp is an expression, and $\{\exp 1, \exp 2, \ldots, \operatorname{expm}\}$ is a list of expressions or equations.
greduce is functionally equivalent with a call to groebner and then a call to preduce.

14.37 preduce

PREDUCE
 Operator
 $\operatorname{preduce}(p,\{\exp , \ldots\})$

where p is an expression, and $\{\exp , \ldots\}$ is a list of expressions or equations.
Preduce computes the remainder of exp modulo the given set of polynomials resp. equations. This result is unique (canonical) only if the given set is a groebner basis under the current term order
see also: preducet operator.

14.38 idealquotient

IDEALQUOTIENT
 Operator

idealquotient $(\{\exp , \ldots\}, d)$
where $\{\exp , \ldots\}$ is a list of expressions or equations, d is a single expression or equation.
Idealquotient computes the ideal quotient: ideal spanned by the expressions $\{\exp , \ldots\}$ divided by the single polynomial/expression f. The result is the groebner basis of the quotient ideal.

14.39 hilbertpolynomial

HILBERTPOLYNOMIAL

Operator

hilbertpolynomial(bas)
where bas is a groebner basis in the current term order.
The degree of the Hilbert polynomial is the dimension of the ideal spanned by the basis. For an ideal of dimension zero the Hilbert polynomial is a constant which is the number of common zeros of the ideal (including eventual multiplicities). The Hollmann algorithm is used.

14.40 saturation

SATURATION

Operator

saturation $(\{\exp , \ldots\}, p)$
where $\{\exp , \ldots\}$ is a list of expressions or equations, p is a single polynomial.
Saturation computes the quotient of the polynomial p and a power (with unknown but finite exponent) of the ideal built from $\{\exp , \ldots\}$. The result is the computed quotient. Saturation calls idealquotient several times until the result does not change any more.

14.41 Factorizing Groebner bases

14.42 groebnerf

GROEBNERF

Operator

$$
\operatorname{groebnerf}(\{\exp , \ldots\}[,\{ \},\{n z, \ldots\}]) ;
$$

where $\{\exp , \ldots\}$ is a list of expressions or equations, and $\{n z, \ldots\}$ is an optional list of polynomials to be considered as non zero for this calculation. An empty list must be passed as second argument if the non-zero list is specified.
groebnerf tries to separate polynomials into individual factors and to branch the computation in a recursive manner (factorization tree). The result is a list of partial Groebner bases. Multiplicities (one factor with a higher power, the same partial basis twice) are deleted as early as possible in order to speed up the calculation.

The third parameter of groebnerf declares some polynomials nonzero. If any of these is found in a branch of the calculation the branch is canceled.

```
Example
groebnerf \((\{3 * x * * 2 * \mathrm{y}+2 * \mathrm{x} * \mathrm{y}+\mathrm{y}+9 * \mathrm{x} * * 2+5 * \mathrm{x}=3\),
    \(2 * \mathrm{x} * * 3 * \mathrm{y}-\mathrm{x} * \mathrm{y}-\mathrm{y}+6 * \mathrm{x} * * 3-2 * \mathrm{x} * * 2-3 * \mathrm{x}=-3\),
    \(\mathrm{x} * * 3 * \mathrm{y}+\mathrm{x} * * 2 * \mathrm{y}+3 * \mathrm{x} * * 3+2 * \mathrm{x} * * 2\},\{\mathrm{y}, \mathrm{x}\}) ;\)
        \(\{\{\mathrm{Y}-3, \mathrm{X}\}\),
            2
    \(\{2 * \mathrm{Y}+2 * \mathrm{X}-1,2 * \mathrm{X}-5 * \mathrm{X}-5\}\}\)
```

Related information
groebresmax variable
groebmonfac variable
groebrestriction variable
groebner operator
gvarslast variable
groebopt switch
groebprereduce switch
groebfullreduction switch
gltbasis switch
gltb variable
glterms variable
groebstat switch
trgroeb switch
trgroebs switch
groebnert operator

14.43 groebmonfac

GROEBMONFAC

Variable
The variable groebmonfac is connected to the handling of monomial factors. A monomial factor is a product of variable powers as a factor, e.g. $\mathrm{x}^{* *} 2^{*} \mathrm{y}$ in $\mathrm{x}^{* *} 3^{*} \mathrm{y}$ $-2^{*} \mathrm{x}^{* *} 2^{*} \mathrm{y}^{* *} 2$. A monomial factor represents a solution of the type $\mathrm{x}=0$ or $\mathrm{y}=0$ with a certain multiplicity. With groebnerf the multiplicity of monomial factors is lowered to the value of the shared variable groebmonfac which by default is 1 (= monomial factors remain present, but their multiplicity is brought down). With groebmonfac: $=0$ the monomial factors are suppressed completely.

14.44 groebresmax

GROEBRESMAX

Variable

The variable groebresmax controls during groebnerf calculations the number of partial results. Its default value is 300 . If more partial results are calculated, the calculation is terminated.

14.45 groebrestriction

GROEBRESTRICTION

Variable
During groebnerf calculations irrelevant branches can be excluded by setting the variable groebrestriction. The following restrictions are implemented:

```
groebrestriction:= nonnegative
groebrestriction := positive
groebrestriction:= zeropoint
```

With nonnegative branches are excluded where one polynomial has no nonnegative real zeros; with positive the restriction is sharpened to positive zeros only. The restriction zeropoint excludes all branches which do not have the origin $(0,0, \ldots 0)$ in their solution set.

14.46 Tracing Groebner bases

14.47 groebprot

GROEBPROT

Switch

If groebprot is ON the computation steps during preduce, greduce and groebner are collected in a list which is assigned to the variable groebprotfile.

14.48 groebprotfile

GROEBPROTFILE

Variable
See groebprot switch.

14.49 groebnert

GROEBNERT
 Operator

```
groebnert({v=exp,\ldots})
```

where v are kernels (simple or indexed variables), exp are polynomials.
groebnert is functionally equivalent to a groebner call for $\{\exp , \ldots\}$, but the result is a set of equations where the left-hand sides are the basis elements while the righthand sides are the same values expressed as combinations of the input formulas, expressed in terms of the names v

Example

```
groebnert({p1=2*x**2+4*y**2-100,p2=2*x-y+1});
GB1 := {2*X - Y + 1=P2,
```

 2
 $9 * \mathrm{Y}-2 * \mathrm{Y}-199=-2 * \mathrm{X} * \mathrm{P} 2-\mathrm{Y} * \mathrm{P} 2+2 * \mathrm{P} 1+\mathrm{P} 2\}$

14.50 preducet

PREDUCET

Operator

```
preduce( }p,{v=\operatorname{exp}\ldots}
```

where p is an expression, v are kernels (simple or indexed variables), exp are polynomials.
preducet computes the remainder of p modulo $\{\exp , \ldots\}$ similar to preduce, but the result is an equation which expresses the remainder as combination of the polynomials.
Example

```
    GB2 := {G1=2*X - Y + 1,G2=9*Y**2 - 2*Y - 199}
    preducet(q=x**2,gb2);
- 16*Y + 208= - 18*X*G1 - 9*Y*G1 + 36*Q + 9*G1 - G2
```


14.51 Groebner Bases for Modules

14.52 Module

MODULE

Concept

Given a polynomial ring, e.g. $R=Z[x, y, \ldots]$ and an integer $n_{i} 1$. The vectors with n elements of R form a free MODULE under elementwise addition and multiplication with elements of R .

For a submodule given by a finite basis a Groebner basis can be computed, and the facilities of the GROEBNER package are available except the operators groebnerf and groesolve. The vectors are encoded using auxiliary variables which represent the unit vectors in the module. These are declared in the share variable gmodule.

14.53 gmodule

GMODULE

Variable
The vectors of a free module over a polynomial ring R are encoded as linear combinations with unit vectors of M which are represented by auxiliary variables. These must be collected in the variable gmodule before any call to an operator of the Groebner package.

```
torder(\{x,y,v1,v2,v3\})\$
gmodule := \{v1,v2,v3\}\$
\(\mathrm{g}:=\) groebner (\{x^2*v1 + y*v2,x*y*v1 - v3,2y*v1 + y*v3\});
```

compute the Groebner basis of the submodule

$$
\left(\left[x^{\wedge} 2, y, 0\right],[x y, 0,-1],[0,2 y, y]\right)
$$

The members of the list gmodule are automatically appended to the end of the variable list, if they are not yet members there. They take part in the actual term ordering.

14.54 Computing with distributive polynomials

14.55 gsort

GSORT

Operator

```
gsort(p)
```

where p is a polynomial or a list of polynomials.
The polynomials are reordered and sorted corresponding to the current term order.
Examples
torder lex;
gsort ($\mathrm{x} * * 2+2 \mathrm{x} * \mathrm{y}+\mathrm{y} * * 2,\{\mathrm{y}, \mathrm{x}\}$);

$$
\Rightarrow \quad y * * 2+2 \mathrm{y} * \mathrm{x}+\mathrm{x} * * 2
$$

14.56 gsplit

GSPLIT

Operator

$$
\operatorname{gsplit}(p[, \text { vars }]) ;
$$

where p is a polynomial or a list of polynomials.
The polynomial is reordered corresponding to the the current term order and then separated into leading term and reductum. Result is a list with the leading term as first and the reductum as second element.

```
Examples
torder lex;
gsplit(x**2+2x*y+y**2,{y,x});
```

 \(\Rightarrow \quad\{\mathrm{y} * * 2,2 \mathrm{y} * \mathrm{x}+\mathrm{x} * * 2\}\)

14.57 gspoly

GSPOLY

Operator

$\operatorname{gspoly}(p 1, p 2)$;
where $p 1$ and $p 2$ are polynomials.
The subtraction polynomial of p 1 and p 2 is computed corresponding to the method of the Buchberger algorithm for computing groebner bases: p1 and p2 are multiplied with terms such that when subtracting them the leading terms cancel each other.

15 High Energy Physics

15.1 HEPHYS

HEPHYS

Introduction

The High-energy Physics package is historic for REDUCE, since REDUCE originated as a program to aid in computations with Dirac expressions. The commutation algebra of the gamma matrices is independent of their representation, and is a natural subject for symbolic mathematics. Dirac theory is applied to β decay and the computation of cross-sections and scattering. The high-energy physics operators are available in the REDUCE main program, rather than as a module which must be loaded.

15.2 HE-dot

Operator

The . operator is used to denote the scalar product of two Lorentz four-vectors.
vector . vector
vector must be an identifier declared to be of type vector to have the scalar product definition. When applied to arguments that are not vectors, the cons operator is used, whose symbol is also "dot."

Examples

```
vector aa,bb,cc;
let aa.bb = 0;
aa.bb; }\quad=>\quad
aa.cc; }\quad=>\quad\mathrm{ AA.CC
q := aa.cc; }\quad=>\quadQ:= AA.C
q; }\quad=>\quad\mathrm{ AA.CC
```


Comments

Since vectors are special high-energy physics entities that do not contain values, the . product will not return a true scalar product. You can assign a scalar identifier to the result of a . operation, or assign a . operation to have the value of the scalar you supply, as shown above. Note that the result of a . operation is a scalar, not a vector.

The metric tensor $\mathrm{g}(\mathrm{u}, \mathrm{v})$ can be represented by $u . v$. If contraction over the indices is required, u and v should be declared to be of type index.
The dot operator has the highest precedence of the infix operators, so expressions involving . and other operators have the scalar product evaluated first before other operations are done.

15.3 EPS

EPS

Operator

The eps operator denotes the completely antisymmetric tensor of order 4 and its contraction with Lorentz four-vectors, as used in high-energy physics calculations.

$$
\text { eps }(\text { vector }- \text { expr }, \text { vector }- \text { expr }, \text { vector }- \text { expr }, \text { vector }- \text { expr })
$$

vector-expr must be a valid vector expression, and may be an index.

Examples

vector $\mathrm{g} 0, \mathrm{~g} 1, \mathrm{~g} 2, \mathrm{~g} 3$;
$\operatorname{eps}(\mathrm{g} 1, \mathrm{~g} 0, \mathrm{~g} 2, \mathrm{~g} 3) ; \quad \Rightarrow \quad-\operatorname{EPS}(\mathrm{GO} 0, \mathrm{G} 1, \mathrm{G} 2, \mathrm{G} 3) ;$
$\operatorname{eps}(\mathrm{g} 1, \mathrm{~g} 2, \mathrm{~g} 0, \mathrm{~g} 3) ; \quad \Rightarrow \quad \operatorname{EPS}(\mathrm{GO}, \mathrm{G} 1, \mathrm{G} 2, \mathrm{G3})$;
eps $(\mathrm{g} 1, \mathrm{~g} 2, \mathrm{~g} 3, \mathrm{~g} 1) ; \quad \Rightarrow \quad 0$

Comments

Vector identifiers are ordered alphabetically by REDUCE. When an odd number of transpositions is required to restore the canonical order to the four arguments of eps, the term is ordered and carries a minus sign. When an even number of transpositions is required, the term is returned ordered and positive. When one of the arguments is repeated, the value 0 is returned. A contraction of the form $\epsilon_{i j \mu \nu} p_{\mu} q_{\nu}$ is represented by $\operatorname{eps}(i, j, p, q)$ when i and j have been declared to be of type index.

15.4 G

G

Operator
g is an n－ary operator used to denote a product of gamma matrices contracted with Lorentz four－vectors，in high－energy physics．

$$
\mathrm{g}(\text { identifier }, \text { vector }-\operatorname{expr}\{, \text { vector }-\operatorname{expr}\} *)
$$

identifier is a scalar identifier representing a fermion line identifier，vector－expr can be any valid vector expression，representing a vector or a gamma matrix．

```
Examples
vector aa,bb,cc;
vector a;
g(line1,aa,bb); 樟.BB
g(line2,aa,a); 趷
g(id,aa,bb,cc); 别
g(li1,aa,bb) + k; }\quad=>\quadAA.BB + 
let aa.bb = m*k;
g(ln1,aa)*g(ln1,bb); 筥 K*M
g(ln1,aa)*g(ln2,bb); 别 0
```


Comments

The vector A is reserved in arguments of g to denote the special gamma matrix γ_{5} ． It must be declared to be a vector before you use it．
Gamma matrix expressions are associated with fermion lines in a Feynman diagram． If more than one line occurs in an expression，the gamma matrices involved are separate（operating in independent spin space），as shown in the last two example lines above．A product of gamma matrices associated with a single line can be entered either as a single g command with several vector arguments，or as products of separate g commands each with a single argument．

While the product of vectors is not defined，the product，sum and difference of several gamma expressions are defined，as is the product of a gamma expression
with a scalar. If an expression involving gamma matrices includes a scalar, the scalar is treated as if it were the product of itself with a unit 4×4 matrix.

Dirac expressions are evaluated by computing the trace of the expression using the commutation algebra of gamma matrices. The algorithms used are described in articles by J. S. R. Chisholm in Il Nuovo Cimento X, Vol. 30, p. 426, 1963, and J. Kahane, Journal of Mathematical Physics, Vol. 9, p. 1732, 1968. The trace is then divided by 4 to distinguish between the trace of a scalar and the trace of an expression that is the product of a scalar with a unit 4×4 matrix.

Trace calculations may be prevented over any line identifier by declaring it to be nospur. If it is later desired to evaluate these traces, the declaration can be undone with the spur declaration.
The notation of Bjorken and Drell, Relativistic Quantum Mechanics, 1964, is assumed in all operations involving gamma matrices. For an example of the use of g in a calculation, see the REDUCE User's Manual.

15.5 INDEX

INDEX
 Declaration

The declaration index flags a four-vector as an index for subsequent high-energy physics calculations.
index vector-id $\{$,vector-id $\} *$
vector-id must have been declared of type vector.
Examples
vector aa,bb,cc;
index uu;
let aa.bb = 0;
(aa.uu)*(bb.uu); $\Rightarrow 0$
(aa.uu)*(cc.uu); \Rightarrow AA.CC

Comments

Index variables are used to represent contraction over components of vectors when scalar products are taken by the . operator, as well as indicating contraction for the eps operator or metric tensor.
The special status of a vector as an index can be revoked with the declaration remind. The object remains a vector, however.

15.6 MASS

MASS

Command

The mass command associates a scalar variable as a mass with the corresponding vector variable, in high-energy physics calculations.

```
mass vector-var=scalar-var {,vector-var=scalar-var}*
```

vector-var can be a declared vector variable; mass will declare it to be of type vector if it is not. This may override an existing matrix variable by that name. scalar-var must be a scalar variable.

```
Examples
vector bb,cc;
mass cc=m;
mshell cc;
cc.cc; }\quad=>\quad\mp@subsup{M}{}{2
```


Comments

Once a mass has been attached to a vector with a mass declaration, the mshell declaration puts the associated particle "on the mass shell." Subsequent scalar (.) products of the vector with itself will be replaced by the square of the mass expression.

15.7 MSHELL

MSHELL

Command

The mshell command puts particles on the mass shell in high-energy physics calculations.

```
mshell vector-var{,vector-var}*
```

vector-var must have had a mass attached to it by a mass declaration.
Examples
vector v1,v2;
mass $\mathrm{v} 1=\mathrm{m}, \mathrm{v} 2=\mathrm{q}$;
mshell v1;
v1.v1; $\quad \Rightarrow \quad M^{2}$
v2.v2; $\quad \Rightarrow \quad$ V2.V2
mshell v2;
v1.v1*v2.v2; $\quad \Rightarrow \quad M^{2} * Q^{2}$

Comments

Even though a mass is attached to a vector variable representing a particle, the replacement does not take place until the mshell declaration is given for that vector variable.

15.8 NOSPUR

NOSPUR
 Declaration

The nospur declaration prevents the trace calculation over the given line identifiers in high-energy physics calculations.

$$
\text { nospur line-id\{,line-id\}* }
$$

line-id is a scalar identifier that will be used as a line identifier.
Examples
vector a1,b1,c1;
g (line1, $\mathrm{a} 1, \mathrm{~b} 1$) *g(line2, b1, c1) ;
$\Rightarrow \quad \mathrm{A} 1 . \mathrm{B} 1 * \mathrm{~B} 1 . \mathrm{C} 1$
nospur line2;
g (line1, $\mathrm{a} 1, \mathrm{~b} 1$) $* \mathrm{~g}$ (line2, $\mathrm{b} 1, \mathrm{c} 1$) ;

$$
\Rightarrow \quad \mathrm{A} 1 . \mathrm{B} 1 * \mathrm{G}(\operatorname{LINE} 2, \mathrm{~B} 1, \mathrm{C} 1)
$$

Comments

Nospur declarations can be removed by making the declaration spur.

15.9 REMIND

REMIND

Declaration

The remind declaration removes the special status of its arguments as indices, which was set in the index declaration, in high-energy physics calculations.

remind identifier $\{$, identifier $\} *$

identifier must have been declared to be of type index.

15.10 SPUR

SPUR
 Declaration

The spur declaration removes the special exemption from trace calculations that was declared by nospur, in high-energy physics calculations.
spur line-id\{,line-id $\} *$
line-id must be a line-identifier that has previously been declared nospur.

15.11 VECDIM

VECDIM

Command

The command vecdim changes the vector dimension from 4 to an arbitrary integer or symbol. Used in high-energy physics calculations.

vecdim dimension

dimension must be either an integer or a valid scalar identifier that does not have a floating-point value.

Comments

The eps operator and the γ_{5} symbol (A) are not properly defined in anything except four dimensions and will print an error message if you use them that way. The other high-energy physics operators should work without problem.

15.12 VECTOR

VECTOR

Declaration

The vector declaration declares that its arguments are of type vector.

vector identifier $\{$, identifier $\} *$

identifier must be a valid REDUCE identifier. It may have already been used for a matrix, array, operator or scalar variable. After an identifier has been declared to be a vector, it may not be used as a scalar variable.

Comments

Vectors are special entities for high-energy physics calculations. You cannot put values into their coordinates; they do not have coordinates. They are legal arguments for the high-energy physics operators eps, g and . (dot). Vector variables are used to represent gamma matrices and gamma matrices contracted with Lorentz 4 -vectors, since there are no Dirac variables per se in the system. Vectors do follow the usual vector rules for arithmetic operations: + and - operate upon two or more vectors, producing a vector; * and / cannot be used between vectors; the scalar product is represented by the . operator; and the product of a scalar and vector expression is well defined, and is a vector.
You can represent components of vectors by including representations of unit vectors in your system. For instance, letting EO represent the unit vector ($1,0,0,0$), the command

```
V1.E0 := 0;
```

would set up the substitution of zero for the first component of the vector V1.
Identifiers that are declared by the index and mass declarations are automatically declared to be vectors.

The following errors can occur in calculations using the high energy physics package:

```
A represents only gamma5 in vector expressions
```

You have tried to use A in some way other than gamma5 in a highenergy physics expression.
Gamma5 not allowed unless vecdim is 4

You have used γ_{5} in a high-energy physics computation involving a vector dimension other than 4.
$I D$ has no mass
One of the arguments to mshell has had no mass assigned to it, in high-energy physics calculations.

Missing arguments for G operator

A line symbol is missing in a gamma matrix expression in high-energy physics calculations.
Unmatched index list
The parser has found unmatched indices during the evaluation of a gamma matrix expression in high-energy physics calculations.

16 Numeric Package

16.1 Numeric Package

NUMERIC PACKAGE

Introduction

The numeric package supplies algorithms based on approximation techniques of numerical mathematics. The algorithms use the rounded mode arithmetic of REDUCE, including the variable precision feature which is exploited in some algorithms in an adaptive manner in order to reach the desired accuracy.

16.2 Interval

INTERVAL

Type
Intervals are generally coded as lower bound and upper bound connected by the operator . ., usually associated to a variable in an equation.

$$
\text { var }=(\text { low..high })
$$

where var is a kernel and low, high are numbers or expression which evaluate to numbers with lowi=high.
Examples
$\mathrm{x}=(2.5$. 3.5) \Rightarrow
means that the variable x is taken in the range from 2.5 up to 3.5 .

16.3 numeric accuracy

NUMERIC ACCURACY

Concept

The keyword parameters accuracy=a and iterations=i, where aand i must be positive integer numbers, control the iterative algorithms: the iteration is continued until the local error is below $10^{* *}$-a; if that is impossible within i steps, the iteration is terminated with an error message. The values reached so far are then returned as the result.

16.4 TRNUMERIC

TRNUMERIC
 Switch

Normally the algorithms produce only a minimum of printed output during their operation. In cases of an unsuccessful or unexpected long operation a trace of the iteration can be printed by setting trnumeric on.

16.5 num_min

NUM_MIN

Operator

The Fletcher Reeves version of the steepest descent algorithms is used to find the minimum of a function of one or more variables. The function must have continuous partial derivatives with respect to all variables. The starting point of the search can be specified; if not, random values are taken instead. The steepest descent algorithms in general find only local minima.

```
num_min}(\operatorname{exp},\operatorname{var}[=val][,var[=val]\ldots[,accuracy =a][, iterations =
i])
or
num_min}(\operatorname{exp},{var[=val][,var[=val]...]}[,accuracy =a][, iterations
i])
```

where $e x p$ is a function expression, var are the variables in $e x p$ and val are the (optional) start values. For a and i see numeric accuracy.

Num_min tries to find the next local minimum along the descending path starting at the given point. The result is a list with the minimum function value as first element followed by a list of equations, where the variables are equated to the coordinates of the result point.

```
Examples
num_min(sin}(x)+x/5,x) = {4.9489585606,{X=29.643767785}
num_min}(\operatorname{sin}(x)+x/5,x=0) 
    { - 1.3342267466,{X= - 1.7721582671}}
```


16.6 num_solve

NUM_SOLVE

Operator

An adaptively damped Newton iteration is used to find an approximative root of a function (function vector) or the solution of an equation (equation system). The expressions must have continuous derivatives for all variables. A starting point for the iteration can be given. If not given random values are taken instead. When the number of forms is not equal to the number of variables, the Newton method cannot be applied. Then the minimum of the sum of absolute squares is located instead.
With complex on, solutions with imaginary parts can be found, if either the expression(s) or the starting point contain a nonzero imaginary part.

```
num_solve(exp,var [= val][,accuracy =a][, iterations = i])
or
num_solve}({\operatorname{exp},\ldots,\operatorname{exp}},\operatorname{var}[=val],\ldots,\operatorname{var}[=val][,accuracy =a][,iterations =
i])
or
num_solve}({\operatorname{exp},\ldots,\operatorname{exp}},{\operatorname{var}[=\mathrm{ val }],\ldots,var[=val]}[,accuracy =a][, iterations 
i])
```

where exp are function expressions, var are the variables, val are optional start values. For a and i see numeric accuracy.
num_solve tries to find a zero/solution of the expression(s). Result is a list of equations, where the variables are equated to the coordinates of the result point.

The Jacobian matrix is stored as side effect the shared variable jacobian.

Examples

num_solve(\{sin $x=\cos y, x+y=1\},\{x=1, y=2\})$;
$\Rightarrow \quad\{\mathrm{X}=-1.8561957251, \mathrm{Y}=2.856195584\}$
jacobian; $\quad \Rightarrow \quad[\operatorname{COS}(X) \quad \operatorname{SIN}(Y)]$
$\left[\begin{array}{llll}{[} & & &] \\ {[1} & 1 &]\end{array}\right]$

16.7 num_int

NUM_INT

Operator

For the numerical evaluation of univariate integrals over a finite interval the following strategy is used: If int finds a formal antiderivative which is bounded in the integration interval, this is evaluated and the end points and the difference is returned. Otherwise a Chebyshev fit is computed, starting with order 20, eventually up to order 80 . If that is recognized as sufficiently convergent it is used for computing the integral by directly integrating the coefficient sequence. If none of these methods is successful, an adaptive multilevel quadrature algorithm is used.
For multivariate integrals only the adaptive quadrature is used. This algorithm tolerates isolated singularities. The value iterations here limits the number of local interval intersection levels. a is a measure for the relative total discretization error (comparison of order 1 and order 2 approximations).

```
num_int \((\exp\), var \(=(l . . u)[\), var \(=(l . . u), \ldots][\), accuracy \(=a][\), iterations \(=\)
i])
```

where \exp is the function to be integrated, var are the integration variables, l are the lower bounds, u are the upper bounds.

Result is the value of the integral.
Examples
num_int ($\sin \mathrm{x}, \mathrm{x}=(0 . .3 .1415926)$);
$\Rightarrow \quad 2.0000010334$

16.8 num_odesolve

NUM_ODESOLVE

Operator

The Runge-Kutta method of order 3 finds an approximate graph for the solution of real ODE initial value problem.

$$
\begin{aligned}
& \text { num_odesolve }(\text { exp, depvar }=\text { start, indep }=(\text { from } . . \text { to })[, \text { accuracy }= \\
& a][, \text { iterations }=i]) \\
& \text { or } \\
& \text { num_odesolve }(\{\exp , \text { exp }, \ldots\},\{\text { depvar }=\text { start, depvar }=\text { start }, \ldots\} \text { indep }=(\text { from } \\
& . . \text { to })[, \text { accuracy }=a][, \text { iterations }=i])
\end{aligned}
$$

where depvar and start specify the dependent variable(s) and the starting point value (vector), indep, from and to specify the independent variable and the integration interval (starting point and end point), exp are equations or expressions which contain the first derivative of the independent variable with respect to the dependent variable.

The ODEs are converted to an explicit form, which then is used for a Runge Kutta iteration over the given range. The number of steps is controlled by the value of i (default: 20). If the steps are too coarse to reach the desired accuracy in the neighborhood of the starting point, the number is increased automatically.

Result is a list of pairs, each representing a point of the approximate solution of the ODE problem.

Examples

depend (y, x) ;
num_odesolve($\mathrm{df}(\mathrm{y}, \mathrm{x})=\mathrm{y}, \mathrm{y}=1, \mathrm{x}=(0 \mathrm{I}$ 1), iterations=5);
\Rightarrow
$\{0.0,1.0\},\{0.2,1.2214\},\{0.4,1.49181796\},\{0.6,1.8221064563\},\{0.8,2.2255208258\},\{1.0,2$
In most cases you must declare the dependency relation between the variables explicitly using depend; otherwise the formal derivative might be converted to zero.
The operator solve is used to convert the form into an explicit ODE. If that process fails or if it has no unique result, the evaluation is stopped with an error message.

16.9 bounds

BOUNDS

Operator

Upper and lower bounds of a real valued function over an interval or a rectangular multivariate domain are computed by the operator bounds. The algorithmic basis is the computation with inequalities: starting from the interval(s) of the variables, the bounds are propagated in the expression using the rules for inequality computation. Some knowledge about the behavior of special functions like ABS, SIN, COS, EXP, LOG, fractional exponentials etc. is integrated and can be evaluated if the operator bounds is called with rounded mode on (otherwise only algebraic evaluation rules are available).
If bounds finds a singularity within an interval, the evaluation is stopped with an error message indicating the problem part of the expression.

$$
\begin{aligned}
& \text { bounds }(\exp , \text { var }=(l \ldots u)[, \operatorname{var}=(l \ldots u) \ldots]) \\
& \text { or } \\
& \text { bounds }(\exp ,\{\operatorname{var}=(l . . u)[, \operatorname{var}=(l . . u) \ldots]\})
\end{aligned}
$$

where \exp is the function to be investigated, var are the variables of exp,l and u specify the area as set of intervals.
bounds computes upper and lower bounds for the expression in the given area. An interval is returned.
Examples
bounds ($\sin \mathrm{x}, \mathrm{x}=(1 . .2)$); $\Rightarrow-1$.. 1
on rounded;
bounds $(\sin x, x=(1 . .2)) ; \quad \Rightarrow \quad 0.84147098481$.. 1
bounds $(x * * 2+x, x=(-0.5 \ldots 0.5))$;

$$
\Rightarrow \quad-0.25 \ldots 0.75
$$

16.10 Chebyshev fit

CHEBYSHEV FIT

Concept

The operator family Chebyshev_... implements approximation and evaluation of functions by the Chebyshev method. Let $\mathrm{T}(\mathrm{n}, \mathrm{a}, \mathrm{b}, \mathrm{x})$ be the Chebyshev polynomial of order n transformed to the interval (a, b). Then a function $f(x)$ can be approximated in (a, b) by a series

```
for i := 0:n sum c(i)*T(i,a,b,x)
```

The operator chebyshev_fit computes this approximation and returns a list, which has as first element the sum expressed as a polynomial and as second element the sequence of Chebyshev coefficients. Chebyshev_df and Chebyshev_int transform a Chebyshev coefficient list into the coefficients of the corresponding derivative or integral respectively. For evaluating a Chebyshev approximation at a given point in the basic interval the operator Chebyshev_eval can be used. Chebyshev_eval is based on a recurrence relation which is in general more stable than a direct evaluation of the complete polynomial.

$$
\begin{aligned}
& \text { chebyshev_fit }(f c n, \text { var }=(l o . . h i), n) \\
& \text { chebyshev_eval }(\text { coeffs, var }=(l o . . h i), \text { var }=p t) \\
& \text { chebyshev_df }(\text { coeffs }, \text { var }=(l o . . h i)) \\
& \text { chebyshev_int }(\text { coeffs, var }=(l o . . ~ h i))
\end{aligned}
$$

where $f c n$ is an algebraic expression (the target function), var is the variable of $f c n$, $l o$ and $h i$ are numerical real values which describe an interval lo ; $h i$, the integer n is the approximation order (set to 20 if missing), $p t$ is a number in the interval and coeffs is a series of Chebyshev coefficients.

Examples

```
on rounded;
```

w:=chebyshev_fit ($\sin x / x, x=(1 \ldots 3), 5)$;
\Rightarrow
$\mathrm{w}:=\left\{0.03824 * \mathrm{x}^{3}-0.2398 * \mathrm{x}^{2}+0.06514 * \mathrm{x}+0.9778\right.$,
$\{0.8991,-0.4066,-0.005198,0.009464,-0.00009511\}\}$

$$
\begin{gathered}
\text { chebyshev_eval(second w, } x=(1 \ldots 3), x=2.1) ; \\
\Rightarrow \quad 0.4111
\end{gathered}
$$

16.11 num fit

NUM_FIT

Operator

The operator num_fit finds for a set of points the linear combination of a given set of functions (function basis) which approximates the points best under the objective of the least squares criterion (minimum of the sum of the squares of the deviation). The solution is found as zero of the gradient vector of the sum of squared errors.

```
num_fit(vals, basis,var = pts)
```

where vals is a list of numeric values, var is a variable used for the approximation, $p t s$ is a list of coordinate values which correspond to var, basis is a set of functions varying in var which is used for the approximation.

The result is a list containing as first element the function which approximates the given values, and as second element a list of coefficients which were used to build this function from the basis.

Examples

```
pts:=for i:=1 step 1 until 5 collect i$
vals:=for i:=1 step 1 until 5 collect
for j:=1:i product j$
num_fit(vals,{1,x,x**2},x=pts);
    #
{14.571428571*X - 61.428571429*X + 54.6,{54.6,
    - 61.428571429,14.571428571}}
```


17 Roots Package

17.1 Roots Package

ROOTS PACKAGE

Introduction

The root finding package is designed so that it can be used to find some or all of the roots of univariate polynomials with real or complex coefficients, to the accuracy specified by the user.
Not all operators of roots package are described here. For using the operators
isolater (intervals isolating real roots)
rlrootno (number of real roots in an interval)
rootsat-prec (roots at system precision)
rootval (result in equation form)
firstroot (computing only one root)
getroot (selecting roots from a collection)
please consult the full documentation of the package.

17.2 MKPOLY

MKPOLY
 Operator

Given a roots list as returned by roots, the operator mkpoly constructs a polynomial which has these numbers as roots.

```
mkpoly rl
```

where $r l$ is a list with equations, which all have the same kernel on their left-hand sides and numbers as right-hand sides.

Examples

$\operatorname{mkpoly}\{\mathrm{x}=1, \mathrm{x}=-2, \mathrm{x}=\mathrm{i}, \mathrm{x}=-\mathrm{i}\} ; \quad \Rightarrow \quad \mathrm{x} * * 4+\mathrm{x} * * 3-\mathrm{x} * * 2+\mathrm{x}-2$
Note that this polynomial is unique only up to a numeric factor.

17.3 NEARESTROOT

NEARESTROOT

Operator

The operator nearestroot finds one root of a polynomial with an iteration using a given starting point.

```
nearestroot(p pt)
```

where p is a univariate polynomial and $p t$ is a number.
Examples
nearestroot $\left(x^{\wedge} 2+2,2\right) ; \Rightarrow\{x=1.41421 * i\}$
The minimal accuracy of the result values is controlled by rootacc.

17.4 REALROOTS

REALROOTS

Operator

The operator realroots finds that real roots of a polynomial to an accuracy that is sufficient to separate them and which is a minimum of 6 decimal places.

```
realroots (p) or
realroots(p from, to)
```

where p is a univariate polynomial. The optional parameters from and to classify an interval: if given, exactly the real roots in this interval will be returned. from and to can also take the values infinity or -infinity. If omitted all real roots will be returned. Result is a list of equations which represent the roots of the polynomial at the given accuracy.

```
Examples
realroots(x^5-2); }\quad=>\quad{x=1.1487
realroots(x^3-104*x^2+403*x-300,2,infinity);
    { {x=3.0, x=100.0}
realroots(x^3-104*x^2+403*x-300,-infinity,2);
    => {x=1}
```

The minimal accuracy of the result values is controlled by rootacc.

17.5 ROOTACC

ROOTACC

Operator

The operator rootacc allows you to set the accuracy up to which the roots package computes its results.
$\operatorname{rootacc}(n)$
Here n is an integer value. The internal accuracy of the roots package is adjusted to a value of $\max (6, \mathrm{n})$. The default value is 6 .

17.6 ROOTS

ROOTS

Operator

The operator roots is the main top level function of the roots package. It will find all roots, real and complex, of the polynomial p to an accuracy that is sufficient to separate them and which is a minimum of 6 decimal places.

$$
\operatorname{roots}(p)
$$

where p is a univariate polynomial. Result is a list of equations which represent the roots of the polynomial at the given accuracy. In addition, roots stores separate lists of real roots and complex roots in the global variables rootsreal and rootscomplex.
Examples
$\begin{aligned} \operatorname{roots}\left(x^{\wedge} 5-2\right) ; \Rightarrow \quad\{ & =-0.929316+0.675188 * i, \\ & x=-0.929316-0.675188 * i, \\ & x=0.354967+1.09248 * i, \\ & x=0.354967-1.09248 * i, \\ & x=1.1487\}\end{aligned}$
The minimal accuracy of the result values is controlled by rootacc.

17.7 ROOT_VAL

ROOT_VAL

Operator

The operator root_val computes the roots of a univariate polynomial at system precision (or greater if required for root separation) and presents its result as a list of numbers.

```
roots(p)
```

where p is a univariate polynomial.

Examples

$$
\begin{aligned}
& \text { root_val }\left(x^{\wedge} 5-2\right) ; \Rightarrow \quad\{-0.929316490603+0.6751879524 * i, \\
&-0.929316490603-0.6751879524 * i, \\
& 0.354967313105+1.09247705578 * i \\
& 0.354967313105-1.09247705578 * i \\
&1.148698355\}
\end{aligned}
$$

17.8 ROOTSCOMPLEX

ROOTSCOMPLEX
 Variable

When the operator roots is called the complex roots are collected in the global variable rootscomplex as list.

17.9 ROOTSREAL

When the operator roots is called the real roots are collected in the global variable rootreal as list.

18 Special Functions

18.1 Special Function Package

SPECIAL FUNCTION PACKAGE
 Introduction

The REDUCE Special Function Package supplies extended algebraic and numeric support for a wide class of objects. This package was released together with REDUCE 3.5 (October 1993) for the first time, a major update is released with REDUCE 3.6.

The functions included in this package are in most cases (unless otherwise stated) defined and named like in the book by Abramowitz and Stegun: Handbook of Mathematical Functions, Dover Publications.

The aim is to collect as much information on the special functions and simplification capabilities as possible, i.e. algebraic simplifications and numeric (rounded mode) code, limits of the functions together with the definitions of the functions, which are in most cases a power series, a (definite) integral and/or a differential equation.

What can be found: Some famous constants, a variety of Bessel functions, special polynomials, the Gamma function, the (Riemann) Zeta function, Elliptic Functions, Elliptic Integrals, 3J symbols (Clebsch-Gordan coefficients) and integral functions.

What is missing: Mathieu functions, LerchPhi, etc.. The information about the special functions which solve certain differential equation is very limited. In several cases numerical approximation is restricted to real arguments or is missing completely.

The implementation of this package uses REDUCE rule sets to a large extent, which guarantees a high 'readability' of the functions definitions in the source file directory. It makes extensions to the special functions code easy in most cases too.

To look at these rules it may be convenient to use the showrules operator e.g. showrules Besseli;

Some evaluations are improved if the special function package is loaded, e.g. some (infinite) sums and products leading to expressions including special functions are known in this case.

Note: The special function package has to be loaded explicitly by calling load_package specfn;
The functions MeijerG and hypergeometric require additionally load_package specfn2;

18.2 Constants

CONSTANTS

Concept

There are a few constants known to the special function package, namely
Euler's constant (which can be computed as -Psi(1)) and
Khinchin's constant (which is defined in Khinchin's book "Continued Fractions") and
Golden_Ratio (which can be computed as $(1+$ sqrt 5$) / 2)$ and
Catalan's constant (which is known as an infinite sum of reciprocal powers)
Examples
on rounded; Euler_Gamma; $\Rightarrow 0.577215664902$
Khinchin; $\quad \Rightarrow \quad 2.68545200107$
Catalan $\quad \Rightarrow \quad 0.915965594177$
Golden_Ratio $\quad \Rightarrow \quad 1.61803398875$

18.3 Bernoulli Euler Zeta

18.4 BERNOULLI

BERNOULLI

Operator

The bernoulli operator returns the nth Bernoulli number.
Bernoulli(integer)
Examples
bernoulli 20; \Rightarrow - $174611 / 330$
bernoulli 17; $\Rightarrow 0$
Comments
All Bernoulli numbers with odd indices except for 1 are zero.

18.5 BERNOULLIP

BERNOULLIP

Operator
The BernoulliP operator returns the nth Bernoulli Polynomial evaluated at x.
BernoulliP(integer, expression)
Examples
BernoulliP $(3, z) ; \quad \Rightarrow \quad z *\left(2 * z^{2}-3 * z+1\right) / 2$
BernoulliP $(10,3) ; \quad \Rightarrow 338585 / 66$
Comments
The value of the nth Bernoulli Polynomial at 0 is the nth Bernoulli number.

18.6 EULER

EULER

Operator

The EULER operator returns the nth Euler number.
Euler(integer)
Examples
Euler 20; $\quad \Rightarrow \quad 370371188237525$
Euler $0 ; \quad \Rightarrow \quad 1$
Comments
The Euler numbers are evaluated by a recursive algorithm which makes it hard to compute Euler numbers above say 200.

Euler numbers appear in the coefficients of the power series representation of $1 / \cos (\mathrm{z})$.

18.7 EULERP

EULERP

Operator

The EulerP operator returns the nth Euler Polynomial.
EulerP(integer, expression)
Examples
$\operatorname{EulerP}(2, \mathrm{xx}) ; \quad \Rightarrow \quad \mathrm{xx} *(\mathrm{xx}-1)$
EulerP $(10,3) ; \quad \Rightarrow 2046$
Comments
The Euler numbers are the values of the Euler Polynomials at $1 / 2$ multiplied by $2^{* *}$ n.

18.8 ZETA

ZETA

Operator

The Zeta operator returns Riemann's Zeta function,
Zeta $(\mathrm{z}):=\operatorname{sum}\left(1 /\left(\mathrm{k}^{* *} \mathrm{z}\right), \mathrm{k}, 1\right.$, infinity $)$
Zeta(expression)
Examples
Zeta(2); $\quad \Rightarrow \quad \mathrm{pi}^{2} / 6$
on rounded;
Zeta 1.01; $\quad \Rightarrow \quad 100.577943338$
Comments
Numerical computation for the Zeta function for arguments close to 1 are tedious, because the series is converging very slowly. In this case a formula (e.g. found in Bender/Orzag: Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill) is used.

No numerical approximation for complex arguments is done.

18.9 Bessel Functions

18.10 BESSELJ

BESSELJ

Operator
The BesselJ operator returns the Bessel function of the first kind.
BesselJ(order, argument)

Examples

$\operatorname{BesselJ}(1 / 2, \mathrm{pi}) ; \quad \Rightarrow \quad 0$
on rounded;
BesselJ $(0,1) ; \quad \Rightarrow \quad 0.765197686558$

18.11 BESSELY

BESSELY

Operator
The Bessely operator returns the Bessel function of the second kind.
Bessely (order, argument)
Examples
BesselY (1/2,pi); $\Rightarrow \quad-\operatorname{sqrt}(2) / \mathrm{pi}$
on rounded;
BesselY $(1,3) ; \quad \Rightarrow \quad 0.324674424792$
Comments
The operator BesselY is also called Weber's function.

18.12 HANKEL1

HANKEL1

Operator

The Hankel1 operator returns the Hankel function of the first kind.

> Hankel1(order, argument)

Examples

on complex;
Hankel1 (1/2,pi); $\Rightarrow \quad-\mathrm{i} * \operatorname{sqrt}(2) / \mathrm{pi}$
Hankel1 (1,pi); \Rightarrow besselj(1,pi) $+i * \operatorname{bessely}(1, p i)$

Comments

The operator Hankel1 is also called Bessel function of the third kind. There is currently no numeric evaluation of Hankel functions.

18.13 HANKEL2

HANKEL2

Operator

The Hankel2 operator returns the Hankel function of the second kind.

> Hankel2(order, argument)

Examples

on complex;
Hankel2 (1/2,pi); $\Rightarrow \quad-\mathrm{i} * \operatorname{sqrt}(2) / \mathrm{pi}$
Hankel2 (1,pi); \Rightarrow besselj(1,pi) - i*bessely (1,pi)

Comments

The operator Hankel2 is also called Bessel function of the third kind. There is currently no numeric evaluation of Hankel functions.

18.14 BESSELI

BESSELI

Operator

The BesselI operator returns the modified Bessel function I.
BesselI(order, argument)
Examples
on rounded;
Besseli $(1,1) ; \quad 0.565159103992$

Comments

The knowledge about the operator BesselI is currently fairly limited.

18.15 BESSELK

BESSELK

Operator

The BesselK operator returns the modified Bessel function K.
BesselK (order, argument)
Examples
$\mathrm{df}(\mathrm{besselk}(0, \mathrm{x}), \mathrm{x}) ; \quad \Rightarrow \quad-\operatorname{besselk}(1, \mathrm{x})$
Comments
There is currently no numeric support for the operator Besselk.

18.16 StruveH

STRUVEH

Operator
The StruveH operator returns Struve's H function.

StruveH(order, argument)

Examples

struveh $(-3 / 2, x) ; \quad-\quad$ besselj $(3 / 2, x) / i$

18.17 StruveL

STRUVEL

Operator

The StruveL operator returns the modified Struve L function .
StruveL(order, argument)
Examples
struvel ($-3 / 2, \mathrm{x}$); $\Rightarrow \quad$ besseli($3 / 2, \mathrm{x}$)

18.18 KummerM

KUMMERM

Operator

The KummerM operator returns Kummer's M function.
KummerM(parameter, parameter, argument)
Examples
kummerm $(1,1, x) ; \quad \Rightarrow e^{\mathrm{x}}$
on rounded;
kummerm $(1,3,1.3) ; \Rightarrow 1.62046942914$
Comments
Kummer's M function is one of the Confluent Hypergeometric functions. For reference see the hypergeometric operator.

18.19 KummerU

KUMMERU

Operator

The KummerU operator returns Kummer's U function.
KummerU(parameter, parameter, argument)
Examples
df (kummeru $(1,1, \mathrm{x}), \mathrm{x}) \quad \Rightarrow \quad$ - kummeru $(2,2, \mathrm{x})$
Comments
Kummer's U function is one of the Confluent Hypergeometric functions. For reference see the hypergeometric operator.

18.20 WhittakerW

WHITTAKERW

Operator

The WhittakerW operator returns Whittaker's W function.
WhittakerW(parameter, parameter, argument)
Examples
WhittakerW $(2,2,2) ; \quad 4 * \operatorname{sqrt}(2) * \operatorname{kummeru}\left(-\frac{1}{2}-, 5,2\right)$
Comments
Whittaker's W function is one of the Confluent Hypergeometric functions. For reference see the hypergeometric operator.

18.21 Airy Functions

18.22 Airy_Ai

AIRY_AI
 Operator

The Airy Ai operator returns the Airy Ai function for a given argument.
Airy_Ai(argument)

```
Examples
on complex; on rounded; Airy_Ai(0);
    # 0.355028053888
Airy_Ai(3.45 + 17.97i); }
    - 5.5561528511e+9 - 8.80397899932e+9*i
```


18.23 Airy_Bi

AIRY_BI
 Operator

The Airy_Bi operator returns the Airy Bi function for a given argument.
Airy_Bi(argument)

```
Examples
Airy_Bi(0); }\quad=>\quad0.61492662744
Airy_Bi(3.45 + 17.97i); =>
    8.80397899932e+9 - 5.5561528511e+9*i
```


18.24 Airy_Aiprime

AIRY AIPRIME
 Operator

The Airy_Aiprime operator returns the Airy Aiprime function for a given argument.
Airy_Aiprime(argument)

```
Examples
Airy_Aiprime(0); 列 - 0.258819403793
Airy_Aiprime(3.45+17.97i); }\quad
    - 3.83386421824e+19 + 2.16608828136e+19*i
```


18.25 Airy_Biprime

AIRY _BIPRIME
 Operator

The Airy_Biprime operator returns the Airy Biprime function for a given argument.
Airy_Biprime(argument)
Examples
Airy_Biprime(0); $\quad \Rightarrow$
Airy_Biprime(3.45 + 17.97i);
$3.84251916792 \mathrm{e}+19-2.18006297399 \mathrm{e}+19 * \mathrm{i}$
18.26 Jacobi's Elliptic Functions and Elliptic Integrals

18.27 JacobiSN

JACOBISN

Operator
The Jacobisn operator returns the Jacobi Elliptic function sn.
Jacobisn(expression, integer)
Examples
Jacobisn $(0.672,0.36) \Rightarrow 0.609519691792$
Jacobisn (1,0.9) $\quad \Rightarrow \quad 0.770085724907881$

18.28 JacobiCN

JACOBICN

Operator

The Jacobicn operator returns the Jacobi Elliptic function cn.
Jacobicn(expression, integer)
Examples
Jacobicn(7.2, 0.6) $\Rightarrow 0.837288298482018$
Jacobicn $(0.11,19) \Rightarrow$
$0.994403862690043-1.6219006985556 \mathrm{e}-16 * \mathrm{i}$

18.29 JacobiDN

JACOBIDN

Operator
The Jacobidn operator returns the Jacobi Elliptic function dn.
Jacobidn(expression, integer)
Examples
Jacobidn (15, 0.683) $\Rightarrow 0.640574162024592$
Jacobidn $(0,0) \quad \Rightarrow \quad 1$

18.30 JacobiCD

JACOBICD

Operator

The Jacobicd operator returns the Jacobi Elliptic function cd.
Jacobicd(expression, integer)
Examples
Jacobicd(1, 0.34) $\Rightarrow 0.657683337805273$
Jacobicd(0.8,0.8) $\Rightarrow \quad 0.925587311582301$

18.31 JacobiSD

JACOBISD

Operator
The Jacobisd operator returns the Jacobi Elliptic function sd.
Jacobisd(expression, integer)
Examples
Jacobisd (12, 0.4) $\Rightarrow 0.357189729437272$
Jacobisd $(0.35,1) \quad \Rightarrow \quad-1.17713873203043$

18.32 JacobiND

JACOBIND

Operator

The Jacobind operator returns the Jacobi Elliptic function nd.
Jacobind(expression, integer)
Examples
Jacobind $(0.2,17) \quad \Rightarrow$
$1.46553203037507+0.0000000000334032759313703 * i$
Jacobind(30, 0.001) $\Rightarrow 1.00048958438$

18.33 JacobiDC

JACOBIDC

Operator

The Jacobidc operator returns the Jacobi Elliptic function dc.
Jacobidc(expression, integer)
Examples
Jacobidc $(0.003,1) \quad \Rightarrow \quad 1$
Jacobidc (2, 0.75) $\Rightarrow 6.43472885111$

18.34 JacobiNC

JACOBINC

Operator

The Jacobinc operator returns the Jacobi Elliptic function nc.
Jacobinc(expression, integer)
Examples
Jacobinc (1,0) $\quad \Rightarrow \quad 1.85081571768093$
Jacobinc $(56,0.4387) \quad \Rightarrow \quad 39.304842663512$

18.35 JacobiSC

JACOBISC

Operator
The Jacobisc operator returns the Jacobi Elliptic function sc.
Jacobisc(expression, integer)
Examples
Jacobisc (9, 0.88) $\Rightarrow \quad-1.16417697982095$
Jacobisc $(0.34,7) \Rightarrow$
$0.305851938390775-9.8768100944891 \mathrm{e}-12 * \mathrm{i}$

18.36 JacobiNS

JACOBINS
 Operator

The Jacobins operator returns the Jacobi Elliptic function ns.
Jacobins(expression, integer)
Examples
Jacobins (3, 0.9) $\quad \Rightarrow \quad 1.00945801599785$
Jacobins $(0.887,15) \Rightarrow$
$0.683578280513975-0.85023411082469 * i$

18.37 JacobiDS

JACOBIDS

Operator
The Jacobisn operator returns the Jacobi Elliptic function ds.
Jacobids(expression, integer)
Examples
Jacobids $(98,0.223) \Rightarrow-1.061253961477$
Jacobids $(0.36,0.6) \quad \Rightarrow \quad 2.76693172243692$

18.38 JacobiCS

JACOBICS

Operator
The Jacobics operator returns the Jacobi Elliptic function cs.
Jacobics(expression, integer)
Examples
Jacobics (0, 0.767) \Rightarrow infinity
Jacobics $(1.43,0) \quad \Rightarrow \quad 0.141734127352112$

18.39 JacobiAMPLITUDE

JACOBIAMPLITUDE

Operator

The JacobiAmplitude operator returns the amplitude of u.
JacobiAmplitude(expression, integer)
Examples
JacobiAmplitude(7.239, 0.427)
$\Rightarrow \quad 0.0520978301448978$
JacobiAmplitude $(0,0.1) \quad \Rightarrow \quad 0$
Comments
Amplitude $u=\operatorname{asin}(\operatorname{Jacobisn}(u, m))$

18.40 AGM_FUNCTION

AGM_FUNCTION

Operator

The AGM_function operator returns a list of (N, AGM, list of aNtoa0, list of bNtob0, list of cNtoc 0) where $\mathrm{a} 0, \mathrm{~b} 0$ and c 0 are the initial values; N is the index number of the last term used to generate the AGM. AGM is the Arithmetic Geometric Mean.

```
AGM_function(integer,integer,integer)
```


Examples

```
AGM_function(1,1,1) }\quad=>\quad1,1,1,1,1,1,0,
AGM_function(1, 0.1, 1.3) }
    {6,
        2.27985615996629,
        {2.27985615996629, 2.27985615996629,
        2.2798561599706, 2.2798624278857,
        2.28742283656583, 2.55, 1},
        {2.27985615996629, 2.27985615996629,
        2.27985615996198, 2.2798498920555,
        2.27230201920557, 2.02484567313166, 4.1},
        {0, 4.30803136219904e-12, 0.0000062679151007581,
        0.00756040868012758, 0.262577163434171, - 1.55, 5.9}}
```


Comments

The other Jacobi functions use this function with initial values $\mathrm{a} 0=1, \mathrm{~b} 0=\operatorname{sqrt}(1-\mathrm{m})$, $\mathrm{c} 0=\operatorname{sqrt}(\mathrm{m})$.

18.41 LANDENTRANS

LANDENTRANS

Operator

The landentrans operator generates the descending landen transformation of the given imput values, returning a list of these values; initial to final in each case.
landentrans(expression, integer)

Examples

landentrans $(0,0.1) \Rightarrow$
$\{\{0,0,0,0,0\},\{0.1,0.0025041751943776$, \Rightarrow
$0.00000156772498954046,6.14440789914461 \mathrm{e}-13,0\}\}$

Comments

The first list ascends in value, and the second descends in value.

18.42 EllipticF

ELLIPTICF

Operator

The EllipticF operator returns the Elliptic Integral of the First Kind.
EllitpicF(expression, integer)
Examples
EllipticF(0.3, 8.222) $\Rightarrow 0.3$
EllipticF(7.396, 0.1) $\Rightarrow 7.58123216114307$

Comments

The Complete Elliptic Integral of the First Kind can be found by putting the first argument to pi/2 or by using EllipticK and the second argument.

18.43 EllipticK

ELLIPTICK

Operator

The EllipticK operator returns the Elliptic value K.

```
EllipticK(integer)
Examples
EllipticK(0.2) }\quad|\quad1.6596235986105
EllipticK(4.3) =
    0.808442364282734 - 1.05562492399206*i
EllipticK(0.000481) = 1.57098526617635
```

Comments
The EllipticK function is the Complete Elliptic Integral of the First Kind.

18.44 EllipticKprime

ELLIPTICKPRIME

Operator
The EllipticK' operator returns the Elliptic value $\mathrm{K}(\mathrm{m})$.

```
EllipticKprime(integer)
```

Examples
EllipticKprime(0.2) $\quad \Rightarrow \quad 2.25720532682085$
EllipticKprime(4.3) $\quad \Rightarrow \quad 1.05562492399206$
EllipticKprime(0.000481) $\Rightarrow 5.206621921966$
Comments
The EllipticKprime function is the Complete Elliptic Integral of the First Kind of $(1-\mathrm{m})$.

18.45 EllipticE

ELLIPTICE

Operator

The EllipticE operator used with two arguments returns the Elliptic Integral of the Second Kind.

EllipticE(expression, integer)

Examples
EllipticE(1.2,0.22) $\quad \Rightarrow \quad 1.15094019180949$
EllipticE $(0,4.35) \quad \Rightarrow \quad 0$
EllipticE $(9,0.00719) \quad \Rightarrow \quad 8.98312465929145$

Comments

The Complete Elliptic Integral of the Second Kind can be obtained by using just the second argument, or by using pi/2 as the first argument.

The EllipticE operator used with one argument returns the Elliptic value E.

```
EllipticE(integer)
```


Examples

EllipticE(0.22)	\Rightarrow	1.48046637439519
EllipticE(pi/2, 0.22)	$\Rightarrow 1.48046637439519$	

18.46 EllipticTHETA

ELLIPTICTHETA

Operator

The EllipticTheta operator returns one of the four Theta functions. It cannot except any number other than $1,2,3$ or 4 as its first argument.

```
EllipticTheta(integer, expression, integer)
Examples
EllipticTheta(1, 1.4, 0.72) }
EllipticTheta(2, 3.9, 6.1 ) }=>\quad-48.0202736969 + 20.9881034377 i
EllipticTheta(3, 0.67, 0.2) }=>1.008307744
EllipticTheta(4, 8, 0.75) }=>0.89496336930
EllipticTheta(5, 1, 0.1) }\quad
    ***** In EllipticTheta(a,u,m); a = 1,2,3 or 4.
```


Comments

Theta functions are important because every one of the Jacobian Elliptic functions can be expressed as the ratio of two theta functions.

18.47 JacobiZETA

JACOBIZETA

Operator

The JacobiZeta operator returns the Jacobian function Zeta.
JacobiZeta(expression, integer)
Examples
JacobiZeta(3.2, 0.8) $\Rightarrow \quad-0.254536403439$
JacobiZeta(0.2, 1.6) \Rightarrow
$0.171766095970451-0.0717028569800147 * i$
Comments
The Jacobian function Zeta is related to the Jacobian function Theta. But it is significantly different from Riemann's Zeta Function Zeta.

18.48 Gamma and Related Functions

18.49 POCHHAMMER

POCHHAMMER

Operator

The Pochhammer operator implements the Pochhammer notation (shifted factorial).
Pochhammer(expression, expression)
Examples
pochhammer $(17,4) ; \quad \Rightarrow \quad 116280$
pochhammer $(1 / 2, z) ; \Rightarrow \quad-\frac{\text { factorial }(2 * z)}{2 * z}$

Comments

A number of complex rules for Pochhammer are inactive, because they cause a huge system load in algebraic mode. If one wants to use more rules for the simplification of Pochhammer's notation, one can do: let special!*pochhammer!*rules;

18.50 GAMMA

GAMMA

Operator
The Gamma operator returns the Gamma function.

Gamma(expression)

Examples
gamma(10) ; $\quad \Rightarrow \quad 362880$
$\operatorname{gamma}(1 / 2) ; \quad \Rightarrow \quad \operatorname{sqrt}(\mathrm{pi})$

18.51 BETA

BETA

Operator
The Beta operator returns the Beta function defined by
$\operatorname{Beta}(\mathrm{z}, \mathrm{w}):=\operatorname{defint}\left(\mathrm{t}^{* *}(\mathrm{z}-1)^{*}(1-\mathrm{t})^{* *}(\mathrm{w}-1), \mathrm{t}, 0,1\right)$.
Beta(expression, expression)
Examples
$\operatorname{Beta}(2,2) ; \quad \Rightarrow 1 / 6$
$\operatorname{Beta}(\mathrm{x}, \mathrm{y}) ; \quad \Rightarrow \quad \operatorname{gamma}(\mathrm{x}) * \operatorname{gamma}(\mathrm{y}) / \operatorname{gamma}(\mathrm{x}+\mathrm{y})$
Comments
The operator Beta is simplified towards the GAMMA operator.

18.52 PSI

PSI

Operator
The Psi operator returns the Psi (or DiGamma) function.
$\operatorname{Psi}(\mathrm{x}):=\operatorname{df}(\operatorname{Gamma}(\mathrm{z}), \mathrm{z}) / \operatorname{Gamma}(\mathrm{z})$
Gamma(expression)
Examples
Psi(3); $\quad \Rightarrow$

$$
(2 * \log (2)+\operatorname{psi}(1 / 2)+\operatorname{psi}(1)+3) / 2
$$

on rounded;

- Psi(1); $\quad \Rightarrow \quad 0.577215664902$

Comments
Euler's constant can be found as - Psi(1).

18.53 POLYGAMMA

POLYGAMMA

Operator

The Polygamma operator returns the Polygamma function.
Polygamma(n, x) $:=\operatorname{df}(\operatorname{Psi}(\mathrm{z}), \mathrm{z}, \mathrm{n})$;
Polygamma(integer, expression)
Examples
Polygamma $(1,2) ; \quad \Rightarrow \quad\left(\mathrm{pi}^{2}-6\right) / 6$
on rounded;
Polygamma(1,2.35); $\quad \Rightarrow \quad 0.52849689109$
Comments
The Polygamma function is used for simplification of the ZETA function for some arguments.

18.54 Miscellaneous Functions

18.55 DILOG extended

DILOG EXTENDED

Operator

The package specfn supplies an extended support for the dilog operator which implements the dilogarithm function.
$\operatorname{dilog}(\mathrm{x}):=-\operatorname{defint}(\log (\mathrm{t}) /(\mathrm{t}-1), \mathrm{t}, 1, \mathrm{x}) ;$
Dilog(order, expression)
Examples
defint (log(t)/(t - 1), $t, 1, x)$;
$\Rightarrow \quad-\operatorname{dilog}(x)$
2
dilog 2; $\quad \Rightarrow \quad-\mathrm{pi} / 12$
on rounded;
Dilog 20; $\quad \Rightarrow \quad-5.92783972438$
Comments
The operator Dilog is sometimes called Spence's Integral for $\mathrm{n}=2$.

18.56 Lambert_W function

LAMBERT_W FUNCTION

Operator

Lambert's W function is the inverse of the function $\mathrm{w}^{*} \mathrm{e}^{* *} \mathrm{w}$. It is used in the solve package for equations containing exponentials and logarithms.

Lambert_W(z)
Examples
Lambert_W (-1/e); $\quad \Rightarrow \quad-1$
solve(w $+\log (w), w) ; \quad \Rightarrow \quad$ w=lambert_w (1)
on rounded;
Lambert_W(-0.05); $\quad \Rightarrow \quad-0.0527059835515$
Comments
The current implementation will compute the principal branch in rounded mode only.

18.57 Orthogonal Polynomials

18.58 ChebyshevT

CHEBYSHEVT

Operator

The ChebyshevT operator computes the nth Chebyshev T Polynomial (of the first kind).
ChebyshevT(integer, expression)
Examples
ChebyshevT $(3, x x) ; \Rightarrow \quad x x *\left(4 * x^{2}-3\right)$
ChebyshevT $(3,4) ; \quad \Rightarrow \quad 244$
Comments
Chebyshev's T polynomials are computed using the recurrence relation:
ChebyshevT $(\mathrm{n}, \mathrm{x}):=2 \mathrm{x}^{*}$ ChebyshevT($\left.\mathrm{n}-1, \mathrm{x}\right)-\operatorname{ChebyshevT}(\mathrm{n}-2, \mathrm{x})$ with
ChebyshevT $(0, \mathrm{x}):=0$ and ChebyshevT $(1, \mathrm{x}):=\mathrm{x}$

18.59 ChebyshevU

CHEBYSHEVU

Operator

The ChebyshevU operator returns the nth Chebyshev U Polynomial (of the second kind).
ChebyshevU(integer, expression)
Examples
$\operatorname{ChebyshevU}(3, x x) ; \Rightarrow 4 * x *\left(2 * x^{2}-1\right)$
ChebyshevU $(3,4) ; \quad \Rightarrow 496$
Comments
Chebyshev's U polynomials are computed using the recurrence relation:
ChebyshevU($\mathrm{n}, \mathrm{x}):=2 \mathrm{x}$ *hebyshevU(n-1,x) - ChebyshevU(n-2,x) with
ChebyshevU $(0, \mathrm{x}):=0$ and ChebyshevU $(1, \mathrm{x}):=2 \mathrm{x}$

18.60 HermiteP

HERMITEP

Operator

The HermiteP operator returns the nth Hermite Polynomial.
HermiteP (integer, expression)
Examples
HermiteP $(3, x x) ; \Rightarrow 4 * x x *\left(2 * x^{2}-3\right)$
HermiteP $(3,4) ; \quad \Rightarrow 464$
Comments
Hermite polynomials are computed using the recurrence relation:
HermiteP $(\mathrm{n}, \mathrm{x}):=2 \mathrm{x}^{*} \operatorname{HermiteP}(\mathrm{n}-1, \mathrm{x})-2^{*}(\mathrm{n}-1)^{*} \operatorname{HermiteP}(\mathrm{n}-2, \mathrm{x})$ with
$\operatorname{Hermite} P(0, \mathrm{x}):=1$ and $\operatorname{Hermite} \mathrm{P}(1, \mathrm{x}):=2 \mathrm{x}$

18.61 LaguerreP

LAGUERREP

Operator

The LaguerreP operator computes the nth Laguerre Polynomial. The two argument call of LaguerreP is a (common) abbreviation of LaguerreP $(\mathrm{n}, 0, \mathrm{x})$.

LaguerreP(integer, expression) or
LaguerreP(integer, expression, expression)
Examples
LaguerreP $(3, x x) ; \quad\left(-x^{3}+9 * x^{2}-18 * x x+6\right) / 6$
LaguerreP $(2,3,4) ; \quad \Rightarrow \quad-2$

Comments

Laguerre polynomials are computed using the recurrence relation:
$\operatorname{LaguerreP}(\mathrm{n}, \mathrm{a}, \mathrm{x}):=(2 \mathrm{n}+\mathrm{a}-1-\mathrm{x}) / \mathrm{n} * \operatorname{LaguerreP}(\mathrm{n}-1, \mathrm{a}, \mathrm{x})-(\mathrm{n}+\mathrm{a}-1) * \operatorname{LaguerreP}(\mathrm{n}-$ $2, \mathrm{a}, \mathrm{x}$) with

Laguerre $\mathrm{P}(0, \mathrm{a}, \mathrm{x}):=1$ and $\operatorname{LaguerreP}(2, \mathrm{a}, \mathrm{x}):=-\mathrm{x}+1+\mathrm{a}$

18.62 LegendreP

LEGENDREP

Operator

The binary LegendreP operator computes the nth Legendre Polynomial which is a special case of the nth Jacobi Polynomial with

LegendreP(n, x) $:=\operatorname{JacobiP}(\mathrm{n}, 0,0, \mathrm{x})$
The ternary form returns the associated Legendre Polynomial (see below).

```
LegendreP(integer, expression) or
LegendreP(integer, expression, expression)
```

Examples

Comments

The ternary form of the operator LegendreP is the associated Legendre Polynomial defined as

$$
\mathrm{P}(\mathrm{n}, \mathrm{~m}, \mathrm{x})=(-1)^{* *} \mathrm{~m}^{*}\left(1-\mathrm{x}^{* *} 2\right)^{* *}(\mathrm{~m} / 2)^{*} \operatorname{df}(\operatorname{LegendreP}(\mathrm{n}, \mathrm{x}), \mathrm{x}, \mathrm{~m})
$$

18.63 JacobiP

JACOBIP

Operator

The JacobiP operator computes the nth Jacobi Polynomial.
JacobiP(integer, expression, expression, expression)
Examples
$\begin{array}{ll} & \\ & \\ \operatorname{JacobiP}(3,4,5, x x) ; & \Rightarrow \quad 7 *\left(65 * x^{3}-13 * x^{2}-13 * x x+1\right) \\ \operatorname{JacobiP}(3,4,5,6) ; & \Rightarrow 94465 / 8\end{array}$

18.64 GegenbauerP

GEGENBAUERP

Operator

The GegenbauerP operator computes Gegenbauer's (ultraspherical) polynomials.
GegenbauerP(integer, expression, expression)
Examples
GegenbauerP $(3,2, x x) ; \Rightarrow 4 * x x *\left(8 * x^{2}-3\right)$
GegenbauerP $(3,2,4) ; \quad \Rightarrow \quad 2000$

18.65 SolidHarmonicY

SOLIDHARMONICY

Operator

The SolidHarmonicY operator computes Solid harmonic (Laplace) polynomials.
SolidHarmonicY(integer, integer, expression, expression, expression, expression)
Examples
SolidHarmonicY(3,-2, x, y, z,r2);

$$
\Rightarrow \quad \frac{\operatorname{sqrt}(105) * z *\left(-2 * i * x * y+x^{2}-\mathrm{y}^{2}\right)}{4 * \operatorname{sqrt}(\mathrm{pi}) * \operatorname{sqrt}(2)}
$$

18.66 SphericalHarmonicY

SPHERICALHARMONICY

Operator

The SphericalHarmonicY operator computes Spherical harmonic (Laplace) polynomials. These are special cases of the solid harmonic polynomials, SolidHarmonicY.

SphericalHarmonicY(integer, integer, expression, expression)

Examples

SphericalHarmonicY(3,2,theta, phi);
\Rightarrow

18.67 Integral Functions

18.68 Si

SI

Operator

The Si operator returns the Sine Integral function.
Si (expression)
Examples
limit(Si(x),x,infinity); \Rightarrow pi / 2
on rounded;
$\mathrm{Si}(0.35) ; \quad \Rightarrow \quad 0.347626790989$

Comments

The numeric values for the operator Si are computed via the power series representation, which limits the argument range.

18.69 Shi

SHI

Operator
The Shi operator returns the hyperbolic Sine Integral function.
Shi(expression)

Examples
$\mathrm{df}(\operatorname{shi}(\mathrm{x}), \mathrm{x}) ; \Rightarrow \sinh (\mathrm{x}) / \mathrm{x}$
on rounded;
Shi (0.35) ; $\quad \Rightarrow \quad 0.352390716351$

Comments

The numeric values for the operator Shi are computed via the power series representation, which limits the argument range.
18.70 si

S_I
Operator
The s_i operator returns the Sine Integral function si.
s_i(expression)
Examples
$s_{-} i(x x) ; \quad \Rightarrow \quad(2 * S i(x x)-p i) / 2$
$d f\left(s_{-} i(x), x\right) ; \Rightarrow \sin (x) / x$
Comments
The operator name s_i is simplified towards SI. Since REDUCE is not case sensitive by default the name "si" can't be used.

18.71 Ci

Cl

Operator

The Ci operator returns the Cosine Integral function.
Ci (expression)
Examples
defint ($\cos (t) / t, t, x, i n f i n i t y) ;$

$$
\Rightarrow \quad-\mathrm{ci}(\mathrm{x})
$$

on rounded;
Ci(0.35); $\quad \Rightarrow \quad-0.50307556932$

Comments

The numeric values for the operator Ci are computed via the power series representation, which limits the argument range.

18.72 Chi

CHI

Operator
The Chi operator returns the Hyperbolic Cosine Integral function.

```
Chi(expression)
Examples
defint((cosh(t)-1)/t,t,0,x);
    # - log(x) + psi(1) + chi(x)
```

on rounded;
Chi (0.35); $\quad \Rightarrow \quad-0.44182471827$

Comments

The numeric values for the operator Chi are computed via the power series representation, which limits the argument range.

18.73 ERF extended

ERF EXTENDED

Operator

The special function package supplies an extended support for the erf operator which implements the error function
$\operatorname{defint}\left(\mathrm{e}^{* *}\left(-\mathrm{x}^{* *} 2\right), \mathrm{x}, 0\right.$, infinity $) * 2 / \operatorname{sqrt}(\mathrm{pi})$
erf(expression)
Examples
$\operatorname{erf}(-\mathrm{x}) ; \quad \Rightarrow \quad-\operatorname{erf}(\mathrm{x})$
on rounded;
$\operatorname{erf}(0.35) ; \quad \Rightarrow \quad 0.379382053562$

Comments

The numeric values for the operator erf are computed via the power series representation, which limits the argument range.

18.74 erfc

ERFC

Operator

The erfc operator returns the complementary Error function
$1-\operatorname{defint}\left(\mathrm{e}^{* *}\left(-\mathrm{x}^{* *} 2\right), \mathrm{x}, 0\right.$, infinity $) * 2 / \operatorname{sqrt}(\mathrm{pi})$
erfc(expression)
Examples
$\operatorname{erfc}(\mathrm{xx}) ; \quad \Rightarrow \quad-\operatorname{erf}(\mathrm{xx})+1$
Comments
The operator erfc is simplified towards the erf operator.

18.75 Ei

El

Operator
The Ei operator returns the Exponential Integral function.
Ei(expression)
Examples
$d f(e i(x), x) ; \Rightarrow-\frac{e^{x}}{x}$
on rounded;
Ei(0.35); $\quad \Rightarrow \quad-0.0894340019184$
Comments
The numeric values for the operator Ei are computed via the power series representation, which limits the argument range.

18.76 Fresnel_C

FRESNEL_C

Operator

The Fresnel_C operator represents Fresnel's Cosine function.
Fresnel_C(expression)
Examples
$\operatorname{int}\left(\cos \left(t^{\wedge} 2 * \mathrm{pi} / 2\right), \mathrm{t}, 0, \mathrm{x}\right) ; \Rightarrow$ fresnel_c (x)
on rounded;
fresnel_c(2.1); $\quad \Rightarrow \quad 0.581564135061$

Comments

The operator Fresnel_C has a limited numeric evaluation of large values of its argument.

18.77 Fresnel_S

FRESNEL_S

Operator

The Fresnel_S operator represents Fresnel's Sine Integral function.
Fresnel_S(expression)
Examples
$\operatorname{int}\left(\sin \left(\mathrm{t}^{\wedge} 2 * \mathrm{pi} / 2\right), \mathrm{t}, 0, \mathrm{x}\right) ; \Rightarrow$ fresnel_s(x)
on rounded;
fresnel_s(2.1); $\quad \Rightarrow \quad 0.374273359378$

Comments

The operator Fresnel_S has a limited numeric evaluation of large values of its argument.

18.78 Combinatorial Operators

18.79 BINOMIAL

BINOMIAL

Operator

The Binomial operator returns the Binomial coefficient if both parameter are integer and expressions involving the Gamma function otherwise.

Binomial(integer, integer)

Examples

Binomial $(49,6) ; \quad 13983816$
Binomial $(\mathrm{n}, 3) ; \quad \Rightarrow \quad \begin{gathered}\operatorname{gamma}(\mathrm{n}+1) \\ 6 * \operatorname{gamma}(\mathrm{n}-2)\end{gathered}$

Comments

The operator Binomial evaluates the Binomial coefficients from the explicit form and therefore it is not the best algorithm if you want to compute many binomial coefficients with big indices in which case a recursive algorithm is preferable.

18.80 STIRLING1

STIRLING1

Operator

The Stirling1 operator returns the Stirling Numbers $S(n, m)$ of the first kind, i.e. the number of permutations of n symbols which have exactly m cycles (divided by $(-1)^{* *}(\mathrm{n}-\mathrm{m})$).

Stirling1(integer, integer)
Examples
Stirling1 (17,4); $\quad \Rightarrow \quad-87077748875904$
Stirling1 $(\mathrm{n}, \mathrm{n}-1) ; \quad \Rightarrow \quad \begin{gathered}-\operatorname{gamma}(\mathrm{n}+1) \\ 2 * \operatorname{gamma}(\mathrm{n}-1)\end{gathered}$

Comments

The operator Stirling1 evaluates the Stirling numbers of the first kind by rulesets for special cases or by a computing the closed form, which is a series involving the operators BINOMIAL and STIRLING2.

18.81 STIRLING2

STIRLING2

Operator

The Stirling1 operator returns the Stirling Numbers $S(n, m)$ of the second kind, i.e. the number of ways of partitioning a set of n elements into m non-empty subsets.

```
Stirling2(integer,integer)
```

Examples
Stirling2 (17,4); $\quad \Rightarrow \quad 694337290$
Stirling2 $(\mathrm{n}, \mathrm{n}-1) ; \quad \Rightarrow \quad \begin{gathered}\operatorname{gamma}(\mathrm{n}+1) \\ 2 * \operatorname{gamma}(\mathrm{n}-1)\end{gathered}$

Comments

The operator Stirling2 evaluates the Stirling numbers of the second kind by rulesets for special cases or by a computing the closed form.

18.823 j and 6 j symbols

18.83 ThreejSymbol

THREEJSYMBOL

Operator
The ThreejSymbol operator implements the 3 j symbol.
ThreejSymbol(listofj1, m1, listofj2, m2, listofj3, m3)
Examples
ThreejSymbol (\{j+1,m\},\{j+1,-m\},\{1,0\});

$$
\begin{gathered}
(-1)^{j} *(\operatorname{abs}(j-m+1)-\operatorname{abs}(j+m+1)) \\
2 * \operatorname{sqrt}\left(2 * j^{3}+9 * j^{2}+13 * j+6\right) *(-1)^{m}
\end{gathered}
$$

18.84 Clebsch_Gordan

CLEBSCH_GORDAN

Operator

The Clebsch_Gordan operator implements the Clebsch_Gordan coefficients. This is closely related to the Threejsymbol.

Clebsch_Gordan(listofj1, m1, listofj2, m2, listofj3, m3)
Examples
Clebsch_Gordan $(\{2,0\},\{2,0\},\{2,0\})$;

18.85 SixjSymbol

SIXJSYMBOL

Operator

The SixjSymbol operator implements the 6 j symbol.
SixjSymbol(listofj1, j2, j3, listofl1, l2, l3)
Examples
SixjSymbol ($\{7,6,3\},\{2,4,6\}$);

Comments

The operator SixjSymbol uses the ineq package in order to find minima and maxima for the summation index.

18.86 Miscellaneous

18.87 HYPERGEOMETRIC

HYPERGEOMETRIC
 Operator

The Hypergeometric operator provides simplifications for the generalized hypergeometric functions. The Hypergeometric operator is included in the package specfn2.
hypergeometric(listofparameters, listofparameters, argument)
Examples
load specfn2;
hypergeometric (\{1/2,1\},\{3/2\},-x^2);

$$
\Rightarrow \quad-\frac{\operatorname{atan}(x)}{x}
$$

hypergeometric (\{\},\{\},z); $\Rightarrow e^{z}$
Comments
The special case where the length of the first list is equal to 2 and the length of the second list is equal to 1 is often called "the hypergeometric function" (notated as 2F1(a1,a2,b;x)).

18.88 MeijerG

MEIJERG

Operator

The MeijerG operator provides simplifications for Meijer's G function. The simplifications are performed towards polynomials, elementary or special functions or (generalized) hypergeometric functions.
The MeijerG operator is included in the package specfn2.

MeijerG(listofparameters, listofparameters, argument)

The first element of the lists has to be the list containing the first group (mostly called "m" and "n") of parameters. This passes the four parameters of a Meijer's G function implicitly via the length of the lists.
Examples
load specfn2;
MeijerG(\{\{\},1\},\{\{0\}\},x); \Rightarrow heaviside $(-x+1)$
MeijerG $\left(\left\{\}\},\{\{1+1 / 4\}, 1-1 / 4\},\left(x^{\wedge} 2\right) / 4\right) *\right.$ sqrt pi;

$$
\Rightarrow \quad \frac{\operatorname{sqrt}(2) * \sin (x) * x^{2}}{4 * \operatorname{sqrt}(x)}
$$

Comments

Many well-known functions can be written as G functions, e.g. exponentials, logarithms, trigonometric functions, Bessel functions and hypergeometric functions. The formulae can be found e.g. in
A.P.Prudnikov, Yu.A.Brychkov, O.I.Marichev: Integrals and Series, Volume 3: More special functions, Gordon and Breach Science Publishers (1990).

18.89 Heaviside

HEAVISIDE

Operator

The Heaviside operator returns the Heaviside function.

Heaviside(w) $=i$ if ($\mathrm{w} ; 0$) then 0 else 1 when numberp w;

Heaviside(argument)

Comments
This operator is often included in the result of the simplification of a generalized hypergeometric function or a MeijerG function.

No simplification is done for this function.

18.90 erfi

ERFI

Operator

The erfi operator returns the error function of an imaginary argument.
$\operatorname{erfi}(x)=i 2 / \operatorname{sqrt}(\mathrm{pi})^{*} \operatorname{defint}\left(\mathrm{e}^{* *}\left(\mathrm{t}^{* *} 2\right), \mathrm{t}, 0, \mathrm{x}\right)$;
erfi(argument)
Comments
This operator is sometimes included in the result of the simplification of a generalized hypergeometric function or a MeijerG function.

No simplification is done for this function.

19 Taylor series

19.1 TAYLOR

TAYLOR

Introduction

This short note describes a package of REDUCE procedures that allow Taylor expansion in one or more variables and efficient manipulation of the resulting Taylor series. Capabilities include basic operations (addition, subtraction, multiplication and division) and also application of certain algebraic and transcendental functions. To a certain extent, Laurent expansion can be performed as well.

19.2 taylor

TAYLOR

Operator

The taylor operator is used for expanding an expression into a Taylor series.

```
taylor(expression,var, expression, number
{,var, expression, number}*)
```

expression can be any valid REDUCE algebraic expression. var must be a kernel, and is the expansion variable. The expression following it denotes the point about which the expansion is to take place. number must be a non-negative integer and denotes the maximum expansion order. If more than one triple is specified taylor will expand its first argument independently with respect to all the variables. Note that once the expansion has been done it is not possible to calculate higher orders.

Instead of a kernel, var may also be a list of kernels. In this case expansion will take place in a way so that the sum of the degrees of the kernels does not exceed the maximum expansion order. If the expansion point evaluates to the special identifier infinity, taylor tries to expand in a series in $1 / v a r$.
The expansion is performed variable per variable, i.e. in the example above by first expanding $\exp \left(x^{2}+y^{2}\right)$ with respect to x and then expanding every coefficient with respect to y .

Examples

taylor $\left(e^{\wedge}\left(x^{\wedge} 2+y^{\wedge} 2\right), x, 0,2, y, 0,2\right)$;

$$
\Rightarrow \quad 1+Y^{2}+X^{2}+Y^{2} * X^{2}+O\left(X^{2}, Y^{2}\right)
$$

taylor $\left(e^{\wedge}\left(x^{\wedge} 2+y^{\wedge} 2\right),\{x, y\}, 0,2\right)$;

$$
\Rightarrow \quad 1+Y^{2}+X^{2}+O\left(\left\{X^{2}, Y^{2}\right\}\right)
$$

The following example shows the case of a non-analytical function.

```
taylor(x*y/(x+y), x, 0,2,y,0,2);
    #
    ***** Not a unit in argument to QUOTTAYLOR
```


Comments

Note that it is not generally possible to apply the standard reduce operators to a Taylor kernel. For example, part, coeff, or coeffn cannot be used. Instead, the expression at hand has to be converted to standard form first using the taylortostandard operator.

Differentiation of a Taylor expression is possible. If you differentiate with respect to one of the Taylor variables the order will decrease by one.

Substitution is a bit restricted: Taylor variables can only be replaced by other kernels. There is one exception to this rule: you can always substitute a Taylor variable by an expression that evaluates to a constant. Note that REDUCE will not always be able to determine that an expression is constant: an example is $\sin (\operatorname{acos}(4))$.
Only simple taylor kernels can be integrated. More complicated expressions that contain Taylor kernels as parts of themselves are automatically converted into a standard representation by means of the taylortostandard operator. In this case a suitable warning is printed.

19.3 taylorautocombine

TAYLORAUTOCOMBINE

Switch
If you set taylorautocombine to on, REDUCE automatically combines Taylor expressions during the simplification process. This is equivalent to applying taylorcombine to every expression that contains Taylor kernels. Default is on.

19.4 taylorautoexpand

TAYLORAUTOEXPAND

Switch

taylorautoexpand makes Taylor expressions "contagious" in the sense that taylorcombine tries to Taylor expand all non-Taylor subexpressions and to combine the result with the rest. Default is off.

19.5 taylorcombine

TAYLORCOMBINE

Operator

This operator tries to combine all Taylor kernels found in its argument into one. Operations currently possible are:

- Addition, subtraction, multiplication, and division.
- Roots, exponentials, and logarithms.
- Trigonometric and hyperbolic functions and their inverses.

Examples

```
hugo := taylor \((\exp (x), x, 0,2)\);
    \(\Rightarrow\) HUGO \(:=1+X+-\frac{1}{2}-* X^{2}+O\left(X^{3}\right)\)
taylorcombine log hugo; \(\Rightarrow \mathrm{X}+\mathrm{O}(\mathrm{X})\)
taylorcombine (hugo +x\() ; \quad \Rightarrow \quad\left(1+\mathrm{X}+\frac{1}{2}-\mathrm{XX}^{2}+\mathrm{O}\left(\mathrm{X}^{3}\right)\right)+\mathrm{X}\)
on taylorautoexpand;
taylorcombine (hugo +x\() ; \Rightarrow 1+2 * \mathrm{X}+\frac{1}{2}-* \mathrm{X}^{2}+\mathrm{O}\left(\mathrm{X}^{3}\right)\)
```


Comments

Application of unary operators like log and atan will nearly always succeed. For binary operations their arguments have to be Taylor kernels with the same template. This means that the expansion variable and the expansion point must match. Expansion order is not so important, different order usually means that one of them is truncated before doing the operation.
If taylorkeeporiginal is set to on and if all Taylor kernels in its argument have their original expressions kept taylorcombine will also combine these and store the result as the original expression of the resulting Taylor kernel. There is also the switch taylorautoexpand.

There are a few restrictions to avoid mathematically undefined expressions: it is not possible to take the logarithm of a Taylor kernel which has no terms (i.e. is zero), or to divide by such a beast. There are some provisions made to detect
singularities during expansion: poles that arise because the denominator has zeros at the expansion point are detected and properly treated, i.e. the Taylor kernel will start with a negative power. (This is accomplished by expanding numerator and denominator separately and combining the results.) Essential singularities of the known functions (see above) are handled correctly.

19.6 taylorkeeporiginal

TAYLORKEEPORIGINAL

 Switchtaylorkeeporiginal, if set to on, forces the taylor and all Taylor kernel manipulation operators to keep the original expression, i.e. the expression that was Taylor expanded. All operations performed on the Taylor kernels are also applied to this expression which can be recovered using the operator taylororiginal. Default is off.

19.7 taylororiginal

TAYLORORIGINAL

Operator

Recovers the original expression (the one that was expanded) from the Taylor kernel that is given as its argument.
taylororiginal(expression) or taylororiginal simple_expression

Examples

hugo := taylor $(\exp (x), x, 0,2)$;

$$
\Rightarrow \quad \text { HUGO }:=1+X+\frac{1}{2}-* X^{2}+O\left(X^{3}\right)
$$

taylororiginal hugo; $\quad \Rightarrow$
***** Taylor kernel doesn't have an original part in TAYLORORIGINAL on taylorkeeporiginal;
hugo := taylor $(\exp (x), x, 0,2)$;

$$
\Rightarrow \quad \text { HUGO }:=1+X+-\frac{1}{2}-* X^{2}+O\left(X^{3}\right)
$$

taylororiginal hugo; $\Rightarrow E^{X}$

Comments

An error is signalled if the argument is not a Taylor kernel or if the original expression was not kept, i.e. if taylorkeeporiginal was set off during expansion.

19.8 taylorprintorder

TAYLORPRINTORDER

Switch
taylorprintorder, if set to on, causes the remainder to be printed in big-O notation. Otherwise, three dots are printed. Default is on.

19.9 taylorprintterms

TAYLORPRINTTERMS

Variable
Only a certain number of (non-zero) coefficients are printed. If there are more, an expression of the form n terms is printed to indicate how many non-zero terms have been suppressed. The number of terms printed is given by the value of the shared algebraic variable taylorprintterms. Allowed values are integers and the special identifier all. The latter setting specifies that all terms are to be printed. The default setting is 5 .

Examples

taylor $\left(e^{\wedge}\left(x^{\wedge} 2+y^{\wedge} 2\right), x, 0,4, y, 0,4\right)$;

$$
\begin{aligned}
& \Rightarrow \\
& 1+Y^{2}+-\frac{1}{2}-* Y^{4}+X^{2}+Y^{2} * X^{2}+(4 \text { terms })+O\left(X^{5}, Y^{5}\right) \\
& \text { taylorprintterms := all; } \Rightarrow \text { TAYLORPRINTTERMS := ALL } \\
& \text { taylor (} \left.e^{\wedge}\left(x^{\wedge} 2+y^{\wedge} 2\right), x, 0,4, y, 0,4\right) \text {; } \\
& \Rightarrow \\
& 1+Y^{2}+-\frac{1}{2}-* Y^{4}+X^{2}+Y^{2} * X^{2}+-\frac{1}{2}-* Y^{4} * X^{2}+-\frac{1}{2}-* X^{4}+-\frac{1}{2}-* Y^{2} * X^{4} \\
& +-\frac{1}{4}-* Y^{4} * X^{4}+O\left(X^{5}, Y^{5}\right)
\end{aligned}
$$

19.10 taylorrevert

TAYLORREVERT

Operator

taylorrevert allows reversion of a Taylor series of a function f, i.e., to compute the first terms of the expansion of the inverse of f from the expansion of f.

```
taylorrevert(expression,var,var)
```

The first argument must evaluate to a Taylor kernel with the second argument being one of its expansion variables.

```
Examples
taylor \((u-u * * 2, u, 0,5) ; \Rightarrow U-U^{2}+O\left(U^{6}\right)\)
taylorrevert (ws,u,x); \(\Rightarrow\)
    \(X+X^{2}+2 * X^{3}+5 * X^{4}+14 * X^{5}+O\left(X^{6}\right)\)
```


19.11 taylorseriesp

TAYLORSERIESP

Operator

This operator may be used to determine if its argument is a Taylor kernel. taylorseriesp(expression) or taylorseriesp simple_expression

Examples

hugo := taylor $(\exp (x), x, 0,2)$;

$$
\Rightarrow \quad \text { HUGO }:=1+\mathrm{X}+-\frac{1}{2}-* \mathrm{X}^{2}+\mathrm{O}\left(\mathrm{X}^{3}\right)
$$

if taylorseriesp hugo then OK;

$$
\Rightarrow \quad \mathrm{OK}
$$

if taylorseriesp(hugo + y) then OK else NO;

$$
\Rightarrow \quad \mathrm{NO}
$$

Comments
Note that this operator is subject to the same restrictions as, e.g., ordp or numberp, i.e. it may only be used in boolean expressions in if or let statements.

19.12 taylortemplate

TAYLORTEMPLATE

Operator

The template of a Taylor kernel, i.e. the list of all variables with respect to which expansion took place together with expansion point and order can be extracted using
taylortemplate(expression) or taylortemplate simple_expression
This returns a list of lists with the three elements (VAR,VAR0,ORDER). An error is signalled if the argument is not a Taylor kernel.
Examples

```
hugo := taylor \((\exp (x), x, 0,2)\);
    \(\Rightarrow \quad\) HUGO \(:=1+X+-\frac{1}{2}-* X^{2}+O\left(X^{3}\right)\)
taylortemplate hugo; \(\quad \Rightarrow \quad\{\{\mathrm{X}, 0,2\}\}\)
```


19.13 taylortostandard

TAYLORTOSTANDARD

Operator

This operator converts all Taylor kernels in its argument into standard form and resimplifies the result.
taylortostandard(expression) or taylortostandard simple_expression

Examples

hugo := taylor $(\exp (x), x, 0,2)$;

$$
\Rightarrow \quad \text { HUGO }:=1+X+-\frac{1}{2}-* X^{2}+O\left(X^{3}\right)
$$

$$
\text { taylortostandard hugo; } \Rightarrow \quad \frac{X^{2}}{-2 * X+2}
$$

Index

```
,41
*,50
**,52
+,48
-, 49
., 43,468
/,51
:=, 44
;,40
=,46,66
,53
, 58, 87
```

ABS, 98
absolute value, 98
accuracy, 499
ACOS, 292
ACOSH, 293
ACOT, 294
ACOTH, 295
ACSC, 296
ACSCH, 297
ADJPREC, 99
AGM_FUNCTION, 541
Airy_Ai, 524
Airy_Aiprime, 526
Airy_Bi, 525
Airy_Biprime, 527
ALGEBRAIC, 229
algebraic, 28
ALGINT, 321
ALLBRANCH, 322
ALLFAC, 323
AND, 60
ANTISYMMETRIC, 230
APPEND, 168
approximation, 176, 189, 491, 493
ARBCOMPLEX, 170
ARBINT, 169
arbitrary value, 169, 170
ARBVARS, 324
arccosecant, 296-298
arccosine, 292
arccotangent, 294
arcsine, 300
arctangent, 302
ARG, 100
ARGLENGTH, 171
argument, 171, 254, 363
arithmetic, 66
ARITHMETIC_OPERATIONS, 97
ARRAY, 231
ASEC, 298
ASECH, 299
ASIN, 300
ASINH, 301
assign, 44, 91, 92
assumptions, 25
ATAN, 302
ATAN2, 304
ATANH, 303
BALANCED_MOD, 325
BEGIN, 61
BERNOULLI, 508
BERNOULLIP, 509
BESSELI, 517
BESSELJ, 513
BESSELK, 518
BESSELY, 514
BETA, 551
BFSPACE, 326

BINOMIAL, 575
block, 62
boolean value, 138
bounds, 490
Buchberger algorithm, 414, 430
BYE, 153
CARD_NO, 26
Catalan's constant, 507
CEILING, 101
character, 380
Chebyshev fit, 491
ChebyshevT, 556
ChebyshevU, 557
Chi, 569
CHOOSE, 102
Ci, 568
CLEAR, 233
CLEARRULES, 235
Clebsch_Gordan, 579
close, 290
COEFF, 172
coefficient, 172, 174, 190
COEFFN, 174
COFACTOR, 401
COMBINEEXPT, 327
COMBINELOGS, 328
Command
, 41
; 40
ALGEBRAIC, 229
BEGIN, 61
block, 62
BYE, 153
CLEAR, 233
CLEARRULES, 235
COMMENT, 63
CONT, 154

DEFINE, 236
DISPLAY, 155
END, 65
FOR, 68
FORALL, 241
FOREACH, 71
GOTO, 73
group, 59
IF, 75
IN, 287
INPUT, 288
LET, 246
LISP, 253
LOAD_PACKAGE, 156
MASS, 473
MATCH, 256
MKID, 200
MSHELL, 474
OFF, 261
ON, 262
OUT, 289
PAUSE, 157
PROCEDURE, 79
QUIT, 159
REDERR, 161
REPEAT, 82
RETRY, 162
RETURN, 84
SAVEAS, 163
SETMOD, 133
SHOWTIME, 164
SHUT, 290
SYMBOLIC, 274
VECDIM, 478
WEIGHT, 280
WHILE, 284
WRITE, 165
WTLEVEL, 285
COMMENT, 63
commutative, 258
COMP, 329
compiler, 329
complementary error function, 571
COMPLEX, 331
complex, 31, 100, 123, 175, 186, 210, 331, 384, 502, 503
composite structure, 198
Concept
boolean value, 138
Chebyshev fit, 491
Constants, 507
false, 141
graded term order, 427
gradlex term order, 420
gradlexgradlex term order, 422
gradlexrevgradlex term order, 423
Ideal Parameters, 415
lex term order, 419
lexgradlex term order, 424
lexrevgradlex term order, 425
matrix term order, 428
Module, 461
numeric accuracy, 484
revgradlex term order, 421
TRUE, 151
weighted term order, 426
Confluent Hypergeometric function, 521523
CONJ, 175
conjugate, 175
CONS, 64
Constant
E, 27
I, 31
INFINITY, 32
NIL, 34
PI, 35
T, 38

Constants, 507
CONT, 154
CONTINUED_FRACTION, 176
COS, 305
cosecant, 309
COSH, 306
cosine integral function, 568
COT, 307
COTH, 308
CRAMER, 333
CREF, 332
cross reference, 332
CSC, 309
CSCH, 310
dd_groebner, 445
Declaration
ANTISYMMETRIC, 230
ARRAY, 231
DEPEND, 237
EVEN, 238
FACTOR, 239
INDEX, 472
INFIX, 243
INTEGER, 244
KORDER, 245
LINEAR, 250
LINELENGTH, 252
LISTARGP, 254
MATRIX, 406
NODEPEND, 255
NONCOM, 258
NONZERO, 259
NOSPUR, 475
ODD, 260
OPERATOR, 263
ORDER, 265
PRECEDENCE, 266
PRECISION, 267

PRINT_PRECISION, 268
REAL, 269
REMFAC, 270
REMIND, 476
SCALAR, 271
SCIENTIFIC_NOTATION, 272
SHARE, 273
SPUR, 477
SYMMETRIC, 275
TR, 276
UNTR, 278
VARNAME, 279
VECTOR, 479
DECOMPOSE, 177
decomposition, 67, 83, 90, 94, 177, 205, 222
DEFINE, 236
DEFN, 334
DEG, 178
DEG2DMS, 103
DEG2RAD, 104
degree, 30, 33, 178
degrees, 103, 104, 107, 108, 128, 129
DEMO, 336
DEN, 179
denominator, 179
DEPEND, 237
depend, 255
dependency, 237
derivative, 180, 337, 370
DET, 402
determinant, 402
DF, 180
DFPRINT, 337
DIFFERENCE, 105
differential equation, 203
DILOG, 106
DILOG extended, 554
dilogarithm function, 106, 554

DISPLAY, 155
distributive polynomials, 416, 463-465
DIV, 338
DMS2DEG, 107
DMS2RAD, 108
E, 27
ECHO, 339
Ei, 572
eigenvalue, 404
EllipticE, 546
EllipticF, 543
EllipticK, 544
EllipticKprime, 545
EllipticTHETA, 547
else, 76
END, 65
EPS, 469
EQUAL, 139
equal, 66
EQUATION, 66
equation, $66,139,193,213,218,341$
equation solving, 218, 487
equation system, 218, 487
ERF, 311
ERF extended, 570
erfc, 571
erfi, 584
ERRCONT, 340
error function, 311, 570, 571
error handling, 161, 340
EULER, 510
Euler's constant, 507, 552
EULERP, 511
EVAL_MODE, 28
EVALLHSEQP, 341
evaluation, 229
EVEN, 238
EVENP, 140

EXP, 312, 342
EXPAND_CASES, 181
EXPANDLOGS, 343
exponent simplification, 327
exponential function, 312
exponential integral function, 572
EXPREAD, 182
EXPT, 113
EZGCD, 344
FACTOR, 239, 345
factor, 270
FACTORIAL, 109
FACTORIZE, 183
factorize, $183,355,361,375,394,395$
FAILHARD, 347
false, $34,141,151$
Faugere-Gianni-Lazard-Mora algorithm, 414
FIRST, 67
firstroot, 495
FIX, 110
FIXP, 111
Fletcher Reeves, 486
floating point, 267, 268, 272, 326, 388, 390
FLOOR, 112
FOR, 68
FORALL, 241
FOREACH, 71
FORT, 348
FORT_WIDTH, 29
FORTRAN, 26, 29, 348, 349
FORTUPPER, 349
Free Variable, 88
FREEOF, 142
Fresnel_C, 573
Fresnel_S, 574
FULLPREC, 350

FULLROOTS, 351
G, 470
GAMMA, 550
gamma, 109
GC, 352
GCD, 114, 353
gdimension, 443
GegenbauerP, 562
generalized hypergeometric function, 581
GEQ, 72
geq, 54
getroot, 495
gindependent_sets, 444
glexconvert, 446
gltb, 437
gltbasis, 436
glterms, 438
gmodule, 462
Golden_Ratio, 507
Gosper algorithm, 208, 225
GOTO, 73
graded term order, 427
gradlex term order, 420
gradlexgradlex term order, 422
gradlexrevgradlex term order, 423
greater, 55
GREATERP, 74
greatest common divisor, 114, 344, 353
greduce, 447
groebfullreduction, 435
groebmonfac, 454
groebner, 430, 443, 444
Groebner bases, 414
groebner_walk, 431
groebnerf, 452
groebnert, 459
groebopt, 432
groebprereduce, 434
groebprot, 457
groebprotfile, 458
groebresmax, 455
groebrestriction, 456
groebstat, 439
group, 59
gsort, 463
gsplit, 464
gspoly, 465
gvars, 429
gvarslast, 433
gzerodim?, 442
HANKEL1, 515
HANKEL2, 516
Heaviside, 583
HEPHYS, 467
HermiteP, 558
HIGH_POW, 30
hilbertpolynomial, 450
history, 155
Hollmann algorithm, 414, 450
HORNER, 354
hyperbolic arccosecant, 299
hyperbolic arccosine, 293
hyperbolic arcsine, 301
hyperbolic arctangent, 303
hyperbolic cosecan, 310
hyperbolic cosine, 306
hyperbolic cosine integral function, 569
hyperbolic cotangent, 295, 308
hyperbolic secant, 314
hyperbolic sine, 316
hyperbolic sine integral function, 566
hyperbolic tangent, 318
HYPERGEOMETRIC, 581
hypergeometric function, 581
HYPOT, 185

I, 31
ideal dimension, 443, 444
Ideal Parameters, 415
ideal variables, 444, 446
idealquotient, 449
IDENTIFIER, 21
identifier, 200
IF, 75
IFACTOR, 355
imaginary part, 186
IMPART, 186
IN, 287
INDEX, 472
INFINITY, 32
INFIX, 243
initial value problem, 489
INPUT, 288
input, 99, 182, 287, 380
INT, 187, 356
INTEGER, 244
integer, 101, 110-112, 132, 355, 376
integral function, 565-567, 569
integration, 187, 321, 347, 371, 397, 488
interactive, $155,157,162,226,288,336$, 356
INTERPOL, 189
interpolation, 189, 496
Interval, 483
Introduction
ARITHMETIC_OPERATIONS, 97
Groebner bases, 414
HEPHYS, 467
Numeric Package, 482
Roots Package, 495
Special Function Package, 505
SWITCHES, 320
TAYLOR, 586
Term order, 416
INTSTR, 357
isolater, 495
JacobiAMPLITUDE, 540
Jacobian matrix, 487
JacobiCD, 531
JacobiCN, 529
JacobiCS, 539
JacobiDC, 534
JacobiDN, 530
JacobiDS, 538
JacobiNC, 535
JacobiND, 533
JacobiNS, 537
JacobiP, 561
JacobiSC, 536
JacobiSD, 532
JacobiSN, 528
JacobiZETA, 548
KERNEL, 22
kernel order, 245
Khinchin's constant, 507
KORDER, 245
Kredel-Weispfenning algorithm, 414, 444
KummerM, 521
KummerU, 522
l'Hopital's rule, 194
LaguerreP, 559
Lambert_W function, 555
LANDENTRANS, 542
LCM, 358
LCOF, 190
leading power, 195
leading term, 196
least squares, 493
left-hand side, 193
LegendreP, 560
LENGTH, 191

LEQ, 143
leq, 56
less, 57
LESSP, 144
LESSSPACE, 360
LET, 246
lex term order, 419
lexgradlex term order, 424
lexrevgradlex term order, 425
LHS, 193
LIMIT, 194
limit, 194
LIMITEDFACTORS, 361
LINEAR, 250
linear system, 333
LINELENGTH, 252
LISP, 253
lisp, 334,387
LIST, 77, 362
list, $43,67,77,83,86,90,94,145,168$, 191, 215, 254, 363
LISTARGP, 254
LISTARGS, 363
LN, 115
LOAD_PACKAGE, 156
LOG, 116
logarithm, 115-117, 328, 343
LOGB, 117
loop, 68, 71, 82, 284
LOW_POW, 33
LPOWER, 195
LTERM, 196
main variable, 197
MAINVAR, 197
MAP, 198
map, 198, 215
MASS, 473
MAT, 403

MATCH, 256
MATEIGEN, 404
MATRIX, 406
matrix, 333, 401-404, 408, 410-412
matrix term order, 428
MAX, 118
maximum, 118
MCD, 364
MeijerG, 582
MEMBER, 145
memory, 160, 352
MIN, 119
minimum, 119, 486
MINUS, 120
MKID, 200
MKPOLY, 496
MODULAR, 365
modular, 133, 325, 365
Module, 461
MSG, 366
MSHELL, 474
MULTIPLICITIES, 367
NAT, 368
NEARESTROOT, 497
NEQ, 146
NERO, 369
Newton iteration, 487
NEXTPRIME, 121
NIL, 34
NOARG, 370
NOCONVERT, 122
NODEPEND, 255
NOLNR, 371
non commutative, 258
NONCOM, 258
NONZERO, 259
NORM, 123
NOSPLIT, 372

NOSPUR, 475
NOT, 147
NPRIMITIVE, 201
NULLSPACE, 408
NUM, 202
num_fit, 493
num_int, 488
num_min, 486
num_odesolve, 489
num_solve, 487
NUMBERP, 148
numerator, 202
numeric accuracy, 484
Numeric Package, 482
NUMVAL, 373
ODD, 260
ODE, 489
ODESOLVE, 203
OFF, 261
ON, 262
ONE_OF, 204
open, 289
OPERATOR, 263
Operator
*, 50
**, 52
$+, 48$
-, 49
., 43, 468
/, 51
$:=, 44$
$=, 46$
,53
, 58
ABS, 98
ACOS, 292
ACOSH, 293
ACOT, 294

ACOTH, 295
ACSC, 296
ACSCH, 297
AGM_FUNCTION, 541
Airy_Ai, 524
Airy_Aiprime, 526
Airy_Bi, 525
Airy_Biprime, 527
AND, 60
APPEND, 168
ARBCOMPLEX, 170
ARBINT, 169
ARG, 100
ARGLENGTH, 171
ASEC, 298
ASECH, 299
ASIN, 300
ASINH, 301
ATAN, 302
ATAN2, 304
ATANH, 303
BERNOULLI, 508
BERNOULLIP, 509
BESSELI, 517
BESSELJ, 513
BESSELK, 518
BESSELY, 514
BETA, 551
BINOMIAL, 575
bounds, 490
CEILING, 101
ChebyshevT, 556
ChebyshevU, 557
Chi, 569
CHOOSE, 102
Ci, 568
Clebsch_Gordan, 579
COEFF, 172
COEFFN, 174

COFACTOR, 401
CONJ, 175
CONS, 64
CONTINUED_FRACTION, 176
COS, 305
COSH, 306
COT, 307
COTH, 308
CSC, 309
CSCH, 310
dd_groebner, 445
DECOMPOSE, 177
DEG, 178
DEG2DMS, 103
DEG2RAD, 104
DEN, 179
DET, 402
DF, 180
DIFFERENCE, 105
DILOG, 106
DILOG extended, 554
DMS2DEG, 107
DMS2RAD, 108
Ei, 572
EllipticE, 546
EllipticF, 543
EllipticK, 544
EllipticKprime, 545
EllipticTHETA, 547
EPS, 469
EQUAL, 139
ERF, 311
ERF extended, 570
erfc, 571
erfi, 584
EULER, 510
EULERP, 511
EVENP, 140
EXP, 312

EXPAND_CASES, 181	HYPOT, 185
EXPREAD, 182	idealquotient, 449
EXPT, 113	IMPART, 186
FACTORIAL, 109	INT, 187
FACTORIZE, 183	INTERPOL, 189
FIRST, 67	JacobiAMPLITUDE, 540
FIX, 110	JacobiCD, 531
FIXP, 111	JacobiCN, 529
FLOOR, 112	JacobiCS, 539
FREEOF, 142	JacobiDC, 534
Fresnel_C, 573	JacobiDN, 530
Fresnel_S, 574	JacobiDS, 538
G, 470	JacobiNC, 535
GAMMA, 550	JacobiND, 533
GCD, 114	JacobiNS, 537
gdimension, 443	JacobiP, 561
GegenbauerP, 562	JacobiSC, 536
GEQ, 72	JacobiSD, 532
geq, 54	JacobiSN, 528
gindependent_sets, 444	JacobiZETA, 548
glexconvert, 446	KummerM, 521
greater, 55	KummerU, 522
GREATERP, 74	LaguerreP, 559
greduce, 447	Lambert_W function, 555
groebner, 430	LANDENTRANS, 542
groebner_walk, 431	LCOF, 190
groebnerf, 452	LegendreP, 560
groebnert, 459	LENGTH, 191
gsort, 463	LEQ, 143
gsplit, 464	leq, 56
gspoly, 465	less, 57
gvars, 429	LESSP, 144
gzerodim?, 442	LHS, 193
HANKEL1, 515	LIMIT, 194
HANKEL2, 516	LIST, 77
Heaviside, 583	LN, 115
HermiteP, 558	LOG, 116
hilbertpolynomial, 450	LOGB, 117
HYPERGEOMETRIC, 581	LPOWER, 195

LTERM, 196
MAINVAR, 197
MAP, 198
MAT, 403
MATEIGEN, 404
MAX, 118
MeijerG, 582
MEMBER, 145
MIN, 119
MINUS, 120
MKPOLY, 496
NEARESTROOT, 497
NEQ, 146
NEXTPRIME, 121
NORM, 123
NOT, 147
NPRIMITIVE, 201
NULLSPACE, 408
NUM, 202
num_fit, 493
num_int, 488
num_min, 486
num_odesolve, 489
num_solve, 487
NUMBERP, 148
ODESOLVE, 203
OR, 78
ORDP, 149
PART, 205
PERM, 124
PF, 207
PLUS, 125
POCHHAMMER, 549
POLYGAMMA, 553
preduce, 448
preducet, 460
PRIMEP, 150
PROD, 208
PSI, 552

QUOTIENT, 126
RAD2DEG, 128
RAD2DMS, 129
RANK, 410
REALROOTS, 498
RECIP, 130
RECLAIM, 160
REDUCT, 209
REMAINDER, 131
REPART, 210
replace, 47
REST, 83
RESULTANT, 211
REVERSE, 86
RHS, 213
ROOT_OF, 214
ROOT_VAL, 501
ROOTACC, 499
ROOTS, 500
ROUND, 132
s_i, 567
saturation, 451
SEC, 313
SECH, 314
SECOND, 90
SELECT, 215
SET, 91
SETQ, 92
Shi, 566
SHOWRULES, 217
Si, 565
SIGN, 134
SIN, 315
SINH, 316
SixjSymbol, 580
SolidHarmonicY, 563
SOLVE, 218
SORT, 221
SphericalHarmonicY, 564

SQRT, 135
STIRLING1, 576
STIRLING2, 577
STRUCTR, 222
StruveH, 519
StruveL, 520
SUB, 224
SUM, 225
TAN, 317
TANH, 318
taylor, 587
taylorcombine, 591
taylororiginal, 594
taylorrevert, 597
taylorseriesp, 598
taylortemplate, 599
taylortostandard, 600
THIRD, 94
ThreejSymbol, 578
TIMES, 136
torder, 417
torder_compile, 418
TP, 411
TRACE, 412
WHEN, 95
WHERE, 282
WhittakerW, 523
WS, 226
ZETA, 512
operator, 243, 250, 258-260, 266, 275, 363
Optional Free Variable, 89
OR, 78
ORDER, 265
order, 149, 245, 265
ORDP, 149
OUT, 289
OUTPUT, 374
output, 26, 29, 165, 217, 239, 252, 265, 268, 270, 272, 289, 290, 323, 326, 336-339, 345, 354, 357, 360, 366, 368-370, 372, 374, 376, 378, 379, 381, 385, 386
OVERVIEW, 375
package, 156
PART, 205
partial derivative, 180
partial fraction, 207
PAUSE, 157
PERIOD, 376
PERM, 124
permutation, 124
PF, 207
PI, 35
PLUS, 125
POCHHAMMER, 549
polar angle, 100
POLYGAMMA, 553
polynomial, 30, 33, 37, 114, 131, 177, 178, 183, 189, 190, 195-197, 201, 209, 211, 344, 351, 354, 361, 382, 383, 396, 415, 495, 496, 500, 501
PRECEDENCE, 266
PRECISE, 377
PRECISION, 267
precision, 99, 350
preduce, 448
preducet, 460
PRET, 378
PRI, 379
prime number, 121, 150
PRIMEP, 150
primitive part, 201
PRINT_PRECISION, 268
PROCEDURE, 79

PROD, 208
product, 208
PSI, 552
QUIT, 159
QUOTIENT, 126
RAD2DEG, 128
RAD2DMS, 129
radians, $103,104,107,108,128,129$
RAISE, 380
RANK, 410
RAT, 381
RATARG, 382
RATIONAL, 383
rational expression, 179, 202, 207, 353, 358, 364, 382-385, 388
rational numbers, 176
RATIONALIZE, 384
RATPRI, 385
REAL, 269
real part, 210
REALROOTS, 498
RECIP, 130
RECLAIM, 160
REDERR, 161
REDUCT, 209
reductum, 209
REMAINDER, 131
REMFAC, 270
REMIND, 476
REPART, 210
REPEAT, 82
replace, 47
requirements, 36
REST, 83
RESULTANT, 211
RETRY, 162
RETURN, 84

REVERSE, 86
revgradlex term order, 421
REVPRI, 386
RHS, 213
right-hand side, 213
RLISP88, 387
rlrootno, 495
root, $37,218,487$
ROOT_MULTIPLICITIES, 37
ROOT_OF, 214
ROOT_VAL, 501
ROOTACC, 499
ROOTS, 500
roots, 214, 495-503
Roots Package, 495
rootsat-prec, 495
ROOTSCOMPLEX, 502
ROOTSREAL, 503
rootval, 495
ROUND, 132
ROUNDALL, 388
ROUNDBF, 389
ROUNDED, 390
rounded, 267, 268, 272, 350, 373, 388
RULE, 87
rule, 87, 95, 217, 235, 246
rule list, 87
Runge-Kutta, 489
s_i, 567
saturation, 451
SAVEAS, 163
SAVESTRUCTR, 391
SCALAR, 271
SCIENTIFIC_NOTATION, 272
SEC, 313
SECH, 314
SECOND, 90
SELECT, 215

SET, 91
SETMOD, 133
SETQ, 92
SHARE, 273
Shi, 566
SHOWRULES, 217
SHOWTIME, 164
SHUT, 290
Si, 565
SIGN, 134
simplification, 342, 377, 384
SIN, 315
sine, 315
Sine integral function, 565
sine integral function, 564, 567
SINH, 316
SixjSymbol, 580
Solid harmonic polynomials, 563
SolidHarmonicY, 563
SOLVE, 218
solve, $25,36,37,181,203,214,218,324$, 333, 351, 367, 392, 396, 398, 399, 497, 498, 500, 501
SOLVESINGULAR, 392
SORT, 221
sorting, 221
Special Function Package, 505
Spence's Integral, 554
Spherical harmonic polynomials, 564
SphericalHarmonicY, 564
SPUR, 477
SQRT, 135
square root, 135,377
steepest descent, 486
STIRLING1, 576
STIRLING2, 577
STRING, 23
STRUCTR, 222
STRUCTR OPERATOR, 391

StruveH, 519
StruveL, 520
SUB, 224
substitution, 224, 241, 246, 256, 282
SUM, 225
summation, 225
Switch
ADJPREC, 99
ALGINT, 321
ALLBRANCH, 322
ALLFAC, 323
ARBVARS, 324
BALANCED_MOD, 325
BFSPACE, 326
COMBINEEXPT, 327
COMBINELOGS, 328
COMP, 329
COMPLEX, 331
CRAMER, 333
CREF, 332
DEFN, 334
DEMO, 336
DFPRINT, 337
DIV, 338
ECHO, 339
ERRCONT, 340
EVALLHSEQP, 341
EXP, 342
EXPANDLOGS, 343
EZGCD, 344
FACTOR, 345
FAILHARD, 347
FORT, 348
FORTUPPER, 349
FULLPREC, 350
FULLROOTS, 351
GC, 352
GCD, 353
gltbasis, 436
groebfullreduction, 435
groebopt, 432
groebprereduce, 434
groebprot, 457
groebstat, 439
HORNER, 354
IFACTOR, 355
INT, 356
INTSTR, 357
LCM, 358
LESSSPACE, 360
LIMITEDFACTORS, 361
LIST, 362
LISTARGS, 363
MCD, 364
MODULAR, 365
MSG, 366
MULTIPLICITIES, 367
NAT, 368
NERO, 369
NOARG, 370
NOCONVERT, 122
NOLNR, 371
NOSPLIT, 372
NUMVAL, 373
OUTPUT, 374
OVERVIEW, 375
PERIOD, 376
PRECISE, 377
PRET, 378
PRI, 379
RAISE, 380
RAT, 381
RATARG, 382
RATIONAL, 383
RATIONALIZE, 384
RATPRI, 385
REVPRI, 386
RLISP88, 387

ROUNDALL, 388
ROUNDBF, 389
ROUNDED, 390
SAVESTRUCTR, 391
SOLVESINGULAR, 392
taylorautocombine, 589
taylorautoexpand, 590
taylorkeeporiginal, 593
taylorprintorder, 595
TIME, 393
TRALLFAC, 394
TRFAC, 395
trgroeb, 440
trgroebs, 441
TRIGFORM, 396
TRINT, 397
TRNONLNR, 398
TRNUMERIC, 485
VAROPT, 399
switch, 261, 262
SWITCHES, 320
SYMBOLIC, 274
symbolic, 28
SYMMETRIC, 275
T, 38
TAN, 317
TANH, 318
TAYLOR, 586
taylor, 587
taylorautocombine, 589
taylorautoexpand, 590
taylorcombine, 591
taylorkeeporiginal, 593
taylororiginal, 594
taylorprintorder, 595
taylorprintterms, 596
taylorrevert, 597
taylorseriesp, 598
taylortemplate, 599
taylortostandard, 600
Term order, 416
term order, 418-428, 446
then, 76
THIRD, 94
ThreejSymbol, 578
TIME, 393
time, 164, 393
TIMES, 136
torder, 417
torder_compile, 418
TP, 411
TR, 276
TRACE, 412
trace, 276, 278
tracing Groebner, 456
TRALLFAC, 394
transpose, 411
TRFAC, 395
trgroeb, 440
trgroebs, 441
TRIGFORM, 396
TRINT, 397
TRNONLNR, 398
TRNUMERIC, 485
TRUE, 151
Type
EQUATION, 66
Free Variable, 88
IDENTIFIER, 21
Interval, 483
KERNEL, 22
ONE_OF, 204
Optional Free Variable, 89
RULE, 87
STRING, 23
ultraspherical polynomials, 562
univariate polynomial, 446
until, 82
UNTR, 278
Variable
assumptions, 25
CARD_NO, 26
EVAL_MODE, 28
FORT_WIDTH, 29
gltb, 437
glterms, 438
gmodule, 462
groebmonfac, 454
groebprotfile, 458
groebresmax, 455
groebrestriction, 456
gvarslast, 433
HIGH_POW, 30
LOW_POW, 33
requirements, 36
ROOT_MULTIPLICITIES, 37
ROOTSCOMPLEX, 502
ROOTSREAL, 503
taylorprintterms, 596
variable, 88,89
variable elimination, 419
variable order, 245,265
VARNAME, 279
VAROPT, 399
VECDIM, 478
VECTOR, 479
Weber's function, 514
WEIGHT, 280
weighted term order, 426
WHEN, 95
WHERE, 282
WHILE, 284
WhittakerW, 523
work space, 226
WRITE, 165
WS, 226
WTLEVEL, 285
ZETA, 512

