
Computer Algebra

Reference Manual

REDUCE
Version July 2010

LATEX’ed by SCIOS

REDUCE is an interactive system for general algebraic computations of interest to
mathematicians, scientists and engineers. It has been produced by a collaborative
effort involving many contributors.

REDUCE traces its origins to work begun by Anthony Hearn in 1963 and continued
ever since. The first distribution occurred in 1968. Since that time, over a hundred
people have been involved in various ways in its development.

A small number of these people have made sustained contributions to the REDUCE
core and associated packages over many years, namely John Fitch, Herbert Melenk,
Winfried Neun, Arthur Norman and Eberhard Schrüfer.

Others who have contributed to either documentation or packages for REDUCE
include John Abbott, Paul Abbott, Victor Adamchik, Werner Antweiler, Alan
Barnes, Andreas Bernig, Yuri A. Blinkov, Harald Boeing, W.N. Borst, F. Brackx,
Russell Bradford, Andreas Brand, Fran Burstall, Chris Cannam, Hubert Caprasse,
D. Constales, Caroline Cotter, James Davenport, Michael Dewar, C. Dicrescenzo,
Andreas Dolzmann, Alain Dresse, Ladislav Drska, James Eastwood, Bruce A. Flor-
man, Kerry Gaskell, Karin Gatermann, Barbara L. Gates, R. Gebauer, Vladimir
Gerdt, John Gottschalk, Hans-Gert Graebe, Martin Griss, A.G. Grozin, David
Harper, John Harper, Steve Harrington, David Hartley, M.C. van Heerwaarden,
Friedrich Hehl, Daniel Hobbs, Joachim Hollman, B.J.A. Hulshof, J.A. van Hulzen,
V. Ilyin, N. Ito, F. Kako, Stan Kameny, C. Kazasov, Nancy Kirkwood, K. Kishi-
moto, Wolfram Koepf, H. Kredel, A.P. Kryukov, Neil Langmead, A. Lasaruk, D.
Lewien, Richard Liska, Ruediger Loos, Malcolm MacCallum, Norman MacDonald,
Jed Marti, Kevin McIsaac, H. Meyer, H. Michael Moeller, Mary Ann Moore, Shuichi
Moritsugu, Donald Morrison, Alain Moussiaux, C.J. Neerdaels, K. Onaga, Julian
Padget, Gerhard Rayna, Matt Rebbeck, Francoise Richard, F. Richard-Jung, A.J.
Roberts, A.Ya. Rodionov, T. Sasaki, Carsten Schoebel, Franziska Schoebel, Rainer
Schoepf, Fritz Schwarz, Andreas Seidl, James Sherring, Luis Alvarez Sobreviela, D.
Stauffer, Gregor Stoelting, David R. Stoutemyer, Stephen Scowcroft, Yves Siret, M.
Spiridonova, H. Steeb, Andreas Strotmann, Thomas Sturm, Takeyuki Takahashi,
A. Taranov, Lisa Temme, Walter Tietze, V. Tomov, Evelyne Tournier, Arrigo Tri-
ulzi, R.W. Tucker, Philip A Tuckey, Gokturk Ucoluk, J. Ueberberg, J.B. van Veelen,
Mathias Warns, Volker Winkelmann, Thomas Wolf, Francis Wright, K. Yamamoto,
J.G. Zabolitzky, Alexey Yu. Zharkov and Vadim V. Zhytnikov.

and many others . . .

Contents

Contents 3

1 Preface 18

2 Concepts 20
2.1 IDENTIFIER . 21
2.2 KERNEL . 22
2.3 STRING . 23

3 Variables 24
3.1 assumptions . 25
3.2 CARD NO . 26
3.3 E . 27
3.4 EVAL MODE . 28
3.5 FORT WIDTH . 29
3.6 HIGH POW . 30
3.7 I . 31
3.8 INFINITY . 32
3.9 LOW POW . 33
3.10 NIL . 34
3.11 PI . 35
3.12 requirements . 36
3.13 ROOT MULTIPLICITIES . 37
3.14 T . 38

4 Syntax 39
4.1 semicolon . 40
4.2 dollar . 41
4.3 percent . 42
4.4 dot . 43
4.5 assign . 44
4.6 equalsign . 46
4.7 replace . 47
4.8 plussign . 48
4.9 minussign . 49
4.10 asterisk . 50
4.11 slash . 51

3

4.12 power . 52
4.13 caret . 53
4.14 geqsign . 54
4.15 greater . 55
4.16 leqsign . 56
4.17 less . 57
4.18 tilde . 58
4.19 group . 59
4.20 AND . 60
4.21 BEGIN . 61
4.22 block . 62
4.23 COMMENT . 63
4.24 CONS . 64
4.25 END . 65
4.26 EQUATION . 66
4.27 FIRST . 67
4.28 FOR . 68
4.29 FOREACH . 71
4.30 GEQ . 72
4.31 GOTO . 73
4.32 GREATERP . 74
4.33 IF . 75
4.34 LIST . 77
4.35 OR . 78
4.36 PROCEDURE . 79
4.37 REPEAT . 82
4.38 REST . 83
4.39 RETURN . 84
4.40 REVERSE . 86
4.41 RULE . 87
4.42 Free Variable . 88
4.43 Optional Free Variable . 89
4.44 SECOND . 90
4.45 SET . 91
4.46 SETQ . 92
4.47 THIRD . 94
4.48 WHEN . 95

5 Arithmetic Operations 96

5.1 ARITHMETIC OPERATIONS . 97
5.2 ABS . 98
5.3 ADJPREC . 99
5.4 ARG . 100
5.5 CEILING . 101
5.6 CHOOSE . 102
5.7 DEG2DMS . 103
5.8 DEG2RAD . 104
5.9 DIFFERENCE . 105
5.10 DILOG . 106
5.11 DMS2DEG . 107
5.12 DMS2RAD . 108
5.13 FACTORIAL . 109
5.14 FIX . 110
5.15 FIXP . 111
5.16 FLOOR . 112
5.17 EXPT . 113
5.18 GCD . 114
5.19 LN . 115
5.20 LOG . 116
5.21 LOGB . 117
5.22 MAX . 118
5.23 MIN . 119
5.24 MINUS . 120
5.25 NEXTPRIME . 121
5.26 NOCONVERT . 122
5.27 NORM . 123
5.28 PERM . 124
5.29 PLUS . 125
5.30 QUOTIENT . 126
5.31 RAD2DEG . 128
5.32 RAD2DMS . 129
5.33 RECIP . 130
5.34 REMAINDER . 131
5.35 ROUND . 132
5.36 SETMOD . 133
5.37 SIGN . 134
5.38 SQRT . 135
5.39 TIMES . 136

6 Boolean Operators 137
6.1 boolean value . 138
6.2 EQUAL . 139
6.3 EVENP . 140
6.4 false . 141
6.5 FREEOF . 142
6.6 LEQ . 143
6.7 LESSP . 144
6.8 MEMBER . 145
6.9 NEQ . 146
6.10 NOT . 147
6.11 NUMBERP . 148
6.12 ORDP . 149
6.13 PRIMEP . 150
6.14 TRUE . 151

7 General Commands 152
7.1 BYE . 153
7.2 CONT . 154
7.3 DISPLAY . 155
7.4 LOAD PACKAGE . 156
7.5 PAUSE . 157
7.6 QUIT . 159
7.7 RECLAIM . 160
7.8 REDERR . 161
7.9 RETRY . 162
7.10 SAVEAS . 163
7.11 SHOWTIME . 164
7.12 WRITE . 165

8 Algebraic Operators 167
8.1 APPEND . 168
8.2 ARBINT . 169
8.3 ARBCOMPLEX . 170
8.4 ARGLENGTH . 171
8.5 COEFF . 172
8.6 COEFFN . 174
8.7 CONJ . 175
8.8 CONTINUED FRACTION . 176

8.9 DECOMPOSE . 177
8.10 DEG . 178
8.11 DEN . 179
8.12 DF . 180
8.13 EXPAND CASES . 181
8.14 EXPREAD . 182
8.15 FACTORIZE . 183
8.16 HYPOT . 185
8.17 IMPART . 186
8.18 INT . 187
8.19 INTERPOL . 189
8.20 LCOF . 190
8.21 LENGTH . 191
8.22 LHS . 193
8.23 LIMIT . 194
8.24 LPOWER . 195
8.25 LTERM . 196
8.26 MAINVAR . 197
8.27 MAP . 198
8.28 MKID . 200
8.29 NPRIMITIVE . 201
8.30 NUM . 202
8.31 ODESOLVE . 203
8.32 ONE OF . 204
8.33 PART . 205
8.34 PF . 207
8.35 PROD . 208
8.36 REDUCT . 209
8.37 REPART . 210
8.38 RESULTANT . 211
8.39 RHS . 213
8.40 ROOT OF . 214
8.41 SELECT . 215
8.42 SHOWRULES . 217
8.43 SOLVE . 218
8.44 SORT . 221
8.45 STRUCTR . 222
8.46 SUB . 224
8.47 SUM . 225

8.48 WS . 226

9 Declarations 228
9.1 ALGEBRAIC . 229
9.2 ANTISYMMETRIC . 230
9.3 ARRAY . 231
9.4 CLEAR . 233
9.5 CLEARRULES . 235
9.6 DEFINE . 236
9.7 DEPEND . 237
9.8 EVEN . 238
9.9 FACTOR . 239
9.10 FORALL . 241
9.11 INFIX . 243
9.12 INTEGER . 244
9.13 KORDER . 245
9.14 LET . 246
9.15 LINEAR . 250
9.16 LINELENGTH . 252
9.17 LISP . 253
9.18 LISTARGP . 254
9.19 NODEPEND . 255
9.20 MATCH . 256
9.21 NONCOM . 258
9.22 NONZERO . 259
9.23 ODD . 260
9.24 OFF . 261
9.25 ON . 262
9.26 OPERATOR . 263
9.27 ORDER . 265
9.28 PRECEDENCE . 266
9.29 PRECISION . 267
9.30 PRINT PRECISION . 268
9.31 REAL . 269
9.32 REMFAC . 270
9.33 SCALAR . 271
9.34 SCIENTIFIC NOTATION . 272
9.35 SHARE . 273
9.36 SYMBOLIC . 274

9.37 SYMMETRIC . 275
9.38 TR . 276
9.39 UNTR . 278
9.40 VARNAME . 279
9.41 WEIGHT . 280
9.42 WHERE . 282
9.43 WHILE . 284
9.44 WTLEVEL . 285

10 Input and Output 286
10.1 IN . 287
10.2 INPUT . 288
10.3 OUT . 289
10.4 SHUT . 290

11 Elementary Functions 291
11.1 ACOS . 292
11.2 ACOSH . 293
11.3 ACOT . 294
11.4 ACOTH . 295
11.5 ACSC . 296
11.6 ACSCH . 297
11.7 ASEC . 298
11.8 ASECH . 299
11.9 ASIN . 300
11.10 ASINH . 301
11.11 ATAN . 302
11.12 ATANH . 303
11.13 ATAN2 . 304
11.14 COS . 305
11.15 COSH . 306
11.16 COT . 307
11.17 COTH . 308
11.18 CSC . 309
11.19 CSCH . 310
11.20 ERF . 311
11.21 EXP . 312
11.22 SEC . 313
11.23 SECH . 314

11.24 SIN . 315
11.25 SINH . 316
11.26 TAN . 317
11.27 TANH . 318

12 General Switches 319
12.1 SWITCHES . 320
12.2 ALGINT . 321
12.3 ALLBRANCH . 322
12.4 ALLFAC . 323
12.5 ARBVARS . 324
12.6 BALANCED MOD . 325
12.7 BFSPACE . 326
12.8 COMBINEEXPT . 327
12.9 COMBINELOGS . 328
12.10 COMP . 329
12.11 COMPLEX . 331
12.12 CREF . 332
12.13 CRAMER . 333
12.14 DEFN . 334
12.15 DEMO . 336
12.16 DFPRINT . 337
12.17 DIV . 338
12.18 ECHO . 339
12.19 ERRCONT . 340
12.20 EVALLHSEQP . 341
12.21 EXP . 342
12.22 EXPANDLOGS . 343
12.23 EZGCD . 344
12.24 FACTOR . 345
12.25 FAILHARD . 347
12.26 FORT . 348
12.27 FORTUPPER . 349
12.28 FULLPREC . 350
12.29 FULLROOTS . 351
12.30 GC . 352
12.31 GCD . 353
12.32 HORNER . 354
12.33 IFACTOR . 355

12.34 INT . 356
12.35 INTSTR . 357
12.36 LCM . 358
12.37 LESSSPACE . 360
12.38 LIMITEDFACTORS . 361
12.39 LIST . 362
12.40 LISTARGS . 363
12.41 MCD . 364
12.42 MODULAR . 365
12.43 MSG . 366
12.44 MULTIPLICITIES . 367
12.45 NAT . 368
12.46 NERO . 369
12.47 NOARG . 370
12.48 NOLNR . 371
12.49 NOSPLIT . 372
12.50 NUMVAL . 373
12.51 OUTPUT . 374
12.52 OVERVIEW . 375
12.53 PERIOD . 376
12.54 PRECISE . 377
12.55 PRET . 378
12.56 PRI . 379
12.57 RAISE . 380
12.58 RAT . 381
12.59 RATARG . 382
12.60 RATIONAL . 383
12.61 RATIONALIZE . 384
12.62 RATPRI . 385
12.63 REVPRI . 386
12.64 RLISP88 . 387
12.65 ROUNDALL . 388
12.66 ROUNDBF . 389
12.67 ROUNDED . 390
12.68 SAVESTRUCTR . 391
12.69 SOLVESINGULAR . 392
12.70 TIME . 393
12.71 TRALLFAC . 394
12.72 TRFAC . 395

12.73 TRIGFORM . 396
12.74 TRINT . 397
12.75 TRNONLNR . 398
12.76 VAROPT . 399

13 Matrix Operations 400
13.1 COFACTOR . 401
13.2 DET . 402
13.3 MAT . 403
13.4 MATEIGEN . 404
13.5 MATRIX . 406
13.6 NULLSPACE . 408
13.7 RANK . 410
13.8 TP . 411
13.9 TRACE . 412

14 Groebner package 413
14.1 Groebner bases . 414
14.2 Ideal Parameters . 415
14.3 Term order . 415
14.4 Term order . 416
14.5 torder . 417
14.6 torder compile . 418
14.7 lex term order . 419
14.8 gradlex term order . 420
14.9 revgradlex term order . 421
14.10 gradlexgradlex term order . 422
14.11 gradlexrevgradlex term order . 423
14.12 lexgradlex term order . 424
14.13 lexrevgradlex term order . 425
14.14 weighted term order . 426
14.15 graded term order . 427
14.16 matrix term order . 428
14.17 Basic Groebner operators . 428
14.18 gvars . 429
14.19 groebner . 430
14.20 groebner walk . 431
14.21 groebopt . 432
14.22 gvarslast . 433

14.23 groebprereduce . 434
14.24 groebfullreduction . 435
14.25 gltbasis . 436
14.26 gltb . 437
14.27 glterms . 438
14.28 groebstat . 439
14.29 trgroeb . 440
14.30 trgroebs . 441
14.31 gzerodim? . 442
14.32 gdimension . 443
14.33 gindependent sets . 444
14.34 dd groebner . 445
14.35 glexconvert . 446
14.36 greduce . 447
14.37 preduce . 448
14.38 idealquotient . 449
14.39 hilbertpolynomial . 450
14.40 saturation . 451
14.41 Factorizing Groebner bases . 451
14.42 groebnerf . 452
14.43 groebmonfac . 454
14.44 groebresmax . 455
14.45 groebrestriction . 456
14.46 Tracing Groebner bases . 456
14.47 groebprot . 457
14.48 groebprotfile . 458
14.49 groebnert . 459
14.50 preducet . 460
14.51 Groebner Bases for Modules . 460
14.52 Module . 461
14.53 gmodule . 462
14.54 Computing with distributive polynomials 462
14.55 gsort . 463
14.56 gsplit . 464
14.57 gspoly . 465

15 High Energy Physics 466
15.1 HEPHYS . 467
15.2 HE-dot . 468

15.3 EPS . 469
15.4 G . 470
15.5 INDEX . 472
15.6 MASS . 473
15.7 MSHELL . 474
15.8 NOSPUR . 475
15.9 REMIND . 476
15.10 SPUR . 477
15.11 VECDIM . 478
15.12 VECTOR . 479

16 Numeric Package 481
16.1 Numeric Package . 482
16.2 Interval . 483
16.3 numeric accuracy . 484
16.4 TRNUMERIC . 485
16.5 num min . 486
16.6 num solve . 487
16.7 num int . 488
16.8 num odesolve . 489
16.9 bounds . 490
16.10 Chebyshev fit . 491
16.11 num fit . 493

17 Roots Package 494
17.1 Roots Package . 495
17.2 MKPOLY . 496
17.3 NEARESTROOT . 497
17.4 REALROOTS . 498
17.5 ROOTACC . 499
17.6 ROOTS . 500
17.7 ROOT VAL . 501
17.8 ROOTSCOMPLEX . 502
17.9 ROOTSREAL . 503

18 Special Functions 504
18.1 Special Function Package . 505
18.2 Constants . 507
18.3 Bernoulli Euler Zeta . 507

18.4 BERNOULLI . 508
18.5 BERNOULLIP . 509
18.6 EULER . 510
18.7 EULERP . 511
18.8 ZETA . 512
18.9 Bessel Functions . 512
18.10 BESSELJ . 513
18.11 BESSELY . 514
18.12 HANKEL1 . 515
18.13 HANKEL2 . 516
18.14 BESSELI . 517
18.15 BESSELK . 518
18.16 StruveH . 519
18.17 StruveL . 520
18.18 KummerM . 521
18.19 KummerU . 522
18.20 WhittakerW . 523
18.21 Airy Functions . 523
18.22 Airy Ai . 524
18.23 Airy Bi . 525
18.24 Airy Aiprime . 526
18.25 Airy Biprime . 527
18.26 Jacobi’s Elliptic Functions and Elliptic Integrals 527
18.27 JacobiSN . 528
18.28 JacobiCN . 529
18.29 JacobiDN . 530
18.30 JacobiCD . 531
18.31 JacobiSD . 532
18.32 JacobiND . 533
18.33 JacobiDC . 534
18.34 JacobiNC . 535
18.35 JacobiSC . 536
18.36 JacobiNS . 537
18.37 JacobiDS . 538
18.38 JacobiCS . 539
18.39 JacobiAMPLITUDE . 540
18.40 AGM FUNCTION . 541
18.41 LANDENTRANS . 542
18.42 EllipticF . 543

18.43 EllipticK . 544
18.44 EllipticKprime . 545
18.45 EllipticE . 546
18.46 EllipticTHETA . 547
18.47 JacobiZETA . 548
18.48 Gamma and Related Functions . 548
18.49 POCHHAMMER . 549
18.50 GAMMA . 550
18.51 BETA . 551
18.52 PSI . 552
18.53 POLYGAMMA . 553
18.54 Miscellaneous Functions . 553
18.55 DILOG extended . 554
18.56 Lambert W function . 555
18.57 Orthogonal Polynomials . 555
18.58 ChebyshevT . 556
18.59 ChebyshevU . 557
18.60 HermiteP . 558
18.61 LaguerreP . 559
18.62 LegendreP . 560
18.63 JacobiP . 561
18.64 GegenbauerP . 562
18.65 SolidHarmonicY . 563
18.66 SphericalHarmonicY . 564
18.67 Integral Functions . 564
18.68 Si . 565
18.69 Shi . 566
18.70 s i . 567
18.71 Ci . 568
18.72 Chi . 569
18.73 ERF extended . 570
18.74 erfc . 571
18.75 Ei . 572
18.76 Fresnel C . 573
18.77 Fresnel S . 574
18.78 Combinatorial Operators . 574
18.79 BINOMIAL . 575
18.80 STIRLING1 . 576
18.81 STIRLING2 . 577

18.82 3j and 6j symbols . 577
18.83 ThreejSymbol . 578
18.84 Clebsch Gordan . 579
18.85 SixjSymbol . 580
18.86 Miscellaneous . 580
18.87 HYPERGEOMETRIC . 581
18.88 MeijerG . 582
18.89 Heaviside . 583
18.90 erfi . 584

19 Taylor series 585
19.1 TAYLOR . 586
19.2 taylor . 587
19.3 taylorautocombine . 589
19.4 taylorautoexpand . 590
19.5 taylorcombine . 591
19.6 taylorkeeporiginal . 593
19.7 taylororiginal . 594
19.8 taylorprintorder . 595
19.9 taylorprintterms . 596
19.10 taylorrevert . 597
19.11 taylorseriesp . 598
19.12 taylortemplate . 599
19.13 taylortostandard . 600

Index 601

1 Preface

This manual describes the REDUCE symbolic mathematics system. REDUCE
has two modes of operation: the algebraic mode, which deals with polynomi-
als and mathematical functions in a simple procedural syntax, and the symbolic
mode, which allows Lisp-like syntax and operations. The commands, declarations,
switches and operators available in algebraic-mode REDUCE are arranged in this
manual in alphabetical order. Symbols are listed before the letter A.

Following the general alphabetical reference section is a similar reference section for
the High-Energy Physics operators. After that, you can find several cross-reference
sections. The first section contains lists of reserved words and an Instant Function
Cross-Reference. Next you will find brief explanations of the common REDUCE
error messages. The next section is organized by type into Commands, Declarations,
Operators, Switches and Variables, with a brief listing for each operation.

For a general introduction to using algebraic-mode REDUCE, see the REDUCE
User’s Guide, which also contains information on symbolic mode. The The Standard
Lisp Report is a technical reference on REDUCE’s Lisp language.

The following symbols are used to describe syntax in this manual:

This font means you must type an item exactly as you see it.

This font indicates a descriptive name for a type of REDUCE expression. You may
choose any REDUCE expression of the appropriate type.

{} Braces surround an item or set of items that may be followed by an asterisk or
plus. Do not type the braces.

* An italic asterisk indicates that the preceding item may be repeated zero or more
times. Do not type the asterisk. It does not indicate multiplication.

+ An italic plus indicates that the preceding item must appear once, and may
be repeated one or more times. Do not type the plus. It does not indicate
addition.

&option(...) &option indicates that the parameters that follow are optional. &op-
tions indicates that options are available and explained in the text below the
command line. &option(s) is not to be typed.

The switch settings for REDUCE in the examples in this manual are assumed to
be the default settings, unless specifically given otherwise. See the cross-reference
section Switches in the back of this volume.

The examples in this manual should exactly reproduce the results you get by typing
in the statements given. Any non-default switch settings are shown. Be sure
that the variables or operators used have no prior definition by using the clear

command. The numbered line prompts have generally been left out. You can find
executable files of all the examples shown here in your $reduce/refex directory,
named alphabetically. If you are working your way through this manual, you can
run the examples as you go by starting a new REDUCE session, and entering the
command, for example:

in "reduce/refex/a-ex";

There are numerous pauses in the files so that you can enter your own examples
and commands. If you change any switch settings or assign values to variables in
one of the pauses, make sure to restore everything to its original state before you
continue the file (see the entry under CLEAR if you need help in clearing variables
and operators).

REDUCE converts all input to upper case, and all its responses are in upper case.
You can type input in upper case, lower case, or mixed, as you wish. In the
examples, the input is lower case, and REDUCE’s responses are shown in upper
case. This protocol makes it easy to distinguish input from results. You can tell
whether you are in algebraic or symbolic mode by looking at the numbered prompt
statement REDUCE gives you: the algebraic prompt contains a colon (:), while
the symbolic prompt contains an asterisk (*).

2 Concepts

2.1 IDENTIFIER

IDENTIFIER Type

Identifiers in REDUCE consist of one or more alphanumeric characters, of which the
first must be alphabetical. The maximum number of characters allowed is system
dependent, but is usually over 100. However, printing is simplified if they are kept
under 25 characters.

You can also use special characters in your identifiers, but each must be preceded
by an exclamation point ! as an escape character. Useful special characters are
$ % ^ & * - + = ? < > ~ | / ! and the space. Note that the use of the

exclamation point as a special character requires a second exclamation point as an
escape character. The underscore is special in this regard. It must be preceded
by an escape character in the first position in an identifier, but is treated like a
normal letter within an identifier.

Other characters, such as () # ; ‘ ’ " can also be used if preceded by a !, but
as they have special meanings to the Lisp reader it is best to avoid them to avoid
confusion.

Many system identifiers have * before or after their names, or - between words.
If you accidentally pick one of these names for your own identifier, it could have
disastrous effects. For this reason it is wise not to include * or - anywhere in your
identifiers.

You will notice that REDUCE does not use the escape characters when it prints
identifiers containing special characters; however, you still must use them when you
refer to these identifiers. Be careful when editing statements containing escaped
special characters to treat the character and its escape as an inseparable pair.

Identifiers are used for variable names, labels for go to statements, and names of
arrays, matrices, operators, and procedures. Once an identifier is used as a matrix,
array, scalar or operator identifier, it may not be used again as a matrix, array or
operator. An operator or array identifier may later be used as a scalar without
problems, but a matrix identifier cannot be used as a scalar. All procedures are
entered into the system as operators, so the name of a procedure may not be used
as a matrix, array, or operator identifier either.

2.2 KERNEL

KERNEL Type

A kernel is a form that cannot be modified further by the REDUCE canonical
simplifier. Scalar variables are always kernels. The other important class of kernels
are operators with their arguments. Some examples should help clarify this concept:

Expression Kernel?
x Yes
varname Yes
cos(a) Yes
log(sin(x**2)) Yes
a*b No
(x+y)**4 No
matrix identifier No

Many REDUCE operators expect kernels among their arguments. Error messages
result from attempts to use non-kernel expressions for these arguments.

2.3 STRING

STRING Type

A string is any collection of characters enclosed in double quotation marks ("). It
may be used as an argument for a variety of commands and operators, such as in,
rederr and write.

Examples
write "this is a string"; ⇒ this is a string

write a, " ", b, " ",c,"!"; ⇒ A B C!

3 Variables

3.1 assumptions

ASSUMPTIONS Variable

After solving a linear or polynomial equation system with parameters, the variable
assumptions contains a list of side relations for the parameters. The solution is
valid only as long as none of these expression is zero.

Examples
solve({a*x-b*y+x,y-c},{x,y});

⇒ {{x=
b*c

a + 1

,y=c}}

assumptions; ⇒ {a + 1}

3.2 CARD NO

CARD NO Variable

card no sets the total number of cards allowed in a Fortran output statement when
fort is on. Default is 20.

Examples
on fort;

card_no := 4; ⇒ CARD NO=4.

z := (x + y)**15; ⇒

ANS1=5005.*X**6*Y**9+3003.*X**5*Y**10+1365.*X**4*Y**

. 11+455.*X**3*Y**12+105.*X**2*Y**13+15.*X*Y**14+Y**15

Z=X**15+15.*X**14*Y+105.*X**13*Y**2+455.*X**12*Y**3+

. 1365.*X**11*Y**4+3003.*X**10*Y**5+5005.*X**9*Y**6+

. 6435.*X**8*Y**7+6435.*X**7*Y**8+ANS1

Comments

Twenty total cards means 19 continuation cards. You may set it for more if your
Fortran system allows more. Expressions are broken apart in a Fortran-compatible
way if they extend for more than card no continuation cards.

3.3 E

E Constant

The constant e is reserved for use as the base of the natural logarithm. Its value is
approximately 2.71828284590, which REDUCE gives to the current decimal preci-
sion when the switch rounded is on.

Comments

e may be used as an iterative variable in a for statement, or as a local variable
or a procedure. If e is defined as a local variable inside the procedure, the nor-
mal definition as the base of the natural logarithm would be suspended inside the
procedure.

3.4 EVAL MODE

EVAL MODE Variable

The system variable eval mode contains the current mode, either algebraic or
symbolic.

Examples
EVAL MODE; ⇒ ALGEBRAIC

Comments

Some commands do not behave the same way in algebraic and symbolic modes.

3.5 FORT WIDTH

FORT WIDTH Variable

The fort width variable sets the number of characters in a line of Fortran-compatible
output produced when the fort switch is on. Default is 70.

Examples
fort_width := 30; ⇒ FORT WIDTH := 30

on fort;

df(sin(x**3*y),x); ⇒ ANS=3.*COS(X

. **3*Y)*X**2*

. Y

Comments

fort width includes the usually blank characters at the beginning of the card. As
you may notice above, it is conservative and makes the lines even shorter than it
was told.

3.6 HIGH POW

HIGH POW Variable

The variable high pow is set by coeff to the highest power of the variable of interest
in the given expression. You can access this variable for use in further computation
or display.

Examples
coeff((x+1)^5*(x*(y+3)^2)^2,x);

⇒

{0,

0,

Y
4
+ 12*Y

3
+ 54*Y

2
+ 108*Y + 81,

5*(Y
4
+ 12*Y

3
+ 54*Y

2
+ 108*Y + 81),

10*(Y
4
+ 12*Y

3
+ 54*Y

2
+ 108*Y + 81),

10*(Y
4
+ 12*Y

3
+ 54*Y

2
+ 108*Y + 81),

5*(Y
4
+ 12*Y

3
+ 54*Y

2
+ 108*Y + 81),

Y
4
+ 12*Y

3
+ 54*Y

2
+ 108*Y + 81}

high_pow; ⇒ 7

3.7 I

I Constant

REDUCE knows i is the square root of -1, and that i2 = −1.

Examples
(a + b*i)*(c + d*i); ⇒ A*C + A*D*I + B*C*I - B*D

i**2; ⇒ -1

Comments

i cannot be used as an identifier. It is all right to use i as an index variable in a
for loop, or as a local (scalar) variable inside a begin...end block, but it loses
its definition as the square root of -1 inside the block in that case.

Only the simplest properties of i are known by REDUCE unless the switch complex

is turned on, which implements full complex arithmetic in factoring, simplification,
and functional values. complex is ordinarily off.

3.8 INFINITY

INFINITY Constant

The name infinity is used to represent the infinite positive number. However,
at the present time, arithmetic in terms of this operator reflects finite arithmetic,
rather than true operations on infinity.

3.9 LOW POW

LOW POW Variable

The variable low pow is set by coeff to the lowest power of the variable of interest
in the given expression. You can access this variable for use in further computation
or display.

Examples

coeff((x+2*y)**6,y); ⇒ {X
6
,

12*X
5
,

60*X
4
,

160*X
3
,

240*X
2
,

192*X,

64}

low_pow; ⇒ 0

coeff(x**2*(x*sin(y) + 1),x);

⇒ {0,0,1,SIN(Y)}

low_pow; ⇒ 2

3.10 NIL

NIL Constant

nil represents the truth value false in symbolic mode, and is a synonym for 0 in
algebraic mode. It cannot be used for any other purpose, even inside procedures or
for loops.

3.11 PI

PI Constant

The identifier pi is reserved for use as the circular constant. Its value is given
by 3.14159265358..., which REDUCE gives to the current decimal precision when
REDUCE is in a floating-point mode.

Comments

pi may be used as a looping variable in a for statement, or as a local variable in
a procedure. Its value in such cases will be taken from the local environment.

3.12 requirements

REQUIREMENTS Variable

After an attempt to solve an inconsistent equation system with parameters, the
variable requirements contains a list of expressions. These expressions define a
set of conditions implicitly equated with zero. Any solution to this system defines
a setting for the parameters sufficient to make the original system consistent.

Examples
solve({x-a,x-y,y-1},{x,y}); ⇒ {}

requirements; ⇒ {a - 1}

3.13 ROOT MULTIPLICITIES

ROOT MULTIPLICITIES Variable

The root multiplicities variable is set to the list of the multiplicities of the roots
of an equation by the solve operator.

Comments

solve returns its solutions in a list. The multiplicities of each solution are put in
the corresponding locations of the list root multiplicities.

3.14 T

T Constant

The constant t stands for the truth value true. It cannot be used as a scalar variable
in a block, as a looping variable in a for statement or as an operator name.

4 Syntax

4.1 semicolon

; Command

The semicolon is a statement delimiter, indicating results are to be printed when
used in interactive mode.

Examples

(x+1)**2; ⇒ X
2
+ 2*X + 1

df(x**2 + 1,x); ⇒ 2*X

Comments

Entering a Return without a semicolon or dollar sign results in a prompt on the
following line. A semicolon or dollar sign can be added at this point to execute the
statement. In interactive mode, a statement that is ended with a semicolon and

Return has its results printed on the screen.

Inside a group statement <<. . . >> or a begin. . . end block, a semicolon or dollar
sign separates individual REDUCE statements. Since results are not printed from
a block without a specific return statement, there is no difference between using
the semicolon or dollar sign. In a group statement, the last value produced is the
value returned by the group statement. Thus, if a semicolon or dollar sign is placed
between the last statement and the ending brackets, the group statement returns
the value 0 or nil, rather than the value of the last statement.

4.2 dollar

$ Command

The dollar sign is a statement delimiter, indicating results are not to be printed
when used in interactive mode.

Examples
(x+1)**2$ ⇒

The workspace is set to x
2

+ 2x + 1
but nothing shows on the screen

ws; ⇒ X
2
+ 2*X + 1

Comments

Entering a Return without a semicolon or dollar sign results in a prompt on the
following line. A semicolon or dollar sign can be added at this point to execute the
statement. In interactive mode, a statement that ends with a dollar sign $ and a

Return is executed, but the results not printed.

Inside a group statement <<. . . >> or a begin. . . end block, a semicolon or dollar
sign separates individual REDUCE statements. Since results are not printed from
a block without a specific return statement, there is no difference between using
the semicolon or dollar sign.

In a group statement, the last value produced is the value returned by the group
statement. Thus, if a semicolon or dollar sign is placed between the last statement
and the ending brackets, the group statement returns the value 0 or nil, rather than
the value of the last statement.

4.3 percent

% Command

The percent sign is used to precede comments; everything from a percent to the
end of the line is ignored.

Examples
df(x**3 + y,x);% This is a comment Return

⇒ 3*X
2

int(3*x**2,x) %This is a comment; Return

A prompt is given, waiting for the semicolon that was not detected in the com-
ment

Comments

Statement delimiters ; and $ are not detected between a percent sign and the end
of the line.

4.4 dot

. Operator

The . (dot) infix binary operator adds a new item to the beginning of an existing
list. In high energy physics expressions, it can also be used to represent the scalar
product of two Lorentz four-vectors.

item . list

item can be any REDUCE scalar expression, including a list; list must be a list

to avoid producing an error message. The dot operator is right associative.

Examples
liss := a . {}; ⇒ LISS := {A}

liss := b . liss; ⇒ LISS := {B,A}

newliss := liss . liss; ⇒ NEWLISS := {{B,A},B,A}

firstlis := a . b . {c}; ⇒ FIRSTLIS := {A,B,C}

secondlis := x . y . {z}; ⇒ SECONDLIS := {X,Y,Z}

for i := 1:3 sum part(firstlis,i)*part(secondlis,i);

⇒ A*X + B*Y + C*Z

4.5 assign

:= Operator

The := is the assignment operator, assigning the value on the right-hand side to
the identifier or other valid expression on the left-hand side.

restricted expression := expression

restricted expression is ordinarily a single identifier, though simple expressions may
be used (see Comments below). expression is any valid REDUCE expression. If
expression is a matrix identifier, then restricted expression can be a matrix identi-
fier (redimensioned if necessary) which has each element set to the corresponding
elements of the identifier on the right-hand side.

Examples

a := x**2 + 1; ⇒ A := X
2
+ 1

a; ⇒ X
2
+ 1

first := second := third; ⇒ FIRST := SECOND := THIRD

first; ⇒ THIRD

second; ⇒ THIRD

b := for i := 1:5 product i;

⇒ B := 120

b; ⇒ 120

w + (c := x + 3) + z; ⇒ W + X + Z + 3

c; ⇒ X + 3

y + b := c; ⇒ Y + B := C

y; ⇒ - (B - C)

Comments

The assignment operator is right associative, as shown in the second and third
examples. A string of such assignments has all but the last item set to the value of

the last item. Embedding an assignment statement in another expression has the
side effect of making the assignment, as well as causing the given replacement in
the expression.

Assignments of values to expressions rather than simple identifiers (such as in the
last example above) can also be done, subject to the following remarks:

(i) If the left-hand side is an identifier, an operator, or a power, the substitution
rule is added to the rule table.

(ii) If the operators - + / appear on the left-hand side, all but the first term of
the expression is moved to the right-hand side.

(iii) If the operator * appears on the left-hand side, any constant terms are moved
to the right-hand side, but the symbolic factors remain.

Assignment is valid for array elements, but not for entire arrays. The assignment
operator can also be used to attach functionality to operators.

A recursive construction such as a := a + b is allowed, but when a is referenced
again, the process of resubstitution continues until the expression stack overflows
(you get an error message). Recursive assignments can be done safely inside con-
trolled loop expressions, such as for. . . or repeat. . . until.

4.6 equalsign

= Operator

The = operator is a prefix or infix equality comparison operator.

=(expression,expression) or expression = expression

expression can be any REDUCE scalar expression.

Examples
a := 4; ⇒ A := 4

if =(a,10) then write "yes" else write "no";

⇒ no

b := c; ⇒ B := C

if b = c then write "yes" else write "no";

⇒ yes

on rounded;

if 4.0 = 4 then write "yes" else write "no";

⇒ yes

Comments

This logical equality operator can only be used inside a conditional statement, such
as if. . . then. . . else or repeat. . . until. In other places the equal sign establishes
an algebraic object of type equation.

4.7 replace

REPLACE Operator

The following sign is used: =>

The => operator is a binary operator used in rule lists to denote replacements.

Examples
operator f;

let f(x) => x^2;

f(x); ⇒ x
2

4.8 plussign

+ Operator

The + operator is a prefix or infix n-ary addition operator.

expression { +expression}+
or +(expression{, expression}+)

expression may be any valid REDUCE expression.

Examples

x**4 + 4*x**2 + 17*x + 1; ⇒ X
4
+ 4*X

2
+ 17*X + 1

14 + 15 + x; ⇒ X + 29

+(1,2,3,4,5); ⇒ 15

Comments

+ is also valid as an addition operator for matrix variables that are of the same
dimensions and for equations.

4.9 minussign

- Operator

The - operator is a prefix or infix binary subtraction operator, as well as the unary
minus operator.

expression - expression or -(expression, expression)

expression may be any valid REDUCE expression.

Examples
15 - 4; ⇒ 11

x*(-5); ⇒ - 5*X

a - b - 15; ⇒ A - B - 15

-(a,4); ⇒ A - 4

Comments

The subtraction operator is left associative, so that a - b - c is equivalent to (a -
b) - c, as shown in the third example. The subtraction operator is also valid with
matrix expressions of the correct dimensions and with equations.

4.10 asterisk

* Operator

The * operator is a prefix or infix n-ary multiplication operator.

expression { * expression}+
or *(expression{, expression}+)

expression may be any valid REDUCE expression.

Examples
15*3; ⇒ 45

24*x*yvalue*2; ⇒ 48*X*YVALUE

*(6,x); ⇒ 6*X

on rounded;

3*1.5*x*x*x; ⇒ 4.5*X
3

off rounded;

2x**2; ⇒ 2*X
2

Comments

REDUCE assumes you are using an implicit multiplication operator when an iden-
tifier is preceded by a number, as shown in the last line above. Since no valid
identifiers can begin with numbers, there is no ambiguity in making this assump-
tion.

The multiplication operator is also valid with matrix expressions of the proper
dimensions: matrices A and B can be multiplied if A is n × m and B is m × p.
Matrices and equations can also be multiplied by scalars: the result is as if each
element was multiplied by the scalar.

4.11 slash

/ Operator

The / operator is a prefix or infix binary division operator or prefix unary reciprocal
operator.

expression/expression or /expression

or /(expression, expression)

expression may be any valid REDUCE expression.

Examples
20/5; ⇒ 4

100/6; ⇒
50

3

16/2/x; ⇒
8

X

/b; ⇒
1

B

/(y,5); ⇒
Y

5

on rounded;

35/4; ⇒ 8.75

/20; ⇒ 0.05

Comments

The division operator is left associative, so that a/b/c is equivalent to (a/b)/c.
The division operator is also valid with square matrix expressions of the same
dimensions: With A and B both n × n matrices and B invertible, A/B is given
by A × B−1. Division of a matrix by a scalar is defined, with the results being
the division of each element of the matrix by the scalar. Division of a scalar by a
matrix is defined if the matrix is invertible, and has the effect of multiplying the
scalar by the inverse of the matrix. When / is used as a reciprocal operator for a
matrix, the inverse of the matrix is returned if it exists.

4.12 power

** Operator

The ** operator is a prefix or infix binary exponentiation operator.

expression **expression or **(expression, expression)

expression may be any valid REDUCE expression.

Examples

x**15; ⇒ X
15

x**y**z; ⇒ X
Y*Z

x**(y**z); ⇒ X
Y
Z

**(y,4); ⇒ Y
4

on rounded;

2**pi; ⇒ 8.82497782708

Comments

The exponentiation operator is left associative, so that a**b**c is equivalent to
(a**b)**c, as shown in the second example. Note that this is not a**(b**c),
which would be right associative.

When nat is on (the default), REDUCE output produces raised exponents, as
shown. The symbol ^, which is the upper-case 6 on most keyboards, may be used
in the place of **.

A square matrix may also be raised to positive and negative powers with the ex-
ponentiation operator (negative powers require the matrix to be invertible). Scalar
expressions and equations may be raised to fractional and floating-point powers.

4.13 caret

ˆ Operator

The ^ operator is a prefix or infix binary exponentiation operator. It is equivalent
to power or **.

expression ^expression or ^(expression, expression)

expression may be any valid REDUCE expression.

Examples

x^15; ⇒ X
15

x^y^z; ⇒ X
Y*Z

x^(y^z); ⇒ X
Y
Z

^(y,4); ⇒ Y
4

on rounded;

2^pi; ⇒ 8.82497782708

Comments

The exponentiation operator is left associative, so that a^b^c is equivalent to
(a^b)^c, as shown in the second example. Note that this is not a^(b^c), which
would be right associative.

When nat is on (the default), REDUCE output produces raised exponents, as
shown.

A square matrix may also be raised to positive and negative powers with the ex-
ponentiation operator (negative powers require the matrix to be invertible). Scalar
expressions and equations may be raised to fractional and floating-point powers.

4.14 geqsign

GEQ Operator

The following sign is used: >=

>= is an infix binary comparison operator, which returns true if its first argument
is greater than or equal to its second argument.

expression >= expression

expression must evaluate to an integer or floating-point number.

Examples
if (3 >= 2) then yes; ⇒ yes

a := 15; ⇒ A := 15

if a >= 20 then big else small;

⇒ small

Comments

The binary comparison operators can only be used for comparisons between num-
bers or variables that evaluate to numbers. The truth values returned by such a
comparison can only be used inside programming constructs, such as if. . . then. . . else
or repeat. . . until or while. . . do.

4.15 greater

GREATER Operator

The following sign is used: >

The > is an infix binary comparison operator that returns true if its first argument
is strictly greater than its second.

expression > expression

expression must evaluate to a number, e.g., integer, rational or floating point num-
ber.

Examples
on rounded;

if 3.0 > 3 then write "different" else write "same";

⇒ same

off rounded;

a := 20; ⇒ A := 20

if a > 20 then write "bigger" else write "not bigger";

⇒ not bigger

Comments

The binary comparison operators can only be used for comparisons between num-
bers or variables that evaluate to numbers. The truth values returned by such a
comparison can only be used inside programming constructs, such as if. . . then. . . else
or repeat. . . until or while. . . do.

4.16 leqsign

LEQ Operator

The following sign is used: <=

<= is an infix binary comparison operator that returns true if its first argument is
less than or equal to its second argument.

expression <= expression

expression must evaluate to a number, e.g., integer, rational or floating point num-
ber.

Examples
a := 10; ⇒ A := 10

if a <= 10 then true; ⇒ true

Comments

The binary comparison operators can only be used for comparisons between num-
bers or variables that evaluate to numbers. The truth values returned by such a
comparison can only be used inside programming constructs, such as if. . . then. . . else
or repeat. . . until or while. . . do.

4.17 less

LESS Operator

The following sign is used: <

< is an infix binary logical comparison operator that returns true if its first argument
is strictly less than its second argument.

expression < expression

expression must evaluate to a number, e.g., integer, rational or floating point num-
ber.

Examples
f := -3; ⇒ F := -3

if f < -3 then write "yes" else write "no";

⇒ no

Comments

The binary comparison operators can only be used for comparisons between num-
bers or variables that evaluate to numbers. The truth values returned by such a
comparison can only be used inside programming constructs, such as if. . . then. . . else
or repeat. . . until or while. . . do.

4.18 tilde

˜ Operator

The ~ is used as a unary prefix operator in the left-hand sides of rules to mark
free variables. A double tilde marks an optional free variable.

4.19 group

GROUP Command

The following signs are used: << and >>

The <<. . . >> command is a group statement, used to group statements together
where REDUCE expects a single statement.

<<statement{; statement or $statement}∗>>
statement may be any valid REDUCE statement or expression.

Examples
a := 2; ⇒ A := 2

if a < 5 then <<b := a + 10; write b>>;

⇒ 12

<<d := c/15; f := d + 3; f**2>>;

⇒
C
2
+ 90*C + 202

225

Comments

The value returned from a group statement is the value of the last individual state-
ment executed inside it. Note that when a semicolon is placed between the last
statement and the closing brackets, 0 or nil is returned. Group statements are often
used in the consequence portions of if. . . then, repeat. . . until, and while. . . do
clauses. They may also be used in interactive operation to execute several state-
ments at one time. Statements inside the group statement are separated by semi-
colons or dollar signs.

4.20 AND

AND Operator

The and binary logical operator returns true if both of its arguments are true.

logical expression and logical expression

logical expression must evaluate to true or nil.

Examples
a := 12; ⇒ A := 12

if numberp a and a < 15 then write a**2 else write "no";

⇒ 144

clear a;

if numberp a and a < 15 then write a**2 else write "no";

⇒ no

Comments

Logical operators can only be used inside conditional statements, such as while. . . do
or if. . . then. . . else. and examines each of its arguments in order, and quits, re-
turning nil, on finding an argument that is not true. An error results if it is used
in other contexts.

and is left associative: x and y and z is equivalent to (x and y) and z.

4.21 BEGIN

BEGIN Command

begin is used to start a block statement, which is closed with end.

begin statement{; statement}∗ end
statement is any valid REDUCE statement.

Examples
begin for i := 1:3 do write i end;

⇒ 1

2

3

begin scalar n;n:=1;b:=for i:=1:4 product(x-i);return n end;

⇒ 1

b; ⇒ X
4
- 10*X

3
+ 35*X

2
- 50*X + 24

Comments

A begin. . . end block can do actions (such as write), but does not return a value
unless instructed to by a return statement, which must be the last statement
executed in the block. It is unnecessary to insert a semicolon before the end.

Local variables, if any, are declared in the first statement immediately after begin,
and may be defined as scalar, integer, or real. array variables declared within
a begin. . . end block are global in every case, and let statements have global effects.
A let statement involving a formal parameter affects the calling parameter that
corresponds to it. let statements involving local variables make global assignments,
overwriting outside variables by the same name or creating them if they do not exist.
You can use this feature to affect global variables from procedures, but be careful
that you do not do it inadvertently.

4.22 block

BLOCK Command

A block is a sequence of statements enclosed by commands begin and end.

begin statement{; statement}∗ end
For more details see begin.

4.23 COMMENT

COMMENT Command

Beginning with the word comment, all text until the next statement terminator (;
or $) is ignored.

Examples
x := a**2 comment--a is the velocity of the particle;;

⇒ X := A
2

Comments

Note that the first semicolon ends the comment and the second one terminates the
original REDUCE statement.

Multiple-line comments are often needed in interactive files. The comment command
allows a normal-looking text to accompany the REDUCE statements in the file.

4.24 CONS

CONS Operator

The cons operator adds a new element to the beginning of a list. Its operation is
identical to the symbol dot (dot). It can be used infix or prefix.

cons(item, list) or item cons list

item can be any REDUCE scalar expression, including a list; list must be a list.

Examples
liss := cons(a,{b}); ⇒ {A,B}

liss := c cons liss; ⇒ {C,A,B}

newliss := for each y in liss collect cons(y,list x);

⇒ NEWLISS := {{C,X},{A,X},{B,X}}

for each y in newliss sum (first y)*(second y);

⇒ X*(A + B + C)

Comments

If you want to use cons to put together two elements into a new list, you must
make the second one into a list with curly brackets or the list command. You can
also start with an empty list created by {}.
The cons operator is right associative: a cons b cons c is valid if c is a list; b
need not be a list. The list produced is {a,b,c}.

4.25 END

END Command

The command end has two main uses:

(i) as the ending of a begin. . . end block; and

(ii) to end input from a file.

Comments

In a begin. . . end block, there need not be a delimiter (; or $) before the end,
though there must be one after it, or a right bracket matching an earlier left bracket.

Files to be read into REDUCE should end with end;, which must be preceded by a
semicolon (usually the last character of the previous line). The additional semicolon
avoids problems with mistakes in the files. If you have suspended file operation by
answering n to a pause command, you are still, technically speaking, “in” the file.
Use end to exit the file.

An end at the top level of a program is ignored.

4.26 EQUATION

EQUATION Type

An equation is an expression where two algebraic expressions are connected by
the (infix) operator equal or by =. For access to the components of an equation

the operators lhs, rhs or part can be used. The evaluation of the left-hand side of
an equation is controlled by the switch evallhseqp, while the right-hand side is
evaluated unconditionally. When an equation is part of a logical expression, e.g.
in a if or while statement, the equation is evaluated by subtracting both sides can
comparing the result with zero.

Equations occur in many contexts, e.g. as arguments of the sub operator and in
the arguments and the results of the operator solve. An equation can be member
of a list and you may assign an equation to a variable. Elementary arithmetic is
supported for equations: if evallhseqp is on, you may add and subtract equations,
and you can combine an equation with a scalar expression by addition, subtraction,
multiplication, division and raise an equation to a power.

Examples
on evallhseqp;

u:=x+y=1$

v:=2x-y=0$

2*u-v; ⇒ - 3*y=-2

ws/3; ⇒ y=
2

3

Important: the equation must occur in the leftmost term of such an expression. For
other operations, e.g. taking function values of both sides, use the map operator.

4.27 FIRST

FIRST Operator

The first operator returns the first element of a list.

first(list) or first list

list must be a non-empty list to avoid an error message.

Examples
alist := {a,b,c,d}; ⇒ ALIST := {A,B,C,D}

first alist; ⇒ A

blist := {x,y,{ww,aa,qq},z};

⇒ BLIST := {X,Y,{WW,AA,QQ},Z}

first third blist; ⇒ WW

4.28 FOR

FOR Command

The for command is used for iterative loops. There are many possible forms it can

take.

for

var := start : stop
var := start step inc until stop
each var in list

collect

do

join

product

sum

expression

var can be any valid REDUCE identifier except t or nil, inc, start and stop can
be any expression that evaluates to a positive or negative integer. list must be a
valid list structure. The action taken must be one of the actions shown above,
each of which is followed by a single REDUCE expression, statement or a group

(<<. . . >>) or block (begin. . . end) statement.

Examples
for i := 1:10 sum i; ⇒ 55

for a := -2 step 3 until 6 product a;

⇒ -8

a := 3; ⇒ A := 3

for iter := 4:a do write iter;

m := 0; ⇒ M := 0

for s := 10 step -1 until 3 do <<d := 10*s;m := m + d>>;

m; ⇒ 520

for each x in {q,r,s} sum x**2;

⇒ Q
2
+ R

2
+ S

2

for i := 1:4 collect 1/i; ⇒ {1,
1

2
,
1

3
,
1

4
}

for i := 1:3 join list solve(x**2 + i*x + 1,x);

⇒

{{X= -
SQRT(3)*I + 1

2
,

X= -
SQRT(3)*I - 1

2
}

{X=-1},

{X= -
SQRT(5) + 3

2

,X=
SQRT(5) - 3

2
}}

Comments

The behavior of each of the five action words follows:

Action Word Behavior
Keyword Argument Type Action
do statement, command, group or

block
Evaluates its argument once for
each iteration of the loop, not
saving results

collect expression, statement, com-
mand, group, block, list

Evaluates its argument once for
each iteration of the loop, stor-
ing the results in a list which is
returned by the for statement
when done

join list or an operator which pro-
duces a list

Evaluates its argument once for
each iteration of the loop, ap-
pending the elements in each in-
dividual result list onto the over-
all result list

product expression, statement, com-
mand, group or block

Evaluates its argument once for
each iteration of the loop, mul-
tiplying the results together and
returning the overall product

sum expression, statement, com-
mand, group or block

Evaluates its argument once for
each iteration of the loop, adding
the results together and return-
ing the overall sum

For number-driven for statements, if the ending limit is smaller than the beginning
limit (larger in the case of negative steps) the action statement is not executed at
all. The iterative variable is local to the for statement, and does not affect the
value of an identifier with the same name. For list-driven for statements, if the list
is empty, the action statement is not executed, but no error occurs.

You can use nested for statements, with the inner for statement after the action
keyword. You must make sure that your inner statement returns an expression that
the outer statement can handle.

4.29 FOREACH

FOREACH Command

foreach is a synonym for the for each variant of the for construct. It is designed
to iterate down a list, and an error will occur if a list is not used. The use of
for each is preferred to foreach.

foreach variable in list action expression
where action ::= do | product | sum | collect | join

Examples
foreach x in {q,r,s} sum x**2;

⇒ Q
2
+ R

2
+ S

2

4.30 GEQ

GEQ Operator

The geq operator is a binary infix or prefix logical operator. It returns true if its

first argument is greater than or equal to its second argument. As an infix operator

it is identical with >=.

geq(expression, expression) or expression geq expression

expression can be any valid REDUCE expression that evaluates to a number.

Examples
a := 20; ⇒ A := 20

if geq(a,25) then write "big" else write "small";

⇒ small

if a geq 20 then write "big" else write "small";

⇒ big

if (a geq 18) then write "big" else write "small";

⇒ big

Comments

Logical operators can only be used in conditional statements such as
if. . . then. . . else or repeat. . . until.

4.31 GOTO

GOTO Command

Inside a begin. . . end block, goto, or preferably, go to, transfers flow of control

to a labeled statement.

go to labeled statement or goto labeled statement

labeled statement is of the form label :statement

Examples

procedure dumb(a);

begin scalar q;

go to lab;

q := df(a**2 - sin(a),a);

write q;

lab: return a

end;

⇒ DUMB

dumb(17); ⇒ 17

Comments

go to can only be used inside a begin. . . end block, and inside the block only
statements at the top level can be labeled, not ones inside <<. . . >>, while. . . do,
etc.

4.32 GREATERP

GREATERP Operator

The greaterp logical operator returns true if its first argument is strictly greater

than its second argument. As an infix operator it is identical with >.

greaterp(expression, expression) or expression greaterp expression

expression can be any valid REDUCE expression that evaluates to a number.

Examples
a := 20; ⇒ A := 20

if greaterp(a,25) then write "big" else write "small";

⇒ small

if a greaterp 20 then write "big" else write "small";

⇒ small

if (a greaterp 18) then write "big" else write "small";

⇒ big

Comments

Logical operators can only be used in conditional statements such as
if. . . then. . . else or repeat. . . while.

4.33 IF

IF Command

The if command is a conditional statement that executes a statement if a condition

is true, and optionally another statement if it is not.

if condition then statement &option(else statement)

condition must be a logical or comparison operator that evaluates to a boolean value.
statement must be a single REDUCE statement or a group (<<. . . >>) or block

(begin. . . end) statement.

Examples
if x = 5 then a := b+c else a := d+f;

⇒ D + F

x := 9; ⇒ X := 9

if numberp x and x<20 then y := sqrt(x) else write "illegal";

⇒ 3

clear x;

if numberp x and x<20 then y := sqrt(x) else write "illegal";

⇒ illegal

x := 12; ⇒ X := 12

a := if x < 5 then 100 else 150;

⇒ A := 150

b := u**(if x < 10 then 2); ⇒ B := 1

bb := u**(if x > 10 then 2);

⇒ BB := U
2

Comments

An if statement may be used inside an assignment statement and sets its value
depending on the conditions, or used anywhere else an expression would be valid,

as shown in the last example. If there is no else clause, the value is 0 if a number
is expected, and nothing otherwise.

The else clause may be left out if no action is to be taken if the condition is false.

The condition may be a compound conditional statement using and or or. If a
non-conditional statement, such as a constant, is used by accident, it is assumed to
have value true.

Be sure to use group or block statements after then or else.

The if operator is right associative. The following constructions are examples:

(1) if condition then if condition then action else action

which is equivalent to

if condition then (if condition then action else action);

(2) if condition then action else if condition then action else

action

which is equivalent to

if condition then action else

(if condition then action else action).

4.34 LIST

LIST Operator

The list operator constructs a list from its arguments.

list(item{, item}∗) or list() to construct an empty list.

item can be any REDUCE scalar expression, including another list. Left and right
curly brackets can also be used instead of the operator list to construct a list.

Examples
liss := list(c,b,c,{xx,yy},3x**2+7x+3,df(sin(2*x),x));

⇒

LISS := {C,B,C,{XX,YY},3*X
2
+ 7*X + 3,2*COS(2*X)}

length liss; ⇒ 6

liss := {c,b,c,{xx,yy},3x**2+7x+3,df(sin(2*x),x)};

⇒

LISS := {C,B,C,{XX,YY},3*X
2
+ 7*X + 3,2*COS(2*X)}

emptylis := list(); ⇒ EMPTYLIS := {}

a . emptylis; ⇒ {A}

Comments

Lists are ordered, hierarchical structures. The elements stay where you put them,
and only change position in the list if you specifically change them. Lists can have
nested sublists to any (reasonable) level. The part operator can be used to access
elements anywhere within a list hierarchy. The length operator counts the number
of top-level elements of its list argument; elements that are themselves lists still
only count as one element.

4.35 OR

OR Operator

The or binary logical operator returns true if either one or both of its arguments

is true.

logical expression or logical expression

logical expression must evaluate to true or nil.

Examples
a := 10; ⇒ A := 10

if a<0 or a>140 then write "not a valid human age" else

write "age = ",a;

⇒ age = 10

a := 200; ⇒ A := 200

if a < 0 or a > 140 then write "not a valid human age";

⇒ not a valid human age

Comments

The or operator is left associative: x or y or z is equivalent to (x or y) or z.

Logical operators can only be used in conditional expressions, such as
if. . . then. . . else and while. . . do. or evaluates its arguments in order and quits,
returning true, on finding the first true statement.

4.36 PROCEDURE

PROCEDURE Command

The procedure command allows you to define a mathematical operation as a func-

tion with arguments.

&option procedure identifier (arg{, arg}+);body

The option may be algebraic or symbolic, indicating the mode under which the
procedure is executed, or real or integer, indicating the type of answer expected.
The default is algebraic. Real or integer procedures are subtypes of algebraic pro-
cedures; type-checking is done on the results of integer procedures, but not on real
procedures (in the current REDUCE release). identifier may be any valid REDUCE
identifier that is not already a procedure name, operator, array or matrix. arg
is a formal parameter that may be any valid REDUCE identifier. body is a single
statement (a group or block statement may be used) with the desired activities in
it.

Examples

procedure fac(n);

if not (fixp(n) and n>=0)

then rederr "Choose nonneg. integer only"

else for i := 0:n-1 product i+1;

⇒ FAC

fac(0); ⇒ 1

fac(5); ⇒ 120

fac(-5); ⇒ ***** choose nonneg. integer only

Comments

Procedures are automatically declared as operators upon definition. When RE-
DUCE has parsed the procedure definition and successfully converted it to a form
for its own use, it prints the name of the procedure. Procedure definitions cannot
be nested. Procedures can call other procedures, or can recursively call themselves.
Procedure identifiers can be cleared as you would clear an operator. Unlike let

statements, new definitions under the same procedure name replace the previous

definitions completely.

Be careful not to use the name of a system operator for your own procedure.
REDUCE may or may not give you a warning message. If you redefine a system
operator in your own procedure, the original function of the system operator is lost
for the remainder of the REDUCE session.

Procedures may have none, one, or more than one parameter. A REDUCE pa-
rameter is a formal parameter only; the use of x as a parameter in a procedure

definition has no connection with a value of x in the REDUCE session, and the re-
sults of calling a procedure have no effect on the value of x. If a procedure is called
with x as a parameter, the current value of x is used as specified in the computation,
but is not changed outside the procedure. Making an assignment statement by :=

with a formal parameter on the left-hand side only changes the value of the calling
parameter within the procedure.

Using a let statement inside a procedure always changes the value globally: a
let with a formal parameter makes the change to the calling parameter. let

statements cannot be made on local variables inside begin. . . end blocks. When
clear statements are used on formal parameters, the calling variables associated
with them are cleared globally too. The use of let or clear statements inside
procedures should be done with extreme caution.

Arrays and operators may be used as parameters to procedures. The body of the
procedure can contain statements that appropriately manipulate these arguments.
Changes are made to values of the calling arrays or operators. Simple expressions
can also be used as arguments, in the place of scalar variables. Matrices may not
be used as arguments to procedures.

A procedure that has no parameters is called by the procedure name, immediately
followed by empty parentheses. The empty parentheses may be left out when
writing a procedure with no parameters, but must appear in a call of the procedure.
If this is a nuisance to you, use a let statement on the name of the procedure (i.e.,
let noargs = noargs()) after which you can call the procedure by just its name.

Procedures that have a single argument can leave out the parentheses around it
both in the definition and procedure call. (You can use the parentheses if you
wish.) Procedures with more than one argument must use parentheses, with the
arguments separated by commas.

Procedures often have a begin. . . end block in them. Inside the block, local variables
are declared using scalar, real or integer declarations. The declarations must be
made immediately after the word begin, and if more than one type of declaration is

made, they are separated by semicolons. REDUCE currently does no type checking
on local variables; real and integer are treated just like scalar. Actions take
place as specified in the statements inside the block statement. Any identifiers that
are not formal parameters or local variables are treated as global variables, and
activities involving these identifiers are global in effect.

If a return value is desired from a procedure call, a specific return command must
be the last statement executed before exiting from the procedure. If no return is
used, a procedure returns a zero or no value.

Procedures are often written in a file using an editor, then the file is input using the
command in. This method allows easy changes in development, and also allows you
to load the named procedures whenever you like, by loading the files that contain
them.

4.37 REPEAT

REPEAT Command

The repeat command causes repeated execution of a statement until the given

condition is found to be true. The statement is always executed at least once.

repeat statement until condition

statement can be a single statement, group statement, or a begin. . . end block.
condition must be a logical operator that evaluates to true or nil.

Examples
<<m := 4; repeat <<write 100*x*m;m := m-1>> until m = 0>>;

⇒ 400*X

300*X

200*X

100*X

<<m := -1; repeat <<write m; m := m-1>> until m <= 0>>;

⇒ -1

Comments

repeat must always be followed by an until with a condition. Be careful not to
generate an infinite loop with a condition that is never true. In the second example,
if the condition had been m = 0, it would never have been true since m already had
value -2 when the condition was first evaluated.

4.38 REST

REST Operator

The rest operator returns a list containing all but the first element of the list it

is given.

rest(list) or rest list

list must be a non-empty list, but need not have more than one element.

Examples
alist := {a,b,c,d}; ⇒ ALIST := {A,B,C,D};

rest alist; ⇒ {B,C,D}

blist := {x,y,{aa,bb,cc},z};

⇒ BLIST := {X,Y,{AA,BB,CC},Z}

second rest blist; ⇒ {AA,BB,CC}

clist := {c}; ⇒ CLIST := C

rest clist; ⇒ {}

4.39 RETURN

RETURN Command

The return command causes a value to be returned from inside a begin. . . end

block.

begin statements return &option(expression) end

statements can be any valid REDUCE statements. The value of expression is
returned.

Examples
begin write "yes"; return a end;

⇒ yes

A

procedure dumb(a);

begin if numberp(a) then return a else return 10 end;

⇒ DUMB

dumb(x); ⇒ 10

dumb(-5); ⇒ -5

procedure dumb2(a);

begin c := a**2 + 2*a + 1; d := 17; c*d; return end;

⇒ DUMB2

dumb2(4);

c; ⇒ 25

d; ⇒ 17

Comments

Note in dumb2 above that the assignments were made as requested, but the product
c*d cannot be accessed. Changing the procedure to read return c*d would remedy
this problem.

The return statement is always the last statement executed before leaving the
block. If return has no argument, the block is exited but no value is returned.
A block statement does not need a return ; the statements inside terminate in
their normal fashion without one. In that case no value is returned, although the
specified actions inside the block take place.

The return command can be used inside <<. . . >> group statements and if. . . then. . . else
commands that are inside begin. . . end blocks. It is not valid in these constructions
that are not inside a begin. . . end block. It is not valid inside for, repeat. . . until
or while. . . do loops in any construction. To force early termination from loops,
the go to(goto) command must be used. When you use nested block statements,
a return from an inner block exits returning a value to the next-outermost block,
rather than all the way to the outside.

4.40 REVERSE

REVERSE Operator

The reverse operator returns a list that is the reverse of the list it is given.

reverse(list) or reverse list

list must be a list.

Examples
aa := {c,b,a,{x**2,z**3},y};

⇒ AA := {C,B,A,{X
2
,Z
3
},Y}

reverse aa; ⇒ {Y,{X
2
,Z
3
},A,B,C}

reverse(q . reverse aa); ⇒ {C,B,A,{X
2
,Z
3
},Y,Q}

Comments

reverse and cons can be used together to add a new element to the end of a list
(. adds its new element to the beginning). The reverse operator uses a noticeable
amount of system resources, especially if the list is long. If you are doing much
heavy-duty list manipulation, you should probably design your algorithms to avoid
much reversing of lists. A moderate amount of list reversing is no problem.

4.41 RULE

RULE Type

A rule is an instruction to replace an algebraic expression or a part of an expression

by another one.

lhs =¿ rhs or lhs =¿ rhs when cond

lhs is an algebraic expression used as search pattern and rhs is an algebraic expres-
sion which replaces matches of rhs. => is the operator replace.

lhs can contain free variables which are symbols preceded by a tilde ~ in their
leftmost position in lhs. A double tilde marks an optional free variable. If a
rule has a when cond part it will fire only if the evaluation of cond has a result
true. cond may contain references to free variables of lhs.

Rules can be collected in a list which then forms a rule list. Rule lists can
be used to collect algebraic knowledge for a specific evaluation context.

Rules and rule lists are globally activated and deactivated by let, forall,
clearrules. For a single evaluation they can be locally activate by where. The
active rules for an operator can be visualized by showrules.

Examples
operator f,g,h;

let f(x) => x^2;

f(x); ⇒ x
2

g_rules:={g(~n,~x)=>h(n/2,x) when evenp n,

g(~n,~x)=>h((1-n)/2,x) when not evenp n}

let g_rules;

g(3,x); ⇒ h(-1,x)

4.42 Free Variable

FREE VARIABLE Type

A variable preceded by a tilde is considered as free variable and stands for an
arbitrary part in an algebraic form during pattern matching. Free variables occur
in the left-hand sides of rules, in the side relations for compact and in the first
arguments of map and select calls. See rule for examples.

In rules also optional free variables may occur.

4.43 Optional Free Variable

OPTIONAL FREE VARIABLE Type

A variable preceded by a double tilde is considered as optional free variable

and stands for an arbitrary part part in an algebraic form during pattern matching.
In contrast to ordinary free variables an operator pattern with an optional free variable

matches also if the operand for the variable is missing. In such a case the variable
is bound to a neutral value. Optional free variables can be used as

term in a sum: set to 0 if missing,

factor in a product: set to 1 if missing,

exponent: set to 1 if missing

Examples
sin(~~u + ~~n * pi) => sin(u) when evenp u;

⇒

Optional free variables are allowed only in the left-hand sides of rules.

4.44 SECOND

SECOND Operator

The second operator returns the second element of a list.

second(list) or second list

list must be a list with at least two elements, to avoid an error message.

Examples
alist := {a,b,c,d}; ⇒ ALIST := {A,B,C,D}

second alist; ⇒ B

blist := {x,{aa,bb,cc},z}; ⇒ BLIST := {X,{AA,BB,CC},Z}

second second blist; ⇒ BB

4.45 SET

SET Operator

The set operator is used for assignments when you want both sides of the assign-

ment statement to be evaluated.

set(restricted expression, expression)

expression can be any REDUCE expression; restricted expression must be an iden-
tifier or an expression that evaluates to an identifier.

Examples
a := y; ⇒ A := Y

set(a,sin(x^2)); ⇒ SIN(X
2
)

a; ⇒ SIN(X
2
)

y; ⇒ SIN(X
2
)

a := b + c; ⇒ A := B + C

set(a-c,z); ⇒ Z

b; ⇒ Z

Comments

Using an array or matrix reference as the first argument to set has the result
of setting the contents of the designated element to set’s second argument. You
should be careful to avoid unwanted side effects when you use this facility.

4.46 SETQ

SETQ Operator

The setq operator is an infix or prefix binary assignment operator. It is identical

to :=.

setq(restricted expression, expression) or
restricted expression setq expression

restricted expression is ordinarily a single identifier, though simple expressions may
be used (see Comments below). expression can be any valid REDUCE expression.
If expression is a matrix identifier, then restricted expression can be a matrix iden-
tifier (redimensioned if necessary), which has each element set to the corresponding
elements of the identifier on the right-hand side.

Examples
setq(b,6); ⇒ B := 6

c setq sin(x); ⇒ C := SIN(X)

w + setq(c,x+3) + z; ⇒ W + X + Z + 3

c; ⇒ X + 3

setq(a1 + a2,25); ⇒ A1 + A2 := 25

a1; ⇒ - (A2 - 25)

Comments

Embedding a setq statement in an expression has the side effect of making the
assignment, as shown in the third example above.

Assignments are generally done for identifiers, but may be done for simple expres-
sions as well, subject to the following remarks:

(i) If the left-hand side is an identifier, an operator, or a power, the rule is added
to the rule table.

(ii) If the operators - + / appear on the left-hand side, all but the first term of
the expression is moved to the right-hand side.

(iii) If the operator * appears on the left-hand side, any constant terms are moved
to the right-hand side, but the symbolic factors remain.

Be careful not to make a recursive setq assignment that is not controlled inside
a loop statement. The process of resubstitution continues until you get a stack
overflow message. setq can be used to attach functionality to operators, as the :=

does.

4.47 THIRD

THIRD Operator

The third operator returns the third item of a list.

third(list) or third list

list must be a list containing at least three items to avoid an error message.

Examples
alist := {a,b,c,d}; ⇒ ALIST := {A,B,C,D}

third alist; ⇒ C

blist := {x,{aa,bb,cc},y,z};

⇒ BLIST := {X,{AA,BB,CC},Y,Z};

third second blist; ⇒ CC

third blist; ⇒ Y

4.48 WHEN

WHEN Operator

The when operator is used inside a rule to make the execution of the rule depend
on a boolean condition which is evaluated at execution time. For the use see rule.

5 Arithmetic Operations

5.1 ARITHMETIC OPERATIONS

ARITHMETIC OPERATIONS Introduction

This section considers operations defined in REDUCE that concern numbers, or
operators that can operate on numbers in addition, in most cases, to more general
expressions.

5.2 ABS

ABS Operator

The abs operator returns the absolute value of its argument.

abs(expression)

expression can be any REDUCE scalar expression.

Examples
abs(-a); ⇒ ABS(A)

abs(-5); ⇒ 5

a := -10; ⇒ A := -10

abs(a); ⇒ 10

abs(-a); ⇒ 10

Comments

If the argument has had no numeric value assigned to it, such as an identifier or
polynomial, abs returns an expression involving abs of its argument, doing as much
simplification of the argument as it can, such as dropping any preceding minus sign.

5.3 ADJPREC

ADJPREC Switch

When a real number is input, it is normally truncated to the precision in effect
at the time the number is read. If it is desired to keep the full precision of all
numbers input, the switch adjprec (for adjust precision) can be turned on. While
on, adjprec will automatically increase the precision, when necessary, to match
that of any integer or real input, and a message printed to inform the user of the
precision increase.

Examples
on rounded;

1.23456789012345; ⇒ 1.23456789012

on adjprec;

1.23456789012345;

*** precision increased to 15

1.23456789012345 ⇒

5.4 ARG

ARG Operator

If complex and rounded are on, and arg evaluates to a complex number, arg returns
the polar angle of arg, measured in radians. Otherwise an expression in arg is
returned.

Examples
arg(3+4i) ⇒ ARG(3 + 4*I)

on rounded, complex;

ws; ⇒ 0.927295218002

arg a; ⇒ ARG(A)

5.5 CEILING

CEILING Operator

ceiling(expression)

This operator returns the ceiling (i.e., the least integer greater than or equal to
its argument) if its argument has a numerical value. For negative numbers, this is
equivalent to fix. For non-numeric arguments, the value is an expression in the
original operator.

Examples
ceiling 3.4; ⇒ 4

fix 3.4; ⇒ 3

ceiling(-5.2); ⇒ -5

fix(-5.2); ⇒ -5

ceiling a; ⇒ CEILING(A)

5.6 CHOOSE

CHOOSE Operator

choose(m,m) returns the number of ways of choosing m objects from a collection
of n distinct objects — in other words the binomial coefficient. If m and n are not
positive integers, or m > n, the expression is returned unchanged. than or equal to

Examples
choose(2,3); ⇒ 3

choose(3,2); ⇒ CHOOSE(3,2)

choose(a,b); ⇒ CHOOSE(A,B)

5.7 DEG2DMS

DEG2DMS Operator

deg2dms(expression)

In rounded mode, if expression is a real number, the operator deg2dms will interpret
it as degrees, and convert it to a list containing the equivalent degrees, minutes
and seconds. In all other cases, an expression in terms of the original operator is
returned.

Examples
deg2dms 60; ⇒ DEG2DMS(60)

on rounded;

ws; ⇒ {60,0,0}

deg2dms 42.4; ⇒ {42,23,60.0}

deg2dms a; ⇒ DEG2DMS(A)

5.8 DEG2RAD

DEG2RAD Operator

deg2rad(expression)

In rounded mode, if expression is a real number, the operator deg2rad will inter-
pret it as degrees, and convert it to the equivalent radians. In all other cases, an
expression in terms of the original operator is returned.

Examples
deg2rad 60; ⇒ DEG2RAD(60)

on rounded;

ws; ⇒ 1.0471975512

deg2rad a; ⇒ DEG2RAD(A)

5.9 DIFFERENCE

DIFFERENCE Operator

The difference operator may be used as either an infix or prefix binary subtraction
operator. It is identical to - as a binary operator.

difference(expression, expression) or

expression difference expression {difference expression}∗
expression can be a number or any other valid REDUCE expression. Matrix ex-
pressions are allowed if they are of the same dimensions.

Examples
difference(10,4); ⇒ 6

15 difference 5 difference 2;

⇒ 8

a difference b; ⇒ A - B

Comments

The difference operator is left associative, as shown in the second example above.

5.10 DILOG

DILOG Operator

The dilog operator is known to the differentiation and integration operators, but
has numeric value attached only at dilog(0). Dilog is defined by

dilog(x) = −
∫
log(x) dx

x− 1

Examples

df(dilog(x**2),x); ⇒ -
2*LOG(X

2
)*X

X
2
- 1

int(dilog(x),x); ⇒

DILOG(X)*X - DILOG(X) + LOG(X)*X - X

dilog(0); ⇒
PI
2

6

5.11 DMS2DEG

DMS2DEG Operator

dms2deg(list)

In rounded mode, if list is a list of three real numbers, the operator dms2deg will
interpret the list as degrees, minutes and seconds and convert it to the equiva-
lent degrees. In all other cases, an expression in terms of the original operator is
returned.

Examples
dms2deg {42,3,7}; ⇒ DMS2DEG({42,3,7})

on rounded;

ws; ⇒ 42.0519444444

dms2deg a; ⇒ DMS2DEG(A)

5.12 DMS2RAD

DMS2RAD Operator

dms2rad(list)

In rounded mode, if list is a list of three real numbers, the operator dms2rad will
interpret the list as degrees, minutes and seconds and convert it to the equiva-
lent radians. In all other cases, an expression in terms of the original operator is
returned.

Examples
dms2rad {42,3,7}; ⇒ DMS2RAD({42,3,7})

on rounded;

ws; ⇒ 0.733944887421

dms2rad a; ⇒ DMS2RAD(A)

5.13 FACTORIAL

FACTORIAL Operator

factorial(expression)

If the argument of factorial is a positive integer or zero, its factorial is returned.
Otherwise the result is expressed in terms of the original operator. For more general
operations, the gamma operator is available in the Special Function Package.

Examples
factorial 4; ⇒ 24

factorial 30 ; ⇒ 265252859812191058636308480000000

factorial(a) ; FACTORIAL(A) ⇒

5.14 FIX

FIX Operator

fix(expression)

The operator fix returns the integer part of its argument, if that argument has a
numerical value. For positive numbers, this is equivalent to floor, and, for negative
numbers, ceiling. For non-numeric arguments, the value is an expression in the
original operator.

Examples
fix 3.4; ⇒ 3

floor 3.4; ⇒ 3

ceiling 3.4; ⇒ 4

fix(-5.2); ⇒ -5

floor(-5.2); ⇒ -6

ceiling(-5.2); ⇒ -5

fix(a); ⇒ FIX(A)

5.15 FIXP

FIXP Operator

The fixp logical operator returns true if its argument is an integer.

fixp(expression) or fixp simple expression

expression can be any valid REDUCE expression, simple expression must be a
single identifier or begin with a prefix operator.

Examples
if fixp 1.5 then write "ok" else write "not";

⇒ not

if fixp(a) then write "ok" else write "not";

⇒ not

a := 15; ⇒ A := 15

if fixp(a) then write "ok" else write "not";

⇒ ok

Comments

Logical operators can only be used inside conditional expressions such as if. . . then
or while. . . do.

5.16 FLOOR

FLOOR Operator

floor(expression)

This operator returns the floor (i.e., the greatest integer less than or equal to its
argument) if its argument has a numerical value. For positive numbers, this is
equivalent to fix. For non-numeric arguments, the value is an expression in the
original operator.

Examples
floor 3.4; ⇒ 3

fix 3.4; ⇒ 3

floor(-5.2); ⇒ -6

fix(-5.2); ⇒ -5

floor a; ⇒ FLOOR(A)

5.17 EXPT

EXPT Operator

The expt operator is both an infix and prefix binary exponentiation operator. It

is identical to ^ or **.

expt(expression, expression) or expression expt expression

Examples

a expt b; ⇒ A
B

expt(a,b); ⇒ A
B

(x+y) expt 4; ⇒ X
4
+ 4*X

3
*Y + 6*X

2
*Y
2
+ 4*X*Y

3
+ Y

4

Comments

Scalar expressions may be raised to fractional and floating-point powers. Square
matrix expressions may be raised to positive powers, and also to negative powers
if non-singular.

expt is left associative. In other words, a expt b expt c is equivalent to a expt (b*c),
not a expt (b expt c), which would be right associative.

5.18 GCD

GCD Operator

The gcd operator returns the greatest common divisor of two polynomials.

gcd(expression, expression)

expression must be a polynomial (or integer), otherwise an error occurs.

Examples
gcd(2*x**2 - 2*y**2,4*x + 4*y);

⇒ 2*(X + Y)

gcd(sin(x),x**2 + 1); ⇒ 1

gcd(765,68); ⇒ 17

Comments

The operator gcd described here provides an explicit means to find the gcd of two
expressions. The switch gcd described below simplifies expressions by finding and
canceling gcd’s at every opportunity. When the switch ezgcd is also on, gcd’s are
figured using the EZ GCD algorithm, which is usually faster.

5.19 LN

LN Operator

ln(expression)

expression can be any valid scalar REDUCE expression.

The ln operator returns the natural logarithm of its argument. However, unlike
log, there are no algebraic rules associated with it; it will only evaluate when
rounded is on, and the argument is a real number.

Examples
ln(x); ⇒ LN(X)

ln 4; ⇒ LN(4)

ln(e); ⇒ LN(E)

df(ln(x),x); ⇒ DF(LN(X),X)

on rounded;

ln 4; ⇒ 1.38629436112

ln e; ⇒ 1

Comments

Because of the restricted algebraic properties of ln, users are advised to use log

whenever possible.

5.20 LOG

LOG Operator

The log operator returns the natural logarithm of its argument.

log(expression) or log expression

expression can be any valid scalar REDUCE expression.

Examples
log(x); ⇒ LOG(X)

log 4; ⇒ LOG(4)

log(e); ⇒ 1

on rounded;

log 4; ⇒ 1.38629436112

Comments

log returns a numeric value only when rounded is on. In that case, use of a
negative argument for log results in an error message. No error is given on a
negative argument when REDUCE is not in that mode.

5.21 LOGB

LOGB Operator

logb(expression integer)

expression can be any valid scalar REDUCE expression.

The logb operator returns the logarithm of its first argument using the second
argument as base. However, unlike log, there are no algebraic rules associated
with it; it will only evaluate when rounded is on, and the first argument is a real
number.

Examples
logb(x,2); ⇒ LOGB(X,2)

logb(4,3); ⇒ LOGB(4,3)

logb(2,2); ⇒ LOGB(2,2)

df(logb(x,3),x); ⇒ DF(LOGB(X,3),X)

on rounded;

logb(4,3); ⇒ 1.26185950714

logb(2,2); ⇒ 1

5.22 MAX

MAX Operator

The operator max is an n-ary prefix operator, which returns the largest value in its

arguments.

max(expression{, expression}∗)
expression must evaluate to a number. max of an empty list returns 0.

Examples
max(4,6,10,-1); ⇒ 10

<<a := 23;b := 2*a;c := 4**2;max(a,b,c)>>;

⇒ 46

max(-5,-10,-a); ⇒ -5

5.23 MIN

MIN Operator

The operator min is an n-ary prefix operator, which returns the smallest value in

its arguments.

min(expression{, expression}∗)
expression must evaluate to a number. min of an empty list returns 0.

Examples
min(-3,0,17,2); ⇒ -3

<<a := 23;b := 2*a;c := 4**2;min(a,b,c)>>;

⇒ 16

min(5,10,a); ⇒ 5

5.24 MINUS

MINUS Operator

The minus operator is a unary minus, returning the negative of its argument. It is

equivalent to the unary -.

minus(expression)

expression may be any scalar REDUCE expression.

Examples
minus(a); ⇒ - A

minus(-1); ⇒ 1

minus((x+1)**4); ⇒ - (X
4
+ 4*X

3
+ 6*X

2
+ 4*X + 1)

5.25 NEXTPRIME

NEXTPRIME Operator

nextprime(expression)

If the argument of nextprime is an integer, the least prime greater than that
argument is returned. Otherwise, a type error results.

Examples
nextprime 5001; ⇒ 5003

nextprime(10^30); ⇒ 1000000000000000000000000000057

nextprime a; ⇒ ***** A invalid as integer

5.26 NOCONVERT

NOCONVERT Switch

Under normal circumstances when rounded is on, REDUCE converts the number
1.0 to the integer 1. If this is not desired, the switch noconvert can be turned on.

Examples
on rounded;

1.0000000000001; ⇒ 1

on noconvert;

1.0000000000001; ⇒ 1.0

5.27 NORM

NORM Operator

norm(expression)

If rounded is on, and the argument is a real number, norm returns its absolute
value. If complex is also on, norm returns the square root of the sum of squares of
the real and imaginary parts of the argument. In all other cases, a result is returned
in terms of the original operator.

Examples
norm (-2); ⇒ NORM(-2)

on rounded;

ws; ⇒ 2.0

norm(3+4i); ⇒ NORM(4*I+3)

on complex;

ws; ⇒ 5.0

5.28 PERM

PERM Operator

perm(expression1 ,expression2)

If expression1 and expression2 evaluate to positive integers, perm returns the num-
ber of permutations possible in selecting expression1 objects from expression2 ob-
jects. In other cases, an expression in the original operator is returned.

Examples
perm(1,1); ⇒ 1

perm(3,5); ⇒ 60

perm(-3,5); ⇒ PERM(-3,5)

perm(a,b); ⇒ PERM(A,B)

5.29 PLUS

PLUS Operator

The plus operator is both an infix and prefix n-ary addition operator. It exists

because of the way in which REDUCE handles such operators internally, and is not

recommended for use in algebraic mode programming. plussign, which has the

identical effect, should be used instead.

plus(expression, expression{, expression}∗) or
expression plus expression {plus expression}∗

expression can be any valid REDUCE expression, including matrix expressions of
the same dimensions.

Examples
a plus b plus c plus d; ⇒ A + B + C + D

4.5 plus 10; ⇒
29

2

plus(x**2,y**2); ⇒ X
2
+ Y

2

5.30 QUOTIENT

QUOTIENT Operator

The quotient operator is both an infix and prefix binary operator that returns the

quotient of its first argument divided by its second. It is also a unary reciprocal

operator. It is identical to / and slash.

quotient(expression, expression) or expression quotient expression
or quotient(expression) or quotient expression

expression can be any valid REDUCE scalar expression. Matrix expressions can
also be used if the second expression is invertible and the matrices are of the correct
dimensions.

Examples

quotient(a,x+1); ⇒
A

X + 1

7 quotient 17; ⇒
7

17

on rounded;

4.5 quotient 2; ⇒ 2.25

quotient(x**2 + 3*x + 2,x+1);

⇒ X + 2

matrix m,inverse;

m := mat((a,b),(c,d)); ⇒ M(1,1) := A;

M(1,2) := B;

M(2,1) := C

M(2,2) := D

inverse := quotient m; ⇒ INVERSE(1,1) :=
D

A*D - B*C

INVERSE(1,2) := -
B

A*D - B*C

INVERSE(2,1) := -
C

A*D - B*C

INVERSE(2,2) :=
A

A*D - B*C

Comments

The quotient operator is left associative: a quotient b quotient c is equivalent
to (a quotient b) quotient c.

If a matrix argument to the unary quotient is not invertible, or if the second
matrix argument to the binary quotient is not invertible, an error message is given.

5.31 RAD2DEG

RAD2DEG Operator

rad2deg(expression)

In rounded mode, if expression is a real number, the operator rad2deg will inter-
pret it as radians, and convert it to the equivalent degrees. In all other cases, an
expression in terms of the original operator is returned.

Examples
rad2deg 1; ⇒ RAD2DEG(1)

on rounded;

ws; ⇒ 57.2957795131

rad2deg a; ⇒ RAD2DEG(A)

5.32 RAD2DMS

RAD2DMS Operator

rad2dms(expression)

In rounded mode, if expression is a real number, the operator rad2dms will interpret
it as radians, and convert it to a list containing the equivalent degrees, minutes
and seconds. In all other cases, an expression in terms of the original operator is
returned.

Examples
rad2dms 1; ⇒ RAD2DMS(1)

on rounded;

ws; ⇒ {57,17,44.8062470964}

rad2dms a; ⇒ RAD2DMS(A)

5.33 RECIP

RECIP Operator

recip is the alphabetical name for the division operator / or slash used as a unary
operator. The use of / is preferred.

Examples

recip a; ⇒
1

A

recip 2; ⇒
1

2

5.34 REMAINDER

REMAINDER Operator

The remainder operator returns the remainder after its first argument is divided
by its second argument.

remainder(expression, expression)

expression can be any valid REDUCE polynomial, and is not limited to numeric
values.

Examples
remainder(13,6); ⇒ 1

remainder(x**2 + 3*x + 2,x+1);

⇒ 0

remainder(x**3 + 12*x + 4,x**2 + 1);

⇒ 11*X + 4

remainder(sin(2*x),x*y); ⇒ SIN(2*X)

Comments

In the default case, remainders are calculated over the integers. If you need the
remainder with respect to another domain, it must be declared explicitly.

If the first argument to remainder contains a denominator not equal to 1, an error
occurs.

5.35 ROUND

ROUND Operator

round(expression)

If its argument has a numerical value, round rounds it to the nearest integer. For
non-numeric arguments, the value is an expression in the original operator.

Examples
round 3.4; ⇒ 3

round 3.5; ⇒ 4

round a; ⇒ ROUND(A)

5.36 SETMOD

SETMOD Command

The setmod command sets the modulus value for subsequent modular arithmetic.

setmod integer

integer must be positive, and greater than 1. It need not be a prime number.

Examples
setmod 6; ⇒ 1

on modular;

16; ⇒ 4

x^2 + 5x + 7; ⇒ X
2
+ 5*X + 1

x/3; ⇒
X

3

setmod 2; ⇒ 6

(x+1)^4; ⇒ X
4
+ 1

x/3; ⇒ X

Comments

setmod returns the previous modulus, or 1 if none has been set before. setmod only
has effect when modular is on.

Modular operations are done only on numbers such as coefficients of polynomials,
not on the exponents. The modulus need not be prime. Attempts to divide by a
power of the modulus produces an error message, since the operation is equivalent
to dividing by 0. However, dividing by a factor of a non-prime modulus does not
produce an error message.

5.37 SIGN

SIGN Operator

sign expression

sign tries to evaluate the sign of its argument. If this is possible sign returns one
of 1, 0 or -1. Otherwise, the result is the original form or a simplified variant.

Examples
sign(-5) ⇒ -1

sign(-a^2*b) ⇒ -SIGN(B)

Comments

Even powers of formal expressions are assumed to be positive only as long as the
switch complex is off.

5.38 SQRT

SQRT Operator

The sqrt operator returns the square root of its argument.

sqrt(expression)

expression can be any REDUCE scalar expression.

Examples
sqrt(16*a^3); ⇒ 4*SQRT(A)*A

sqrt(17); ⇒ SQRT(17)

on rounded;

sqrt(17); ⇒ 4.12310562562

off rounded;

sqrt(a*b*c^5*d^3*27); ⇒

3*SQRT(D)*SQRT(C)*SQRT(B)*SQRT(A)*SQRT(3)*C
2
*D

Comments

sqrt checks its argument for squared factors and removes them.

Numeric values for square roots that are not exact integers are given only when
rounded is on.

Please note that sqrt(a**2) is given as a, which may be incorrect if a eventually
has a negative value. If you are programming a calculation in which this is a
concern, you can turn on the precise switch, which causes the absolute value of
the square root to be returned.

5.39 TIMES

TIMES Operator

The times operator is an infix or prefix n-ary multiplication operator. It is identical

to *.

expression times expression {times expression}∗
or times(expression, expression{, expression}∗)

expression can be any valid REDUCE scalar or matrix expression. Matrix expres-
sions must be of the correct dimensions. Compatible scalar and matrix expressions
can be mixed.

Examples
var1 times var2; ⇒ VAR1*VAR2

times(6,5); ⇒ 30

matrix aa,bb;

aa := mat((1),(2),(x))$

bb := mat((0,3,1))$

aa times bb times 5; ⇒ [0 15 5]

[]

[0 30 10]

[]

[0 15*X 5*X]

6 Boolean Operators

6.1 boolean value

BOOLEAN VALUE Concept

There are no extra symbols for the truth values true and false. Instead, nil and the
number zero are interpreted as truth value false in algebraic programs (see false),
while any different value is considered as true (see true).

6.2 EQUAL

EQUAL Operator

The operator equal is an infix binary comparison operator. It is identical with =.
It returns true if its two arguments are equal.

expression equal expression

Equality is given between floating point numbers and integers that have the same
value.

Examples
on rounded;

a := 4; ⇒ A := 4

b := 4.0; ⇒ B := 4.0

if a equal b then write "true" else write "false";

⇒ true

if a equal 5 then write "true" else write "false";

⇒ false

if a equal sqrt(16) then write "true" else write "false";

⇒ true

Comments

Comparison operators can only be used as conditions in conditional commands such
as if. . . then and repeat. . . until. equal can also be used as a prefix operator.
However, this use is not encouraged.

6.3 EVENP

EVENP Operator

The evenp logical operator returns true if its argument is an even integer, and nil

if its argument is an odd integer. An error message is returned if its argument is
not an integer.

evenp(integer) or evenp integer

integer must evaluate to an integer.

Examples
aa := 1782; ⇒ AA := 1782

if evenp aa then yes else no;

⇒ YES

if evenp(-3) then yes else no;

⇒ NO

Comments

Although you would not ordinarily enter an expression such as the last example
above, note that the negative term must be enclosed in parentheses to be correctly
parsed. The evenp operator can only be used in conditional statements such as
if. . . then. . . else or while. . . do.

6.4 false

FALSE Concept

The symbol nil and the number zero are considered as boolean value false if used
in a place where a boolean value is required. Most builtin operators return nil as
false value. Algebraic programs use better zero. Note that nil is not printed when
returned as result to a top level evaluation.

6.5 FREEOF

FREEOF Operator

The freeof logical operator returns true if its first argument does not contain its

second argument anywhere in its structure.

freeof(expression, kernel) or expression freeof kernel

expression can be any valid scalar REDUCE expression, kernel must be a kernel
expression (see kernel).

Examples
a := x + sin(y)**2 + log sin z;

⇒ A := LOG(SIN(Z)) + SIN(Y)
2
+ X

if freeof(a,sin(y)) then write "free" else write "not free";

⇒ not free

if freeof(a,sin(x)) then write "free" else write "not free";

⇒ free

if a freeof sin z then write "free" else write "not free";

⇒ not free

Comments

Logical operators can only be used in conditional expressions such as
if. . . then or while. . . do.

6.6 LEQ

LEQ Operator

The leq operator is a binary infix or prefix logical operator. It returns true if its

first argument is less than or equal to its second argument. As an infix operator it

is identical with <=.

leq(expression, expression) or expression leq expression

expression can be any valid REDUCE expression that evaluates to a number.

Examples
a := 15; ⇒ A := 15

if leq(a,25) then write "yes" else write "no";

⇒ yes

if leq(a,15) then write "yes" else write "no";

⇒ yes

if leq(a,5) then write "yes" else write "no";

⇒ no

Comments

Logical operators can only be used in conditional statements such as
if. . . then. . . else or while. . . do.

6.7 LESSP

LESSP Operator

The lessp operator is a binary infix or prefix logical operator. It returns true if

its first argument is strictly less than its second argument. As an infix operator it

is identical with <.

lessp(expression, expression) or expression lessp expression

expression can be any valid REDUCE expression that evaluates to a number.

Examples
a := 15; ⇒ A := 15

if lessp(a,25) then write "yes" else write "no";

⇒ yes

if lessp(a,15) then write "yes" else write "no";

⇒ no

if lessp(a,5) then write "yes" else write "no";

⇒ no

Comments

Logical operators can only be used in conditional statements such as
if. . . then. . . else or while. . . do.

6.8 MEMBER

MEMBER Operator

expression member list

member is an infix binary comparison operator that evaluates to true if expression
is equal to a member of the list list .

Examples
if a member {a,b} then 1 else 0;

⇒ 1

if 1 member(1,2,3) then a else b;

⇒ a

if 1 member(1.0,2) then a else b;

⇒ b

Comments

Logical operators can only be used in conditional statements such as
if. . . then. . . else or while. . . do. member can also be used as a prefix operator.
However, this use is not encouraged. Finally, equal (=) is used for the test within
the list, so expressions must be of the same type to match.

6.9 NEQ

NEQ Operator

The operator neq is an infix binary comparison operator. It returns true if its two
arguments are not equal.

expression neq expression

An inequality is satisfied between floating point numbers and integers that have
the same value.

Examples
on rounded;

a := 4; ⇒ A := 4

b := 4.0; ⇒ B := 4.0

if a neq b then write "true" else write "false";

⇒ false

if a neq 5 then write "true" else write "false";

⇒ true

Comments

Comparison operators can only be used as conditions in conditional commands
such as if. . . then and repeat. . . until. neq can also be used as a prefix operator.
However, this use is not encouraged.

6.10 NOT

NOT Operator

The not operator returns true if its argument evaluates to nil, and nil if its

argument is true.

not(logicalexpression)

Examples
if not numberp(a) then write "indeterminate" else write a;

⇒ indeterminate;

a := 10; ⇒ A := 10

if not numberp(a) then write "indeterminate" else write a;

⇒ 10

if not(numberp(a) and a < 0) then write "positive number";

⇒ positive number

Comments

Logical operators can only be used in conditional statements such as
if. . . then. . . else or while. . . do.

6.11 NUMBERP

NUMBERP Operator

The numberp operator returns true if its argument is a number, and nil otherwise.

numberp(expression) or numberp expression

expression can be any REDUCE scalar expression.

Examples
cc := 15.3; ⇒ CC := 15.3

if numberp(cc) then write "number" else write "nonnumber";

⇒ number

if numberp(cb) then write "number" else write "nonnumber";

⇒ nonnumber

Comments

Logical operators can only be used in conditional expressions, such as
if. . . then. . . else and while. . . do.

6.12 ORDP

ORDP Operator

The ordp logical operator returns true if its first argument is ordered ahead of its

second argument in canonical internal ordering, or is identical to it.

ordp(expression1 , expression2)

expression1 and expression2 can be any valid REDUCE scalar expression.

Examples
if ordp(x**2 + 1,x**3 + 3) then write "yes" else write "no";

⇒ no

if ordp(101,100) then write "yes" else write "no";

⇒ yes

if ordp(x,x) then write "yes" else write "no";

⇒ yes

Comments

Logical operators can only be used in conditional expressions, such as
if. . . then. . . else and while. . . do.

6.13 PRIMEP

PRIMEP Operator

primep(expression) or primep simple expression

If expression evaluates to a integer, primep returns true if expression is a prime
number (i.e., a number other than 0 and plus or minus 1 which is only exactly
divisible by itself or a unit) and nil otherwise. If expression does not have an
integer value, a type error occurs.

Examples
if primep 3 then write "yes" else write "no";

⇒ YES

if primep a then 1; ⇒ ***** A invalid as integer

6.14 TRUE

TRUE Concept

Any value of the boolean part of a logical expression which is neither nil nor 0 is
considered as true. Most builtin test and compare functions return t for true and
nil for false.

Examples
if member(3,{1,2,3}) then 1 else -1;

⇒ 1

if floor(1.7) then 1 else -1;

⇒ 1

if floor(0.7) then 1 else -1;

⇒ -1

7 General Commands

7.1 BYE

BYE Command

The bye command ends the REDUCE session, returning control to the program
(e.g., the operating system) that called REDUCE. When you are at the top level,
the bye command exits REDUCE. quit is a synonym for bye.

7.2 CONT

CONT Command

The command cont returns control to an interactive file after a pause command
that has been answered with n.

Examples
Suppose you are in the middle of an interactive file.

⇒ factorize(x**2 + 17*x + 60);

⇒ {{X + 12,1},{X + 5,1}}

pause; ⇒ Cont? (Y or N)

n

saveas results;

factor1 := first results; ⇒ FACTOR1 := {X + 12,1}

factor2 := second results; ⇒ FACTOR2 := {X + 5,1}

cont; ⇒

the file resumes

Comments

A pause allows you to enter your own REDUCE commands, change switch values,
inquire about results, or other such activities. When you wish to resume operation
of the interactive file, use cont.

7.3 DISPLAY

DISPLAY Command

When given a numeric argument n, display prints the n most recent input state-
ments, identified by prompt numbers. If an empty pair of parentheses is given, or if
n is greater than the current number of statements, all the input statements since
the beginning of the session are printed.

display(n) or display()

n should be a positive integer. However, if it is a real number, the truncated integer
value is used, and if a non-numeric argument is used, all the input statements are
printed.

Comments

The statements are displayed in upper case, with lines split at semicolons or dollar
signs, as they are in editing. If long files have been input during the session, the
display command is slow to format these for printing.

7.4 LOAD PACKAGE

LOAD PACKAGE Command

The load package command is used to load REDUCE packages, such as gentran

that are not automatically loaded by the system.

load package "package name"

A package is only loaded once; subsequent calls of load package for the same
package name are ignored.

7.5 PAUSE

PAUSE Command

The pause command, given in an interactive file, stops operation and asks if you
want to continue or not.

Examples
An interactive file is running, and at some point you see the question

Cont? (Y or N)

If you type

y Return

the file continues to run until the next pause or the end.

If you type

n Return

you will get a numbered REDUCE prompt, and be allowed to enter and execute
any REDUCE statements. If you later wish to continue with the file, type

cont;

and the file resumes.

To use pause in your own interactive files, type

pause;

in the file wherever you want it.

Comments

pause does not allow you to continue without typing either y or n. Its use is to
slow down scrolling of interactive files, or to let you change parameters or switch
settings for the calculations.

If you have stopped an interactive file at a pause, and do not wish to resume the
file, type end;. This does not end the REDUCE session, but stops input from the
file. A second end; ends the REDUCE session. However, if you have pauses from
more than one file stacked up, an end; brings you back to the top level, not the file
directly above.

A pause typed from the terminal has no effect.

7.6 QUIT

QUIT Command

The quit command ends the REDUCE session, returning control to the program
(e.g., the operating system) that called REDUCE. When you are at the top level,
the quit command exits REDUCE. bye is a synonym for quit.

7.7 RECLAIM

RECLAIM Operator

Comments

REDUCE’s memory is in a storage structure called a heap. As REDUCE state-
ments execute, chunks of memory are used up. When these chunks are no longer
needed, they remain idle. When the memory is almost full, the system executes
a garbage collection, reclaiming space that is no longer needed, and putting all
the free space at one end. Depending on the size of the image REDUCE is using,
garbage collection needs to be done more or less often. A larger image means fewer
but longer garbage collections. Regardless of memory size, if you ask REDUCE to
do something ridiculous, like factorial(2000), it may garbage collect many times.

7.8 REDERR

REDERR Command

The rederr command allows you to print an error message from inside a procedure

or a block statement. The calculation is gracefully terminated.

rederr message

message is an error message, usually inside double quotation marks (a string).

Examples

procedure fac(n);

if not (fixp(n) and n>=0)

then rederr "Choose nonneg. integer only"

else for i := 0:n-1 product i+1;

⇒ fac

fac a; ⇒ ***** Choose nonneg. integer only

fac 5; ⇒ 120

Comments

The above procedure finds the factorial of its argument. If n is not a positive integer
or 0, an error message is returned.

If your procedure is executed in a file, the usual error message is printed, followed by
Cont? (Y or N), just as any other error does from a file. Although the procedure
is gracefully terminated, any switch settings or variable assignments you made
before the error occurred are not undone. If you need to clean up such items before
exiting, use a group statement, with the rederr command as its last statement.

7.9 RETRY

RETRY Command

The retry command allows you to retry the latest statement that resulted in an
error message.

Examples
matrix a;

det a; ⇒ ***** Matrix A not set

a := mat((1,2),(3,4)); ⇒ A(1,1) := 1

A(1,2) := 2

A(2,1) := 3

A(2,2) := 4

retry; ⇒ -2

Comments

retry remembers only the most recent statement that resulted in an error message.
It allows you to stop and fix something obvious, then continue on your way without
retyping the original command.

7.10 SAVEAS

SAVEAS Command

The saveas command saves the current workspace under the name of its argument.

saveas identifier

identifier can be any valid REDUCE identifier.

Examples
(The numbered prompts are shown below, unlike in most examples)

1: solve(x^2-3); ⇒ {x=sqrt(3),x= - sqrt(3)}

2: saveas rts(0)$

3: rts(0); ⇒ {x=sqrt(3),x= - sqrt(3)}

Comments

saveas works only for the current workspace, the last algebraic expression produced
by REDUCE. This allows you to save a result that you did not assign to an identifier
when you originally typed the input. For access to previous output use ws.

7.11 SHOWTIME

SHOWTIME Command

The showtime command prints the elapsed system time since the last call of this
command or since the beginning of the session, if it has not been called before.

Examples
showtime; ⇒ Time: 1020 ms

factorize(x^4 - 8x^4 + 8x^2 - 136x - 153);

⇒ {X - 9,X
2
+ 17,X + 1}

showtime; ⇒ Time: 920 ms

Comments

The time printed is either the elapsed cpu time or the elapsed wall clock time,
depending on your system. showtime allows you to see the system time resources
REDUCE uses in its calculations. Your time readings will of course vary from this
example according to the system you use.

7.12 WRITE

WRITE Command

The write command explicitly writes its arguments to the output device (terminal

or file).

write item{,item}∗
item can be an expression, an assignment or a string enclosed in double quotation
marks (").

Examples
write a, sin x, "this is a string";

⇒ ASIN(X)this is a string

write a," ",sin x," this is a string";

⇒ A SIN(X) this is a string

if not numberp(a) then write "the symbol ",a;

⇒ the symbol A

array m(10);

for i := 1:5 do write m(i) := 2*i;

⇒ M(1) := 2

M(2) := 4

M(3) := 6

M(4) := 8

M(5) := 10

m(4); ⇒ 8

Comments

The items specified by a single write statement print on a single line unless they
are too long. A printed line is always ended with a carriage return, so the next
item printed starts a new line.

When an assignment statement is printed, the assignment is also made. This allows
you to get feedback on filling slots in an array with a for statement, as shown in

the last example above.

8 Algebraic Operators

8.1 APPEND

APPEND Operator

The append operator constructs a new list from the elements of its two arguments
(which must be lists).

append(list , list)

list must be a list, though it may be the empty list ({}). Any arguments beyond
the first two are ignored.

Examples
alist := {1,2,{a,b}}; ⇒ ALIST := {1,2,{A,B}}

blist := {3,4,5,sin(y)}; ⇒ BLIST := {3,4,5,SIN(Y)}

append(alist,blist); ⇒ {1,2,{A,B},3,4,5,SIN(Y)}

append(alist,{}); ⇒ {1,2,{A,B}}

append(list z,blist); ⇒ {Z,3,4,5,SIN(Y)}

Comments

The new list consists of the elements of the second list appended to the elements of
the first list. You can append new elements to the beginning or end of an existing
list by putting the new element in a list (use curly braces or the operator list).
This is particularly helpful in an iterative loop.

8.2 ARBINT

ARBINT Operator

The operator arbint is used to express arbitrary integer parts of an expression,
e.g. in the result of solve when allbranch is on.

Examples
solve(log(sin(x+3)),x); ⇒

{X=2*ARBINT(1)*PI - ASIN(1) - 3,

X=2*ARBINT(1)*PI + ASIN(1) + PI - 3}

8.3 ARBCOMPLEX

ARBCOMPLEX Operator

The operator arbcomplex is used to express arbitrary scalar parts of an expression,
e.g. in the result of solve when the solution is parametric in one of the variable.

Examples
solve({x+3=y-2z,y-3x=0},{x,y,z});

⇒ {X=
2*ARBCOMPLEX(1) + 3

2

,

Y=
3*ARBCOMPLEX(1) + 3

2
,

Z=ARBCOMPLEX(1)}

8.4 ARGLENGTH

ARGLENGTH Operator

The operator arglength returns the number of arguments of the top-level operator
in its argument.

arglength(expression)

expression can be any valid REDUCE algebraic expression.

Examples
arglength(a + b + c + d); ⇒ 4

arglength(a/b/c); ⇒ 2

arglength(log(sin(df(r**3*x,x))));

⇒ 1

Comments

In the first example, + is an n-ary operator, so the number of terms is returned. In
the second example, since / is a binary operator, the argument is actually (a/b)/c,
so there are two terms at the top level. In the last example, no matter how deeply
the operators are nested, there is still only one argument at the top level.

8.5 COEFF

COEFF Operator

The coeff operator returns the coefficients of the powers of the specified variable
in the given expression, in a list.

coeff(expression,variable)

expression is expected to be a polynomial expression, not a rational expression.
Rational expressions are accepted when the switch ratarg is on. variable must be
a kernel. The results are returned in a list.

Examples

coeff((x+y)**3,x); ⇒ {Y
3
,3*Y

2
,3*Y,1}

coeff((x+2)**4 + sin(x),x); ⇒ {SIN(X) + 16,32,24,8,1}

high_pow; ⇒ 4

low_pow; ⇒ 0

ab := x**9 + sin(x)*x**7 + sqrt(y);

⇒ AB := SQRT(Y) + SIN(X)*X
7
+ X

9

coeff(ab,x); ⇒ {SQRT(Y),0,0,0,0,0,0,SIN(X),0,1}

Comments

The variables high pow and low pow are set to the highest and lowest powers of
the variable, respectively, appearing in the expression.

The coefficients are put into a list, with the coefficient of the lowest (constant)
term first. You can use the usual list access methods (first, second, third, rest,
length, and part) to extract them. If a power does not appear in the expression,
the corresponding element of the list is zero. Terms involving functions of the
specified variable but not including powers of it (for example in the expression
x**4 + 3*x**2 + tan(x)) are placed in the constant term.

Since the coeff command deals with the expanded form of the expression, you may
get unexpected results when exp is off, or when factor or ifactor are on.

If you want only a specific coefficient rather than all of them, use the coeffn

operator.

8.6 COEFFN

COEFFN Operator

The coeffn operator takes three arguments: an expression, a kernel, and a non-
negative integer. It returns the coefficient of the kernel to that integer power,
appearing in the expression.

coeffn(expression, kernel , integer)

expression must be a polynomial, unless ratarg is on which allows rational expres-
sions. kernel must be a kernel, and integer must be a non-negative integer.

Examples
ff := x**7 + sin(y)*x**5 + y**4 + x + 7;

⇒ FF := SIN(Y)*X
5
+ X

7
+ X + Y

4
+ 7

coeffn(ff,x,5); ⇒ SIN(Y)

coeffn(ff,z,3); ⇒ 0

coeffn(ff,y,0); ⇒ SIN(Y)*X
5
+ X

7
+ X + 7

rr := 1/y**2+y**3+sin(y); ⇒ RR :=
SIN(Y)*Y

2
+ Y

5
+ 1

Y
2

on ratarg;

coeffn(rr,y,-2); ⇒ ***** -2 invalid as COEFFN index

coeffn(rr,y,5); ⇒
1

Y
2

Comments

If the given power of the kernel does not appear in the expression, coeffn returns
0. Negative powers are never detected, even if they appear in the expression and
ratarg are on. coeffn with an integer argument of 0 returns any terms in the
expression that do not contain the given kernel.

8.7 CONJ

CONJ Operator

conj(expression) or conj simple expression

This operator returns the complex conjugate of an expression, if that argument has
an numerical value. A non-numerical argument is returned as an expression in the
operators repart and impart.

Examples
conj(1+i); ⇒ 1-I

conj(a+i*b); ⇒

REPART(A) - REPART(B)*I - IMPART(A)*I - IMPART(B)

8.8 CONTINUED FRACTION

CONTINUED FRACTION Operator

continued fraction(num) or continued fraction(num, size)

This operator approximates the real number num (rational number, rounded

number) into a continued fraction. The result is a list of two elements: the first
one is the rational value of the approximation, the second one is the list of terms of
the continued fraction which represents the same value according to the definition
t0 +1/(t1 + 1/(t2 + ...)). Precision: the second optional parameter size is
an upper bound for the absolute value of the result denominator. If omitted, the
approximation is performed up to the current system precision.

Examples
continued_fraction pi; ⇒

{
1146408

364913

,{3,7,15,1,292,1,1,1,2,1}}

continued_fraction(pi,100); ⇒ {
22

7

,{3,7}}

8.9 DECOMPOSE

DECOMPOSE Operator

The decompose operator takes a multivariate polynomial as argument, and returns
an expression and a list of equations from which the original polynomial can be
found by composition.

decompose(expression) or decompose simple expression

Examples

decompose(x^8-88*x^7+2924*x^6-43912*x^5+263431*x^4-

218900*x^3+65690*x^2-7700*x+234)

⇒

U
2
+ 35*U + 234, U=V

2
+ 10*V, V=X

2
- 22*X

decompose(u^2+v^2+2u*v+1) ⇒ W
2
+ 1, W=U + V

Comments

Unlike factorization, this decomposition is not unique. Further details can be found
in V.S. Alagar, M.Tanh, Fast Polynomial Decomposition, Proc. EUROCAL 1985,
pp 150-153 (Springer) and J. von zur Gathen, Functional Decomposition of Poly-
nomials: the Tame Case, J. Symbolic Computation (1990) 9, 281-299.

8.10 DEG

DEG Operator

The operator deg returns the highest degree of its variable argument found in its
expression argument.

deg(expression, kernel)

expression is expected to be a polynomial expression, not a rational expression.
Rational expressions are accepted when the switch ratarg is on. variable must be
a kernel. The results are returned in a list.

Examples
deg((x+y)**5,x); ⇒ 5

deg((a+b)*(c+2*d)**2,d); ⇒ 2

deg(x**2 + cos(y),sin(x));

deg((x**2 + sin(x))**5,sin(x));

⇒ 5

8.11 DEN

DEN Operator

The den operator returns the denominator of its argument.

den(expression)

expression is ordinarily a rational expression, but may be any valid scalar REDUCE
expression.

Examples

a := x**3 + 3*x**2 + 12*x; ⇒ A := X*(X
2
+ 3*X + 12)

b := 4*x*y + x*sin(x); ⇒ B := X*(SIN(X) + 4*Y)

den(a/b); ⇒ SIN(X) + 4*Y

den(aa/4 + bb/5); ⇒ 20

den(100/6); ⇒ 3

den(sin(x)); ⇒ 1

Comments

den returns the denominator of the expression after it has been simplified by RE-
DUCE. As seen in the examples, this includes putting sums of rational expressions
over a common denominator, and reducing common factors where possible. If the
expression does not have any other denominator, 1 is returned.

Switch settings, such as mcd or rational, have an effect on the denominator of an
expression.

8.12 DF

DF Operator

The df operator finds partial derivatives with respect to one or more variables.

df(expression,var&optional(,number){,var&option(,number)}∗)
expression can be any valid REDUCE algebraic expression. var must be a kernel,
and is the differentiation variable. number must be a non-negative integer.

Examples
df(x**2,x); ⇒ 2*X

df(x**2*y + sin(y),y); ⇒ COS(Y) + X
2

df((x+y)**10,z); ⇒ 0

df(1/x**2,x,2); ⇒
6

X
4

df(x**4*y + sin(y),y,x,3); ⇒ 24*X

for all x let df(tan(x),x) = sec(x)**2;

df(tan(3*x),x); ⇒ 3*SEC(3*X)
2

Comments

An error message results if a non-kernel is entered as a differentiation operator. If
the optional number is omitted, it is assumed to be 1. See the declaration depend

to establish dependencies for implicit differentiation.

You can define your own differentiation rules, expanding REDUCE’s capabilities,
using the let command as shown in the last example above. Note that once you
add your own rule for differentiating a function, it supersedes REDUCE’s normal
handling of that function for the duration of the REDUCE session. If you clear the
rule (clearrules), you don’t get back to the previous rule.

8.13 EXPAND CASES

EXPAND CASES Operator

When a root of form in a result of solve has been converted to a one of form,
expand cases can be used to convert this into form corresponding to the normal
explicit results of solve. See root of.

8.14 EXPREAD

EXPREAD Operator

expread()

expread reads one well-formed expression from the current input buffer and returns
its value.

Examples
expread(); a+b; ⇒ A + B

8.15 FACTORIZE

FACTORIZE Operator

The factorize operator factors a given expression into a list of {factor,power}
pairs.

factorize(expression)

expression should be a polynomial, otherwise an error will result.

Examples
fff := factorize(x^3 - y^3);

⇒ {{X
2
+ X*Y + Y

2
,1},{X - Y,1}}

fac1 := first fff; ⇒ FAC1 := {{X
2
+ X*Y + Y

2
,1}

factorize(x^15 - 1); ⇒

{{ X
8
- X

7
+ X

6
- X

5
+ X

4
- X + 1,1},

{X
4
+ X

3
+ X

2
+ X + 1,1},

{X
2
+ X + 1,1},

{X - 1,1}}

lastone := part(ws,length ws);

⇒ LASTONE := {X - 1,1}

setmod 2; ⇒ 1

on modular;

factorize(x^15 - 1); ⇒ {{X
4
+ X

3
+ X

2
+ X + 1,1},

{X
4
+ X

3
+ 1,1},

{X
4
+ X + 1,1},

{ X
2
+ X + 1,1},

{X + 1,1}}

Comments

The factorize command returns the factor,power pairs as a list. You can there-
fore use the usual list access methods (first, second, third, rest, length and
part) to extract these pairs.

If the expression given to factorize is an integer, it will be factored into its prime
components. To factor any integer factor of a non-numerical expression, the switch
ifactor should be turned on. Its default is off. ifactor has effect only when factor-
ing is explicitly done by factorize, not when factoring is automatically done with
the factor switch. If full factorization is not needed the switch limitedfactors

allows you to reduce the computing time of calls to factorize.

Factoring can be done in a modular domain by calling factorize when modular is
on. You can set the modulus with the setmod command. The last example above
shows factoring modulo 2.

For general comments on factoring, see comments under the switch factor.

8.16 HYPOT

HYPOT Operator

hypot(expression,expression)

If rounded is on, and the two arguments evaluate to numbers, this operator returns
the square root of the sums of the squares of the arguments in a manner that
avoids intermediate overflow. In other cases, an expression in the original operator
is returned.

Examples
hypot(3,4); ⇒ HYPOT(3,4)

on rounded;

ws; ⇒ 5.0

hypot(a,b); ⇒ HYPOT(A,B)

8.17 IMPART

IMPART Operator

impart(expression) or impart simple expression

This operator returns the imaginary part of an expression, if that argument has
an numerical value. A non-numerical argument is returned as an expression in the
operators repart and impart.

Examples
impart(1+i); ⇒ 1

impart(a+i*b); ⇒ REPART(B) + IMPART(A)

8.18 INT

INT Operator

The int operator performs analytic integration on a variety of functions.

int(expression, kernel)

expression can be any scalar expression. involving polynomials, log functions, expo-
nential functions, or tangent or arctangent expressions. int attempts expressions
involving error functions, dilogarithms and other trigonometric expressions. Inte-
grals involving algebraic extensions (such as square roots) may not succeed. kernel
must be a REDUCE kernel.

Examples

int(x**3 + 3,x); ⇒
X*(X

3
+ 12)

4

int(sin(x)*exp(2*x),x); ⇒ -
E
2*X

*(COS(X) - 2*SIN(X))

5

int(1/(x^2-2),x); ⇒
SQRT(2)*(LOG(- SQRT(2) + X) - LOG(SQRT(2) + X))
--

4

int(sin(x)/(4 + cos(x)**2),x);

⇒ -

ATAN(
COS(X)

2
)

2

int(1/sqrt(x^2-x),x); ⇒ INT(
SQRT(X)*SQRT(X - 1)

X
2
-X

,X)

Comments

Note that REDUCE couldn’t handle the last integral with its default integrator,
since the integrand involves a square root. However, the integral can be found using

the algint package. Alternatively, you could add a rule using the let statement
to evaluate this integral.

The arbitrary constant of integration is not shown. Definite integrals can be found
by evaluating the result at the limits of integration (use rounded) and subtracting
the lower from the higher. Evaluation can be easily done by the sub operator.

When int cannot find an integral it returns an expression involving formal int
expressions unless the switch failhard has been set. If not all of the expression
can be integrated, the switch nolnr controls whether a partially integrated result
should be returned or not.

8.19 INTERPOL

INTERPOL Operator

interpol generates an interpolation polynomial.

interpol(values ,variable,points)

values and points are lists of equal length and variable is an algebraic expression
(preferably a kernel). The interpolation polynomial is generated in the given
variable of degree length(values)-1. The unique polynomial f is defined by the
property that for corresponding elements v of values and p of points the relation
f(p)=v holds.

Examples
f := for i:=1:4 collect(i**3-1);

⇒ F := 0,7,26,63

p := {1,2,3,4}; ⇒ P := 1,2,3,4

interpol(f,x,p); ⇒ X
3
- 1

Comments

The Aitken-Neville interpolation algorithm is used which guarantees a stable result
even with rounded numbers and an ill-conditioned problem.

8.20 LCOF

LCOF Operator

The lcof operator returns the leading coefficient of a given expression with respect

to a given variable.

lcof(expression, kernel)

expression is ordinarily a polynomial. If ratarg is on, a rational expression may
also be used, otherwise an error results. kernel must be a kernel.

Examples
lcof((x+2*y)**5,y); ⇒ 32

lcof((x + y*sin(x))**2 + cos(x)*sin(x)**2,sin(x));

⇒ COS(X)
2
+ Y

lcof(x**2 + 3*x + 17,y); ⇒ X
2
+ 3*X + 17

Comments

If the kernel does not appear in the expression, lcof returns the expression.

8.21 LENGTH

LENGTH Operator

The length operator returns the number of items in a list, the number of terms

in an expression, or the dimensions of an array or matrix.

length(expr) or length expr

expr can be a list structure, an array, a matrix, or a scalar expression.

Examples
alist := {a,b,{ww,xx,yy,zz}};

⇒ ALIST := {A,B,{WW,XX,YY,ZZ}}

length alist; ⇒ 3

length third alist; ⇒ 4

dlist := {d}; ⇒ DLIST := {D}

length rest dlist; ⇒ 0

matrix mmm(4,5);

length mmm; ⇒ {4,5}

array aaa(5,3,2);

length aaa; ⇒ {6,4,3}

eex := (x+3)**2/(x-y); ⇒ EEX :=
X
2
+ 6*X + 9

X - Y

length eex; ⇒ 5

Comments

An item in a list that is itself a list only counts as one item. An error message will
be printed if length is called on a matrix which has not had its dimensions set.
The length of an array includes the zeroth element of each dimension, showing the
full number of elements allocated. (Declaring an array A with n elements allocates
A(0), A(1), . . . , A(n).) The length of an expression is the total number of additive

terms appearing in the numerator and denominator of the expression. Note that
subtraction of a term is represented internally as addition of a negative term.

8.22 LHS

LHS Operator

The lhs operator returns the left-hand side of an equation, such as those returned

in a list by solve.

lhs(equation) or lhs equation

equation must be an equation of the form
left-hand side = right-hand side.

Examples

polly := (x+3)*(x^4+2x+1); ⇒ POLLY := X
5
+ 3*X

4
+ 2*X

2
+ 7*X + 3

pollyroots := solve(polly,x);

⇒

POLLYROOTS := {X=ROOT_OF(X_
3
- X_

2
+ X_ + 1,X_),

X=-1,

X=-3}

variable := lhs first pollyroots;

⇒ VARIABLE := X

8.23 LIMIT

LIMIT Operator

LIMITS is a fast limit package for REDUCE for functions which are continuous
except for computable poles and singularities, based on some earlier work by Ian
Cohen and John P. Fitch. The Truncated Power Series package is used for non-
critical points, at which the value of the function is the constant term in the expan-
sion around that point. l’Hopital’s rule is used in critical cases, with preprocessing
of 1-1 forms and reformatting of product forms in order to apply l’Hopital’s rule.
A limited amount of bounded arithmetic is also employed where applicable.

limit(expr , var , limpoint) or
limit!+(expr , var , limpoint) or
limit!-(expr , var , limpoint)

where expr is an expression depending of the variable var (a kernel) and limpoint is
the limit point. If the limit depends upon the direction of approach to the limpoint ,
the operators limit!+ and limit!- may be used.

Examples
limit(x*cot(x),x,0); ⇒ 0

limit((2x+5)/(3x-2),x,infinity);

⇒
2

3

8.24 LPOWER

LPOWER Operator

The lpower operator returns the leading power of an expression with respect to a

kernel. 1 is returned if the expression does not depend on the kernel.

lpower(expression, kernel)

expression is ordinarily a polynomial. If ratarg is on, a rational expression may
also be used, otherwise an error results. kernel must be a kernel.

Examples

lpower((x+2*y)**6,y); ⇒ Y
6

lpower((x + cos(x))**8 + df(x**2,x),cos(x));

⇒ COS(X)
8

lpower(x**3 + 3*x,y); ⇒ 1

8.25 LTERM

LTERM Operator

The lterm operator returns the leading term of an expression with respect to a

kernel. The expression is returned if it does not depend on the kernel.

lterm(expression, kernel)

expression is ordinarily a polynomial. If ratarg is on, a rational expression may
also be used, otherwise an error results. kernel must be a kernel.

Examples

lterm((x+2*y)**6,y); ⇒ 64*Y
6

lterm((x + cos(x))**8 + df(x**2,x),cos(x));

⇒ COS(X)
8

lterm(x**3 + 3*x,y); ⇒ X
3
+ 3X

8.26 MAINVAR

MAINVAR Operator

The mainvar operator returns the main variable (in the system’s internal represen-

tation) of its argument.

mainvar(expression)

expression is usually a polynomial, but may be any valid REDUCE scalar expres-
sion. In the case of a rational function, the main variable of the numerator is
returned. The main variable returned is a kernel.

Examples
test := (a + b + c)**2; ⇒

TEST := A
2
+ 2*A*B + 2*A*C + B

2
+ 2*B*C + C

2

mainvar(test); ⇒ A

korder c,b,a;

mainvar(test); ⇒ C

mainvar(2*cos(x)**2); ⇒ COS(X)

mainvar(17); ⇒ 0

Comments

The main variable is the first variable in the canonical ordering of kernels. Generally,
alphabetically ordered functions come first, then alphabetically ordered identifiers
(variables). Numbers come last, and as far as mainvar is concerned belong in the
family 0. The canonical ordering can be changed by the declaration korder, as
shown above.

8.27 MAP

MAP Operator

The map operator applies a uniform evaluation pattern to all members of a com-

posite structure: a matrix, a list or the arguments of an operator expression.

The evaluation pattern can be a unary procedure, an operator, or an algebraic

expression with one free variable.

map(function, object)

object is a list, a matrix or an operator expression.

function is the name of an operator for a single argument: the operator is evaluated
once with each element of object as its single argument,

or an algebraic expression with exactly one free variable, that is a variable pre-
ceded by the tilde symbol: the expression is evaluated for each element of object
where the element is substituted for the free variable,

or a replacement rule of the form

var =¿ rep

where var is a variable (a kernel without subscript) and rep is an expression which
contains var . Here rep is evaluated for each element of object where the element
is substituted for var. var may be optionally preceded by a tilde.

The rule form for function is needed when more than one free variable occurs.

Examples
map(abs,{1,-2,a,-a}); ⇒ 1,2,abs(a),abs(a)

map(int(~w,x), mat((x^2,x^5),(x^4,x^5)));

⇒ [3 6]

[x x]

[---- ----]

[3 6]

[]

[5 6]

[x x]

[---- ----]

[5 6]

map(~w*6, x^2/3 = y^3/2 -1);

⇒ 2*x
2
=3*(y

3
-2)

Comments

You can use map in nested expressions. It is not allowed to apply map for a non-
composed object, e.g. an identifier or a number.

8.28 MKID

MKID Command

The mkid command constructs an identifier, given a stem and an identifier or an

integer.

mkid(stem, leaf)

stem can be any valid REDUCE identifier that does not include escaped special
characters. leaf may be an integer, including one given by a local variable in a for

loop, or any other legal group of characters.

Examples
mkid(x,3); ⇒ X3

factorize(x^15 - 1); ⇒ {X - 1,

X
2
+ X + 1,

X
4
+ X

3
+ X

2
+ X + 1,

X
8
- X

7
+ X

5
- X

4
+ X

3
- X + 1}

for i := 1:length ws do write set(mkid(f,i),part(ws,i));

⇒ X
8
- X

7
+ X

5
- X

4
+ X

3
- X + 1

X
4
+ X

3
+ X

2
+ X + 1

X
2
+ X + 1

X - 1

Comments

You can use mkid to construct identifiers from inside procedures. This allows you
to handle an unknown number of factors, or deal with variable amounts of data. It
is particularly helpful to attach identifiers to the answers returned by factorize

and solve.

8.29 NPRIMITIVE

NPRIMITIVE Operator

nprimitive(expression) or nprimitive simple expression

This operator returns the numerically-primitive part of any scalar expression. In
other words, any overall integer factors in the expression are removed.

Examples

nprimitive((2x+2y)^2); ⇒ X
2
+ 2*X*Y + Y

2

nprimitive(3*a*b*c); ⇒ 3*A*B*C

8.30 NUM

NUM Operator

The num operator returns the numerator of its argument.

num(expression) or num simple expression

expression can be any valid REDUCE scalar expression.

Examples
num(100/6); ⇒ 50

num(a/5 + b/6); ⇒ 6*A + 5*B

num(sin(x)); ⇒ SIN(X)

Comments

num returns the numerator of the expression after it has been simplified by RE-
DUCE. As seen in the examples, this includes putting sums of rational expressions
over a common denominator, and reducing common factors where possible. If the
expression is not a rational expression, it is returned unchanged.

8.31 ODESOLVE

ODESOLVE Operator

The odesolve package is a solver for ordinary differential equations. At the present
time it has still limited capabilities:

1. it can handle only a single scalar equation presented as an algebraic expression
or equation, and

2. it can solve only first-order equations of simple types, linear equations with
constant coefficients and Euler equations.

These solvable types are exactly those for which Lie symmetry techniques give no
useful information.

odesolve(expr , var1 , var2)

expr is a single scalar expression such that expr=0 is the ordinary differential
equation (ODE for short) to be solved, or is an equivalent equation.

var1 is the name of the dependent variable, var2 is the name of the independent
variable.

A differential in expr is expressed using the df operator. Note that in most cases
you must declare explicitly var1 to depend of var2 using a depend declaration –
otherwise the derivative might be evaluated to zero on input to odesolve.

The returned value is a list containing the equation giving the general solution of
the ODE (for simultaneous equations this will be a list of equations eventually).
It will contain occurrences of the operator arbconst for the arbitrary constants
in the general solution. The arguments of arbconst should be new. A counter
!!arbconst is used to arrange this.

Examples
depend y,x;

% A first-order linear equation, with an initial condition

ode:=df(y,x) + y * sin x/cos x - 1/cos x

odesolve(ode,y,x); ⇒ {y=arbconst(1)*cos(x) + sin(x)}

8.32 ONE OF

ONE OF Type

The operator one of is used to represent an indefinite choice of one element from
a finite set of objects.

Examples
x=one_of{1,2,5}

this equation encodes that x can take one of the values 1,2 or 5

REDUCE generates a one of form in cases when an implicit root of expression
could be converted to an explicit solution set. A one of form can be converted to
a solve solution using expand cases. See root of.

8.33 PART

PART Operator

The operator part permits the extraction of various parts or operators of expres-

sions and lists.

part(expression, integer{, integer}∗)
expression can be any valid REDUCE expression or a list, integer may be an ex-
pression that evaluates to a positive or negative integer or 0. A positive integer n
picks up the n th term, counting from the first term toward the end. A negative
integer n picks up the n th term, counting from the back toward the front. The
integer 0 picks up the operator (which is LIST when the expression is a ??).

Examples

part((x + y)**5,4); ⇒ 10*X
2
*Y
3

part((x + y)**5,4,2); ⇒ X
2

part((x + y)**5,4,2,1); ⇒ X

part((x + y)**5,0); ⇒ PLUS

part((x + y)**5,-5); ⇒ 5*X *Y
4

part((x + y)**5,4) := sin(x);

⇒

X
5
+ 5*X

4
*Y + 10*X

3
*Y
2
+ SIN(X) + 5*X*Y

4
+ Y

5

alist := {x,y,{aa,bb,cc},x**2*sqrt(y)};

⇒

ALIST := {X,Y,{AA,BB,CC},SQRT(Y)*X
2
}

part(alist,3,2); ⇒ BB

part(alist,4,0); ⇒ TIMES

Comments

Additional integer arguments after the first one examine the terms recursively, as
shown above. In the third line, the fourth term is picked from the original polyno-
mial, 10x2y3, then the second term from that, x2, and finally the first component, x.
If an integer’s absolute value is too large for the appropriate expression, a message
is given.

part works on the form of the expression as printed, or as it would have been printed
at that point of the calculation, bearing in mind the current switch settings. It is
important to realize that the switch settings change the operation of part. pri

must be on when part is used.

When part is used on a polynomial expression that has minus signs, the + is always
returned as the top-level operator. The minus is found as a unary operator attached
to the negative term.

part can also be used to change the relevant part of the expression or list as shown in
the sixth example line. The part operator returns the changed expression, though
original expression is not changed. You can also use part to change the operator.

8.34 PF

PF Operator

pf(expression,variable)

pf transforms expression into a list of partial fraction s with respect to the main
variable, variable. pf does a complete partial fraction decomposition, and as the al-
gorithms used are fairly unsophisticated (factorization and the extended Euclidean
algorithm), the code may be unacceptably slow in complicated cases.

Examples

pf(2/((x+1)^2*(x+2)),x); ⇒ {
2

X + 2

,
-2

X + 1

,
2

X
2
+ 2*X + 1

}

off exp;

pf(2/((x+1)^2*(x+2)),x); ⇒ {
2

X + 2

,
- 2

X + 1

,
2

(X + 1)
2
}

for each j in ws sum j; ⇒
2

(+ 2)*(X + 1)
2

Comments

If you want the denominators in factored form, turn exp off, as shown in the second
example above. As shown in the final example, the for each construct can be used
to recombine the terms. Alternatively, one can use the operations on lists to extract
any desired term.

8.35 PROD

PROD Operator

The operator prod returns the indefinite or definite product of a given expression.

prod(expr , k [, lolim[, uplim]])

where expr is the expression to be multiplied, k is the control variable (a kernel),
and lolim and uplim uplim are the optional lower and upper limits. If uplim is not
supplied the upper limit is taken as k . The Gosper algorithm is used. If there is
no closed form solution, the operator returns the input unchanged.

Examples
prod(k/(k-2),k); ⇒ k*(- k + 1)

8.36 REDUCT

REDUCT Operator

The reduct operator returns the remainder of its expression after the leading term

with respect to the kernel in the second argument is removed.

reduct(expression, kernel)

expression is ordinarily a polynomial. If ratarg is on, a rational expression may
also be used, otherwise an error results. kernel must be a kernel.

Examples

reduct((x+y)**3,x); ⇒ Y*(3*X
2
+ 3*X*Y + Y

2
)

reduct(x + sin(x)**3,sin(x));

⇒ X

reduct(x + sin(x)**3,y); ⇒ 0

Comments

If the expression does not contain the kernel, reduct returns 0.

8.37 REPART

REPART Operator

repart(expression) or repart simple expression

This operator returns the real part of an expression, if that argument has an numer-
ical value. A non-numerical argument is returned as an expression in the operators
repart and impart.

Examples
repart(1+i); ⇒ 1

repart(a+i*b); ⇒ REPART(A) - IMPART(B)

8.38 RESULTANT

RESULTANT Operator

The resultant operator computes the resultant of two polynomials with respect

to a given variable. If the resultant is 0, the polynomials have a root in common.

resultant(expression, expression, kernel)

expression must be a polynomial containing kernel ; kernel must be a kernel.

Examples
resultant(x**2 + 2*x + 1,x+1,x);

⇒ 0

resultant(x**2 + 2*x + 1,x-3,x);

⇒ 16

resultant(z**3 + z**2 + 5*z + 5,

z**4 - 6*z**3 + 16*z**2 - 30*z + 55,

z);

⇒ 0

resultant(x**3*y + 4*x*y + 10,y**2 + 6*y + 4,y);

⇒

Y
6
+ 18*Y

5
+ 120*Y

4
+ 360*Y

3
+ 480*Y

2
+ 288*Y + 64

Comments

The resultant is the determinant of the Sylvester matrix, formed from the coeffi-
cients of the two polynomials in the following way:

Given two polynomials:

a0x
n + a1x

n−1 + · · ·+ an

and
b0x

n + b1x
n−1 + · · ·+ bn

form the (m+n)x(m+n-1) Sylvester matrix by the following means:

0 . . . 0 0 a0 a1 . . . an
0 . . . 0 a0 a1 . . . an 0
...

...
...

a0 a1 . . . an 0 0 . . . 0
0 . . . 0 0 b0 b1 . . . bn
...

...
...

b0 b1 . . . bn 0 0 . . . 0

If the determinant of this matrix is 0, the two polynomials have a common root.
Finding the resultant of large expressions is time-consuming, due to the time needed
to find a large determinant.

The sign conventions resultant uses are those given in the article, “Computing
in Algebraic Extensions,” by R. Loos, appearing in Computer Algebra–Symbolic
and Algebraic Computation, 2nd ed., edited by B. Buchberger, G.E. Collins and R.
Loos, and published by Springer-Verlag, 1983. These are:

resultant(p(x), q(x), x) = (−1)deg p(x)∗deg q(x) · resultant(q(x), p(x), x),

resultant(a, p(x), x) = adeg p(x),

resultant(a, b, x) = 1

where p(x) and q(x) are polynomials which have x as a variable, and a and b are
free of x.

Error messages are given if resultant is given a non-polynomial expression, or a
non-kernel variable.

8.39 RHS

RHS Operator

The rhs operator returns the right-hand side of an equation, such as those returned

in a list by solve.

rhs(equation) or rhs equation

equation must be an equation of the form left-hand side = right-hand side.

Examples
roots := solve(x**2 + 6*x*y + 5x + 3y**2,x);

⇒

ROOTS := {X= -
SQRT(24*Y

2
+ 60*Y + 25) + 6*Y + 5

2

,

X=
SQRT(24*Y

2
+ 60*Y + 25) - 6*Y - 5

2

}

root1 := rhs first roots; ⇒

ROOT1 := -
SQRT(24*Y

2
+ 60*Y + 25) + 6*Y + 5

2

root2 := rhs second roots; ⇒

ROOT2 :=
SQRT(24*Y

2
+ 60*Y + 25) - 6*Y - 5

2

Comments

An error message is given if rhs is applied to something other than an equation.

8.40 ROOT OF

ROOT OF Operator

When the operator solve is unable to find an explicit solution or if that solution
would be too complicated, the result is presented as formal root expression using
the internal operator root of and a new local variable. An expression with a top
level root of is implicitly a list with an unknown number of elements since we can’t
always know how many solutions an equation has. If a substitution is made into
such an expression, closed form solutions can emerge. If this occurs, the root of

construct is replaced by an operator one of. At this point it is of course possible
to transform the result if the original solve operator expression into a standard
solve solution. To effect this, the operator expand cases can be used.

Examples

solve(a*x^7-x^2+1,x); ⇒ {x=root of(a*x
7
- x

2
+ 1,x)}

sub(a=0,ws); ⇒ {x=one of(1,-1)}

expand_cases ws; ⇒ x=1,x=-1

The components of root of and one of expressions can be processed as usual
with operators arglength and part. A higher power of a root of expression
with a polynomial as first argument is simplified by using the polynomial as a side
relation.

8.41 SELECT

SELECT Operator

The select operator extracts from a list or from the arguments of an n–ary operator

elements corresponding to a boolean predicate. The predicate pattern can be a

unary procedure, an operator or an algebraic expression with one free variable.

select(function, object)

object is a list.

function is the name of an operator for a single argument: the operator is evaluated
once with each element of object as its single argument,

or an algebraic expression with exactly one free variable, that is a variable pre-
ceded by the tilde symbol: the expression is evaluated for each element of object
where the element is substituted for the free variable,

or a replacement rule of the form

var =¿ rep

where var is a variable (a kernel without subscript) and rep is an expression which
contains var . Here rep is evaluated for each element of object where the element
is substituted for var. var may be optionally preceded by a tilde.

The rule form for function is needed when more than one free variable occurs. The
evaluation result of function is interpreted as boolean value corresponding to the
conventions of REDUCE. The result value is built with the leading operator of the
input expression.

Examples
select(~w>0 , {1,-1,2,-3,3})

⇒ {1,2,3}

q:=(part((x+y)^5,0):=list)

select(evenp deg(~w,y),q); ⇒ {x
5
,10*x

3
*y
2
,5*x*y

4
}

select(evenp deg(~w,x),2x^2+3x^3+4x^4);

⇒ 2x
2
+4x

4

8.42 SHOWRULES

SHOWRULES Operator

showrules(expression) or showrules simple expression

showrules returns in rule-list form any operator rules associated with its ar-
gument.

Examples
showrules log; ⇒ {LOG(E) => 1,

LOG(1) => 0,

LOG(E
X
) => X,

DF(LOG(X), X) =>
1

X
}

Such rules can then be manipulated further as with any list. For example rhs first ws;

has the value 1.

Comments

An operator may have properties that cannot be displayed in such a form, such as
the fact it is an ?? function, or has a definition defined as a procedure.

8.43 SOLVE

SOLVE Operator

The solve operator solves a single algebraic equation or a system of simultaneous

equations.

solve(expression&option(, kernel)) or
solve({expression&option(, expression) ∗ }&option(, {kernel) ∗ }})

If the number of equations equals the number of distinct kernels, the optional
kernel argument(s) may be omitted. expression is either a scalar expression or
an equation. When more than one expression is given, the list of expressions
is surrounded by curly braces. The optional list of kernels follows, also in curly
braces.

Examples
sss := solve(x^2 + 7); ⇒ Unknown: X

SSS := {X= - SQRT(7)*I,

X=SQRT(7)*I}

rhs first sss; ⇒ - SQRT(7)*I

solve(sin(x^2*y),y); ⇒ {Y=
2*ARBINT(1)*PI

X
2

Y=
PI*(2*ARBINT(1) + 1)

X
2

}

off allbranch;

solve(sin(x**2*y),y); ⇒ {Y=0}

solve({3x + 5y = -4,2*x + y = -10},{x,y});

⇒ {{X= -
22

7

,Y=
46

7

}}

solve({x + a*y + z,2x + 5},{x,y});

⇒ {{X= -
5

2
,Y= -

2*Z - 5

2*A
}}

ab := (x+2)^2*(x^6 + 17x + 1);

⇒

AB := X
8
+ 4*X

7
+ 4*X

6
+ 17*X

3
+ 69*X

2
+ 72*X + 4

www := solve(ab,x); ⇒ {X=ROOT_OF(X_
6
+ 17*X_+ 1),X=-2}

root_multiplicities; ⇒ {1,2}

Comments

Results of the solve operator are returned as equations in a list. You can use
the usual list access methods (first, second, third, rest and part) to extract the
desired equation, and then use the operators rhs and lhs to access the right-hand
or left-hand expression of the equation. When solve is unable to solve an equation,
it returns the unsolved part as the argument of root of, with the variable renamed
to avoid confusion, as shown in the last example above.

For one equation, solve uses square-free factorization, roots of unity, and the
known inverses of the log, sin, cos, acos, asin, and exponentiation operators.
The quadratic, cubic and quartic formulas are used if necessary, but these are
applied only when the switch fullroots is set on; otherwise or when no closed
form is available the result is returned as root of expression. The switch trigform

determines which type of cubic and quartic formula is used. The multiplicity of
each solution is given in a list as the system variable root multiplicities. For
systems of simultaneous linear equations, matrix inversion is used. For nonlinear
systems, the Groebner basis method is used.

Linear equation system solving is influenced by the switch cramer.

Singular systems can be solved when the switch solvesingular is on, which is
the default setting. An empty list is returned the system of equations is inconsis-
tent. For a linear inconsistent system with parameters the variable requirements

constraints conditions for the system to become consistent.

For a solvable linear and polynomial system with parameters the variable assumptions
contains a list side relations for the parameters: the solution is valid only as long
as none of these expressions is zero.

If the switch varopt is on (default), the system rearranges the variable sequence for
minimal computation time. Without varopt the user supplied variable sequence is
maintained.

If the solution has free variables (dimension of the solution is greater than zero),
these are represented by arbcomplex expressions as long as the switch arbvars is on
(default). Without arbvars no explicit equations are generated for free variables.

Related information

allbranch switch

arbvars switch

assumptions variable

fullroots switch

requirements variable

roots operator

root of operator

trigform switch

varopt switch

8.44 SORT

SORT Operator

The sort operator sorts the elements of a list according to an arbitrary comparison

operator.

sort(lst , comp)

lst is a list of algebraic expressions. comp is a comparison operator which defines
a partial ordering among the members of lst . comp may be one of the builtin
comparison operators like <(lessp), <=(leq) etc., or comp may be the name of a
comparison procedure. Such a procedure has two arguments, and it returns true if
the first argument ranges before the second one, and 0 or nil otherwise. The result
of sort is a new list which contains the elements of lst in a sequence corresponding
to comp.

Examples
procedure ce(a,b);

if evenp a and not evenp b then 1 else 0;

for i:=1:10 collect random(50)

sort(ws,>=); ⇒ {41,38,33,30,28,25,20,17,8,5}

sort(ws,<); ⇒ {5,8,17,20,25,28,30,33,38,41}

sort(ws,ce); ⇒ {8,20,28,30,38,5,17,25,33,41}

procedure cd(a,b);

if deg(a,x)>deg(b,x) then 1 else

if deg(a,x)<deg(b,x) then 0 else

if deg(a,y)>deg(b,y) then 1 else 0;

sort({x^2,y^2,x*y},cd); ⇒ {x
2
,x*y,y

2
}

8.45 STRUCTR

STRUCTR Operator

The structr operator breaks its argument expression into named subexpressions.

structr(expression&option(, identifier&option(, identifier)))

structr(expression[, identifier [, identifier ...]])

expression may be any valid REDUCE scalar expression. identifier may be any
valid REDUCE identifier. The first identifier is the stem for subexpression
names, the second is the name to be assigned to the structured expression.

Examples
structr(sqrt(x**2 + 2*x) + sin(x**2*z));

⇒ ANS1 + ANS2

where

ANS2 := SIN(X
2
*Z)

ANS1 := ((X + 2)*X)
1/2

ans3; ⇒ ANS3

on fort;

structr((x+1)**5 + tan(x*y*z),var,aa);

⇒

VAR1=TAN(X*Y*Z)

AA=VAR1+X**5+5.*X**4+10.*X**3+10.X**2+5.*X+1

Comments

The second argument to structr is optional. If it is not given, the default stem
ANS is used by REDUCE to construct names for the subexpression. The names
are only for display purposes: REDUCE does not store the names and their values
unless the switch savestructr is on.

If a third argument is given, the structured expression as a whole is named by this
argument, when fort is on. The expression is not stored under this name. You
can send these structured Fortran expressions to a file with the out command.

8.46 SUB

SUB Operator

The sub operator substitutes a new expression for a kernel in an expression.

sub(kernel=expression{, kernel=expression}∗, expression) or
sub({kernel=expression∗, kernel=expression}, expression)

kernel must be a kernel, expression can be any REDUCE scalar expression.

Examples
sub(x=3,y=4,(x+y)**3); ⇒ 343

x; ⇒ X

sub({cos=sin,sin=cos},cos a+sin b)

⇒ COS(B) + SIN(A)

Comments

Note in the second example that operators can be replaced using the sub operator.

8.47 SUM

SUM Operator

The operator sum returns the indefinite or definite summation of a given expression.

sum(expr , k [, lolim[, uplim]])

where expr is the expression to be added, k is the control variable (a kernel), and
lolim and uplim are the optional lower and upper limits. If uplim is not supplied
the upper limit is taken as k . The Gosper algorithm is used. If there is no closed
form solution, the operator returns the input unchanged.

Examples

sum(4n**3,n); ⇒ n
2
*(n

2
+ 2*n + 1)

sum(2a+2k*r,k,0,n-1); ⇒ n*(2*a + n*r - r)

8.48 WS

WS Operator

The ws operator alone returns the last result; ws with a number argument returns

the results of the REDUCE statement executed after that numbered prompt.

ws or ws(number)

number must be an integer between 1 and the current REDUCE prompt number.

Examples
(In the following examples, unlike most others, the numbered prompt is shown.)

1: df(sin y,y); ⇒ COS(Y)

2: ws^2; ⇒ COS(Y)
2

3: df(ws 1,y); ⇒ -SIN(Y)

Comments

ws and ws(number) can be used anywhere the expression they stand for can be
used. Calling a number for which no result was produced, such as a switch setting,
will give an error message.

The current workspace always contains the results of the last REDUCE command
that produced an expression, even if several input statements that do not produce
expressions have intervened. For example, if you do a differentiation, producing
a result expression, then change several switches, the operator ws; returns the
results of the differentiation. The current workspace (ws) can also be used inside
files, though the numbered workspace contains only the in command that input
the file.

There are three history lists kept in your REDUCE session. The first stores raw
input, suitable for the statement editor. The second stores parsed input, ready to
execute and accessible by input. The third stores results, when they are produced
by statements, which are accessible by the ws n operator. If your session is very
long, storage space begins to fill up with these expressions, so it is a good idea to
end the session once in a while, saving needed expressions to files with the saveas

and out commands.

An error message is given if a reference number has not yet been used.

9 Declarations

9.1 ALGEBRAIC

ALGEBRAIC Command

The algebraic command changes REDUCE’s mode of operation to algebraic.
When algebraic is used as an operator (with an argument inside parentheses) that
argument is evaluated in algebraic mode, but REDUCE’s mode is not changed.

Examples
algebraic;

symbolic; ⇒ NIL

algebraic(x**2); ⇒ X
2

x**2; ⇒ ***** The symbol X has no value.

Comments

REDUCE’s symbolic mode does not know about most algebraic commands. Error
messages in this mode may also depend on the particular Lisp used for the REDUCE
implementation.

9.2 ANTISYMMETRIC

ANTISYMMETRIC Declaration

When an operator is declared antisymmetric, its arguments are reordered to con-
form to the internal ordering of the system. If an odd number of argument inter-
changes are required to do this ordering, the sign of the expression is changed.

antisymmetric identifier{,identifier}∗
identifier is an identifier that has been declared as an operator.

Examples
operator m,n;

antisymmetric m,n;

m(x,n(1,2)); ⇒ - M(- N(2,1),X)

operator p;

antisymmetric p;

p(a,b,c); ⇒ P(A,B,C)

p(b,a,c); ⇒ - P(A,B,C)

Comments

If identifier has not been declared an operator, the flag antisymmetric is still
attached to it. When identifier is subsequently used as an operator, the message
Declare identifier operator? (Y or N) is printed. If the user replies y, the
antisymmetric property of the operator is used.

Note in the first example, identifiers are customarily ordered alphabetically, while
numbers are ordered from largest to smallest. The operators may have any desired
number of arguments (less than 128).

9.3 ARRAY

ARRAY Declaration

The array declaration declares a list of identifiers to be of type array, and sets all

their entries to 0.

array identifier(dimensions) {,identifier(dimensions)}∗
identifier may be any valid REDUCE identifier. If the identifier was already an
array, a warning message is given that the array has been redefined. dimensions
are of form integer{,integer}∗.
Examples
array a(2,5),b(3,3,3),c(200);

array a(3,5); ⇒ *** ARRAY A REDEFINED

a(3,4); ⇒ 0

length a; ⇒ {4,6}

Comments

Arrays are always global, even if defined inside a procedure or block statement.
Their status as an array remains until the variable is reset by clear. Arrays may
not have the same names as operators, procedures or scalar variables.

Array elements are referred to by the usual notation: a(i,j) returns the jth element
of the ith row. The assignment operator := is used to put values into the array.
Arrays as a whole cannot be subject to assignment by let or := ; the assignment
operator := is only valid for individual elements.

When you use let on an array element, the contents of that element become the
argument to let. Thus, if the element contains a number or some other expression
that is not a valid argument for this command, you get an error message. If the
element contains an identifier, the identifier has the substitution rule attached to
it globally. The same behavior occurs with clear. If the array element contains
an identifier or simple expression, it is cleared. Do not use clear to try to set an
array element to 0. Because of the side effects of either let or clear, it is unwise
to apply either of these to array elements.

Array indices always start with 0, so that the declaration array a(5) sets aside 6
units of space, indexed from 0 through 5, and initializes them to 0. The length

command returns a list of the true number of elements in each dimension.

9.4 CLEAR

CLEAR Command

The clear command is used to remove assignments or remove substitution rules
from any expression.

clear identifier{,identifier}+ or
let-type statement clear identifier

identifier can be any scalar, matrix, or array variable or procedure name. let-
type statement can be any general or specific let statement (see below in Com-
ments).

Examples
array a(2,3);

a(2,2) := 15; ⇒ A(2,2) := 15

clear a;

a(2,2); ⇒ Declare A operator? (Y or N)

let x = y + z;

sin(x); ⇒ SIN(Y + Z)

clear x;

sin(x); ⇒ SIN(X)

let x**5 = 7;

clear x;

x**5; ⇒ 7

clear x**5;

x**5; ⇒ X
5

Comments

Although it is not a good idea, operators of the same name but taking different
numbers of arguments can be defined. Using a clear statement on any of these

operators clears every one with the same name, even if the number of arguments is
different.

The clear command is used to “forget” matrices, arrays, operators and scalar vari-
ables, returning their identifiers to the pristine state to be used for other purposes.
When clear is applied to array elements, the contents of the array element becomes
the argument for clear. Thus, you get an error message if the element contains a
number, or some other expression that is not a legal argument to clear. If the ele-
ment contains an identifier, it is cleared. When clear is applied to matrix elements,
an error message is returned if the element evaluates to a number, otherwise there
is no effect. Do not try to use clear to set array or matrix elements to 0. You will
not be pleased with the results.

If you are trying to clear power or product substitution rules made with either
let or forall. . . let, you must reproduce the rule, exactly as you typed it with
the same arguments, up to but not including the equal sign, using the word clear

instead of the word let. This is shown in the last example. Any other type of let or
forall. . . let substitution can be cleared with just the variable or operator name.
match behaves the same as let in this situation. There is a more complicated
example under forall.

9.5 CLEARRULES

CLEARRULES Command

clearrules list{,list}+
The operator clearrules is used to remove previously defined rule lists from the
system. list can be an explicit rule list, or evaluate to a rule list.

Examples
trig1 := {cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2, cos(~x)*sin(~y) => (sin(x+y)-sin(x-y))/2, sin(~x)*sin(~y) => (cos(x-y)-cos(x+y))/2, cos(~x)^2 => (1+cos(2*x))/2, sin(~x)^2 => (1-cos(2*x))/2}

let trig1; cos(a)*cos(b); ⇒
COS(A - B) + COS(A + B)

2

clearrules trig1; cos(a)*cos(b);

⇒ COS(A)*COS(B)

9.6 DEFINE

DEFINE Command

The command define allows you to supply a new name for an identifier or replace
it by any valid REDUCE expression.

define identifier=substitution {,identifier=substitution}∗
identifier is any valid REDUCE identifier, substitution can be a number, an iden-
tifier, an operator, a reserved word, or an expression.

Examples
define is= :=, xx=y+z;

a is 10; ⇒ A := 10

xx**2; ⇒ Y
2
+ 2*Y*Z + Z

2

xx := 10; ⇒ Y + Z := 10

Comments

The renaming is done at the input level, and therefore takes precedence over any
other replacement or substitution declared for the same identifier. It remains in
effect until the end of the REDUCE session. Be careful with it, since you cannot
easily undo it without ending the session.

9.7 DEPEND

DEPEND Declaration

depend declares that its first argument depends on the rest of its arguments.

depend kernel{,kernel}+
kernel must be a legal variable name or a prefix operator (see kernel).

Examples
depend y,x;

df(y**2,x); ⇒ 2*DF(Y,X)*Y

depend z,cos(x),y;

df(sin(z),cos(x)); ⇒ COS(Z)*DF(Z,COS(X))

df(z**2,x); ⇒ 2*DF(Z,X)*Z

nodepend z,y;

df(z**2,x); ⇒ 2*DF(Z,X)*Z

cc := df(y**2,x); ⇒ CC := 2*DF(Y,X)*Y

y := tan x; ⇒ Y := TAN(X);

cc; ⇒ 2*TAN(X)*(TAN(X)
2
+ 1)

Comments

Dependencies can be removed by using the declaration nodepend. The differen-
tiation operator uses this information, as shown in the examples above. Linear
operators also use knowledge of dependencies (see linear). Note that dependen-
cies can be nested: Having declared y to depend on x, and z to depend on y, we
see that the chain rule was applied to the derivative of a function of z with respect
to x. If the explicit function of the dependency is later entered into the system,
terms with DF(Y,X), for example, are expanded when they are displayed again, as
shown in the last example. The boolean operator freeof allows you to check the
dependency between two algebraic objects.

9.8 EVEN

EVEN Declaration

even identifier{,identifier}∗
This declaration is used to declare an operator even in its first argument. Expres-
sions involving an operator declared in this manner are transformed if the first
argument contains a minus sign. Any other arguments are not affected.

Examples
even f;

f(-a) ⇒ F(A)

f(-a,-b) ⇒ F(A,-B)

9.9 FACTOR

FACTOR Declaration

When a kernel is declared by factor, all terms involving fixed powers of that kernel

are printed as a product of the fixed powers and the rest of the terms.

factor kernel {,kernel}∗
kernel must be a kernel or a list of kernels.

Examples
a := (x + y + z)**2; ⇒

A := X
2
+ 2*X*Y + 2*X*Z + Y

2
+ 2*Y*Z + Z

2

factor y;

a; ⇒ Y
2
+ 2*Y*(X + Z) + X

2
+ 2*X*Z + Z

2

factor sin(x);

c := df(sin(x)**4*x**2*z,x);

⇒

C := 2*SIN(X)
4
*X*Z + 4*SIN(X)

3
*COS(X)*X

2
*Z

remfac sin(x);

c; ⇒ 2*SIN(X)
3
*X*Z*(2*COS(X)*X + SIN(X))

Comments

Use the factor declaration to display variables of interest so that you can see their
powers more clearly, as shown in the example. Remove this special treatment with
the declaration remfac. The factor declaration is only effective when the switch
pri is on.

The factor declaration is not a factoring command; to factor expressions use the
factor switch or the factorize command.

The factor declaration is helpful in such cases as Taylor polynomials where the
explicit powers of the variable are expected at the top level, not buried in various
factored forms.

Note that factor does not affect the order of its arguments. You should also use
order if this is important.

9.10 FORALL

FORALL Command

The forall or (preferably) for all command is used as a modifier for let state-

ments, indicating the universal applicability of the rule, with possible qualifications.

for all identifier{,identifier}∗ let let statement

or

for all identifier{,identifier}∗ such that condition let let state-
ment

identifier may be any valid REDUCE identifier, let statement can be an operator,
a product or power, or a group or block statement. condition must be a logical or
comparison operator returning true or false.

Examples
for all x let f(x) = sin(x**2);

⇒ Declare F operator ? (Y or N)

y

f(a); ⇒ SIN(A
2
)

operator pos;

for all x such that x>=0 let pos(x) = sqrt(x + 1);

pos(5); ⇒ SQRT(6)

pos(-5); ⇒ POS(-5)

clear pos;

pos(5); ⇒ Declare POS operator ? (Y or N)

for all a such that numberp a let x**a = 1;

x**4; ⇒ 1

clear x**a; ⇒ *** X**A not found

for all a clear x**a;

x**4; ⇒ 1

for all a such that numberp a clear x**a;

x**4; ⇒ X
4

Comments

Substitution rules defined by for all or for all. . . such that commands that
involve products or powers are cleared by reproducing the command, with exactly
the same variable names used, up to but not including the equal sign, with clear

replacing let, as shown in the last example. Other substitutions involving variables
or operator names can be cleared with just the name, like any other variable.

The match command can also be used in product and power substitutions. The
syntax of its use and clearing is exactly like let. A match substitution only replaces
the term if it is exactly like the pattern, for example match x**5 = 1 replaces only
terms of x**5 and not terms of higher powers.

It is easier to declare your potential operator before defining the for all rule,
since the system will ask you to declare it an operator anyway. Names of declared
arrays or matrices or scalar variables are invalid as operator names, to avoid am-
biguity. Either for all. . . let statements or procedures are often used to define
operators. One difference is that procedures implement “call by value” meaning
that assignments involving their formal parameters do not change the calling vari-
ables that replace them. If you use assignment statements on the formal param-
eters in a for all. . . let statement, the effects are seen in the calling variables.
Be careful not to redefine a system operator unless you mean it: the statement
for all x let sin(x)=0; has exactly that effect, and the usual definition for
sin(x) has been lost for the remainder of the REDUCE session.

9.11 INFIX

INFIX Declaration

infix declares identifiers to be infix operators.

infix identifier{,identifier}∗
identifier can be any valid REDUCE identifier, which has not already been declared
an operator, array or matrix, and is not reserved by the system.

Examples
infix aa;

for all x,y let aa(x,y) = cos(x)*cos(y) - sin(x)*sin(y);

x aa y; ⇒ COS(X)*COS(Y) - SIN(X)*SIN(Y)

pi/3 aa pi/2; ⇒ -
SQRT(3)

2

aa(pi,pi); ⇒ 1

Comments

A let statement must be used to attach functionality to the operator. Note that
the operator is defined in prefix form in the let statement. After its definition, the
operator may be used in either prefix or infix mode. The above operator aa finds
the cosine of the sum of two angles by the formula

cos(x+ y) = cosx cos y − sinx sin y.

Precedence may be attached to infix operators with the precedence declaration.

User-defined infix operators may be used in prefix form. If they are used in infix
form, a space must be left on each side of the operator to avoid ambiguity. Infix
operators are always binary.

9.12 INTEGER

INTEGER Declaration

The integer declaration must be made immediately after a begin (or other variable

declaration such as real and scalar) and declares local integer variables. They

are initialized to 0.

integer identifier{,identifier}∗
identifier may be any valid REDUCE identifier, except t or nil.

Comments

Integer variables remain local, and do not share values with variables of the same
name outside the begin. . . end block. When the block is finished, the variables are
removed. You may use the words real or scalar in the place of integer. integer
does not indicate typechecking by the current REDUCE; it is only for your own
information. Declaration statements must immediately follow the begin, without
a semicolon between begin and the first variable declaration.

Any variables used inside begin. . . end blocks that were not declared scalar, real
or integer are global, and any change made to them inside the block affects their
global value. Any array or matrix declared inside a block is always global.

9.13 KORDER

KORDER Declaration

The korder declaration changes the internal canonical ordering of kernels.

korder kernel{,kernel}∗
kernel must be a REDUCE kernel or a list of kernels.

Comments

The declaration korder changes the internal ordering, but not the print ordering,
so the effects cannot be seen on output. However, in some calculations, the order
of the variables can have significant effects on the time and space demands of a
calculation. If you are doing a demanding calculation with several kernels, you can
experiment with changing the canonical ordering to improve behavior.

The first kernel in the argument list is given the highest priority, the second gets
the next highest, and so on. Kernels not named in a korder ordering otherwise. A
new korder declaration replaces the previous one. To return to canonical ordering,
use the command korder nil.

To change the print ordering, use the declaration order.

9.14 LET

LET Command

The let command defines general or specific substitution rules.

let identifier = expression{,identifier = expression}∗
identifier can be any valid REDUCE identifier except an array, and in some cases
can be an expression; expression can be any valid REDUCE expression.

Examples
let a = sin(x);

b := a; ⇒ B := SIN X;

let c = a;

exp(a); ⇒ E
SIN(X)

a := x**2; ⇒ A := X
2

exp(a); ⇒ E
X
2

exp(b); ⇒ E
SIN(X)

exp(c); ⇒ E
X
2

let m + n = p;

(m + n)**5; ⇒ P
5

operator h;

let h(u,v) = u - v;

h(u,v); ⇒ U - V

h(x,y); ⇒ H(X,Y)

array q(10);

let q(1) = 15; ⇒

***** Substitution for 0 not allowed

The let command is also used to activate a rule sets.

let list{,list}+
list can be an explicit rule list, or evaluate to a rule list.

Examples
trig1 := {cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2, cos(~x)*sin(~y) => (sin(x+y)-sin(x-y))/2, sin(~x)*sin(~y) => (cos(x-y)-cos(x+y))/2, cos(~x)^2 => (1+cos(2*x))/2, sin(~x)^2 => (1-cos(2*x))/2}

let trig1; cos(a)*cos(b); ⇒
COS(A - B) + COS(A + B)

2

Comments

A let command returns no value, though the substitution rule is entered. As-
signment rules made by assign and let rules are at the same level, and cancel
each other. There is a difference in their operation, however, as shown in the first
example: a let assignment tracks the changes in what it is assigned to, while a :=

assignment is fixed at the value it originally had.

The use of expressions as left-hand sides of let statements is a little complicated.
The rules of operation are:

(i) Expressions of the form A*B = C do not change A, B or C, but set A*B to
C.

(ii) Expressions of the form A+B = C substitute C - B for A, but do not change
B or C.

(iii) Expressions of the form A-B = C substitute B + C for A, but do not change
B or C.

(iv) Expressions of the form A/B = C substitute B*C for A, but do not change
B or C.

(v) Expressions of the form A**N = C substitute C for A**N in every expression
of a power of A to N or greater. An asymptotic command such as A**N
= 0 sets all terms involving A to powers greater than or equal to N to 0.
Finite fields may be generated by requiring modular arithmetic (the modular

switch) and defining the primitive polynomial via a let statement.

let substitutions involving expressions are cleared by using the clear command
with exactly the same expression.

Note when a simple let statement is used to assign functionality to an operator,
it is valid only for the exact identifiers used. For the use of the let command to
attach more general functionality to an operator, see forall.

Arrays as a whole cannot be arguments to let statements, but matrices as a whole
can be legal arguments, provided both arguments are matrices. However, it is
important to note that the two matrices are then linked. Any change to an element
of one matrix changes the corresponding value in the other. Unless you want this
behavior, you should not use let for matrices. The assignment operator assign

can be used for non-tracking assignments, avoiding the side effects. Matrices are
redimensioned as needed in let statements.

When array or matrix elements are used as the left-hand side of let statements, the
contents of that element is used as the argument. When the contents is a number
or some other expression that is not a valid left-hand side for let, you get an error
message. If the contents is an identifier or simple expression, the let rule is globally
attached to that identifier, and is in effect not only inside the array or matrix, but
everywhere. Because of such unwanted side effects, you should not use let with
array or matrix elements. The assignment operator := can be used to put values
into array or matrix elements without the side effects.

Local variables declared inside begin. . . end blocks cannot be used as the left-hand

side of let statements. However, begin. . . end blocks themselves can be used as

the right-hand side of let statements. The construction:

for all vars letoperator(vars)=block

is an alternative to the

procedure name(vars);block

construction. One important difference between the two constructions is that the
vars as formal parameters to a procedure have their global values protected against
change by the procedure, while the vars of a let statement are changed globally
by its actions.

Be careful in using a construction such as let x = x + 1 except inside a controlled
loop statement. The process of resubstitution continues until a stack overflow
message is given.

The let statement may be used to make global changes to variables from inside pro-
cedures. If x is a formal parameter to a procedure, the command let x = . . . makes
the change to the calling variable. For example, if a procedure was defined by

procedure f(x,y);

let x = 15;

and the procedure was called as

f(a,b);

a would have its value changed to 15. Be careful when using let statements inside
procedures to avoid unwanted side effects.

It is also important to be careful when replacing let statements with other let

statements. The overlapping of these substitutions can be unpredictable. Ordinar-
ily the latest-entered rule is the first to be applied. Sometimes the previous rule is
superseded completely; other times it stays around as a special case. The order of
entering a set of related let expressions is very important to their eventual behav-
ior. The best approach is to assume that the rules will be applied in an arbitrary
order.

9.15 LINEAR

LINEAR Declaration

An operator can be declared linear in its first argument over powers of its second

argument by the declaration linear.

linear operator{,operator}∗
operator must have been declared to be an operator. Be careful not to use a system
operator name, because this command may change its definition. The operator
being declared must have at least two arguments, and the second one must be a
kernel.

Examples
operator f;

linear f;

f(0,x); ⇒ 0

f(-y,x); ⇒ - F(1,X)*Y

f(y+z,x); ⇒ F(1,X)*(Y + Z)

f(y*z,x); ⇒ F(1,X)*Y*Z

depend z,x;

f(y*z,x); ⇒ F(Z,X)*Y

f(y/z,x); ⇒ F(
1

Z
,X)*Y

depend y,x;

f(y/z,x); ⇒ F(
Y

Z
,X)

nodepend z,x;

f(y/z,x); ⇒
F(Y,X)

Z

f(2*e**sin(x),x); ⇒ 2*F(E
SIN(X)

,X)

Comments

Even when the operator has not had its functionality attached, it exhibits linear
properties as shown in the examples. Notice the difference when dependencies are
added. Dependencies are also in effect when the operator’s first argument contains
its second, as in the last line above.

For a fully-developed example of the use of linear operators, refer to the article
in the Journal of Computational Physics, Vol. 14 (1974), pp. 301-317, “Analytic
Computation of Some Integrals in Fourth Order Quantum Electrodynamics,” by
J.A. Fox and A.C. Hearn. The article includes the complete listing of REDUCE
procedures used for this work.

9.16 LINELENGTH

LINELENGTH Declaration

The linelength declaration sets the length of the output line. Default is 80.

linelength expression

To change the linelength, expression must evaluate to a positive integer less than
128 (although this varies from system to system), and should not be less than 20
or so for proper operation.

Comments

linelength returns the previous linelength. If you want the current linelength
value, but not change it, say linelength nil.

9.17 LISP

LISP Command

The lisp command changes REDUCE’s mode of operation to symbolic. When
lisp is followed by an expression, that expression is evaluated in symbolic mode,
but REDUCE’s mode is not changed. This command is equivalent to symbolic.

Examples
lisp; ⇒ NIL

car ’(a b c d e); ⇒ A

algebraic;

c := (lisp car ’(first second))**2;

⇒ C := FIRST
2

9.18 LISTARGP

LISTARGP Declaration

listargp operator{,operator}∗
If an operator other than those specifically defined for lists is given a single argument
that is a list, then the result of this operation will be a list in which that operator
is applied to each element of the list. This process can be inhibited for a specific
operator, or list of operators, by using the declaration listargp.

Examples
log {a,b,c}; ⇒ LOG(A),LOG(B),LOG(C)

listargp log;

log {a,b,c}; ⇒ LOG(A,B,C)

Comments

It is possible to inhibit such distribution globally by turning on the switch listargs.
In addition, if an operator has more than one argument, no such distribution occurs,
so listargp has no effect.

9.19 NODEPEND

NODEPEND Declaration

The nodepend declaration removes the dependency declared with depend.

nodepend dep-kernel{,kernel}+
dep-kernel must be a kernel that has had a dependency declared upon the one or
more other kernels that are its other arguments.

Examples
depend y,x,z;

df(sin y,x); ⇒ COS(Y)*DF(Y,X)

df(sin y,x,z); ⇒

COS(Y)*DF(Y,X,Z) - DF(Y,X)*DF(Y,Z)*SIN(Y)

nodepend y,z;

df(sin y,x); ⇒ COS(Y)*DF(Y,X)

df(sin y,x,z); ⇒ 0

Comments

A warning message is printed if the dependency had not been declared by depend.

9.20 MATCH

MATCH Command

The match command is similar to the let command, except that it matches only

explicit powers in substitution.

match expr = expression{,expr =expression}∗
expr is generally a term involving powers, and is limited by the rules for the let

command. expression may be any valid REDUCE scalar expression.

Examples
match c**2*a**2 = d; (a+c)**4;

⇒ A
4
+ 4*A

3
*C + 4*A*C

3
+ C

4
+ 6*D

match a+b = c;

a + 2*b; ⇒ B + C

(a + b + c)**2; ⇒ A
2
- B

2
+ 2*B*C + 3*C

2

clear a+b;

(a + b + c)**2; ⇒

A
2
+ 2*A*B + 2*A*C + B

2
+ 2*B*C + C

2

let p*r = s;

match p*q = ss;

(a + p*r)**2; ⇒ A
2
+ 2*A*S + S

2

(a + p*q)**2; ⇒ A
2
+ 2*A*SS + P

2
*Q
2

Comments

Note in the last example that a + b has been explicitly matched after the squaring
was done, replacing each single power of a by c - b. This kind of substitution,
although following the rules, is confusing and could lead to unrecognizable results.

It is better to use match with explicit powers or products only. match should not
be used inside procedures for the same reasons that let should not be.

Unlike let substitutions, match substitutions are executed after all other opera-
tions are complete. The last example shows the difference. match commands can
be cleared by using clear, with exactly the expression that the original match took.
match commands can also be done more generally with for all or forall. . . such that

commands.

9.21 NONCOM

NONCOM Declaration

noncom declares that already-declared operators are noncommutative under multi-

plication.

noncom operator{,operator}∗
operator must have been declared an operator, or a warning message is given.

Examples
operator f,h;

noncom f;

f(a)*f(b) - f(b)*f(a); ⇒ F(A)*F(B) - F(B)*F(A)

h(a)*h(b) - h(b)*h(a); ⇒ 0

operator comm;

for all x,y such that x neq y and ordp(x,y)

let f(x)*f(y) = f(y)*f(x) + comm(x,y);

f(1)*f(2); ⇒ F(1)*F(2)

f(2)*f(1); ⇒ COMM(2,1) + F(1)*F(2)

Comments

The last example introduces the commutator of f(x) and f(y) for all x and y.
The equality check is to prevent an infinite loop. The operator f can have other
functionality attached to it if desired, or it can remain an indeterminate operator.

9.22 NONZERO

NONZERO Declaration

nonzero identifier{,identifier}∗
If an operator f is declared odd, then f(0) is replaced by zero unless f is also
declared non zero by the declaration nonzero.

Examples
odd f;

f(0) ⇒ 0

nonzero f;

f(0) ⇒ F(0)

9.23 ODD

ODD Declaration

odd identifier{,identifier}∗
This declaration is used to declare an operator odd in its first argument. Expressions
involving an operator declared in this manner are transformed if the first argument
contains a minus sign. Any other arguments are not affected.

Examples
odd f;

f(-a) ⇒ -F(A)

f(-a,-b) ⇒ -F(A,-B)

f(a,-b) ⇒ F(A,-B)

Comments

If say f is declared odd, then f(0) is replaced by zero unless f is also declared non
zero by the declaration nonzero.

9.24 OFF

OFF Command

The off command is used to turn switches off.

off switch{,switch}∗
switch can be any switch name. There is no problem if the switch is already off.
If the switch name is mistyped, an error message is given.

9.25 ON

ON Command

The on command is used to turn switches on.

on switch{,switch}∗
switch can be any switch name. There is no problem if the switch is already on.
If the switch name is mistyped, an error message is given.

9.26 OPERATOR

OPERATOR Declaration

Use the operator declaration to declare your own operators.

operator identifier{,identifier}∗
identifier can be any valid REDUCE identifier, which is not the name of a matrix,
array, scalar variable or previously-defined operator.

Examples
operator dis,fac;

let dis(~x,~y) = sqrt(x^2 + y^2);

dis(1,2); ⇒ SQRT(5)

dis(a,10); ⇒ SQRT(A
2
+ 100)

on rounded;

dis(1.5,7.2); ⇒ 7.35459040329

let fac(~n) = if n=0 then 1

else if not(fixp n and n>0)

then rederr "choose non-negative integer"

else for i := 1:n product i;

fac(5); ⇒ 120

fac(-2); ⇒ ***** choose non-negative integer

Comments

The first operator is the Euclidean distance metric, the distance of point (x, y) from
the origin. The second operator is the factorial.

Operators can have various properties assigned to them; they can be declared infix,
linear, symmetric, antisymmetric, or noncommutative. The default operator is
prefix, nonlinear, and commutative. Precedence can also be assigned to operators
using the declaration precedence.

Functionality is assigned to an operator by a let statement or a forall. . . let
statement, (or possibly by a procedure with the name of the operator). Be careful
not to redefine a system operator by accident. REDUCE permits you to redefine
system operators, giving you a warning message that the operator was already
defined. This flexibility allows you to add mathematical rules that do what you
want them to do, but can produce odd or erroneous behavior if you are not careful.

You can declare operators from inside procedures, as long as they are not local
variables. Operators defined inside procedures are global. A formal parameter may
be declared as an operator, and has the effect of declaring the calling variable as
the operator.

9.27 ORDER

ORDER Declaration

The order declaration changes the order of precedence of kernels for display pur-

poses only.

order identifier{,identifier}∗
kernel must be a valid kernel or operator name complete with argument or a
list of such objects.

Examples
x + y + z + cos(a); ⇒ COS(A) + X + Y + Z

order z,y,x,cos(a);

x + y + z + cos(a); ⇒ Z + Y + X + COS(A)

(x + y)**2; ⇒ Y
2
+ 2*Y*X + X

2

order nil;

(z + cos(z))**2; ⇒ COS(Z)
2
+ 2*COS(Z)*Z + Z

2

Comments

order affects the printing order of the identifiers only; internal order is unchanged.
Change internal order of evaluation with the declaration korder. You can use
order to feature variables or functions you are particularly interested in.

Declarations made with order are cumulative: kernels in new order declarations are
ordered behind those in previous declarations, and previous declarations retain their
relative order. Of course, specific kernels named in new declarations are removed
from previous ones and given the new priority. Return to the standard canonical
printing order with the statement order nil.

The print order specified by order commands is not in effect if the switch pri is
off.

9.28 PRECEDENCE

PRECEDENCE Declaration

The precedence declaration attaches a precedence to an infix operator.

precedence operator ,known operator

operator should have been declared an operator but may be a REDUCE identifier
that is not already an operator, array, or matrix. known operator must be a system
infix operator or have had its precedence already declared.

Examples
operator f,h;

precedence f,+;

precedence h,*;

a + f(1,2)*c; ⇒ (1 F 2)*C + A

a + h(1,2)*c; ⇒ 1 H 2*C + A

a*1 f 2*c; ⇒ A F 2*C

a*1 h 2*c; ⇒ 1 H 2*A*C

Comments

The operator whose precedence is being declared is inserted into the infix operator
precedence list at the next higher place than known operator .

Attaching a precedence to an operator has the side effect of declaring the operator
to be infix. If the identifier argument for precedence has not been declared to be an
operator, an attempt to use it causes an error message. After declaring it to be an
operator, it becomes an infix operator with the precedence previously given. Infix
operators may be used in prefix form; if they are used in infix form, a space must
be left on each side of the operator to avoid ambiguity. Declared infix operators
are always binary.

To see the infix operator precedence list, enter symbolic mode and type preclis!*;.
The lowest precedence operator is listed first.

All prefix operators have precedence higher than infix operators.

9.29 PRECISION

PRECISION Declaration

The precision declaration sets the number of decimal places used when rounded

is on. Default is system dependent, and normally about 12.

precision(integer) or precision integer

integer must be a positive integer. When integer is 0, the current precision is
displayed, but not changed. There is no upper limit, but precision of greater than
several hundred causes unpleasantly slow operation on numeric calculations.

Examples
on rounded;

7/9; ⇒ 0.777777777778

precision 20; ⇒ 20

7/9; ⇒ 0.77777777777777777778

sin(pi/4); ⇒ 0.7071067811865475244

Comments

Trailing zeroes are dropped, so sometimes fewer than 20 decimal places are printed
as in the last example. Turn on the switch fullprec if you want to print all
significant digits. The rounded mode carries calculations to two more places than
given by precision, and rounds off.

9.30 PRINT PRECISION

PRINT PRECISION Declaration

print precision(integer) or print precision integer

In rounded mode, numbers are normally printed to the specified precision. If the
user wishes to print such numbers with less precision, the printing precision can be
set by the declaration print precision.

Examples
on rounded;

1/3; ⇒ 0.333333333333

print_precision 5;

1/3 ⇒ 0.33333

9.31 REAL

REAL Declaration

The real declaration must be made immediately after a begin (or other variable

declaration such as integer and scalar) and declares local integer variables. They

are initialized to zero.

real identifier{,identifier}∗
identifier may be any valid REDUCE identifier, except t or nil.

Comments

Real variables remain local, and do not share values with variables of the same
name outside the begin. . . end block. When the block is finished, the variables are
removed. You may use the words integer or scalar in the place of real. real

does not indicate typechecking by the current REDUCE; it is only for your own
information. Declaration statements must immediately follow the begin, without
a semicolon between begin and the first variable declaration.

Any variables used inside a begin. . . end block that were not declared scalar,
real or integer are global, and any change made to them inside the block affects
their global value. Any ?? or ?? declared inside a block is always global.

9.32 REMFAC

REMFAC Declaration

The remfac declaration removes the special factoring treatment of its arguments

that was declared with factor.

remfac kernel{,kernel}+
kernel must be a kernel or operator name that was declared as special with the
factor declaration.

9.33 SCALAR

SCALAR Declaration

The scalar declaration must be made immediately after a begin (or other variable

declaration such as integer and real) and declares local scalar variables. They

are initialized to 0.

scalar identifier{,identifier}∗
identifier may be any valid REDUCE identifier, except t or nil.

Comments

Scalar variables remain local, and do not share values with variables of the same
name outside the begin. . . end block. When the block is finished, the variables are
removed. You may use the words real or integer in the place of scalar. real and
integer do not indicate typechecking by the current REDUCE; they are only for
your own information. Declaration statements must immediately follow the begin,
without a semicolon between begin and the first variable declaration.

Any variables used inside begin. . . end blocks that were not declared scalar, real
or integer are global, and any change made to them inside the block affects their
global value. Arrays declared inside a block are always global.

9.34 SCIENTIFIC NOTATION

SCIENTIFIC NOTATION Declaration

scientific notation(m) or scientific notation({m,n})
m and n are positive integers. scientific notation controls the output format of
floating point numbers. At the default settings, any number with five or less digits
before the decimal point is printed in a fixed-point notation, e.g., 12345.6. Num-
bers with more than five digits are printed in scientific notation, e.g., 1.234567E+5.
Similarly, by default, any number with eleven or more zeros after the decimal point
is printed in scientific notation.

When scientific notation is called with the numerical argument m a number
with more than m digits before the decimal point, or m or more zeros after the
decimal point, is printed in scientific notation. When scientific notation is
called with a list {m,n}, a number with more than m digits before the decimal
point, or n or more zeros after the decimal point is printed in scientific notation.

Examples
on rounded;

12345.6; ⇒ 12345.6

123456.5; ⇒ 1.234565e+5

0.00000000000000012; ⇒ 1.2e-16

scientific_notation 20; ⇒ 5,11

5: 123456.7; ⇒ 123456.7

0.00000000000000012; ⇒ 0.00000000000000012

9.35 SHARE

SHARE Declaration

The share declaration allows access to its arguments by both algebraic and sym-

bolic modes.

share identifier{,identifier}∗
identifier can be any valid REDUCE identifier.

Comments

Programming in symbolic as well as algebraic mode allows you a wider range of
techniques than just algebraic mode alone. Expressions do not cross the boundary
since they have different representations, unless the share declaration is used. For
more information on using symbolic mode, see the REDUCE User’s Manual , and
the Standard Lisp Report .

You should be aware that a previously-declared array is destroyed by the share

declaration. Scalar variables retain their values. You can share a declared matrix

that has not yet been dimensioned so that it can be used by both modes. Values
that are later put into the matrix are accessible from symbolic mode too, but not
by the usual matrix reference mechanism. In symbolic mode, a matrix is stored
as a list whose first element is MAT, and whose next elements are the rows of the
matrix stored as lists of the individual elements. Access in symbolic mode is by the
operators first, second, third and rest.

9.36 SYMBOLIC

SYMBOLIC Command

The symbolic command changes REDUCE’s mode of operation to symbolic. When
symbolic is followed by an expression, that expression is evaluated in symbolic
mode, but REDUCE’s mode is not changed. It is equivalent to the lisp command.

Examples
symbolic; ⇒ NIL

cdr ’(a b c); ⇒ (B C)

algebraic;

x + symbolic car ’(y z); ⇒ X + Y

9.37 SYMMETRIC

SYMMETRIC Declaration

When an operator is declared symmetric, its arguments are reordered to conform

to the internal ordering of the system.

symmetric identifier{,identifier}∗
identifier is an identifier that has been declared an operator.

Examples
operator m,n;

symmetric m,n;

m(y,a,sin(x)); ⇒ M(SIN(X),A,Y)

n(z,m(b,a,q)); ⇒ N(M(A,B,Q),Z)

Comments

If identifier has not been declared to be an operator, the flag symmetric is still
attached to it. When identifier is subsequently used as an operator, the message
Declareidentifier operator ? (Y or N) is printed. If the user replies y, the
symmetric property of the operator is used.

9.38 TR

TR Declaration

The tr declaration is used to trace system or user-written procedures. It is only
useful to those with a good knowledge of both Lisp and the internal formats used
by REDUCE.

tr name{,name}∗
name is the name of a REDUCE system procedure or one of your own procedures.

Examples
The system procedure prepsq is traced, which prepares REDUCE standard
forms for printing by converting them to a Lisp prefix form.

tr prepsq; ⇒ (PREPSQ)

x**2 + y; ⇒

PREPSQ entry:

Arg 1: (((((X . 2) . 1) ((Y . 1) . 1)) . 1)

PREPSQ return value = (PLUS (EXPT X 2) Y)

PREPSQ entry:

Arg 1: (1 . 1)

PREPSQ return value = 1

X
2
+ Y

untr prepsq; ⇒ (PREPSQ)

Comments

This example is for a PSL-based system; the above format will vary if other Lisp
systems are used.

When a procedure is traced, the first lines show entry to the procedure and the
arguments it is given. The value returned by the procedure is printed upon exit. If
you are tracing several procedures, with a call to one of them inside the other, the
inner trace will be indented showing procedure nesting. There are no trace options.
However, the format of the trace depends on the underlying Lisp system used. The

trace can be removed with the command untr. Note that trace, below, is a matrix
operator, while tr does procedure tracing.

9.39 UNTR

UNTR Declaration

The untr declaration is used to remove a trace from system or user-written proce-
dures declared with tr. It is only useful to those with a good knowledge of both
Lisp and the internal formats used by REDUCE.

untr name{,name}∗
name is the name of a REDUCE system procedure or one of your own procedures
that has previously been the argument of a tr declaration.

9.40 VARNAME

VARNAME Declaration

The declaration varname instructs REDUCE to use its argument as the default

Fortran (when fort is on) or structr identifier and identifier stem, rather than

using ANS.

varname identifier

identifier can be any combination of one or more alphanumeric characters. Try to
avoid REDUCE reserved words.

Examples
varname ident; ⇒ IDENT

on fort;

x**2 + 1; ⇒ IDENT=X**2+1.

off fort,exp;

structr(((x+y)**2 + z)**3); ⇒ IDENT2
3

where

IDENT2 := IDENT1
2
+ Z

IDENT1 := X + Y

Comments

exp was turned off so that structr could show the structure. If exp had been on,
the expression would have been expanded into a polynomial.

9.41 WEIGHT

WEIGHT Command

The weight command is used to attach weights to kernels for asymptotic con-

straints.

weight kernel =number

kernel must be a REDUCE kernel, number must be a positive integer, not 0.

Examples
a := (x+y)**4; ⇒

A := X
4
+ 4*X

3
*Y + 6*X

2
*Y
2
+ 4*X*Y

3
+ Y

4

weight x=2,y=3;

wtlevel 8;

a; ⇒ X
4

wtlevel 10;

a; ⇒ X
2
*(6*Y

2
+ 4*X*Y + X

2
)

int(x**2,x); ⇒ ***** X invalid as KERNEL

Comments

Weights and wtlevel are used for asymptotic constraints, where higher-order terms
are considered insignificant.

Weights are originally equivalent to 0 until set by a weight command. To remove
a weight from a kernel, use the clear command. Weights once assigned cannot be
changed without clearing the identifier. Once a weight is assigned to a kernel, it
is no longer a kernel and cannot be used in any REDUCE commands or operators
that require kernels, until the weight is cleared. Note that terms are ordered by
greatest weight.

The weight level of the system is set by wtlevel, initially at 2. Since no kernels
have weights, no effect from wtlevel can be seen. Once you assign weights to
kernels, you must set wtlevel correctly for the desired operation. When weighted

variables appear in a term, their weights are summed for the total weight of the
term (powers of variables multiply their weights). When a term exceeds the weight
level of the system, it is discarded from the result expression.

9.42 WHERE

WHERE Operator

The where operator provides an infix notation for one-time substitutions for kernels

in expressions.

expression where kernel =expression {,kernel =expression}∗
expression can be any REDUCE scalar expression, kernel must be a kernel. Al-
ternatively a rule or a rule list can be a member of the right-hand part of a
where expression.

Examples
x**2 + 17*x*y + 4*y**2 where x=1,y=2;

⇒ 51

for i := 1:5 collect x**i*q where q= for j := 1:i product j;

⇒ {X,2*X
2
,6*X

3
,24*X

4
,120*X

5
}

x**2 + y + z where z=y**3,y=3;

⇒ X
2
+ Y

3
+ 3

Comments

Substitution inside a where expression has no effect upon the values of the kernels
outside the expression. The where operator has the lowest precedence of all the
infix operators, which are lower than prefix operators, so that the substitutions
apply to the entire expression preceding the where operator. However, where is
applied before command keywords such as then, repeat, or do.

A rule or a rule set in the right-hand part of the where expression act as if the
rules were activated by let immediately before the evaluation of the expression and
deactivated by clearrules immediately afterwards.

where gives you a natural notation for auxiliary variables in expressions. As the
second example shows, the substitute expression can be a command to be evaluated.
The substitute assignments are made in parallel, rather than sequentially, as the
last example shows. The expression resulting from the first round of substitutions

is not reexamined to see if any further such substitutions can be made. where can
also be used to define auxiliary variables in procedure definitions.

9.43 WHILE

WHILE Command

The while command causes a statement to be repeatedly executed until a given

condition is true. If the condition is initially false, the statement is not executed at

all.

while condition do statement

condition is given by a logical operator, statement must be a single REDUCE
statement, or a group (<<. . . >>) or begin. . . end block.

Examples
a := 10; ⇒ A := 10

while a <= 12 do <<write a; a := a + 1>>;

⇒ 10

11

12

while a < 5 do <<write a; a := a + 1>>;

⇒ nothing is printed

9.44 WTLEVEL

WTLEVEL Command

In conjunction with weight, wtlevel is used to implement asymptotic constraints.

Its default value is 2.

wtlevel expression

To change the weight level, expression must evaluate to a positive integer that is
the greatest weight term to be retained in expressions involving kernels with weight
assignments. wtlevel returns the new weight level. If you want the current weight
level, but not change it, say wtlevel nil.

Examples

(x+y)**4; ⇒ X
4
+ 4*X

3
*Y + 6*X

2
*Y
2
+ 4*X*Y

3
+ Y

4

weight x=2,y=3;

wtlevel 8;

(x+y)**4; ⇒ X
4

wtlevel 10;

(x+y)**4; ⇒ X
2
*(6*Y

2
+ 4*X*Y + X

2
)

int(x**2,x); ⇒ ***** X invalid as KERNEL

Comments

wtlevel is used in conjunction with the command weight to enable asymptotic
constraints. Weight of a term is computed by multiplying the weights of each
variable in it by the power to which it has been raised, and adding the resulting
weights for each variable. If the weight of the term is greater than wtlevel, the
term is dropped from the expression, and not used in any further computation
involving the expression.

Once a weight has been attached to a kernel, it is no longer recognized by the
system as a kernel, though still a variable. It cannot be used in REDUCE commands
and operators that need kernels. The weight attachment can be undone with a
clear command. wtlevel can be changed as desired.

10 Input and Output

10.1 IN

IN Command

The in command takes a list of file names and inputs each file into the system.

in filename{,filename}∗
filename must be in the current directory, or be a valid pathname. If the file name
is not an identifier, double quote marks (") are needed around the file name.

Comments

A message is given if the file cannot be found, or has a mistake in it.

Ending the command with a semicolon causes the file to be echoed to the screen;
ending it with a dollar sign does not echo the file. If you want some but not all of
a file echoed, turn the switch echo on or off in the file.

An efficient way to develop procedures in REDUCE is to write them into a file using
a system editor of your choice, and then input the files into an active REDUCE
session. REDUCE reparses the procedure as it takes information from the file,
overwriting the previous procedure definition. When it accepts the procedure, it
echoes its name to the screen. Data can also be input to the system from files.

Files to be read in should always end in end; to avoid end-of-file problems. Note
that this is an additional end; to any ending procedures in the file.

10.2 INPUT

INPUT Command

The input command returns the input expression to the REDUCE numbered

prompt that is its argument.

input(number) or input number

number must be between 1 and the current REDUCE prompt number.

Comments

An expression brought back by input can be reexecuted with new values or switch
settings, or used as an argument in another expression. The command ws brings
back the results of a numbered REDUCE statement. Two lists contain every input
and every output statement since the beginning of the session. If your session is
very long, storage space begins to fill up with these expressions, so it is a good
idea to end the session once in a while, saving needed expressions to files with the
saveas and out commands.

Switch settings and let statements can also be reexecuted by using input.

An error message is given if a number is called for that has not yet been used.

10.3 OUT

OUT Command

The out command directs output to the filename that is its argument, until another

out changes the output file, or shut closes it.

out filename or out "pathname " or out t

filename must be in the current directory, or be a valid complete file description
for your system. If the file name is not in the current directory, quote marks are
needed around the file name. If the file already exists, a message is printed allowing
you to decide whether to supersede the contents of the file with new material.

Comments

To restore output to the terminal, type out t, or shut the file. When you use
out t, the file remains available, and if you open it again (with another out), new
material is appended rather than overwriting.

To write a file using out that can be input at a later time, the switch nat must
be turned off, so that the standard linear form is saved that can be read in by in.
If nat is on, exponents are printed on the line above the expression, which causes
trouble when REDUCE tries to read the file.

There is a slight complication if you are using the out command from inside a file
to create another file. The echo switch is normally off at the top-level and on while
reading files (so you can see what is being read in). If you create a file using out at
the top-level, the result lines are printed into the file as you want them. But if you
create such a file from inside a file, the echo switch is on, and every line is echoed,
first as you typed it, then as REDUCE parsed it, and then once more for the file.
Therefore, when you create a file from a file, you need to turn echo off explicitly
before the out command, and turn it back on when you shut the created file, so
your executing file echoes as it should. This behavior also means that as you watch
the file execute, you cannot see the lines that are being put into the out file. As
soon as you turn echo on, you can see output again.

10.4 SHUT

SHUT Command

The shut command closes output files.

shut filename{,filename}∗
filename must have been a file opened by out.

Comments

A file that has been opened by out must be shut before it is brought in by in.
Files that have been opened by out should always be shut before the end of the
REDUCE session, to avoid either loss of information or the printing of extraneous
information into the file. In most systems, terminating a session by bye closes all
open output files.

11 Elementary Functions

11.1 ACOS

ACOS Operator

The acos operator returns the arccosine of its argument.

acos(expression) or acos simple expression

expression may be any scalar REDUCE expression, not an array, matrix or vector
expression. simple expression must be a single identifier or begin with a prefix
operator name.

Examples
acos(ab); ⇒ ACOS(AB)

acos 15; ⇒ ACOS(15)

df(acos(x*y),x); ⇒
SQRT(- X

2
*Y
2
+ 1)*Y

X
2
*Y
2
- 1

on rounded;

res := acos(sqrt(2)/2); ⇒ RES := 0.785398163397

res-pi/4; ⇒ 0

Comments

An explicit numeric value is not given unless the switch rounded is on and the
argument has an absolute numeric value less than or equal to 1.

11.2 ACOSH

ACOSH Operator

acosh represents the hyperbolic arccosine of its argument. It takes an arbitrary
scalar expression as its argument. The derivative of acosh is known to the system.
Numerical values may also be found by turning on the switch rounded.

acosh(expression) or acosh simple expression

expression may be any scalar REDUCE expression, not an array, matrix or vector
expression. simple expression must be a single identifier or begin with a prefix
operator name.

Examples
acosh a; ⇒ ACOSH(A)

acosh(0); ⇒ ACOSH(0)

df(acosh(a**2),a); ⇒
2*SQRT(A

4
- 1)*A

A
4
- 1

int(acosh(x),x); ⇒ INT(ACOSH(X),X)

Comments

You may attach functionality by defining acosh to be the inverse of cosh. This is
done by the commands

put(’cosh,’inverse,’acosh);

put(’acosh,’inverse,’cosh);

You can write a procedure to attach integrals or other functions to acosh. You
may wish to add a check to see that its argument is properly restricted.

11.3 ACOT

ACOT Operator

acot represents the arccotangent of its argument. It takes an arbitrary scalar ex-
pression as its argument. The derivative of acot is known to the system. Numerical
values may also be found by turning on the switch rounded.

acot(expression) or acot simple expression

expression may be any scalar REDUCE expression, not an array, matrix or vector
expression. simple expression must be a single identifier or begin with a prefix
operator name. You can add functionality yourself with let and procedures.

11.4 ACOTH

ACOTH Operator

acoth represents the inverse hyperbolic cotangent of its argument. It takes an
arbitrary scalar expression as its argument. The derivative of acoth is known to
the system. Numerical values may also be found by turning on the switch rounded.

acoth(expression) or acoth simple expression

expression may be any scalar REDUCE expression, not an array, matrix or vector
expression. simple expression must be a single identifier or begin with a prefix
operator name. You can add functionality yourself with let and procedures.

11.5 ACSC

ACSC Operator

The acsc operator returns the arccosecant of its argument.

acsc(expression) or acsc simple expression

expression may be any scalar REDUCE expression, not an array, matrix or vector
expression. simple expression must be a single identifier or begin with a prefix
operator name.

Examples
acsc(ab); ⇒ ACSC(AB)

acsc 15; ⇒ ACSC(15)

df(acsc(x*y),x); ⇒
-SQRT(X

2
*Y
2
- 1)

X*(X
2
*Y
2
- 1)

on rounded;

res := acsc(2/sqrt(3)); ⇒ RES := 1.0471975512

res-pi/3; ⇒ 0

Comments

An explicit numeric value is not given unless the switch rounded is on and the
argument has an absolute numeric value less than or equal to 1.

11.6 ACSCH

ACSCH Operator

The acsch operator returns the hyperbolic arccosecant of its argument.

acsch(expression) or acsch simple expression

expression may be any scalar REDUCE expression, not an array, matrix or vector
expression. simple expression must be a single identifier or begin with a prefix
operator name.

Examples
acsch(ab); ⇒ ACSCH(AB)

acsch 15; ⇒ ACSCH(15)

df(acsch(x*y),x); ⇒
-SQRT(X

2
*Y
2
+ 1)

X*(X
2
*Y
2
+ 1)

on rounded;

res := acsch(3); ⇒ RES := 0.327450150237

Comments

An explicit numeric value is not given unless the switch rounded is on and the
argument has an absolute numeric value less than or equal to 1.

11.7 ASEC

ASEC Operator

The asec operator returns the arccosecant of its argument.

asec(expression) or asec simple expression

expression may be any scalar REDUCE expression, not an array, matrix or vector
expression. simple expression must be a single identifier or begin with a prefix
operator name.

Examples
asec(ab); ⇒ ASEC(AB)

asec 15; ⇒ ASEC(15)

df(asec(x*y),x); ⇒
SQRT(X

2
*Y
2
- 1)

X*(X
2
*Y
2
- 1)

on rounded;

res := asec sqrt(2); ⇒ RES := 0.785398163397

res-pi/4; ⇒ 0

Comments

An explicit numeric value is not given unless the switch rounded is on and the
argument has an absolute numeric value greater or equal to 1.

11.8 ASECH

ASECH Operator

asech represents the hyperbolic arccosecant of its argument. It takes an arbitrary
scalar expression as its argument. The derivative of asech is known to the system.
Numerical values may also be found by turning on the switch rounded.

asech(expression) or asech simple expression

expression may be any scalar REDUCE expression, not an array, matrix or vector
expression. simple expression must be a single identifier or begin with a prefix
operator name.

Examples
asech a; ⇒ ASECH(A)

asech(1); ⇒ 0

df(acosh(a**2),a); ⇒
2*SQRT(- A

4
+ 1)

A*(A
4
- 1)

int(asech(x),x); ⇒ INT(ASECH(X),X)

Comments

You may attach functionality by defining asech to be the inverse of sech. This is
done by the commands

put(’sech,’inverse,’asech);

put(’asech,’inverse,’sech);

You can write a procedure to attach integrals or other functions to asech. You
may wish to add a check to see that its argument is properly restricted.

11.9 ASIN

ASIN Operator

The asin operator returns the arcsine of its argument.

asin(expression) or asin simple expression

expression may be any scalar REDUCE expression, not an array, matrix or vector
expression. simple expression must be a single identifier or begin with a prefix
operator name.

Examples
asin(givenangle); ⇒ ASIN(GIVENANGLE)

asin(5); ⇒ ASIN(5)

df(asin(2*x),x); ⇒ -
2*SQRT(- 4*X

2
+ 1))

4*X
2
- 1

on rounded;

asin .5; ⇒ 0.523598775598

asin(sqrt(3)); ⇒ ASIN(1.73205080757)

asin(sqrt(3)/2); ⇒ 1.04719755120

Comments

A numeric value is not returned by asin unless the switch rounded is on and its
argument has an absolute value less than or equal to 1.

11.10 ASINH

ASINH Operator

The asinh operator returns the hyperbolic arcsine of its argument. The derivative
of asinh and some simple transformations are known to the system.

asinh(expression) or asinh simple expression

expression may be any scalar REDUCE expression, not an array, matrix or vector
expression. simple expression must be a single identifier or begin with a prefix
operator name.

Examples
asinh d; ⇒ ASINH(D)

asinh(1); ⇒ ASINH(1)

df(asinh(2*x),x); ⇒
2*SQRT(4*X

2
+ 1))

4*X
2
+ 1

Comments

You may attach further functionality by defining asinh to be the inverse of sinh.
This is done by the commands

put(’sinh,’inverse,’asinh);

put(’asinh,’inverse,’sinh);

A numeric value is not returned by asinh unless the switch rounded is on and its
argument evaluates to a number.

11.11 ATAN

ATAN Operator

The atan operator returns the arctangent of its argument.

atan(expression) or atan simple expression

expression may be any scalar REDUCE expression, not an array, matrix or vector
expression. simple expression must be a single identifier or begin with a prefix
operator name.

Examples
atan(middle); ⇒ ATAN(MIDDLE)

on rounded;

atan 45; ⇒ 1.54857776147

off rounded;

int(atan(x),x); ⇒
2*ATAN(X)*X - LOG(X

2
+ 1)

2

df(atan(y**2),y); ⇒
2*Y

Y
4
+ 1

Comments

A numeric value is not returned by atan unless the switch rounded is on and its
argument evaluates to a number.

11.12 ATANH

ATANH Operator

The atanh operator returns the hyperbolic arctangent of its argument. The deriva-
tive of asinh and some simple transformations are known to the system.

atanh(expression) or atanh simple expression

expression may be any scalar REDUCE expression, not an array, matrix or vector
expression. simple expression must be a single identifier or begin with a prefix
operator name.

Examples
atanh aa; ⇒ ATANH(AA)

atanh(1); ⇒ ATANH(1)

df(atanh(x*y),y); ⇒
- X

X
2
*Y
2
- 1

Comments

A numeric value is not returned by asinh unless the switch rounded is on and
its argument evaluates to a number. You may attach additional functionality by
defining atanh to be the inverse of tanh. This is done by the commands

put(’tanh,’inverse,’atanh);

put(’atanh,’inverse,’tanh);

11.13 ATAN2

ATAN2 Operator

atan2(expression, expression)

expression is any valid scalar REDUCE expression. In rounded mode, if a numerical
value exists, atan2 returns the principal value of the arc tangent of the second
argument divided by the first in the range [-pi,+pi] radians, using the signs of both
arguments to determine the quadrant of the return value. An expression in terms
of atan2 is returned in other cases.

Examples
atan2(3,2); ⇒ ATAN2(3,2);

on rounded;

atan2(3,2); ⇒ 0.982793723247

atan2(a,b); ⇒ ATAN2(A,B);

atan2(1,0); ⇒ 1.57079632679

Comments

atan2 returns a numeric value only if rounded is on. Then atan2 is calculated to
the current degree of floating point precision.

11.14 COS

COS Operator

The cos operator returns the cosine of its argument.

cos(expression) or cos simple expression

expression is any valid scalar REDUCE expression, simple expression is a single
identifier or begins with a prefix operator name.

Examples
cos abc; ⇒ COS(ABC)

cos(pi); ⇒ -1

cos 4; ⇒ COS(4)

on rounded;

cos(4); ⇒ - 0.653643620864

cos log 5; ⇒ - 0.0386319699339

Comments

cos returns a numeric value only if rounded is on. Then the cosine is calculated to
the current degree of floating point precision.

11.15 COSH

COSH Operator

The cosh operator returns the hyperbolic cosine of its argument. The derivative of
cosh and some simple transformations are known to the system.

cosh(expression) or cosh simple expression

expression may be any scalar REDUCE expression, not an array, matrix or vector
expression. simple expression must be a single identifier or begin with a prefix
operator name.

Examples
cosh b; ⇒ COSH(B)

cosh(0); ⇒ 1

df(cosh(x*y),x); ⇒ SINH(X*Y)*Y

int(cosh(x),x); ⇒ SINH(X)

Comments

You may attach further functionality by defining its inverse (see acosh). A numeric
value is not returned by cosh unless the switch rounded is on and its argument
evaluates to a number.

11.16 COT

COT Operator

cot represents the cotangent of its argument. It takes an arbitrary scalar expression
as its argument. The derivative of acot and some simple properties are known to
the system.

cot(expression) or cot simple expression

expression may be any scalar REDUCE expression. simple expression must be a
single identifier or begin with a prefix operator name.

Examples
cot(a)*tan(a); ⇒ COT(A)*TAN(A))

cot(1); ⇒ COT(1)

df(cot(2*x),x); ⇒ - 2*(COT(2*X)
2
+ 1)

Comments

Numerical values of expressions involving cot may be found by turning on the
switch rounded.

11.17 COTH

COTH Operator

The coth operator returns the hyperbolic cotangent of its argument. The derivative
of coth and some simple transformations are known to the system.

coth(expression) or coth simple expression

expression may be any scalar REDUCE expression. simple expression must be a
single identifier or begin with a prefix operator name.

Examples

df(coth(x*y),x); ⇒ - Y*(COTH(X*Y)
2
- 1)

coth acoth z; ⇒ Z

Comments

You can write let statements and procedures to add further functionality to coth

if you wish. Numerical values of expressions involving coth may also be found by
turning on the switch rounded.

11.18 CSC

CSC Operator

The csc operator returns the cosecant of its argument. The derivative of csc and
some simple transformations are known to the system.

csc(expression) or csc simple expression

expression may be any scalar REDUCE expression. simple expression must be a
single identifier or begin with a prefix operator name.

Examples
csc(q)*sin(q); ⇒ CSC(Q)*SIN(Q)

df(csc(x*y),x); ⇒ -COT(X*Y)*CSC(X*Y)*Y

Comments

You can write let statements and procedures to add further functionality to csc

if you wish. Numerical values of expressions involving csc may also be found by
turning on the switch rounded.

11.19 CSCH

CSCH Operator

The cosh operator returns the hyperbolic cosecant of its argument. The derivative
of csch and some simple transformations are known to the system.

csch(expression) or csch simple expression

expression may be any scalar REDUCE expression, not an array, matrix or vector
expression. simple expression must be a single identifier or begin with a prefix
operator name.

Examples
csch b; ⇒ CSCH(B)

csch(0); ⇒ 0

df(csch(x*y),x); ⇒ - COTH(X*Y)*CSCH(X*Y)*Y

int(csch(x),x); ⇒ INT(CSCH(X),X)

Comments

A numeric value is not returned by csch unless the switch rounded is on and its
argument evaluates to a number.

11.20 ERF

ERF Operator

The erf operator represents the error function, defined by

erf(x) =
2√
π

∫
e−x

2

dx

A limited number of its properties are known to the system, including the fact that
it is an odd function. Its derivative is known, and from this, some integrals may
be computed. However, a complete integration procedure for this operator is not
currently included.

Examples
erf(0); ⇒ 0

erf(-a); ⇒ - ERF(A)

df(erf(x**2),x); ⇒
4*SQRT(PI)*X

E
X
4

*PI

int(erf(x),x); ⇒
E
X
2

*ERF(X)*PI*X + SQRT(PI)

E
X
2

*PI

11.21 EXP

EXP Operator

The exp operator returns e raised to the power of its argument.

exp(expression) or exp simple expression

expression can be any valid REDUCE scalar expression. simple expression must
be a single identifier or begin with a prefix operator.

Examples

exp(sin(x)); ⇒ E
SIN X

exp(11); ⇒ E
11

on rounded;

exp sin(pi/3); ⇒ 2.37744267524

Comments

Numeric values are returned only when rounded is on. The single letter e with
the exponential operator ^ or ** may be substituted for exp without change of
function.

11.22 SEC

SEC Operator

The sec operator returns the secant of its argument.

sec(expression) or sec simple expression

expression is any valid scalar REDUCE expression, simple expression is a single
identifier or begins with a prefix operator name.

Examples
sec abc; ⇒ SEC(ABC)

sec(pi); ⇒ -1

sec 4; ⇒ SEC(4)

on rounded;

sec(4); ⇒ - 1.52988565647

sec log 5; ⇒ - 25.8852966005

Comments

sec returns a numeric value only if rounded is on. Then the secant is calculated
to the current degree of floating point precision.

11.23 SECH

SECH Operator

The sech operator returns the hyperbolic secant of its argument.

sech(expression) or sech simple expression

expression is any valid scalar REDUCE expression, simple expression is a single
identifier or begins with a prefix operator name.

Examples
sech abc; ⇒ SECH(ABC)

sech(0); ⇒ 1

sech 4; ⇒ SECH(4)

on rounded;

sech(4); ⇒ 0.0366189934737

sech log 5; ⇒ 0.384615384615

Comments

sech returns a numeric value only if rounded is on. Then the expression is calcu-
lated to the current degree of floating point precision.

11.24 SIN

SIN Operator

The sin operator returns the sine of its argument.

sin(expression) or sin simple expression

expression is any valid scalar REDUCE expression, simple expression is a single
identifier or begins with a prefix operator name.

Examples
sin aa; ⇒ SIN(AA)

sin(pi/2); ⇒ 1

on rounded;

sin 3; ⇒ 0.14112000806

sin(pi/2); ⇒ 1.0

Comments

sin returns a numeric value only if rounded is on. Then the sine is calculated to
the current degree of floating point precision. The argument in this case is assumed
to be in radians.

11.25 SINH

SINH Operator

The sinh operator returns the hyperbolic sine of its argument. The derivative of
sinh and some simple transformations are known to the system.

sinh(expression) or sinh simple expression

expression may be any scalar REDUCE expression, not an array, matrix or vector
expression. simple expression must be a single identifier or begin with a prefix
operator name.

Examples
sinh b; ⇒ SINH(B)

sinh(0); ⇒ 0

df(sinh(x**2),x); ⇒ 2*COSH(X
2
)*X

int(sinh(4*x),x); ⇒
COSH(4*X)

4

on rounded;

sinh 4; ⇒ 27.2899171971

Comments

You may attach further functionality by defining its inverse (see asinh). A numeric
value is not returned by sinh unless the switch rounded is on and its argument
evaluates to a number.

11.26 TAN

TAN Operator

The tan operator returns the tangent of its argument.

tan(expression) or tan simple expression

expression is any valid scalar REDUCE expression, simple expression is a single
identifier or begins with a prefix operator name.

Examples
tan a; ⇒ TAN(A)

tan(pi/5); ⇒ TAN(
PI

5

)

on rounded; tan(pi/5); ⇒ 0.726542528005

Comments

tan returns a numeric value only if rounded is on. Then the tangent is calculated
to the current degree of floating point accuracy.

When rounded is on, no check is made to see if the argument of tan is a multiple
of π/2, for which the tangent goes to positive or negative infinity. (Of course, since
REDUCE uses a fixed-point representation of π/2, it produces a large but not
infinite number.) You need to make a check for multiples of π/2 in any program
you use that might possibly ask for the tangent of such a quantity.

11.27 TANH

TANH Operator

The tanh operator returns the hyperbolic tangent of its argument. The derivative
of tanh and some simple transformations are known to the system.

tanh(expression) or tanh simple expression

expression may be any scalar REDUCE expression, not an array, matrix or vector
expression. simple expression must be a single identifier or begin with a prefix
operator name.

Examples
tanh b; ⇒ TANH(B)

tanh(0); ⇒ 0

df(tanh(x*y),x); ⇒ Y*(- TANH(X*Y)
2
+ 1)

int(tanh(x),x); ⇒ LOG(E
2*X

+ 1) - X

on rounded; tanh 2; ⇒ 0.964027580076

Comments

You may attach further functionality by defining its inverse (see atanh). A numeric
value is not returned by tanh unless the switch rounded is on and its argument
evaluates to a number.

12 General Switches

12.1 SWITCHES

SWITCHES Introduction

Switches are set on or off using the commands on or off, respectively. The default
setting of the switches described in this section is off unless stated otherwise.

12.2 ALGINT

ALGINT Switch

When the algint switch is on, the algebraic integration module (which must be
loaded from the REDUCE library) is used for integration.

Comments

Loading algint from the library automatically turns on the algint switch. An
error message will be given if algint is turned on when the algint has not been
loaded from the library.

12.3 ALLBRANCH

ALLBRANCH Switch

When allbranch is on, the operator solve selects all branches of solutions. When
allbranch is off, it selects only the principal branches. Default is on.

Examples
solve(log(sin(x+3)),x); ⇒

{X=2*ARBINT(1)*PI - ASIN(1) - 3,

X=2*ARBINT(1)*PI + ASIN(1) + PI - 3}

off allbranch;

solve(log(sin(x+3)),x); ⇒ X=ASIN(1) - 3

Comments

arbint(1) indicates an arbitrary integer, which is given a unique identifier by
REDUCE, showing that there are infinitely many solutions of this type. When
allbranch is off, the single canonical solution is given.

12.4 ALLFAC

ALLFAC Switch

The allfac switch, when on, causes REDUCE to factor out automatically common
products in the output of expressions. Default is on.

Examples

x + x*y**3 + x**2*cos(z); ⇒ X*(COS(Z)*X + Y
3
+ 1)

off allfac;

x + x*y**3 + x**2*cos(z); ⇒ COS(Z)*X
2
+ X*Y

3
+ X

Comments

The allfac switch has no effect when pri is off. Although the switch setting stays
as it was, printing behavior is as if it were off.

12.5 ARBVARS

ARBVARS Switch

When arbvars is on, the solutions of singular or underdetermined systems of equa-
tions are presented in terms of arbitrary complex variables (see arbcomplex). Oth-
erwise, the solution is parametrized in terms of some of the input variables. Default
is on.

Examples
solve({2x + y,4x + 2y},{x,y});

⇒

{{x= -
arbcomplex(1)

2

,y=arbcomplex(1)}}

solve({sqrt(x)+ y**3-1},{x,y});

⇒ {{y=arbcomplex(2),x=y
6
- 2*y

3
+ 1}}

off arbvars;

solve({2x + y,4x + 2y},{x,y});

⇒ {{x= -
y

2
}}

solve({sqrt(x)+ y**3-1},{x,y});

⇒ {{x=y
6
- 2*y

3
+ 1}}

Comments

With arbvars off, the return value {{}} means that the equations given to solve

imply no relation among the input variables.

12.6 BALANCED MOD

BALANCED MOD Switch

modular numbers are normally produced in the range [0,...n), where n is the current
modulus. With balanced mod on, the range [-n/2,n/2], or more precisely [-floor((n-
1)/2), ceiling((n-1)/2)], is used instead.

Examples
setmod 7; ⇒ 1

on modular;

4; ⇒ 4

on balanced_mod;

4; ⇒ -3

12.7 BFSPACE

BFSPACE Switch

Floating point numbers are normally printed in a compact notation (either fixed
point or in scientific notation if SCIENTIFIC NOTATION has been used). In some
(but not all) cases, it helps comprehensibility if spaces are inserted in the number
at regular intervals. The switch bfspace, if on, will cause a blank to be inserted in
the number after every five characters.

Examples
on rounded;

1.2345678; ⇒ 1.2345678

on bfspace;

1.2345678; ⇒ 1.234 5678

Comments

bfspace is normally off.

12.8 COMBINEEXPT

COMBINEEXPT Switch

REDUCE is in general poor at surd simplification. However, when the switch
combineexpt is on, the system attempts to combine exponentials whenever possi-
ble.

Examples

3^(1/2)*3^(1/3)*3^(1/6); ⇒ SQRT(3)*3

1

3 *3

1

6

on combineexpt;

ws; ⇒ 3

12.9 COMBINELOGS

COMBINELOGS Switch

In many cases it is desirable to expand product arguments of logarithms, or collect
a sum of logarithms into a single logarithm. Since these are inverse operations, it
is not possible to provide rules for doing both at the same time and preserve the
REDUCE concept of idempotent evaluation. As an alternative, REDUCE provides
two switches expandlogs and combinelogs to carry out these operations.

Examples
on expandlogs;

log(x*y); ⇒ LOG(X) + LOG(Y)

on combinelogs;

ws; ⇒ LOG(X*Y)

Comments

At the present time, it is possible to have both switches on at once, which could
lead to infinite recursion. However, an expression is switched from one form to the
other in this case. Users should not rely on this behavior, since it may change in
the next release.

12.10 COMP

COMP Switch

When comp is on, any succeeding function definitions are compiled into a faster-
running form. Default is off.

Examples
The following procedure finds Fibonacci numbers recursively. Create a new file
“refib” in your current directory with the following lines in it:

procedure refib(n);

if fixp n and n >= 0 then

if n <= 1 then 1

else refib(n-1) + refib(n-2)

else rederr "nonnegative integer only";

end;

Now load REDUCE and run the following:

on time; ⇒ Time: 100 ms

in "refib"$ ⇒ Time: 0 ms

⇒ REFIB

⇒ Time: 260 ms

⇒ Time: 20 ms

refib(80); ⇒ 37889062373143906

⇒ Time: 14840 ms

on comp; ⇒ Time: 80 ms

in "refib"$ ⇒ Time: 20 ms

⇒ REFIB

⇒ Time: 640 ms

refib(80); ⇒ 37889062373143906

⇒ Time: 10940 ms

Comments

Note that the compiled procedure runs faster. Your time messages will differ de-
pending upon which system you have. Compiled functions remain so for the dura-
tion of the REDUCE session, and are then lost. They must be recompiled if wanted
in another session. With the switch time on as shown above, the CPU time used
in executing the command is returned in milliseconds. Be careful not to leave comp

on unless you want it, as it makes the processing of procedures much slower.

12.11 COMPLEX

COMPLEX Switch

When the complex switch is on, full complex arithmetic is used in simplification,
function evaluation, and factorization. Default is off.

Examples

factorize(a**2 + b**2); ⇒ {{A
2
+ B

2
,1}}

on complex;

factorize(a**2 + b**2); ⇒ {{A + I*B,1},{A - I*B,1}}

(x**2 + y**2)/(x + i*y); ⇒ X - I*Y

on rounded; ⇒

*** Domain mode COMPLEX changed to COMPLEX FLOAT

sqrt(-17); ⇒ 4.12310562562*I

log(7*i); ⇒ 1.94591014906 + 1.57079632679*I

Comments

Complex floating-point can be done by turning on rounded in addition to complex.
With complex off however, REDUCE knows that i is the square root of −1 but
will not carry out more complicated complex operations. If you want complex
denominators cleared by multiplication by their conjugates, turn on the switch
rationalize.

12.12 CREF

CREF Switch

The switch cref invokes the CREF cross-reference program that processes a set of
procedure definitions to produce a summary of their entry points, undefined proce-
dures, non-local variables and so on. The program will also check that procedures
are called with a consistent number of arguments, and print a diagnostic message
otherwise.

The output is alphabetized on the first seven characters of each function name.

To invoke the cross-reference program, cref is first turned on. This causes the
program to load and the cross-referencing process to begin. After all the required
definitions are loaded, turning cref off will cause a cross-reference listing to be
produced.

Comments

Algebraic procedures in REDUCE are treated as if they were symbolic, so that
algebraic constructs will actually appear as calls to symbolic functions, such as
aeval.

12.13 CRAMER

CRAMER Switch

When the cramer switch is on, matrix inversion and linear equation solving (op-
erator solve) is done by Cramer’s rule, through exterior multiplication. Default is
off.

Examples
on time; ⇒ Time: 80 ms

off output; ⇒ Time: 100 ms

mm := mat((a,b,c,d,f),(a,a,c,f,b),(b,c,a,c,d), (c,c,a,b,f),

(d,a,d,e,f));

⇒ Time: 300 ms

inverse := 1/mm; ⇒ Time: 18460 ms

on cramer; ⇒ Time: 80 ms

cramersinv := 1/mm; ⇒ Time: 9260 ms

Comments

Your time readings will vary depending on the REDUCE version you use. After
you invert the matrix, turn on output and ask for one of the elements of the inverse
matrix, such as cramersinv(3,2), so that you can see the size of the expressions
produced.

Inversion of matrices and the solution of linear equations with dense symbolic en-
tries in many variables is generally considerably faster with cramer on. However,
inversion of numeric-valued matrices is slower. Consider the matrices you’re invert-
ing before deciding whether to turn cramer on or off. A substantial portion of the
time in matrix inversion is given to formatting the results for printing. To save
this time, turn output off, as shown in this example or terminate the expression
with a dollar sign instead of a semicolon. The results are still available to you in
the workspace associated with your prompt number, or you can assign them to an
identifier for further use.

12.14 DEFN

DEFN Switch

When the switch defn is on, the Standard Lisp equivalent of the input statement
or procedure is printed, but not evaluated. Default is off.

Examples
on defn;

17/3; ⇒ (AEVAL (LIST ’QUOTIENT 17 3))

df(sin(x),x,2); ⇒

(AEVAL (LIST ’DF (LIST ’SIN ’X) ’X 2))

procedure coshval(a);

begin scalar g;

g := (exp(a) + exp(-a))/2;

return g

end;

⇒

(AEVAL

(PROGN

(FLAG ’(COSHVAL) ’OPFN)

(DE COSHVAL (A)

(PROG (G)

(SETQ G

(AEVAL

(LIST

’QUOTIENT

(LIST

’PLUS

(LIST ’EXP A)

(LIST ’EXP (LIST ’MINUS A)))

2)))

(RETURN G)))))

coshval(1); ⇒ (AEVAL (LIST ’COSHVAL 1))

off defn;

coshval(1); ⇒ Declare COSHVAL operator? (Y or N)

n

procedure coshval(a);

begin scalar g;

g := (exp(a) + exp(-a))/2;

return g

end;

⇒ COSHVAL

on rounded;

coshval(1); ⇒ 1.54308063482

Comments

The above function coshval finds the hyperbolic cosine (cosh) of its argument.
When defn is on, you can see the Standard Lisp equivalent of the function, but it is
not entered into the system as shown by the message Declare COSHVAL operator?.
It must be reentered with defn off to be recognized. This procedure is used as an
example; a more efficient procedure would eliminate the unnecessary local variable
with

procedure coshval(a);

(exp(a) + exp(-a))/2;

12.15 DEMO

DEMO Switch

The demo switch is used for interactive files, causing the system to pause after each

command in the file until you type a Return . Default is off.

Comments

The switch demo has no effect on top level interactive statements. Use it when you
want to slow down operations in a file so you can see what is happening.

You can either include the on demo command in the file, or enter it from the top
level before bringing in any file. Unlike the pause command, on demo does not
permit you to interrupt the file for questions of your own.

12.16 DFPRINT

DFPRINT Switch

When dfprint is on, expressions in the differentiation operator df are printed in a
more “natural” notation, with the differentiation variables appearing as subscripts.
In addition, if the switch noarg is on (the default), the arguments of the differen-
tiated operator are suppressed.

Examples
operator f;

df(f x,x); ⇒ DF(F(X),X);

on dfprint;

ws; ⇒ F_X

df(f(x,y),x,y); ⇒ F_X_,_Y

off noarg;

ws; ⇒ F(X,Y)_X

12.17 DIV

DIV Switch

When div is on, the system divides any simple factors found in the denominator
of an expression into the numerator. Default is off.

Examples
on div;

a := x**2/y**2; ⇒ A := X
2
*Y
-2

b := a/(3*z); ⇒ B :=
1

3
*X
2
*Y
-2

*Z
-1

off div;

a; ⇒
X
2

Y
2

b; ⇒
X
2

3*Y
2
*Z

Comments

The div switch only has effect when the pri switch is on. When pri is off, regardless
of the setting of div, the printing behavior is as if div were off.

12.18 ECHO

ECHO Switch

The echo switch is normally off for top-level entry, and on when files are brought
in. If echo is turned on at the top level, your input statements are echoed to the
screen (thus appearing twice). Default off (but note default on for files).

Comments

If you want to display certain portions of a file and not others, use the commands
off echo and on echo inside the file. If you want no display of the file, use the
input command

in filename$

rather than using the semicolon delimiter.

Be careful when you use commands within a file to generate another file. Since
echo is on for files, the output file echoes input statements (unlike its behavior
from the top level). You should explicitly turn off echo when writing output, and
turn it back on when you’re done.

12.19 ERRCONT

ERRCONT Switch

When the errcont switch is on, error conditions do not stop file execution. Error
messages will be printed whether errcont is on or off.

Default is off.

Comments

The table below shows REDUCE behavior under the settings of errcont and int

:

Behavior in Case of Error in Files
errcont int Behavior when errors in files are encountered
off off Message is printed and parsing continues, but no further state-

ments are executed; no commands from keyboard accepted ex-
cept bye or end

off on Message is printed, and you are asked if you wish to continue.
(This is the default behavior)

on off Message is printed, and file continues to execute without pause
on on Message is printed, and file continues to execute without pause

12.20 EVALLHSEQP

EVALLHSEQP Switch

Under normal circumstances, the right-hand-side of an equation is evaluated but
not the left-hand-side. This also applies to any substitutions made by the sub

operator. If both sides are to be evaluated, the switch evallhseqp should be
turned on.

12.21 EXP

EXP Switch

When the exp switch is on, powers and products of expressions are expanded.
Default is on.

Examples

(x+1)**3; ⇒ X
3
+ 3*X

2
+ 3*X + 1

(a + b*i)*(c + d*i); ⇒ A*C + A*D*I + B*C*I - B*D

off exp;

(x+1)**3; ⇒ (X + 1)
3

(a + b*i)*(c + d*i); ⇒ (A + B*I)*(C + D*I)

length((x+1)**2/(y+1)); ⇒ 2

Comments

Note that REDUCE knows that i2 = −1. When exp is off, equivalent expressions
may not simplify to the same form, although zero expressions still simplify to zero.
Several operators that expect a polynomial argument behave differently when exp

is off, such as length. Be cautious about leaving exp off.

12.22 EXPANDLOGS

EXPANDLOGS Switch

In many cases it is desirable to expand product arguments of logarithms, or collect
a sum of logarithms into a single logarithm. Since these are inverse operations, it
is not possible to provide rules for doing both at the same time and preserve the
REDUCE concept of idempotent evaluation. As an alternative, REDUCE provides
two switches expandlogs and combinelogs to carry out these operations. Both
are off by default.

Examples
on expandlogs;

log(x*y); ⇒ LOG(X) + LOG(Y)

on combinelogs;

ws; ⇒ LOG(X*Y)

Comments

At the present time, it is possible to have both switches on at once, which could
lead to infinite recursion. However, an expression is switched from one form to the
other in this case. Users should not rely on this behavior, since it may change in
the next release.

12.23 EZGCD

EZGCD Switch

When ezgcd and gcd are on, greatest common divisors are computed using the EZ
GCD algorithm that uses modular arithmetic (and is usually faster). Default is
off.

Comments

As a side effect of the gcd calculation, the expressions involved are factored, though
not the heavy-duty factoring of factorize. The EZ GCD algorithm was introduced
in a paper by J. Moses and D.Y.Y. Yun in Proceedings of the ACM , 1973, pp. 159-
166.

Note that the gcd switch must also be on for ezgcd to have effect.

12.24 FACTOR

FACTOR Switch

When the factor switch is on, input expressions and results are automatically
factored.

Examples
on factor;

aa := 3*x**3*a + 6*x**2*y*a + 3*x**3*b + 6*x**2*y*b

+ x*y*a + 2*y**2*a + x*y*b + 2*y**2*b;

⇒ AA := (A + B)*(3*X
2
+ Y)*(X + 2*Y)

off factor;

aa; ⇒

3*A*X
3
+ 6*A*X

2
*Y + A*X*Y + 2*A*Y

2
+ 3*B*X

3
+ 6*B*X

2
*Y

+ B*X*Y + 2*B*Y^{2}

on factor;

ab := x**2 - 2; ⇒ AB := X
2
- 2

Comments

REDUCE factors univariate and multivariate polynomials with integer coefficients,
finding any factors that also have integer coefficients. The factoring is done by
reducing multivariate problems to univariate ones with symbolic coefficients, and
then solving the univariate ones modulo small primes. The results of these calcula-
tions are merged to determine the factors of the original polynomial. The factorizer
normally selects evaluation points and primes using a random number generator.
Thus, the detailed factoring behavior may be different each time any particular
problem is tackled.

When the factor switch is turned on, the exp switch is turned off, and when
the factor switch is turned off, the exp switch is turned on, whether it was on
previously or not.

When the switch trfac is on, informative messages are generated at each call to
the factorizer. The trallfac switch causes the production of a more verbose trace
message. It takes precedence over trfac if they are both on.

To factor a polynomial explicitly and store the results, use the operator factorize.

12.25 FAILHARD

FAILHARD Switch

When the failhard switch is on, the integration operator int terminates with an
error message if the integral cannot be done in closed terms. Default is off.

Comments

Use the failhard switch when you are dealing with complicated integrals and want
to know immediately if REDUCE was unable to handle them. The integration
operator sometimes returns a formal integration form that is more complicated
than the original expression, when it is unable to complete the integration.

12.26 FORT

FORT Switch

When fort is on, output is given Fortran-compatible syntax. Default is off.

Examples
on fort;

df(sin(7*x + y),x); ⇒ ANS=7.*COS(7*X+Y)

on rounded;

b := log(sin(pi/5 + n*pi)); ⇒

B=LOG(SIN(3.14159265359*N+0.628318530718))

Comments

REDUCE results can be written to a file (using out) and used as data by Fortran
programs when fort is in effect. fort knows about correct statement length,
continuation characters, defining a symbol when it is first used, and other Fortran
details.

The GENTRAN package offers many more possibilities than the fort switch. It pro-
duces Fortran (or C or Ratfor) code from REDUCE procedures or structured spec-
ifications, including facilities for producing double precision output.

12.27 FORTUPPER

FORTUPPER Switch

When fortupper is on, any Fortran-style output appears in upper case. Default is
off.

Examples
on fort;

df(sin(7*x + y),x); ⇒ ans=7.*cos(7*x+y)

on fortupper;

df(sin(7*x + y),x); ⇒ ANS=7.*COS(7*X+Y)

12.28 FULLPREC

FULLPREC Switch

Trailing zeroes of rounded numbers to the full system precision are normally not
printed. If this information is needed, for example to get a more understandable
indication of the accuracy of certain data, the switch fullprec can be turned on.

Examples
on rounded;

1/2; ⇒ 0.5

on fullprec;

ws; ⇒ 0.500000000000

Comments

This is just an output options which neither influences the accuracy of the com-
putation nor does it give additional information about the precision of the results.
See also scientific notation.

12.29 FULLROOTS

FULLROOTS Switch

Since roots of cubic and quartic polynomials can often be very messy, a switch
fullroots controls the production of results in closed form. solve will apply the
formulas for explicit forms for degrees 3 and 4 only if fullroots is on. Otherwise
the result forms are built using root of. Default is off.

12.30 GC

GC Switch

With the gc switch, you can turn the garbage collection messages on or off. The
form of the message depends on the particular Lisp used for the REDUCE imple-
mentation.

Comments

See reclaim for an explanation of garbage collection. REDUCE does garbage
collection when needed even if you have turned the notices off.

12.31 GCD

GCD Switch

When gcd is on, common factors in numerators and denominators of expressions
are canceled. Default is off.

Examples

(2*(f*h)**2 - f**2*g*h - (f*g)**2 - f*h**3 + f*h*g**2

- h**4 + g*h**3)/(f**2*h - f**2*g - f*h**2 + 2*f*g*h

- f*g**2 - g*h**2 + g**2*h);

⇒

F
2
*G
2
+ F

2
*G*H - 2*F

2
*H
2
- F*G

2
*H + F*H

3
- G*H

3
+ H

4

--

F
2
*G - F

2
*H + F*G

2
- 2*F*G*H + F*H

2
- G

2
*H + G*H

2

on gcd;

ws; ⇒
F*G + 2*F*H + H

2

F + G

e2 := a*c + a*d + b*c + b*d;

⇒ E2 := A*C + A*D + B*C + B*D

off exp;

e2; ⇒ (A + B)*(C + D)

Comments

Even with gcd off, a check is automatically made for common variable and numeri-
cal products in the numerators and denominators of expression, and the appropriate
cancellations made. Thus the example demonstrating the use of gcd is somewhat
complicated. Note when exp is off, gcd has the side effect of factoring the expres-
sion.

12.32 HORNER

HORNER Switch

When the horner switch is on, polynomial expressions are printed in Horner’s form
for faster and safer numerical evaluation. Default is off. The leading variable of the
expression is selected as Horner variable. To select the Horner variable explicitly
use the korder declaration.

Examples
on horner;

(13p-4q)^3; ⇒

(- 64)*q
3
+ p*(624*q

2
+ p*((- 2028)*q + p*2197))

korder q;

ws; ⇒

2197*p
3
+ q*((- 2028)*p

2
+ q*(624*p + q*(-64)))

12.33 IFACTOR

IFACTOR Switch

When the ifactor switch is on, any integer terms appearing as a result of the
factorize command are factored themselves into primes. Default is off. If the
argument of factorize is an integer, ifactor has no effect, since the integer is
always factored.

Examples
factorize(4*x**2 + 28*x + 48);

⇒ {{4,1},{X + 4,1},{X + 3,1}}

factorize(22587); ⇒ {{3,1},{7529,1}}

on ifactor;

factorize(4*x**2 + 28*x + 48);

⇒ {{2,2},{X + 4,1},{X + 3,1}}

factorize(22587); ⇒ {{3,1},{7529,1}}

Comments

Constant terms that appear within nonconstant polynomial factors are not factored.

The ifactor switch affects only factoring done specifically with factorize, not on
factoring done automatically when the factor switch is on.

12.34 INT

INT Switch

The int switch specifies an interactive mode of operation. Default on.

Comments

There is no reason to turn int off during interactive calculations, since there are no
benefits to be gained. If you do have int off while inputting a file, and REDUCE
finds an error, it prints the message “Continuing with parsing only.” In this state,
REDUCE accepts only end; or bye; from the keyboard; everything else is ignored,
even the command on int.

12.35 INTSTR

INTSTR Switch

If intstr (for “internal structure”) is on, arguments of an operator are printed in
a more structured form.

Examples
operator f;

f(2x+2y); ⇒ F(2*X + 2*Y)

on intstr;

ws; ⇒ F(2*(X + Y))

12.36 LCM

LCM Switch

The lcm switch instructs REDUCE to compute the least common multiple of de-
nominators whenever rational expressions occur. Default is on.

Examples
off lcm;

z := 1/(x**2 - y**2) + 1/(x-y)**2;

⇒ Z :=
2*X*(X - Y)

X
4
- 2*X

3
*Y + 2*X*Y

3
- Y

4

on lcm;

z; ⇒
2*X*(X - Y)

X
4
- 2*X

3
*Y + 2*X*Y

3
- Y

4

zz := 1/(x**2 - y**2) + 1/(x-y)**2;

⇒ ZZ :=
2*X

X
3
- X

2
*Y - X*Y

2
+ Y

3

on gcd;

z; ⇒
2*X

X
3
- X

2
*Y - X*Y

2
+ Y

3

Comments

Note that lcm has effect only when rational expressions are first combined. It does
not examine existing structures for simplifications on display. That is shown above
when z is entered with lcm off. It remains unsimplified even after lcm is turned back
on. However, a new variable containing the same expression is simplified on entry.
The switch gcd does examine existing structures, as shown in the last example line
above.

Full greatest common divisor calculations become expensive if work with large
rational expressions is required. A considerable savings of time can be had if a full
gcd check is made only when denominators are combined, and only a partial check

for numerators. This is the effect of the lcm switch.

12.37 LESSSPACE

LESSSPACE Switch

You can turn on the switch lessspace if you want fewer blank lines in your output.

12.38 LIMITEDFACTORS

LIMITEDFACTORS Switch

To get limited factorization in cases where it is too expensive to use full multivariate
polynomial factorization, the switch limitedfactors can be turned on. In that
case, only “inexpensive” factoring operations, such as square-free factorization, will
be used when factorize is called.

Examples
a := (y-x)^2*(y^3+2x*y+5)*(y^2-3x*y+7)

factorize a; ⇒ {- 3*X*Y + Y
2
+ 7,1}

{2*X*Y + Y
3
+ 5,1},

{X - Y,2}}

on limitedfactors;

factorize a; ⇒

{- 6*X
2
*Y
2
- 3*X*Y

4
+ 2*X*Y

3
- X*Y + Y

5
+ 7*Y

3
+ 5*Y

2
+ 35,1},

{X - Y,2}}

12.39 LIST

LIST Switch

The list switch causes REDUCE to print each term in any sum on separate lines.

Examples
x**2*(y**2 + 2*y) + x*(y**2 + z)/(2*a);

⇒
X*(2*A*X*Y

2
+ 4*A*X*Y + Y

2
+ Z)

2*A

on list;

ws; ⇒ (X*(2*A*X*Y
2

+ 4*A*X*Y

+ Y
2

+ Z))/(2*A)

12.40 LISTARGS

LISTARGS Switch

If an operator other than those specifically defined for lists is given a single argument
that is a list, then the result of this operation will be a list in which that operator
is applied to each element of the list. This process can be inhibited globally by
turning on the switch listargs.

Examples
log {a,b,c}; ⇒ LOG(A),LOG(B),LOG(C)

on listargs;

log {a,b,c}; ⇒ LOG(A,B,C)

Comments

It is possible to inhibit such distribution for a specific operator by using the decla-
ration listargp. In addition, if an operator has more than one argument, no such
distribution occurs, so listargs has no effect.

12.41 MCD

MCD Switch

When mcd is on, sums and differences of rational expressions are put on a common
denominator. Default is on.

Examples

a/(x+1) + b/5; ⇒
5*A + B*X + B

5*(X + 1)

off mcd;

a/(x+1) + b/5; ⇒ (X + 1)
-1
*A + 1/5*B

1/6 + 1/7; ⇒ 13/42

Comments

Even with mcd off, rational expressions involving only numbers are still put over a
common denominator.

Turning mcd off is useful when explicit negative powers are needed, or if no great-
est common divisor calculations are desired, or when differentiating complicated
rational expressions. Results when mcd is off are no longer in canonical form, and
expressions equivalent to zero may not simplify to 0. Some operations, such as
factoring cannot be done while mcd is off. This option should therefore be used
with some caution. Turning mcd off is most valuable in intermediate parts of a
complicated calculation, and should be turned back on for the last stage.

12.42 MODULAR

MODULAR Switch

When modular is on, polynomial coefficients are reduced by the modulus set by
setmod. If no modulus has been set, modular has no effect.

Examples
setmod 2; ⇒ 1

on modular;

(x+y)**2; ⇒ X
2
+ Y

2

145*x**2 + 20*x**3 + 17 + 15*x*y;

⇒ X
2
+ X*Y + 1

Comments

Modular operations are only conducted on the coefficients, not the exponents. The
modulus is not restricted to being prime. When the modulus is prime, division
by a number not relatively prime to the modulus results in a Zero divisor error
message. When the modulus is a composite number, division by a power of the
modulus results in an error message, but division by an integer which is a factor
of the modulus does not. The representation of modular number can be influenced
by balanced mod.

12.43 MSG

MSG Switch

When msg is off, the printing of warning messages is suppressed. Error messages
are still printed.

Comments

Warning messages include those about redimensioning an array or declaring an
operator where one is expected.

12.44 MULTIPLICITIES

MULTIPLICITIES Switch

When solve is applied to a set of equations with multiple roots, solution multi-
plicities are normally stored in the global variable root multiplicities rather
than the solution list. If you want the multiplicities explicitly displayed, the switch
multiplicities should be turned on. In this case, root multiplicities has no
value.

Examples
solve(x^2=2x-1,x); ⇒ X=1

root_multiplicities; ⇒ 2

on multiplicities;

solve(x^2=2x-1,x); ⇒ X=1,X=1

root_multiplicities; ⇒

12.45 NAT

NAT Switch

When nat is on, output is printed to the screen in natural form, with raised ex-
ponents. nat should be turned off when outputting expressions to a file for future
input. Default is on.

Examples

(x + y)**3; ⇒ X
3
+ 3*X

2
*Y + 3*X*Y

2
+ Y

3

off nat;

(x + y)**3; ⇒ X**3 + 3*X**2*Y + 3*X*Y**2 + Y**3$

on fort;

(x + y)**3; ⇒ ANS=X**3+3.*X**2*Y+3.*X*Y**2+Y**3

Comments

With nat off, a dollar sign is printed at the end of each expression. An output file
written with nat off is ready to be read into REDUCE using the command in.

12.46 NERO

NERO Switch

When nero is on, zero assignments (such as matrix elements) are not printed.

Examples
matrix a; a := mat((1,0),(0,1));

⇒ A(1,1) := 1

A(1,2) := 0

A(2,1) := 0

A(2,2) := 1

on nero;

a; ⇒ MAT(1,1) := 1

MAT(2,2) := 1

a(1,2); ⇒

nothing is printed.

b := 0; ⇒

nothing is printed.

off nero;

b := 0; ⇒ B := 0

Comments

nero is often used when dealing with large sparse matrices, to avoid being over-
loaded with zero assignments.

12.47 NOARG

NOARG Switch

When dfprint is on, expressions in the differentiation operator df are printed in a
more “natural” notation, with the differentiation variables appearing as subscripts.
When noarg is on (the default), the arguments of the differentiated operator are
also suppressed.

Examples
operator f;

df(f x,x); ⇒ DF(F(X),X);

on dfprint;

ws; ⇒ F_X

off noarg;

ws; ⇒ F(X)_X

12.48 NOLNR

NOLNR Switch

When nolnr is on, the linear properties of the integration operator int are sup-
pressed if the integral cannot be found in closed terms.

Comments

REDUCE uses the linear properties of integration to attempt to break down an
integral into manageable pieces. If an integral cannot be found in closed terms,
these pieces are returned. When the nolnr switch is off, as many of the pieces as
possible are integrated. When it is on, if any piece fails, the rest of them remain
unevaluated.

12.49 NOSPLIT

NOSPLIT Switch

Under normal circumstances, the printing routines try to break an expression across
lines at a natural point. This is a fairly expensive process. If you are not overly
concerned about where the end-of-line breaks come, you can speed up the printing
of expressions by turning off the switch nosplit. This switch is normally on.

12.50 NUMVAL

NUMVAL Switch

With rounded on, elementary functions with numerical arguments will return a
numerical answer where appropriate. If you wish to inhibit this evaluation, numval
should be turned off. It is normally on.

Examples
on rounded;

cos 3.4; ⇒ - 0.966798192579

off numval;

cos 3.4; ⇒ COS(3.4)

12.51 OUTPUT

OUTPUT Switch

When output is off, no output is printed from any REDUCE calculation. The
calculations have their usual effects other than printing. Default is on.

Comments

Turn output off if you do not wish to see output when executing large files, or to
save the time REDUCE spends formatting large expressions for display. Results
are still available with ws, or in their assigned variables.

12.52 OVERVIEW

OVERVIEW Switch

When overview is on, the amount of detail reported by the factorizer switches
trfac and trallfac is reduced.

12.53 PERIOD

PERIOD Switch

When period is on, periods are added after integers in Fortran-compatible output
(when fort is on). There is no effect when fort is off. Default is on.

12.54 PRECISE

PRECISE Switch

When the precise switch is on, simplification of roots of even powers returns
absolute values, a more precise answer mathematically. Default is on.

Examples
sqrt(x**2); ⇒ X

(x**2)**(1/4); ⇒ SQRT(X)

on precise;

sqrt(x**2); ⇒ ABS(X)

(x**2)**(1/4); ⇒ SQRT(ABS(X))

Comments

In many types of mathematical work, simplification of powers and surds can pro-
ceed by the fastest means of simplifying the exponents arithmetically. When it is
important to you that the positive root be returned, turn precise on. One sit-
uation where this is important is when graphing square-root expressions such as√
x2 + y2 to avoid a spike caused by REDUCE simplifying

√
y2 to y when x is

zero.

12.55 PRET

PRET Switch

When pret is on, input is printed in standard REDUCE format and then evaluated.

Examples
on pret;

(x+1)^3; ⇒ (x + 1)**3;

X
3
+ 3*X

2
+ 3*X + 1

procedure fac(n);

if not (fixp(n) and n>=0)

then rederr "Choose nonneg. integer only"

else for i := 0:n-1 product i+1;

⇒

procedure fac n;

if not (fixp n and n>=0)

then rederr "Choose nonneg. integer only"

else for i := 0:n - 1 product i + 1;

FAC

fac 5; ⇒ fac 5;

120

Comments

Note that all input is converted to lower case except strings (which keep the same
case) all operators with a single argument have had the parentheses removed, and
all infix operators have had a space added on each side. In addition, syntactical
constructs like if. . . then. . . else are printed in a standard format.

12.56 PRI

PRI Switch

When pri is on, the declarations order and factor can be used, and the switches
allfac, div, rat, and revpri take effect when they are on. Default is on.

Comments

Printing of expressions is faster with pri off. The expressions are then returned in
one standard form, without any of the display options that can be used to feature or
display various parts of the expression. You can also gain insight into REDUCE’s
representation of expressions with pri off.

12.57 RAISE

RAISE Switch

When raise is on, lower case letters are automatically converted to upper case on
input. raise is normally on.

Comments

This conversion affects the internal representation of the letter, and is independent
of the case with which a letter is printed, which is normally lower case.

12.58 RAT

RAT Switch

When the rat switch is on, and kernels have been selected to display with the
factor declaration, the denominator is printed with each term rather than one
common denominator at the end of an expression.

Examples
(x+1)/x + x**2/sin y; ⇒

SIN(Y)*X + SIN(Y) + X
3

SIN(Y)*X

factor x;

(x+1)/x + x**2/sin y; ⇒
X
3
+ X*SIN(Y) + SIN(Y)

X*SIN(Y)

on rat;

(x+1)/x + x**2/sin y; ⇒
X
2

SIN(Y)

+ 1 + X
-1

Comments

The rat switch only has effect when the pri switch is on. When pri is off, regardless
of the setting of rat, the printing behavior is as if rat were off. rat only has effect
upon the display of expressions, not their internal form.

12.59 RATARG

RATARG Switch

When ratarg is on, rational expressions can be given to operators such as coeff

and lterm that normally require polynomials in one of their arguments. When
ratarg is off, rational expressions cause an error message.

Examples
aa := x/y**2 + 1/x + y/x**2;

⇒ AA :=
X
3
+ X*Y

2
+ Y

3

X
2
*Y
2

coeff(aa,x); ⇒

X
3
+ X*Y

2
+ Y

3

X
2
*Y
2

invalid as POLYNOMIAL

on ratarg;

coeff(aa,x); ⇒ {
Y

X
2
,

1

X
2
,0,

1

X
2
*Y
2
}

12.60 RATIONAL

RATIONAL Switch

When rational is on, polynomial expressions with rational coefficients are pro-
duced.

Examples

x/2 + 3*y/4; ⇒
2*X + 3*Y

4

(x**2 + 5*x + 17)/2; ⇒
X
2
+ 5*X + 17

2

on rational;

x/2 + 3y/4; ⇒
1

2
*(X +

3

2
*Y)

(x**2 + 5*x + 17)/2; ⇒
1

2
*(X

2
+ 5*X + 17)

Comments

By using rational, polynomial expressions with rational coefficients can be used
in some commands that expect polynomials. With rational off, such a polynomial
becomes a rational expression, with denominator the least common multiple of the
denominators of the rational number coefficients.

12.61 RATIONALIZE

RATIONALIZE Switch

When the rationalize switch is on, denominators of rational expressions that
contain complex numbers or root expressions are simplified by multiplication by
their conjugates.

Examples
qq := (1+sqrt(3))/(sqrt(3)-7);

⇒ QQ :=
SQRT(3) + 1

SQRT(3) - 7

on rationalize;

qq; ⇒
- 4*SQRT(3) - 5

23

2/(4 + 6**(1/3)); ⇒
6
2/3

- 4*6
1/3

+ 16

35

(i-1)/(i+3); ⇒
2*I - 1

5

off rationalize;

(i-1)/(i+3); ⇒
I - 1

I + 3

12.62 RATPRI

RATPRI Switch

When the ratpri switch is on, rational expressions and fractions are printed as
two lines separated by a fraction bar, rather than in a linear style. Default is on.

Examples

3/17; ⇒
3

17

2/b + 3/y; ⇒
3*B + 2*Y

B*Y

off ratpri;

3/17; ⇒ 3/17

2/b + 3/y; ⇒ (3*B + 2*Y)/(B*Y)

12.63 REVPRI

REVPRI Switch

When the revpri switch is on, terms are printed in reverse order from the normal
printing order.

Examples

x**5 + x**2 + 18 + sqrt(y); ⇒ SQRT(Y) + X
5
+ X

2
+ 18

a + b + c + w; ⇒ A + B + C + W

on revpri;

x**5 + x**2 + 18 + sqrt(y); ⇒ 17 + X
2
+ X

5
+ SQRT(Y)

a + b + c + w; ⇒ W + C + B + A

Comments

Turn revpri on when you want to display a polynomial in ascending rather than
descending order.

12.64 RLISP88

RLISP88 Switch

Rlisp ’88 is a superset of the Rlisp that has been traditionally used for the support
of REDUCE. It is fully documented in the book Marti, J.B., “RLISP ’88: An
Evolutionary Approach to Program Design and Reuse”, World Scientific, Singapore
(1993). It supports different looping constructs from the traditional Rlisp, and
treats “-” as a letter unless separated by spaces. Turning on the switch rlisp88

converts to Rlisp ’88 parsing conventions in symbolic mode, and enables the use of
Rlisp ’88 extensions. Turning off the switch reverts to the traditional Rlisp and the
previous mode ((symbolic or algebraic) in force before rlisp88 was turned on.

12.65 ROUNDALL

ROUNDALL Switch

In rounded mode, rational numbers are normally converted to a floating point
representation. If roundall is off, this conversion does not occur. roundall is
normally on.

Examples
on rounded;

1/2; ⇒ 0.5

off roundall;

1/2;
{

1
}{2} ⇒

12.66 ROUNDBF

ROUNDBF Switch

When rounded is on, the normal defaults cause underflows to be converted to zero.
If you really want the small number that results in such cases, roundbf can be
turned on.

Examples
on rounded;

exp(-100000.1^2); ⇒ 0

on roundbf;

exp(-100000.1^2); ⇒ 1.18441281937E-4342953505

Comments

If a polynomial is input in rounded mode at the default precision into any roots

function, and it is not possible to represent any of the coefficients of the polynomial
precisely in the system floating point representation, the switch roundbf will be
automatically turned on. All rounded computation will use the internal bigfloat
representation until the user subsequently turns roundbf off. (A message is output
to indicate that this condition is in effect.)

12.67 ROUNDED

ROUNDED Switch

When rounded is on, floating-point arithmetic is enabled, with precision initially
at a system default value, which is usually 12 digits. The precise number can be
found by the command precision(0).

Examples
pi; ⇒ PI

35/217; ⇒
5

31

on rounded;

pi; ⇒ 3.14159265359

35/217; ⇒ 0.161

sqrt(3); ⇒ 1.73205080756

Comments

If more than the default number of decimal places are required, use the precision

command to set the required number.

12.68 SAVESTRUCTR

SAVESTRUCTR Switch

When savestructr is on, results of the structr command are returned as a list
whose first element is the representation for the expression and the remaining ele-
ments are equations showing the relationships of the generated variables.

Examples
off exp;

structr((x+y)^3 + sin(x)^2);

⇒ ANS3

where

ANS3 := ANS1
3
+ ANS2

2

ANS2 := SIN(X)

ANS1 := X + Y

ans3; ⇒ ANS3

on savestructr;

structr((x+y)^{3} + sin(x)^{2});

⇒

ANS3,ANS3=ANS1
3
+ ANS2

2
,ANS2=SIN(X),ANS1=X + Y

ans3 where rest ws; ⇒ (X + Y)
3
+ SIN(X)

2

Comments

In normal operation, structr is only a display command. With savestructr on,
you can access the various parts of the expression produced by structr.

The generic system names use the stem ANS. You can change this to your own stem
by the command varname. REDUCE adds integers to this stem to make unique
identifiers.

12.69 SOLVESINGULAR

SOLVESINGULAR Switch

When solvesingular is on, singular or underdetermined systems of linear equa-
tions are solved, using arbitrary real, complex or integer variables in the answer.
Default is on.

Examples
solve({2x + y,4x + 2y},{x,y});

⇒

{{X= -
ARBCOMPLEX(1)

2

,Y=ARBCOMPLEX(1)}}

solve({7x + 15y - z,x - y - z},{x,y,z});

⇒ {{X=
8*ARBCOMPLEX(3)

11

Y= -
3*ARBCOMPLEX(3)

11

Z=ARBCOMPLEX(3)}}

off solvesingular;

solve({2x + y,4x + 2y},{x,y});

⇒

***** SOLVE given singular equations

solve({7x + 15y - z,x - y - z},{x,y,z});

⇒

***** SOLVE given singular equations

Comments

The integer following the identifier arbcomplex above is assigned by the system,
and serves to identify the variable uniquely. It has no other significance.

12.70 TIME

TIME Switch

When time is on, the system time used in executing each REDUCE statement is
printed after the answer is printed.

Examples
on time; ⇒ Time: 4940 ms

df(sin(x**2 + y),y); ⇒ COS(X + Y
2
)

Time: 180 ms

solve(x**2 - 6*y,x); ⇒ {X= - SQRT(Y)*SQRT(6),

X=SQRT(Y)*SQRT(6)}

Time: 320 ms

Comments

When time is first turned on, the time since the beginning of the REDUCE session
is printed. After that, the time used in computation, (usually in milliseconds,
though this is system dependent) is printed after the results of each command. Idle
time or time spent typing in commands is not counted. If time is turned off, the
first reading after it is turned on again gives the time elapsed since it was turned
off. The time printed is CPU or wall clock time, depending on the system.

12.71 TRALLFAC

TRALLFAC Switch

When trallfac is on, a more detailed trace of factorizer calls is generated.

Comments

The trallfac switch takes precedence over trfac if they are both on. trfac gives
a factorization trace with less detail in it. When the factor switch is on also, all
input polynomials are sent to the factorizer automatically and trace information is
generated. The out command saves the results of the factoring, but not the trace.

12.72 TRFAC

TRFAC Switch

When trfac is on, a narrative trace of any calls to the factorizer is generated.
Default is off.

Comments

When the switch factor is on, and trfac is on, every input polynomial is sent to
the factorizer, and a trace generated. With factor off, only polynomials that are
explicitly factored with the command factorize generate trace information.

The out command saves the results of the factoring, but not the trace. The
trallfac switch gives trace information to a greater level of detail.

12.73 TRIGFORM

TRIGFORM Switch

When fullroots is on, solve will compute the roots of a cubic or quartic polyno-
mial is closed form. When trigform is on, the roots will be expressed by trigono-
metric forms. Otherwise nested surds are used. Default is on.

12.74 TRINT

TRINT Switch

When trint is on, a narrative tracing various steps in the integration process is
produced.

Comments

The out command saves the results of the integration, but not the trace.

12.75 TRNONLNR

TRNONLNR Switch

When trnonlnr is on, a narrative tracing various steps in the process for solving
non-linear equations is produced.

Comments

trnonlnr can only be used after the solve package has been loaded (e.g., by an
explicit call of load package). The out command saves the results of the equation
solving, but not the trace.

12.76 VAROPT

VAROPT Switch

When varopt is on, the sequence of variables is optimized by solve with respect
to execution speed. Otherwise, the sequence given in the call to solve is preserved.
Default is on.

In combination with the switch arbvars, varopt can be used to control variable
elimination.

Examples
off arbvars;

solve({x+2z,x-3y},{x,y,z}); ⇒ {{y=
x

3
,z= -

x

2
}}

solve({x*y=1,z=x},{x,y,z}); ⇒ {{z=x,y=
1

x
}}

off varopt;

solve({x+2z,x-3y},{x,y,z}); ⇒ {{x= - 2*z,y= -
2*z

3

}}

solve({x*y=1,z=x},{x,y,z}); ⇒ {{y=
1

z
,x=z}}

13 Matrix Operations

13.1 COFACTOR

COFACTOR Operator

The operator cofactor returns the cofactor of the element in row row and column
column of a matrix. Errors occur if row or column do not evaluate to integer
expressions or if the matrix is not square.

cofactor(matrix expression, row , column)

Examples
cofactor(mat((a,b,c),(d,e,f),(p,q,r)),2,2);

⇒ A*R - C*P

cofactor(mat((a,b,c),(d,e,f)),1,1);

⇒ ***** non-square matrix

13.2 DET

DET Operator

The det operator returns the determinant of its (square matrix) argument.

det(expression) or det expression

expression must evaluate to a square matrix.

Examples
matrix m,n;

m := mat((a,b),(c,d)); ⇒ M(1,1) := A

M(1,2) := B

M(2,1) := C

M(2,2) := D

det m; ⇒ A*D - B*C

n := mat((1,2),(1,2)); ⇒ N(1,1) := 1

N(1,2) := 2

N(2,1) := 1

N(2,2) := 2

det(n); ⇒ 0

det(5); ⇒ 5

Comments

Given a numerical argument, det returns the number. However, given a variable
name that has not been declared of type matrix, or a non-square matrix, det returns
an error message.

13.3 MAT

MAT Operator

The mat operator is used to represent a two-dimensional matrix.

mat((expr{,expr}∗){(expr{,expr}∗)}∗)
expr may be any valid REDUCE scalar expression.

Examples
mat((1,2),(3,4)); ⇒ MAT(1,1) := 1

MAT(2,3) := 2

MAT(2,1) := 3

MAT(2,2) := 4

mat(2,1); ⇒ ***** Matrix mismatch

Cont? (Y or N)

matrix qt;

qt := ws; ⇒ QT(1,1) := 1

QT(1,2) := 2

QT(2,1) := 3

QT(2,2) := 4

matrix a,b;

a := mat((x),(y),(z)); ⇒ A(1,1) := X

A(2,1) := Y

A(3,1) := Z

b := mat((sin x,cos x,1)); ⇒ B(1,1) := SIN(X)

B(1,2) := COS(X)

B(1,3) := 1

Comments

Matrices need not have a size declared (unlike arrays). mat redimensions a matrix
variable as needed. It is necessary, of course, that all rows be the same length. An
anonymous matrix, as shown in the first example, must be named before it can be
referenced (note error message). When using mat to fill a 1× n matrix, the row of
values must be inside a second set of parentheses, to eliminate ambiguity.

13.4 MATEIGEN

MATEIGEN Operator

The mateigen operator calculates the eigenvalue equation and the corresponding

eigenvectors of a matrix.

mateigen(matrix − id , tag − id)

matrix-id must be a declared matrix of values, and tag-id must be a legal REDUCE
identifier.

Examples
aa := mat((2,5),(1,0))$

mateigen(aa,alpha); ⇒ {{ALPHA
2
- 2*ALPHA - 5,

1,

MAT(1,1) :=
5*ARBCOMPLEX(1)

ALPHA - 2
,

MAT(2,1) := ARBCOMPLEX(1)

}}

charpoly := first first ws; ⇒ CHARPOLY := ALPHA
2
- 2*ALPHA - 5

bb := mat((1,0,1),(1,1,0),(0,0,1))$

mateigen(bb,lamb); ⇒ {{LAMB - 1,3,

[0]

[ARBCOMPLEX(2)]

[0]

}}

Comments

The mateigen operator returns a list of lists of three elements. The first element
is a square free factor of the characteristic polynomial; the second element is its
multiplicity; and the third element is the corresponding eigenvector. If the charac-
teristic polynomial can be completely factored, the product of the first elements of
all the sublists will produce the minimal polynomial. You can access the various
parts of the answer with the usual list access operators.

If the matrix is degenerate, more than one eigenvector can be produced for the same
eigenvalue, as shown by more than one arbitrary variable in the eigenvector. The
identification numbers of the arbitrary complex variables shown in the examples
above may not be the same as yours. Note that since lambda is a reserved word in
REDUCE, you cannot use it as a tag-id for this operator.

13.5 MATRIX

MATRIX Declaration

Identifiers are declared to be of type matrix.

matrix identifier &option (index , index)
{,identifier &option (index , index)}∗

identifier must not be an already-defined operator or array or the name of a scalar
variable. Dimensions are optional, and if used appear inside parentheses. index
must be a positive integer.

Examples
matrix a,b(1,4),c(4,4);

b(1,1); ⇒ 0

a(1,1); ⇒ ***** Matrix A not set

a := mat((x0,y0),(x1,y1)); ⇒ A(1,1) := X0

A(1,2) := Y0

A(2,1) := X0

A(2,2) := X1

length a; ⇒ {2,2}

b := a**2; ⇒ B(1,1) := X0
2
+ X1*Y0

B(1,2) := Y0*(X0 + Y1)

B(2,1) := X1*(X0 + Y1)

B(2,2) := X1*Y0 + Y1
2

Comments

When a matrix variable has not been dimensioned, matrix elements cannot be ref-
erenced until the matrix is set by the mat operator. When a matrix is dimensioned
in its declaration, matrix elements are set to 0. Matrix elements cannot stand for
themselves. When you use let on a matrix element, there is no effect unless the
element contains a constant, in which case an error message is returned. The same
behavior occurs with clear. Do not use clear to try to set a matrix element to
0. let statements can be applied to matrices as a whole, if the right-hand side

of the expression is a matrix expression, and the left-hand side identifier has been
declared to be a matrix.

Arithmetical operators apply to matrices of the correct dimensions. The operators
+ and - can be used with matrices of the same dimensions. The operator * can
be used to multiply m × n matrices by n × p matrices. Matrix multiplication is
non-commutative. Scalars can also be multiplied with matrices, with the result
that each element of the matrix is multiplied by the scalar. The operator / applied
to two matrices computes the first matrix multiplied by the inverse of the second,
if the inverse exists, and produces an error message otherwise. Matrices can be
divided by scalars, which results in dividing each element of the matrix. Scalars
can also be divided by matrices when the matrices are invertible, and the result is
the multiplication of the scalar by the inverse of the matrix. Matrix inverses can by
found by 1/A or /A, where A is a matrix. Square matrices can be raised to positive
integer powers, and also to negative integer powers if they are nonsingular.

When a matrix variable is assigned to the results of a calculation, the matrix is
redimensioned if necessary.

13.6 NULLSPACE

NULLSPACE Operator

nullspace(matrix expression)

nullspace calculates for its matrix argument, a, a list of linear independent vectors
(a basis) whose linear combinations satisfy the equation ax = 0. The basis is
provided in a form such that as many upper components as possible are isolated.

Examples
nullspace mat((1,2,3,4),(5,6,7,8));

⇒ {

[1]

[]

[0]

[]

[- 3]

[]

[2]

,

[0]

[]

[1]

[]

[- 2]

[]

[1]

}

Comments

Note that with b := nullspace a, the expression length b is the nullity of A,
and that second length a - length b calculates the rank of A. The rank of a
matrix expression can also be found more directly by the rank operator.

In addition to the REDUCE matrix form, nullspace accepts as input a matrix
given as a list of lists, that is interpreted as a row matrix. If that form of input is
chosen, the vectors in the result will be represented by lists as well. This additional

input syntax facilitates the use of nullspace in applications different from classical
linear algebra.

13.7 RANK

RANK Operator

rank(matrix expression)

rank calculates the rank of its matrix argument.

Examples
rank mat((a,b,c),(d,e,f)); ⇒ 2

Comments

The argument to rank can also be a list of lists, interpreted either as a row matrix
or a set of equations. If that form of input is chosen, the vectors in the result will
be represented by lists as well. This additional input syntax facilitates the use of
rank in applications different from classical linear algebra.

13.8 TP

TP Operator

The tp operator returns the transpose of its matrix argument.

tp identifier or tp(identifier)

identifier must be a matrix, which either has had its dimensions set in its declara-
tion, or has had values put into it by mat.

Examples
matrix m,n;

m := mat((1,2,3),(4,5,6))

n := tp m; ⇒ N(1,1) := 1

N(1,2) := 4

N(2,1) := 2

N(2,2) := 5

N(3,1) := 3

N(3,2) := 6

Comments

In an assignment statement involving tp, the matrix identifier on the left-hand side
is redimensioned to the correct size for the transpose.

13.9 TRACE

TRACE Operator

The trace operator finds the trace of its matrix argument.

trace(expression) or trace simple expression

expression or simple expression must evaluate to a square matrix.

Examples
matrix a;

a := mat((x1,y1),(x2,y2))$

trace a; ⇒ X1 + Y2

Comments

The trace is the sum of the entries along the diagonal of a square matrix. Given a
non-matrix expression, or a non-square matrix, trace returns an error message.

14 Groebner package

14.1 Groebner bases

GROEBNER BASES Introduction

The GROEBNER package calculates Groebner bases using the Buchberger algorithm

and provides related algorithms for arithmetic with ideal bases, such as ideal quo-
tients, Hilbert polynomials (Hollmann algorithm), basis conversion (Faugere-Gianni-Lazard-Mora algorithm),
independent variable set (Kredel-Weispfenning algorithm).

Some routines of the Groebner package are used by solve - in that context the
package is loaded automatically. However, if you want to use the package by explicit
calls you must load it by

load_package groebner;

For the common parameter setting of most operators in this package see ideal parameters.

14.2 Ideal Parameters

IDEAL PARAMETERS Concept

Most operators of the Groebner package compute expressions in a polynomial ring
which given as R[var ,var ,...] where R is the current REDUCE coefficient domain.
All algebraically exact domains of REDUCE are supported. The package can op-
erate over rings and fields. The operation mode is distinguished automatically. In
general the ring mode is a bit faster than the field mode. The factoring variant can
be applied only over domains which allow you factoring of multivariate polynomials.

The variable sequence var is either declared explicitly as argument in form of a list

in torder, or it is extracted automatically from the expressions. In the second case
the current REDUCE system order is used (see korder) for arranging the variables.
If some kernels should play the role of formal parameters (the ground domain R then
is the polynomial ring over these), the variable sequences must be given explicitly.

All REDUCE kernels can be used as variables. But please note, that all variables
are considered as independent. E.g. when using sin(a) and cos(a) as variables,
the basic relation sin(a)^2+cos(a)^2-1=0 must be explicitly added to an equation
set because the Groebner operators don’t include such knowledge automatically.

The terms (monomials) in polynomials are arranged according to the current term order.
Note that the algebraic properties of the computed results only are valid as long as
neither the ordering nor the variable sequence changes.

The input expressions exp can be polynomials p, rational functions n/d or equa-
tions lh=rh built from polynomials or rational functions. Apart from the tracing

algorithms groebnert and preducet, where the equations have a specific mean-
ing, equations are converted to simple expressions by taking the difference of the
left-hand and right-hand sides lh-rh=¿p. Rational functions are converted to poly-
nomials by converting the expression to a common denominator form first, and
then using the numerator only n=¿p. So eventual zeros of the denominators are
ignored.

A basis on input or output of an algorithm is coded as list of expressions {exp,exp,...}
.

14.3 Term order

14.4 Term order

TERM ORDER Introduction

For all Groebner operations the polynomials are represented in distributive form:
a sum of terms (monomials). The terms are ordered corresponding to the actual
term order which is set by the torder operator, and to the actual variable sequence
which is either given as explicit parameter or by the system kernel order.

14.5 torder

TORDER Operator

The operator torder sets the actual variable sequence and term order.

1. simple term order:

torder(vl ,m)

where vl is a list of variables (kernels) and m is the name of a simple term order

mode 14.7, 14.8, 14.9 or another implemented parameterless mode.

2. stepped term order:

torder (vl ,m, n)

where m is the name of a two step term order, one of gradlexgradlex term order,
gradlexrevgradlex term order, lexgradlex term order or lexrevgradlex term order,
and n is a positive integer.

3. weighted term order

torder (vl , weighted, n, n, ...);

where the n are positive integers, see weighted term order.

4. matrix term order

torder (vl , matrix,m);

where m is a matrix with integer elements, see torder compile.

5. compiled term order

torder (vl , co);

where co is the name of a routine generated by torder compile.

torder sets the variable sequence and the term order mode. If the an empty list
is used as variable sequence, the automatic variable extraction is activated. The
defaults are the empty variable list an the lex term order. The previous setting
is returned as a list.

Alternatively to the above syntax the arguments of torder may be collected in a
list and passed as one argument to torder.

14.6 torder compile

TORDER COMPILE Operator

A matrix can be converted into a compilable LISP program for faster execution by

using

torder compile(name,mat)

where name is an identifier for the new term order and mat is an integer matrix
to be used as matrix term order. Afterwards the term order can be activated by
using name in a torder expression. The resulting program is compiled if the switch
comp is on, or if the torder compile expression is part of a compiled module.

14.7 lex term order

LEX TERM ORDER Concept

The terms are ordered lexicographically: two terms t1 t2 are compared for their
degrees along the fixed variable sequence: t1 is higher than t2 if the first different de-
gree is higher in t1. This order has the elimination property for groebner basis

calculations. If the ideal has a univariate polynomial in the last variable the groeb-
ner basis will contain such polynomial. Lex is best suited for solving of polynomial
equation systems.

14.8 gradlex term order

GRADLEX TERM ORDER Concept

The terms are ordered first with their total degree, and if the total degree is identical
the comparison is lex term order. With groebner basis calculations this term
order produces polynomials of lowest degree.

14.9 revgradlex term order

REVGRADLEX TERM ORDER Concept

The terms are ordered first with their total degree (degree sum), and if the total de-
gree is identical the comparison is the inverse of lex term order. With groebner

and groebnerf calculations this term order is similar to gradlex term order; it
is known as most efficient ordering with respect to computing time.

14.10 gradlexgradlex term order

GRADLEXGRADLEX TERM ORDER Concept

The terms are separated into two groups where the second parameter of the torder
call determines the length of the first group. For a comparison first the total degrees
of both variable groups are compared. If both are equal gradlex term order com-
parison is applied to the first group, and if that does not decide gradlex term order

is applied for the second group. This order has the elimination property for the
variable groups. It can be used e.g. for separating variables from parameters.

14.11 gradlexrevgradlex term order

GRADLEXREVGRADLEX TERM ORDER Concept

Similar to gradlexgradlex term order, but using revgradlex term order for
the second group.

14.12 lexgradlex term order

LEXGRADLEX TERM ORDER Concept

Similar to gradlexgradlex term order, but using lex term order for the first
group.

14.13 lexrevgradlex term order

LEXREVGRADLEX TERM ORDER Concept

Similar to gradlexgradlex term order, but using lex term order for the first
group revgradlex term order for the second group.

14.14 weighted term order

WEIGHTED TERM ORDER Concept

establishes a graduated ordering similar to gradlex term order, where the expo-
nents first are multiplied by the given weights. If there are less weight values than
variables, the weight list is extended by ones. If the weighted degree comparison is
not decidable, the lex term order is used.

14.15 graded term order

GRADED TERM ORDER Concept

establishes a cascaded term ordering: first a graduated ordering similar to gradlex term order

is used, where the exponents first are multiplied by the given weights. If there are
less weight values than variables, the weight list is extended by ones. If the weighted
degree comparison is not decidable, the term ordering described in the following
parameters of the torder command is used.

14.16 matrix term order

MATRIX TERM ORDER Concept

Any arbitrary term order mode can be installed by a matrix with integer elements
where the row length corresponds to the variable number. The matrix must have
at least as many rows as columns. It must have full rank, and the top nonzero
element of each column must be positive.

The matrix term order mode defines a term order where the exponent vectors
of the monomials are first multiplied by the matrix and the resulting vectors are
compared lexicographically.

If the switch comp is on, the matrix is converted into a compiled LISP program for
faster execution. A matrix can also be compiled explicitly, see torder compile.

14.17 Basic Groebner operators

14.18 gvars

GVARS Operator

gvars({exp, exp, ...})
where exp are expressions or equations.

gvars extracts from the expressions the kernels which can play the role of variables
for a groebner or groebnerf calculation.

14.19 groebner

GROEBNER Operator

groebner({exp, ...})
where {exp, ... } is a list of expressions or equations.

The operator groebner implements the Buchberger algorithm for computing Groeb-
ner bases for a given set of expressions with respect to the given set of variables
in the order given. As a side effect, the sequence of variables is stored as a RE-
DUCE list in the shared variable gvarslast - this is important in cases where the
algorithm rearranges the variable sequence because groebopt is on.

Examples
groebner({x**2+y**2-1,x-y}) ⇒ {X - Y,2*Y**2 -1}

Related information

groebnerf operator

gvarslast variable

groebopt switch

groebprereduce switch

groebfullreduction switch

gltbasis switch

gltb variable

glterms variable

groebstat switch

trgroeb switch

trgroebs switch

groebprot switch

groebprotfile variable

groebnert operator

14.20 groebner walk

GROEBNER WALK Operator

The operator groebner walk computes a lex basis from a given graded (or weighted)

one.

groebner walk(g)

where g is a graded basis (or weighted basis with a weight vector with one repeated
element) of the polynomial ideal. Groebner walk computes a sequence of monomial
bases, each time lifting the full system to a complete basis. Groebner walk should
be called only in cases, where a normal kex computation would take too much
computer time.

The operator torder has to be called before in order to define the variable sequence
and the term order mode of g .

The variable gvarslast is not set.

Do not call groebner walk with on groebopt.

Groebner walk includes some overhead (such as e. g. computation with division).
On the other hand, sometimes groebner walk is faster than a direct lex compu-
tation.

14.21 groebopt

GROEBOPT Switch

If groebopt is set ON, the sequence of variables is optimized with respect to execu-
tion speed of groebner calculations; note that the final list of variables is available
in gvarslast. By default groebopt is off, conserving the original variable sequence.

An explicitly declared dependency using the depend declaration supersedes the
variable optimization.

Examples
depend a, x, y; ⇒

guarantees that a will be placed in front of x and y.

14.22 gvarslast

GVARSLAST Variable

After a groebner or groebnerf calculation the actual variable sequence is stored in
the variable gvarslast. If groebopt is on gvarslast shows the variable sequence
after reordering.

14.23 groebprereduce

GROEBPREREDUCE Switch

If groebprereduce set ON, groebner and groebnerf try to simplify the input
expressions: if the head term of an input expression is a multiple of the head term
of another expression, it can be reduced; these reductions are done cyclicly as long
as possible in order to shorten the main part of the algorithm.

By default groebprereduce is off.

14.24 groebfullreduction

GROEBFULLREDUCTION Switch

If groebfullreduction set off, the polynomial reduction steps during groebner

and groebnerf are limited to the pure head term reduction; subsequent terms are
reduced otherwise.

By default groebfullreduction is on.

14.25 gltbasis

GLTBASIS Switch

If gltbasis set on, the leading terms of the result basis of a groebner or groebnerf
calculation are extracted. They are collected as a basis of monomials, which is
available as value of the global variable gltb.

14.26 gltb

GLTB Variable

See gltbasis

14.27 glterms

GLTERMS Variable

If the expressions in a groebner or groebnerf call contain parameters (symbols
which are not member of the variable list), the share variable glterms is set to a
list of expression which during the calculation were assumed to be nonzero. The
calculated bases are valid only under the assumption that all these expressions do
not vanish.

14.28 groebstat

GROEBSTAT Switch

if groebstat is on, a summary of the groebner or groebnerf computation is
printed at the end including the computing time, the number of intermediate H
polynomials and the counters for the criteria hits.

14.29 trgroeb

TRGROEB Switch

if trgroeb is on, intermediate H polynomials are printed during a groebner or
groebnerf calculation.

14.30 trgroebs

TRGROEBS Switch

if trgroebs is on, intermediate H and S polynomials are printed during a groebner

or groebnerf calculation.

14.31 gzerodim?

GZERODIM? Operator

gzerodim!?(basis)

where bas is a Groebner basis in the current term order with the actual setting
(see ideal parameters).

gzerodim!? tests whether the ideal spanned by the given basis has dimension zero.
If yes, the number of zeros is returned, nil otherwise.

14.32 gdimension

GDIMENSION Operator

gdimension(bas)

where bas is a groebner basis in the current term order (see ideal parameters).
gdimension computes the dimension of the ideal spanned by the given basis and
returns the dimension as an integer number. The Kredel-Weispfenning algorithm
is used: the dimension is the length of the longest independent variable set, see
gindependent sets

14.33 gindependent sets

GINDEPENDENT SETS Operator

gindependent sets(bas)

where bas is a groebner basis in any term order (which must be the current
term order) with the specified variables (see ideal parameters).

Gindependent sets computes the maximal left independent variable sets of the
ideal, that are the variable sets which play the role of free parameters in the current
ideal basis. Each set is a list which is a subset of the variable list. The result is a
list of these sets. For an ideal with dimension zero the list is empty. The Kredel-
Weispfenning algorithm is used.

14.34 dd groebner

DD GROEBNER Operator

For a homogeneous system of polynomials under graded term order, gradlex term order,

revgradlex term order or weighted term order a Groebner Base can be com-

puted with limiting the grade of the intermediate S polynomials:

dd groebner(d1 , d2 , plist)

where d1 is a non negative integer and d2 is an integer or “infinity”. A pair of
polynomials is considered only if the grade of the lcm of their head terms is between
d1 and d2 . For the term orders graded or weighted the (first) weight vector is
used for the grade computation. Otherwise the total degree of a term is used.

14.35 glexconvert

GLEXCONVERT Operator

glexconvert(bas [, vars][,MAXDEG = mx][, NEWV ARS = nv])

where bas is a groebner basis in the current term order, mx (optional) is a positive
integer and nvl (optional) is a list of variables (see ideal parameters).

The operator glexconvert converts the basis of a zero-dimensional ideal (finite
number of isolated solutions) from arbitrary ordering into a basis under lex term order.

The parameter newvars defines the new variable sequence. If omitted, the original
variable sequence is used. If only a subset of variables is specified here, the partial
ideal basis is evaluated.

If newvars is a list with one element, the minimal univariate polynomial is
computed.

maxdeg is an upper limit for the degrees. The algorithm stops with an error message,
if this limit is reached.

A warning occurs, if the ideal is not zero dimensional.

Comments

During the call the term order of the input basis must be active.

14.36 greduce

GREDUCE Operator

greduce(exp, {exp1, exp2, . . . , expm})
where exp is an expression, and {exp1, exp2, ... , expm} is a list of expressions or
equations.

greduce is functionally equivalent with a call to groebner and then a call to
preduce.

14.37 preduce

PREDUCE Operator

preduce(p, {exp, . . .})
where p is an expression, and {exp, ... } is a list of expressions or equations.

Preduce computes the remainder of exp modulo the given set of polynomials resp.
equations. This result is unique (canonical) only if the given set is a groebner basis
under the current term order

see also: preducet operator.

14.38 idealquotient

IDEALQUOTIENT Operator

idealquotient({exp, ...}, d)

where {exp,...} is a list of expressions or equations, d is a single expression or
equation.

Idealquotient computes the ideal quotient: ideal spanned by the expressions
{exp,...} divided by the single polynomial/expression f . The result is the groebner

basis of the quotient ideal.

14.39 hilbertpolynomial

HILBERTPOLYNOMIAL Operator

hilbertpolynomial(bas)

where bas is a groebner basis in the current term order.

The degree of the Hilbert polynomial is the dimension of the ideal spanned by
the basis. For an ideal of dimension zero the Hilbert polynomial is a constant which
is the number of common zeros of the ideal (including eventual multiplicities). The
Hollmann algorithm is used.

14.40 saturation

SATURATION Operator

saturation({exp, ...}, p)

where {exp,...} is a list of expressions or equations, p is a single polynomial.

Saturation computes the quotient of the polynomial p and a power (with unknown
but finite exponent) of the ideal built from {exp, ...}. The result is the computed
quotient. Saturation calls idealquotient several times until the result does not
change any more.

14.41 Factorizing Groebner bases

14.42 groebnerf

GROEBNERF Operator

groebnerf({exp, ...}[, {}, {nz , ...}]);
where {exp, ... } is a list of expressions or equations, and {nz ,... } is an optional
list of polynomials to be considered as non zero for this calculation. An empty list
must be passed as second argument if the non-zero list is specified.

groebnerf tries to separate polynomials into individual factors and to branch the
computation in a recursive manner (factorization tree). The result is a list of partial
Groebner bases. Multiplicities (one factor with a higher power, the same partial
basis twice) are deleted as early as possible in order to speed up the calculation.

The third parameter of groebnerf declares some polynomials nonzero. If any of
these is found in a branch of the calculation the branch is canceled.

Example

groebnerf({ 3*x**2*y+2*x*y+y+9*x**2+5*x = 3,

2*x**3*y-x*y-y+6*x**3-2*x**2-3*x = -3,

x**3*y+x**2*y+3*x**3+2*x**2 }, {y,x});

{{Y - 3,X},

2

{2*Y + 2*X - 1,2*X - 5*X - 5}}

Related information

groebresmax variable

groebmonfac variable

groebrestriction variable

groebner operator

gvarslast variable

groebopt switch

groebprereduce switch

groebfullreduction switch

gltbasis switch

gltb variable

glterms variable

groebstat switch

trgroeb switch

trgroebs switch

groebnert operator

14.43 groebmonfac

GROEBMONFAC Variable

The variable groebmonfac is connected to the handling of monomial factors. A
monomial factor is a product of variable powers as a factor, e.g. x**2*y in x**3*y
- 2*x**2*y**2. A monomial factor represents a solution of the type x = 0 or y = 0
with a certain multiplicity. With groebnerf the multiplicity of monomial factors
is lowered to the value of the shared variable groebmonfac which by default is 1
(= monomial factors remain present, but their multiplicity is brought down). With
groebmonfac:= 0 the monomial factors are suppressed completely.

14.44 groebresmax

GROEBRESMAX Variable

The variable groebresmax controls during groebnerf calculations the number of
partial results. Its default value is 300. If more partial results are calculated, the
calculation is terminated.

14.45 groebrestriction

GROEBRESTRICTION Variable

During groebnerf calculations irrelevant branches can be excluded by setting the

variable groebrestriction. The following restrictions are implemented:

groebrestriction := nonnegative

groebrestriction := positive

groebrestriction := zeropoint

With nonnegative branches are excluded where one polynomial has no nonnegative
real zeros; with positive the restriction is sharpened to positive zeros only. The
restriction zeropoint excludes all branches which do not have the origin (0,0,...0)
in their solution set.

14.46 Tracing Groebner bases

14.47 groebprot

GROEBPROT Switch

If groebprot is ON the computation steps during preduce, greduce and groebner

are collected in a list which is assigned to the variable groebprotfile.

14.48 groebprotfile

GROEBPROTFILE Variable

See groebprot switch.

14.49 groebnert

GROEBNERT Operator

groebnert({v = exp, ...})
where v are kernels (simple or indexed variables), exp are polynomials.

groebnert is functionally equivalent to a groebner call for {exp,...}, but the result
is a set of equations where the left-hand sides are the basis elements while the right-
hand sides are the same values expressed as combinations of the input formulas,
expressed in terms of the names v

Example

groebnert({p1=2*x**2+4*y**2-100,p2=2*x-y+1});

GB1 := {2*X - Y + 1=P2,

2

9*Y - 2*Y - 199= - 2*X*P2 - Y*P2 + 2*P1 + P2}

14.50 preducet

PREDUCET Operator

preduce(p, {v = exp...})
where p is an expression, v are kernels (simple or indexed variables), exp are poly-
nomials.

preducet computes the remainder of p modulo {exp,...} similar to preduce, but
the result is an equation which expresses the remainder as combination of the
polynomials.

Example

GB2 := {G1=2*X - Y + 1,G2=9*Y**2 - 2*Y - 199}

preducet(q=x**2,gb2);

- 16*Y + 208= - 18*X*G1 - 9*Y*G1 + 36*Q + 9*G1 - G2

14.51 Groebner Bases for Modules

14.52 Module

MODULE Concept

Given a polynomial ring, e.g. R=Z[x,y,...] and an integer n¿1. The vectors with n
elements of R form a free MODULE under elementwise addition and multiplication
with elements of R.

For a submodule given by a finite basis a Groebner basis can be computed, and the
facilities of the GROEBNER package are available except the operators groebnerf
and groesolve. The vectors are encoded using auxiliary variables which represent
the unit vectors in the module. These are declared in the share variable gmodule.

14.53 gmodule

GMODULE Variable

The vectors of a free module over a polynomial ring R are encoded as linear combi-
nations with unit vectors of M which are represented by auxiliary variables. These
must be collected in the variable gmodule before any call to an operator of the
Groebner package.

torder({x,y,v1,v2,v3})$

gmodule := {v1,v2,v3}$

g:=groebner({x^2*v1 + y*v2,x*y*v1 - v3,2y*v1 + y*v3});

compute the Groebner basis of the submodule

([x^2,y,0],[xy,0,-1],[0,2y,y])

The members of the list gmodule are automatically appended to the end of the
variable list, if they are not yet members there. They take part in the actual term
ordering.

14.54 Computing with distributive polynomials

14.55 gsort

GSORT Operator

gsort(p)

where p is a polynomial or a list of polynomials.

The polynomials are reordered and sorted corresponding to the current term order.

Examples
torder lex;

gsort(x**2+2x*y+y**2,{y,x});

⇒ y**2+2y*x+x**2

14.56 gsplit

GSPLIT Operator

gsplit(p[, vars]);

where p is a polynomial or a list of polynomials.

The polynomial is reordered corresponding to the the current term order and then
separated into leading term and reductum. Result is a list with the leading term
as first and the reductum as second element.

Examples
torder lex;

gsplit(x**2+2x*y+y**2,{y,x});

⇒ {y**2,2y*x+x**2}

14.57 gspoly

GSPOLY Operator

gspoly(p1 , p2);

where p1 and p2 are polynomials.

The subtraction polynomial of p1 and p2 is computed corresponding to the
method of the Buchberger algorithm for computing groebner bases: p1 and p2
are multiplied with terms such that when subtracting them the leading terms cancel
each other.

15 High Energy Physics

15.1 HEPHYS

HEPHYS Introduction

The High-energy Physics package is historic for REDUCE, since REDUCE origi-
nated as a program to aid in computations with Dirac expressions. The commuta-
tion algebra of the gamma matrices is independent of their representation, and is a
natural subject for symbolic mathematics. Dirac theory is applied to β decay and
the computation of cross-sections and scattering. The high-energy physics opera-
tors are available in the REDUCE main program, rather than as a module which
must be loaded.

15.2 HE-dot

. Operator

The . operator is used to denote the scalar product of two Lorentz four-vectors.

vector . vector

vector must be an identifier declared to be of type vector to have the scalar product
definition. When applied to arguments that are not vectors, the cons operator is
used, whose symbol is also “dot.”

Examples
vector aa,bb,cc;

let aa.bb = 0;

aa.bb; ⇒ 0

aa.cc; ⇒ AA.CC

q := aa.cc; ⇒ Q := AA.CC

q; ⇒ AA.CC

Comments

Since vectors are special high-energy physics entities that do not contain values, the
. product will not return a true scalar product. You can assign a scalar identifier
to the result of a . operation, or assign a . operation to have the value of the scalar
you supply, as shown above. Note that the result of a . operation is a scalar, not a
vector.

The metric tensor g(u,v) can be represented by u.v. If contraction over the indices
is required, u and v should be declared to be of type index.

The dot operator has the highest precedence of the infix operators, so expressions
involving . and other operators have the scalar product evaluated first before other
operations are done.

15.3 EPS

EPS Operator

The eps operator denotes the completely antisymmetric tensor of order 4 and its

contraction with Lorentz four-vectors, as used in high-energy physics calculations.

eps(vector − expr , vector − expr , vector − expr , vector − expr)

vector-expr must be a valid vector expression, and may be an index.

Examples
vector g0,g1,g2,g3;

eps(g1,g0,g2,g3); ⇒ - EPS(G0,G1,G2,G3);

eps(g1,g2,g0,g3); ⇒ EPS(G0,G1,G2,G3);

eps(g1,g2,g3,g1); ⇒ 0

Comments

Vector identifiers are ordered alphabetically by REDUCE. When an odd number
of transpositions is required to restore the canonical order to the four arguments
of eps, the term is ordered and carries a minus sign. When an even number of
transpositions is required, the term is returned ordered and positive. When one
of the arguments is repeated, the value 0 is returned. A contraction of the form
εijµνpµqν is represented by eps(i,j,p,q) when i and j have been declared to be
of type index.

15.4 G

G Operator

g is an n-ary operator used to denote a product of gamma matrices contracted with

Lorentz four-vectors, in high-energy physics.

g(identifier , vector − expr{, vector − expr}∗)
identifier is a scalar identifier representing a fermion line identifier, vector-expr can
be any valid vector expression, representing a vector or a gamma matrix.

Examples
vector aa,bb,cc;

vector a;

g(line1,aa,bb); ⇒ AA.BB

g(line2,aa,a); ⇒ 0

g(id,aa,bb,cc); ⇒ 0

g(li1,aa,bb) + k; ⇒ AA.BB + K

let aa.bb = m*k;

g(ln1,aa)*g(ln1,bb); ⇒ K*M

g(ln1,aa)*g(ln2,bb); ⇒ 0

Comments

The vector A is reserved in arguments of g to denote the special gamma matrix γ5.
It must be declared to be a vector before you use it.

Gamma matrix expressions are associated with fermion lines in a Feynman diagram.
If more than one line occurs in an expression, the gamma matrices involved are
separate (operating in independent spin space), as shown in the last two example
lines above. A product of gamma matrices associated with a single line can be
entered either as a single g command with several vector arguments, or as products
of separate g commands each with a single argument.

While the product of vectors is not defined, the product, sum and difference of
several gamma expressions are defined, as is the product of a gamma expression

with a scalar. If an expression involving gamma matrices includes a scalar, the
scalar is treated as if it were the product of itself with a unit 4× 4 matrix.

Dirac expressions are evaluated by computing the trace of the expression using the
commutation algebra of gamma matrices. The algorithms used are described in
articles by J. S. R. Chisholm in Il Nuovo Cimento X, Vol. 30, p. 426, 1963, and
J. Kahane, Journal of Mathematical Physics, Vol. 9, p. 1732, 1968. The trace is
then divided by 4 to distinguish between the trace of a scalar and the trace of an
expression that is the product of a scalar with a unit 4× 4 matrix.

Trace calculations may be prevented over any line identifier by declaring it to be
nospur. If it is later desired to evaluate these traces, the declaration can be undone
with the spur declaration.

The notation of Bjorken and Drell, Relativistic Quantum Mechanics, 1964, is as-
sumed in all operations involving gamma matrices. For an example of the use of g
in a calculation, see the REDUCE User’s Manual .

15.5 INDEX

INDEX Declaration

The declaration index flags a four-vector as an index for subsequent high-energy

physics calculations.

index vector-id{,vector-id}∗
vector-id must have been declared of type vector.

Examples
vector aa,bb,cc;

index uu;

let aa.bb = 0;

(aa.uu)*(bb.uu); ⇒ 0

(aa.uu)*(cc.uu); ⇒ AA.CC

Comments

Index variables are used to represent contraction over components of vectors when
scalar products are taken by the . operator, as well as indicating contraction for
the eps operator or metric tensor.

The special status of a vector as an index can be revoked with the declaration
remind. The object remains a vector, however.

15.6 MASS

MASS Command

The mass command associates a scalar variable as a mass with the corresponding

vector variable, in high-energy physics calculations.

mass vector-var=scalar-var {,vector-var=scalar-var}∗
vector-var can be a declared vector variable; mass will declare it to be of type
vector if it is not. This may override an existing matrix variable by that name.
scalar-var must be a scalar variable.

Examples
vector bb,cc;

mass cc=m;

mshell cc;

cc.cc; ⇒ M
2

Comments

Once a mass has been attached to a vector with a mass declaration, the mshell

declaration puts the associated particle “on the mass shell.” Subsequent scalar
(.) products of the vector with itself will be replaced by the square of the mass
expression.

15.7 MSHELL

MSHELL Command

The mshell command puts particles on the mass shell in high-energy physics cal-

culations.

mshell vector-var{,vector-var}∗
vector-var must have had a mass attached to it by a mass declaration.

Examples
vector v1,v2;

mass v1=m,v2=q;

mshell v1;

v1.v1; ⇒ M
2

v2.v2; ⇒ V2.V2

mshell v2;

v1.v1*v2.v2; ⇒ M
2
*Q
2

Comments

Even though a mass is attached to a vector variable representing a particle, the
replacement does not take place until the mshell declaration is given for that
vector variable.

15.8 NOSPUR

NOSPUR Declaration

The nospur declaration prevents the trace calculation over the given line identifiers

in high-energy physics calculations.

nospur line-id{,line-id}∗
line-id is a scalar identifier that will be used as a line identifier.

Examples
vector a1,b1,c1;

g(line1,a1,b1)*g(line2,b1,c1);

⇒ A1.B1*B1.C1

nospur line2;

g(line1,a1,b1)*g(line2,b1,c1);

⇒ A1.B1*G(LINE2,B1,C1)

Comments

Nospur declarations can be removed by making the declaration spur.

15.9 REMIND

REMIND Declaration

The remind declaration removes the special status of its arguments as indices, which

was set in the index declaration, in high-energy physics calculations.

remind identifier{,identifier}∗
identifier must have been declared to be of type index.

15.10 SPUR

SPUR Declaration

The spur declaration removes the special exemption from trace calculations that

was declared by nospur, in high-energy physics calculations.

spur line-id{,line-id}∗
line-id must be a line-identifier that has previously been declared nospur.

15.11 VECDIM

VECDIM Command

The command vecdim changes the vector dimension from 4 to an arbitrary integer

or symbol. Used in high-energy physics calculations.

vecdim dimension

dimension must be either an integer or a valid scalar identifier that does not have
a floating-point value.

Comments

The eps operator and the γ5 symbol (A) are not properly defined in anything except
four dimensions and will print an error message if you use them that way. The other
high-energy physics operators should work without problem.

15.12 VECTOR

VECTOR Declaration

The vector declaration declares that its arguments are of type vector.

vector identifier{,identifier}∗
identifier must be a valid REDUCE identifier. It may have already been used for
a matrix, array, operator or scalar variable. After an identifier has been declared
to be a vector, it may not be used as a scalar variable.

Comments

Vectors are special entities for high-energy physics calculations. You cannot put
values into their coordinates; they do not have coordinates. They are legal argu-
ments for the high-energy physics operators eps, g and . (dot). Vector variables are
used to represent gamma matrices and gamma matrices contracted with Lorentz
4-vectors, since there are no Dirac variables per se in the system. Vectors do follow
the usual vector rules for arithmetic operations: + and - operate upon two or more
vectors, producing a vector; * and / cannot be used between vectors; the scalar
product is represented by the . operator; and the product of a scalar and vector
expression is well defined, and is a vector.

You can represent components of vectors by including representations of unit vectors
in your system. For instance, letting E0 represent the unit vector (1,0,0,0), the
command

V1.E0 := 0;

would set up the substitution of zero for the first component of the vector V1.

Identifiers that are declared by the index and mass declarations are automatically
declared to be vectors.

The following errors can occur in calculations using the high energy physics package:

A represents only gamma5 in vector expressions

You have tried to use A in some way other than gamma5 in a high-
energy physics expression.

Gamma5 not allowed unless vecdim is 4

You have used γ5 in a high-energy physics computation involving a
vector dimension other than 4.

ID has no mass

One of the arguments to mshell has had no mass assigned to it, in
high-energy physics calculations.

Missing arguments for G operator

A line symbol is missing in a gamma matrix expression in high-energy
physics calculations.

Unmatched index list

The parser has found unmatched indices during the evaluation of a
gamma matrix expression in high-energy physics calculations.

16 Numeric Package

16.1 Numeric Package

NUMERIC PACKAGE Introduction

The numeric package supplies algorithms based on approximation techniques of
numerical mathematics. The algorithms use the rounded mode arithmetic of RE-
DUCE, including the variable precision feature which is exploited in some algo-
rithms in an adaptive manner in order to reach the desired accuracy.

16.2 Interval

INTERVAL Type

Intervals are generally coded as lower bound and upper bound connected by the
operator .., usually associated to a variable in an equation.

var = (low ..high)

where var is a kernel and low , high are numbers or expression which evaluate to
numbers with low ¡=high.

Examples
x= (2.5 .. 3.5) ⇒

means that the variable x is taken in the range from 2.5 up to 3.5.

16.3 numeric accuracy

NUMERIC ACCURACY Concept

The keyword parameters accuracy=a and iterations=i, where aand i must be
positive integer numbers, control the iterative algorithms: the iteration is continued
until the local error is below 10**-a; if that is impossible within i steps, the iteration
is terminated with an error message. The values reached so far are then returned
as the result.

16.4 TRNUMERIC

TRNUMERIC Switch

Normally the algorithms produce only a minimum of printed output during their op-
eration. In cases of an unsuccessful or unexpected long operation a trace of the iteration

can be printed by setting trnumeric on.

16.5 num min

NUM MIN Operator

The Fletcher Reeves version of the steepest descent algorithms is used to find the
minimum of a function of one or more variables. The function must have continuous
partial derivatives with respect to all variables. The starting point of the search
can be specified; if not, random values are taken instead. The steepest descent
algorithms in general find only local minima.

num min(exp, var [= val][, var [= val]...[, accuracy = a][, iterations =
i])

or

num min(exp, {var [= val][, var [= val]...]}[, accuracy = a][, iterations =
i])

where exp is a function expression, var are the variables in exp and val are the
(optional) start values. For a and i see numeric accuracy.

Num min tries to find the next local minimum along the descending path starting
at the given point. The result is a list with the minimum function value as first
element followed by a list of equations, where the variables are equated to the
coordinates of the result point.

Examples
num_min(sin(x)+x/5, x) ⇒ {4.9489585606,{X=29.643767785}}

num_min(sin(x)+x/5, x=0) ⇒

{ - 1.3342267466,{X= - 1.7721582671}}

16.6 num solve

NUM SOLVE Operator

An adaptively damped Newton iteration is used to find an approximative root of a
function (function vector) or the solution of an equation (equation system). The
expressions must have continuous derivatives for all variables. A starting point for
the iteration can be given. If not given random values are taken instead. When
the number of forms is not equal to the number of variables, the Newton method
cannot be applied. Then the minimum of the sum of absolute squares is located
instead.

With complex on, solutions with imaginary parts can be found, if either the ex-
pression(s) or the starting point contain a nonzero imaginary part.

num solve(exp, var [= val][, accuracy = a][, iterations = i])

or

num solve({exp, ..., exp}, var [= val], ..., var [= val][, accuracy = a][, iterations =
i])

or

num solve({exp, ..., exp}, {var [= val], ..., var [= val]}[, accuracy = a][, iterations =
i])

where exp are function expressions, var are the variables, val are optional start
values. For a and i see numeric accuracy.

num solve tries to find a zero/solution of the expression(s). Result is a list of
equations, where the variables are equated to the coordinates of the result point.

The Jacobian matrix is stored as side effect the shared variable jacobian.

Examples
num_solve({sin x=cos y, x + y = 1},{x=1,y=2});

⇒ {X= - 1.8561957251,Y=2.856195584}

jacobian; ⇒ [COS(X) SIN(Y)]

[]

[1 1]

16.7 num int

NUM INT Operator

For the numerical evaluation of univariate integrals over a finite interval the fol-
lowing strategy is used: If int finds a formal antiderivative which is bounded in
the integration interval, this is evaluated and the end points and the difference is
returned. Otherwise a Chebyshev fit is computed, starting with order 20, even-
tually up to order 80. If that is recognized as sufficiently convergent it is used for
computing the integral by directly integrating the coefficient sequence. If none of
these methods is successful, an adaptive multilevel quadrature algorithm is used.

For multivariate integrals only the adaptive quadrature is used. This algorithm
tolerates isolated singularities. The value iterations here limits the number of
local interval intersection levels. a is a measure for the relative total discretization
error (comparison of order 1 and order 2 approximations).

num int(exp, var =(l .. u)[, var =(l .. u), ...][, accuracy = a][, iterations =
i])

where exp is the function to be integrated, var are the integration variables, l are
the lower bounds, u are the upper bounds.

Result is the value of the integral.

Examples
num_int(sin x,x=(0 .. 3.1415926));

⇒ 2.0000010334

16.8 num odesolve

NUM ODESOLVE Operator

The Runge-Kutta method of order 3 finds an approximate graph for the solution
of real ODE initial value problem.

num odesolve(exp, depvar = start , indep =(from .. to)[, accuracy =
a][, iterations = i])

or

num odesolve({exp, exp, ...}, {depvar = start , depvar = start , ...}indep =(from
.. to)[, accuracy = a][, iterations = i])

where depvar and start specify the dependent variable(s) and the starting point
value (vector), indep, from and to specify the independent variable and the inte-
gration interval (starting point and end point), exp are equations or expressions
which contain the first derivative of the independent variable with respect to the
dependent variable.

The ODEs are converted to an explicit form, which then is used for a Runge Kutta
iteration over the given range. The number of steps is controlled by the value of
i (default: 20). If the steps are too coarse to reach the desired accuracy in the
neighborhood of the starting point, the number is increased automatically.

Result is a list of pairs, each representing a point of the approximate solution of
the ODE problem.

Examples
depend(y,x);

num_odesolve(df(y,x)=y,y=1,x=(0 .. 1), iterations=5);

⇒

{0.0,1.0},{0.2,1.2214},{0.4,1.49181796},{0.6,1.8221064563}, {0.8,2.2255208258},{1.0,2.7182511366}}

In most cases you must declare the dependency relation between the variables
explicitly using depend; otherwise the formal derivative might be converted to zero.

The operator solve is used to convert the form into an explicit ODE. If that process
fails or if it has no unique result, the evaluation is stopped with an error message.

16.9 bounds

BOUNDS Operator

Upper and lower bounds of a real valued function over an interval or a rectangular
multivariate domain are computed by the operator bounds. The algorithmic basis is
the computation with inequalities: starting from the interval(s) of the variables, the
bounds are propagated in the expression using the rules for inequality computation.
Some knowledge about the behavior of special functions like ABS, SIN, COS, EXP,
LOG, fractional exponentials etc. is integrated and can be evaluated if the operator
bounds is called with rounded mode on (otherwise only algebraic evaluation rules
are available).

If bounds finds a singularity within an interval, the evaluation is stopped with an
error message indicating the problem part of the expression.

bounds(exp, var =(l .. u)[, var =(l .. u)...])

or

bounds(exp, {var =(l .. u)[, var =(l .. u)...]})
where exp is the function to be investigated, var are the variables of exp, l and u
specify the area as set of intervals.

bounds computes upper and lower bounds for the expression in the given area. An
interval is returned.

Examples
bounds(sin x,x=(1 .. 2)); ⇒ -1 .. 1

on rounded;

bounds(sin x,x=(1 .. 2)); ⇒ 0.84147098481 .. 1

bounds(x**2+x,x=(-0.5 .. 0.5));

⇒ - 0.25 .. 0.75

16.10 Chebyshev fit

CHEBYSHEV FIT Concept

The operator family Chebyshev ... implements approximation and evaluation of
functions by the Chebyshev method. Let T(n,a,b,x) be the Chebyshev polyno-
mial of order n transformed to the interval (a,b). Then a function f(x) can be
approximated in (a,b) by a series

for i := 0:n sum c(i)*T(i,a,b,x)

The operator chebyshev fit computes this approximation and returns a list, which
has as first element the sum expressed as a polynomial and as second element the
sequence of Chebyshev coefficients. Chebyshev df and Chebyshev int transform
a Chebyshev coefficient list into the coefficients of the corresponding derivative or
integral respectively. For evaluating a Chebyshev approximation at a given point
in the basic interval the operator Chebyshev eval can be used. Chebyshev eval

is based on a recurrence relation which is in general more stable than a direct
evaluation of the complete polynomial.

chebyshev fit(fcn, var =(lo .. hi), n)

chebyshev eval(coeffs , var =(lo .. hi), var = pt)

chebyshev df(coeffs , var =(lo .. hi))

chebyshev int(coeffs , var =(lo .. hi))

where fcn is an algebraic expression (the target function), var is the variable of fcn,
lo and hi are numerical real values which describe an interval lo ¡ hi , the integer
n is the approximation order (set to 20 if missing), pt is a number in the interval
and coeffs is a series of Chebyshev coefficients.

Examples
on rounded;

w:=chebyshev_fit(sin x/x,x=(1 .. 3),5);

⇒

w := {0.03824*x
3

- 0.2398*x
2

+ 0.06514*x + 0.9778,

{0.8991,-0.4066,-0.005198,0.009464,-0.00009511}}

chebyshev_eval(second w, x=(1 .. 3), x=2.1);

⇒ 0.4111

16.11 num fit

NUM FIT Operator

The operator num fit finds for a set of points the linear combination of a given
set of functions (function basis) which approximates the points best under the
objective of the least squares criterion (minimum of the sum of the squares of
the deviation). The solution is found as zero of the gradient vector of the sum of
squared errors.

num fit(vals , basis , var = pts)

where vals is a list of numeric values, var is a variable used for the approximation,
pts is a list of coordinate values which correspond to var , basis is a set of functions
varying in var which is used for the approximation.

The result is a list containing as first element the function which approximates the
given values, and as second element a list of coefficients which were used to build
this function from the basis.

Examples
pts:=for i:=1 step 1 until 5 collect i$

vals:=for i:=1 step 1 until 5 collect

for j:=1:i product j$

num_fit(vals,{1,x,x**2},x=pts);

⇒

{14.571428571*X
2

- 61.428571429*X + 54.6,{54.6,

- 61.428571429,14.571428571}}

17 Roots Package

17.1 Roots Package

ROOTS PACKAGE Introduction

The root finding package is designed so that it can be used to find some or all of the
roots of univariate polynomials with real or complex coefficients, to the accuracy
specified by the user.

Not all operators of roots package are described here. For using the operators

isolater (intervals isolating real roots)

rlrootno (number of real roots in an interval)

rootsat-prec (roots at system precision)

rootval (result in equation form)

firstroot (computing only one root)

getroot (selecting roots from a collection)

please consult the full documentation of the package.

17.2 MKPOLY

MKPOLY Operator

Given a roots list as returned by roots, the operator mkpoly constructs a polyno-

mial which has these numbers as roots.

mkpoly rl

where rl is a list with equations, which all have the same kernel on their left-hand
sides and numbers as right-hand sides.

Examples
mkpoly{x=1,x=-2,x=i,x=-i}; ⇒ x**4 + x**3 - x**2 + x - 2

Note that this polynomial is unique only up to a numeric factor.

17.3 NEARESTROOT

NEARESTROOT Operator

The operator nearestroot finds one root of a polynomial with an iteration using
a given starting point.

nearestroot(p pt)

where p is a univariate polynomial and pt is a number.

Examples
nearestroot(x^2+2,2); ⇒ {x=1.41421*i}

The minimal accuracy of the result values is controlled by rootacc.

17.4 REALROOTS

REALROOTS Operator

The operator realroots finds that real roots of a polynomial to an accuracy that
is sufficient to separate them and which is a minimum of 6 decimal places.

realroots(p) or
realroots(p from, to)

where p is a univariate polynomial. The optional parameters from and to classify
an interval: if given, exactly the real roots in this interval will be returned. from
and to can also take the values infinity or -infinity. If omitted all real roots
will be returned. Result is a list of equations which represent the roots of the
polynomial at the given accuracy.

Examples
realroots(x^5-2); ⇒ {x=1.1487}

realroots(x^3-104*x^2+403*x-300,2,infinity);

⇒ {x=3.0,x=100.0}

realroots(x^3-104*x^2+403*x-300,-infinity,2);

⇒ {x=1}

The minimal accuracy of the result values is controlled by rootacc.

17.5 ROOTACC

ROOTACC Operator

The operator rootacc allows you to set the accuracy up to which the roots package

computes its results.

rootacc(n)

Here n is an integer value. The internal accuracy of the roots package is adjusted
to a value of max(6,n). The default value is 6.

17.6 ROOTS

ROOTS Operator

The operator roots is the main top level function of the roots package. It will find
all roots, real and complex, of the polynomial p to an accuracy that is sufficient to
separate them and which is a minimum of 6 decimal places.

roots(p)

where p is a univariate polynomial. Result is a list of equations which represent
the roots of the polynomial at the given accuracy. In addition, roots stores sep-
arate lists of real roots and complex roots in the global variables rootsreal and
rootscomplex.

Examples
roots(x^5-2); ⇒ {x=-0.929316 + 0.675188*i,

x=-0.929316 - 0.675188*i,

x=0.354967 + 1.09248*i,

x=0.354967 - 1.09248*i,

x=1.1487}

The minimal accuracy of the result values is controlled by rootacc.

17.7 ROOT VAL

ROOT VAL Operator

The operator root val computes the roots of a univariate polynomial at system

precision (or greater if required for root separation) and presents its result as a list

of numbers.

roots(p)

where p is a univariate polynomial.

Examples
root_val(x^5-2); ⇒ {-0.929316490603 + 0.6751879524*i,

-0.929316490603 - 0.6751879524*i,

0.354967313105 + 1.09247705578*i,

0.354967313105 - 1.09247705578*i,

1.148698355}

17.8 ROOTSCOMPLEX

ROOTSCOMPLEX Variable

When the operator roots is called the complex roots are collected in the global
variable rootscomplex as list.

17.9 ROOTSREAL

ROOTSREAL Variable

When the operator roots is called the real roots are collected in the global variable
rootreal as list.

18 Special Functions

18.1 Special Function Package

SPECIAL FUNCTION PACKAGE Introduction

The REDUCE Special Function Package supplies extended algebraic and nu-
meric support for a wide class of objects. This package was released together with
REDUCE 3.5 (October 1993) for the first time, a major update is released with
REDUCE 3.6.

The functions included in this package are in most cases (unless otherwise stated)
defined and named like in the book by Abramowitz and Stegun: Handbook of
Mathematical Functions, Dover Publications.

The aim is to collect as much information on the special functions and simplification
capabilities as possible, i.e. algebraic simplifications and numeric (rounded mode)
code, limits of the functions together with the definitions of the functions, which
are in most cases a power series, a (definite) integral and/or a differential equation.

What can be found: Some famous constants, a variety of Bessel functions, special
polynomials, the Gamma function, the (Riemann) Zeta function, Elliptic Functions,
Elliptic Integrals, 3J symbols (Clebsch-Gordan coefficients) and integral functions.

What is missing: Mathieu functions, LerchPhi, etc.. The information about the
special functions which solve certain differential equation is very limited. In several
cases numerical approximation is restricted to real arguments or is missing com-
pletely.

The implementation of this package uses REDUCE rule sets to a large extent,
which guarantees a high ’readability’ of the functions definitions in the source file
directory. It makes extensions to the special functions code easy in most cases too.

To look at these rules it may be convenient to use the showrules operator e.g.

showrules Besseli;
.

Some evaluations are improved if the special function package is loaded, e.g. some
(infinite) sums and products leading to expressions including special functions are
known in this case.

Note: The special function package has to be loaded explicitly by calling

load_package specfn;

The functions MeijerG and hypergeometric require additionally

load_package specfn2;

18.2 Constants

CONSTANTS Concept

There are a few constants known to the special function package, namely

Euler’s constant (which can be computed as -Psi(1)) and

Khinchin’s constant (which is defined in Khinchin’s book “Continued Fractions”) and

Golden Ratio (which can be computed as (1 + sqrt 5)/2) and

Catalan’s constant (which is known as an infinite sum of reciprocal powers)

Examples
on rounded; Euler_Gamma; ⇒ 0.577215664902

Khinchin; ⇒ 2.68545200107

Catalan ⇒ 0.915965594177

Golden_Ratio ⇒ 1.61803398875

18.3 Bernoulli Euler Zeta

18.4 BERNOULLI

BERNOULLI Operator

The bernoulli operator returns the nth Bernoulli number.

Bernoulli(integer)

Examples
bernoulli 20; ⇒ - 174611 / 330

bernoulli 17; ⇒ 0

Comments

All Bernoulli numbers with odd indices except for 1 are zero.

18.5 BERNOULLIP

BERNOULLIP Operator

The BernoulliP operator returns the nth Bernoulli Polynomial evaluated at x.

BernoulliP(integer , expression)

Examples

BernoulliP(3,z); ⇒ z*(2*z
2
- 3*z + 1)/2

BernoulliP(10,3); ⇒ 338585 / 66

Comments

The value of the nth Bernoulli Polynomial at 0 is the nth Bernoulli number.

18.6 EULER

EULER Operator

The EULER operator returns the nth Euler number.

Euler(integer)

Examples
Euler 20; ⇒ 370371188237525

Euler 0; ⇒ 1

Comments

The Euler numbers are evaluated by a recursive algorithm which makes it hard to
compute Euler numbers above say 200.

Euler numbers appear in the coefficients of the power series representation of
1/cos(z).

18.7 EULERP

EULERP Operator

The EulerP operator returns the nth Euler Polynomial.

EulerP(integer , expression)

Examples
EulerP(2,xx); ⇒ xx*(xx - 1)

EulerP(10,3); ⇒ 2046

Comments

The Euler numbers are the values of the Euler Polynomials at 1/2 multiplied by
2**n.

18.8 ZETA

ZETA Operator

The Zeta operator returns Riemann’s Zeta function,

Zeta (z) := sum(1/(k**z),k,1,infinity)

Zeta(expression)

Examples

Zeta(2); ⇒ pi
2
/ 6

on rounded;

Zeta 1.01; ⇒ 100.577943338

Comments

Numerical computation for the Zeta function for arguments close to 1 are tedious,
because the series is converging very slowly. In this case a formula (e.g. found
in Bender/Orzag: Advanced Mathematical Methods for Scientists and Engineers,
McGraw-Hill) is used.

No numerical approximation for complex arguments is done.

18.9 Bessel Functions

18.10 BESSELJ

BESSELJ Operator

The BesselJ operator returns the Bessel function of the first kind.

BesselJ(order , argument)

Examples
BesselJ(1/2,pi); ⇒ 0

on rounded;

BesselJ(0,1); ⇒ 0.765197686558

18.11 BESSELY

BESSELY Operator

The BesselY operator returns the Bessel function of the second kind.

BesselY(order , argument)

Examples
BesselY (1/2,pi); ⇒ - sqrt(2) / pi

on rounded;

BesselY (1,3); ⇒ 0.324674424792

Comments

The operator BesselY is also called Weber’s function.

18.12 HANKEL1

HANKEL1 Operator

The Hankel1 operator returns the Hankel function of the first kind.

Hankel1(order , argument)

Examples
on complex;

Hankel1 (1/2,pi); ⇒ - i * sqrt(2) / pi

Hankel1 (1,pi); ⇒ besselj(1,pi) + i*bessely(1,pi)

Comments

The operator Hankel1 is also called Bessel function of the third kind. There is
currently no numeric evaluation of Hankel functions.

18.13 HANKEL2

HANKEL2 Operator

The Hankel2 operator returns the Hankel function of the second kind.

Hankel2(order , argument)

Examples
on complex;

Hankel2 (1/2,pi); ⇒ - i * sqrt(2) / pi

Hankel2 (1,pi); ⇒ besselj(1,pi) - i*bessely(1,pi)

Comments

The operator Hankel2 is also called Bessel function of the third kind. There is
currently no numeric evaluation of Hankel functions.

18.14 BESSELI

BESSELI Operator

The BesselI operator returns the modified Bessel function I.

BesselI(order , argument)

Examples
on rounded;

Besseli (1,1); ⇒ 0.565159103992

Comments

The knowledge about the operator BesselI is currently fairly limited.

18.15 BESSELK

BESSELK Operator

The BesselK operator returns the modified Bessel function K.

BesselK(order , argument)

Examples
df(besselk(0,x),x); ⇒ - besselk(1,x)

Comments

There is currently no numeric support for the operator BesselK.

18.16 StruveH

STRUVEH Operator

The StruveH operator returns Struve’s H function.

StruveH(order , argument)

Examples
struveh(-3/2,x); ⇒ - besselj(3/2,x) / i

18.17 StruveL

STRUVEL Operator

The StruveL operator returns the modified Struve L function .

StruveL(order , argument)

Examples
struvel(-3/2,x); ⇒ besseli(3/2,x)

18.18 KummerM

KUMMERM Operator

The KummerM operator returns Kummer’s M function.

KummerM(parameter , parameter , argument)

Examples

kummerm(1,1,x); ⇒ e
x

on rounded;

kummerm(1,3,1.3); ⇒ 1.62046942914

Comments

Kummer’s M function is one of the Confluent Hypergeometric functions. For ref-
erence see the hypergeometric operator.

18.19 KummerU

KUMMERU Operator

The KummerU operator returns Kummer’s U function.

KummerU(parameter , parameter , argument)

Examples
df(kummeru(1,1,x),x) ⇒ - kummeru(2,2,x)

Comments

Kummer’s U function is one of the Confluent Hypergeometric functions. For refer-
ence see the hypergeometric operator.

18.20 WhittakerW

WHITTAKERW Operator

The WhittakerW operator returns Whittaker’s W function.

WhittakerW(parameter , parameter , argument)

Examples

WhittakerW(2,2,2); ⇒
4*sqrt(2)*kummeru(

1

2
,5,2)

e

Comments

Whittaker’s W function is one of the Confluent Hypergeometric functions. For
reference see the hypergeometric operator.

18.21 Airy Functions

18.22 Airy Ai

AIRY AI Operator

The Airy Ai operator returns the Airy Ai function for a given argument.

Airy Ai(argument)

Examples
on complex; on rounded; Airy_Ai(0);

⇒ 0.355028053888

Airy_Ai(3.45 + 17.97i); ⇒

- 5.5561528511e+9 - 8.80397899932e+9*i

18.23 Airy Bi

AIRY BI Operator

The Airy Bi operator returns the Airy Bi function for a given argument.

Airy Bi(argument)

Examples
Airy_Bi(0); ⇒ 0.614926627446

Airy_Bi(3.45 + 17.97i); ⇒

8.80397899932e+9 - 5.5561528511e+9*i

18.24 Airy Aiprime

AIRY AIPRIME Operator

The Airy Aiprime operator returns the Airy Aiprime function for a given argument.

Airy Aiprime(argument)

Examples
Airy_Aiprime(0); ⇒ - 0.258819403793

Airy_Aiprime(3.45+17.97i); ⇒

- 3.83386421824e+19 + 2.16608828136e+19*i

18.25 Airy Biprime

AIRY BIPRIME Operator

The Airy Biprime operator returns the Airy Biprime function for a given argument.

Airy Biprime(argument)

Examples
Airy_Biprime(0); ⇒

Airy_Biprime(3.45 + 17.97i);

⇒

3.84251916792e+19 - 2.18006297399e+19*i

18.26 Jacobi’s Elliptic Functions and Elliptic In-
tegrals

18.27 JacobiSN

JACOBISN Operator

The Jacobisn operator returns the Jacobi Elliptic function sn.

Jacobisn(expression, integer)

Examples
Jacobisn(0.672, 0.36) ⇒ 0.609519691792

Jacobisn(1,0.9) ⇒ 0.770085724907881

18.28 JacobiCN

JACOBICN Operator

The Jacobicn operator returns the Jacobi Elliptic function cn.

Jacobicn(expression, integer)

Examples
Jacobicn(7.2, 0.6) ⇒ 0.837288298482018

Jacobicn(0.11, 19) ⇒

0.994403862690043 - 1.6219006985556e-16*i

18.29 JacobiDN

JACOBIDN Operator

The Jacobidn operator returns the Jacobi Elliptic function dn.

Jacobidn(expression, integer)

Examples
Jacobidn(15, 0.683) ⇒ 0.640574162024592

Jacobidn(0,0) ⇒ 1

18.30 JacobiCD

JACOBICD Operator

The Jacobicd operator returns the Jacobi Elliptic function cd.

Jacobicd(expression, integer)

Examples
Jacobicd(1, 0.34) ⇒ 0.657683337805273

Jacobicd(0.8,0.8) ⇒ 0.925587311582301

18.31 JacobiSD

JACOBISD Operator

The Jacobisd operator returns the Jacobi Elliptic function sd.

Jacobisd(expression, integer)

Examples
Jacobisd(12, 0.4) ⇒ 0.357189729437272

Jacobisd(0.35,1) ⇒ - 1.17713873203043

18.32 JacobiND

JACOBIND Operator

The Jacobind operator returns the Jacobi Elliptic function nd.

Jacobind(expression, integer)

Examples
Jacobind(0.2, 17) ⇒

1.46553203037507 + 0.0000000000334032759313703*i

Jacobind(30, 0.001) ⇒ 1.00048958438

18.33 JacobiDC

JACOBIDC Operator

The Jacobidc operator returns the Jacobi Elliptic function dc.

Jacobidc(expression, integer)

Examples
Jacobidc(0.003,1) ⇒ 1

Jacobidc(2, 0.75) ⇒ 6.43472885111

18.34 JacobiNC

JACOBINC Operator

The Jacobinc operator returns the Jacobi Elliptic function nc.

Jacobinc(expression, integer)

Examples
Jacobinc(1,0) ⇒ 1.85081571768093

Jacobinc(56, 0.4387) ⇒ 39.304842663512

18.35 JacobiSC

JACOBISC Operator

The Jacobisc operator returns the Jacobi Elliptic function sc.

Jacobisc(expression, integer)

Examples
Jacobisc(9, 0.88) ⇒ - 1.16417697982095

Jacobisc(0.34, 7) ⇒

0.305851938390775 - 9.8768100944891e-12*i

18.36 JacobiNS

JACOBINS Operator

The Jacobins operator returns the Jacobi Elliptic function ns.

Jacobins(expression, integer)

Examples
Jacobins(3, 0.9) ⇒ 1.00945801599785

Jacobins(0.887, 15) ⇒

0.683578280513975 - 0.85023411082469*i

18.37 JacobiDS

JACOBIDS Operator

The Jacobisn operator returns the Jacobi Elliptic function ds.

Jacobids(expression, integer)

Examples
Jacobids(98,0.223) ⇒ - 1.061253961477

Jacobids(0.36,0.6) ⇒ 2.76693172243692

18.38 JacobiCS

JACOBICS Operator

The Jacobics operator returns the Jacobi Elliptic function cs.

Jacobics(expression, integer)

Examples
Jacobics(0, 0.767) ⇒ infinity

Jacobics(1.43, 0) ⇒ 0.141734127352112

18.39 JacobiAMPLITUDE

JACOBIAMPLITUDE Operator

The JacobiAmplitude operator returns the amplitude of u.

JacobiAmplitude(expression, integer)

Examples
JacobiAmplitude(7.239, 0.427)

⇒ 0.0520978301448978

JacobiAmplitude(0,0.1) ⇒ 0

Comments

Amplitude u = asin(Jacobisn(u,m))

18.40 AGM FUNCTION

AGM FUNCTION Operator

The AGM function operator returns a list of (N, AGM, list of aNtoa0, list of bNtob0,
list of cNtoc0) where a0, b0 and c0 are the initial values; N is the index number of
the last term used to generate the AGM. AGM is the Arithmetic Geometric Mean.

AGM function(integer , integer , integer)

Examples
AGM_function(1,1,1) ⇒ 1,1,1,1,1,1,0,1

AGM_function(1, 0.1, 1.3) ⇒

{6,

2.27985615996629,

{2.27985615996629, 2.27985615996629,

2.2798561599706, 2.2798624278857,

2.28742283656583, 2.55, 1},

{2.27985615996629, 2.27985615996629,

2.27985615996198, 2.2798498920555,

2.27230201920557, 2.02484567313166, 4.1},

{0, 4.30803136219904e-12, 0.0000062679151007581,

0.00756040868012758, 0.262577163434171, - 1.55, 5.9}}

Comments

The other Jacobi functions use this function with initial values a0=1, b0=sqrt(1-m),
c0=sqrt(m).

18.41 LANDENTRANS

LANDENTRANS Operator

The landentrans operator generates the descending landen transformation of the

given imput values, returning a list of these values; initial to final in each case.

landentrans(expression, integer)

Examples
landentrans(0,0.1) ⇒

{{0,0,0,0,0},{0.1,0.0025041751943776,

⇒

0.00000156772498954046,6.1444078 9914461e-13,0}}

Comments

The first list ascends in value, and the second descends in value.

18.42 EllipticF

ELLIPTICF Operator

The EllipticF operator returns the Elliptic Integral of the First Kind.

EllitpicF(expression, integer)

Examples
EllipticF(0.3, 8.222) ⇒ 0.3

EllipticF(7.396, 0.1) ⇒ 7.58123216114307

Comments

The Complete Elliptic Integral of the First Kind can be found by putting the first
argument to pi/2 or by using EllipticK and the second argument.

18.43 EllipticK

ELLIPTICK Operator

The EllipticK operator returns the Elliptic value K.

EllipticK(integer)

Examples
EllipticK(0.2) ⇒ 1.65962359861053

EllipticK(4.3) ⇒

0.808442364282734 - 1.05562492399206*i

EllipticK(0.000481) ⇒ 1.57098526617635

Comments

The EllipticK function is the Complete Elliptic Integral of the First Kind.

18.44 EllipticKprime

ELLIPTICKPRIME Operator

The EllipticK’ operator returns the Elliptic value K(m).

EllipticKprime(integer)

Examples
EllipticKprime(0.2) ⇒ 2.25720532682085

EllipticKprime(4.3) ⇒ 1.05562492399206

EllipticKprime(0.000481) ⇒ 5.206621921966

Comments

The EllipticKprime function is the Complete Elliptic Integral of the First Kind
of (1-m).

18.45 EllipticE

ELLIPTICE Operator

The EllipticE operator used with two arguments returns the Elliptic Integral of

the Second Kind.

EllipticE(expression, integer)

Examples
EllipticE(1.2,0.22) ⇒ 1.15094019180949

EllipticE(0,4.35) ⇒ 0

EllipticE(9,0.00719) ⇒ 8.98312465929145

Comments

The Complete Elliptic Integral of the Second Kind can be obtained by using just
the second argument, or by using pi/2 as the first argument.

The EllipticE operator used with one argument returns the Elliptic value E.

EllipticE(integer)

Examples
EllipticE(0.22) ⇒ 1.48046637439519

EllipticE(pi/2, 0.22) ⇒ 1.48046637439519

18.46 EllipticTHETA

ELLIPTICTHETA Operator

The EllipticTheta operator returns one of the four Theta functions. It cannot
except any number other than 1,2,3 or 4 as its first argument.

EllipticTheta(integer , expression, integer)

Examples
EllipticTheta(1, 1.4, 0.72) ⇒ 0.91634775373

EllipticTheta(2, 3.9, 6.1) ⇒ -48.0202736969 + 20.9881034377 i

EllipticTheta(3, 0.67, 0.2) ⇒ 1.0083077448

EllipticTheta(4, 8, 0.75) ⇒ 0.894963369304

EllipticTheta(5, 1, 0.1) ⇒

***** In EllipticTheta(a,u,m); a = 1,2,3 or 4.

Comments

Theta functions are important because every one of the Jacobian Elliptic functions
can be expressed as the ratio of two theta functions.

18.47 JacobiZETA

JACOBIZETA Operator

The JacobiZeta operator returns the Jacobian function Zeta.

JacobiZeta(expression, integer)

Examples
JacobiZeta(3.2, 0.8) ⇒ - 0.254536403439

JacobiZeta(0.2, 1.6) ⇒

0.171766095970451 - 0.0717028569800147*i

Comments

The Jacobian function Zeta is related to the Jacobian function Theta. But it is
significantly different from Riemann’s Zeta Function Zeta.

18.48 Gamma and Related Functions

18.49 POCHHAMMER

POCHHAMMER Operator

The Pochhammer operator implements the Pochhammer notation (shifted factorial).

Pochhammer(expression, expression)

Examples
pochhammer(17,4); ⇒ 116280

pochhammer(1/2,z); ⇒
factorial(2*z)

(2
2*z

*factorial(z))

Comments

A number of complex rules for Pochhammer are inactive, because they cause a huge
system load in algebraic mode. If one wants to use more rules for the simplification
of Pochhammer’s notation, one can do:
let special!*pochhammer!*rules;

18.50 GAMMA

GAMMA Operator

The Gamma operator returns the Gamma function.

Gamma(expression)

Examples
gamma(10); ⇒ 362880

gamma(1/2); ⇒ sqrt(pi)

18.51 BETA

BETA Operator

The Beta operator returns the Beta function defined by

Beta (z,w) := defint(t**(z-1)* (1 - t)**(w-1),t,0,1) .

Beta(expression, expression)

Examples
Beta(2,2); ⇒ 1 / 6

Beta(x,y); ⇒ gamma(x)*gamma(y) / gamma(x + y)

Comments

The operator Beta is simplified towards the GAMMA operator.

18.52 PSI

PSI Operator

The Psi operator returns the Psi (or DiGamma) function.

Psi(x) := df(Gamma(z),z)/ Gamma (z)

Gamma(expression)

Examples
Psi(3); ⇒

(2*log(2) + psi(1/2) + psi(1) + 3)/2

on rounded;

- Psi(1); ⇒ 0.577215664902

Comments

Euler’s constant can be found as - Psi(1).

18.53 POLYGAMMA

POLYGAMMA Operator

The Polygamma operator returns the Polygamma function.

Polygamma(n,x) := df(Psi(z),z,n);

Polygamma(integer , expression)

Examples

Polygamma(1,2); ⇒ (pi
2
- 6) / 6

on rounded;

Polygamma(1,2.35); ⇒ 0.52849689109

Comments

The Polygamma function is used for simplification of the ZETA function for some
arguments.

18.54 Miscellaneous Functions

18.55 DILOG extended

DILOG EXTENDED Operator

The package specfn supplies an extended support for the dilog operator which
implements the dilogarithm function.

dilog(x) := - defint(log(t)/(t - 1),t,1,x);

Dilog(order , expression)

Examples
defint(log(t)/(t - 1),t,1,x);

⇒ - dilog (x)

dilog 2; ⇒ - pi
2
/12

on rounded;

Dilog 20; ⇒ - 5.92783972438

Comments

The operator Dilog is sometimes called Spence’s Integral for n = 2.

18.56 Lambert W function

LAMBERT W FUNCTION Operator

Lambert’s W function is the inverse of the function w * e**w. It is used in the
solve package for equations containing exponentials and logarithms.

Lambert W(z)

Examples
Lambert_W(-1/e); ⇒ -1

solve(w + log(w),w); ⇒ w=lambert w(1)

on rounded;

Lambert_W(-0.05); ⇒ - 0.0527059835515

Comments

The current implementation will compute the principal branch in rounded mode
only.

18.57 Orthogonal Polynomials

18.58 ChebyshevT

CHEBYSHEVT Operator

The ChebyshevT operator computes the nth Chebyshev T Polynomial (of the first
kind).

ChebyshevT(integer , expression)

Examples

ChebyshevT(3,xx); ⇒ xx*(4*xx
2
- 3)

ChebyshevT(3,4); ⇒ 244

Comments

Chebyshev’s T polynomials are computed using the recurrence relation:

ChebyshevT(n,x) := 2x*ChebyshevT(n-1,x) - ChebyshevT(n-2,x) with
ChebyshevT(0,x) := 0 and ChebyshevT(1,x) := x

18.59 ChebyshevU

CHEBYSHEVU Operator

The ChebyshevU operator returns the nth Chebyshev U Polynomial (of the second
kind).

ChebyshevU(integer , expression)

Examples

ChebyshevU(3,xx); ⇒ 4*x*(2*x
2
- 1)

ChebyshevU(3,4); ⇒ 496

Comments

Chebyshev’s U polynomials are computed using the recurrence relation:

ChebyshevU(n,x) := 2x*ChebyshevU(n-1,x) - ChebyshevU(n-2,x) with
ChebyshevU(0,x) := 0 and ChebyshevU(1,x) := 2x

18.60 HermiteP

HERMITEP Operator

The HermiteP operator returns the nth Hermite Polynomial.

HermiteP(integer , expression)

Examples

HermiteP(3,xx); ⇒ 4*xx*(2*xx
2
- 3)

HermiteP(3,4); ⇒ 464

Comments

Hermite polynomials are computed using the recurrence relation:
HermiteP(n,x) := 2x*HermiteP(n-1,x) - 2*(n-1)*HermiteP(n-2,x) with
HermiteP(0,x) := 1 and HermiteP(1,x) := 2x

18.61 LaguerreP

LAGUERREP Operator

The LaguerreP operator computes the nth Laguerre Polynomial. The two argument
call of LaguerreP is a (common) abbreviation of LaguerreP(n,0,x).

LaguerreP(integer , expression) or
LaguerreP(integer , expression, expression)

Examples

LaguerreP(3,xx); ⇒ (- xx
3
+ 9*xx

2
- 18*xx + 6)/6

LaguerreP(2,3,4); ⇒ -2

Comments

Laguerre polynomials are computed using the recurrence relation:

LaguerreP(n,a,x) := (2n+a-1-x)/n*LaguerreP(n-1,a,x) - (n+a-1) * LaguerreP(n-
2,a,x) with

LaguerreP(0,a,x) := 1 and LaguerreP(2,a,x) := -x+1+a

18.62 LegendreP

LEGENDREP Operator

The binary LegendreP operator computes the nth Legendre Polynomial which is a
special case of the nth Jacobi Polynomial with

LegendreP(n,x) := JacobiP(n,0,0,x)

The ternary form returns the associated Legendre Polynomial (see below).

LegendreP(integer , expression) or
LegendreP(integer , expression, expression)

Examples

LegendreP(3,xx); ⇒
xx*(5*xx

2
- 3)

2

LegendreP(3,2,xx); ⇒ 15*xx*(- xx
2
+ 1)

Comments

The ternary form of the operator LegendreP is the associated Legendre Polynomial
defined as

P(n,m,x) = (-1)**m * (1-x**2)**(m/2) * df(LegendreP(n,x),x,m)

18.63 JacobiP

JACOBIP Operator

The JacobiP operator computes the nth Jacobi Polynomial.

JacobiP(integer , expression, expression, expression)

Examples

JacobiP(3,4,5,xx); ⇒
7*(65*xx

3
- 13*xx

2
- 13*xx + 1)

8

JacobiP(3,4,5,6); ⇒ 94465/8

18.64 GegenbauerP

GEGENBAUERP Operator

The GegenbauerP operator computes Gegenbauer’s (ultraspherical) polynomials.

GegenbauerP(integer , expression, expression)

Examples

GegenbauerP(3,2,xx); ⇒ 4*xx*(8*xx
2
- 3)

GegenbauerP(3,2,4); ⇒ 2000

18.65 SolidHarmonicY

SOLIDHARMONICY Operator

The SolidHarmonicY operator computes Solid harmonic (Laplace) polynomials.

SolidHarmonicY(integer , integer , expression, expression, expression, expression)

Examples
SolidHarmonicY(3,-2,x,y,z,r2);

⇒
sqrt(105)*z*(-2*i*x*y + x

2
- y

2
)

4*sqrt(pi)*sqrt(2)

18.66 SphericalHarmonicY

SPHERICALHARMONICY Operator

The SphericalHarmonicY operator computes Spherical harmonic (Laplace) poly-
nomials. These are special cases of the solid harmonic polynomials, SolidHarmonicY.

SphericalHarmonicY(integer , integer , expression, expression)

Examples
SphericalHarmonicY(3,2,theta,phi);

⇒

sqrt(105)*cos(theta)*sin(theta)
2
*(cos(phi)

2
+2*cos(phi)*sin(phi)*i- sin(phi)

2
)

4*sqrt(pi)*sqrt(2)

18.67 Integral Functions

18.68 Si

SI Operator

The Si operator returns the Sine Integral function.

Si(expression)

Examples
limit(Si(x),x,infinity); ⇒ pi / 2

on rounded;

Si(0.35); ⇒ 0.347626790989

Comments

The numeric values for the operator Si are computed via the power series repre-
sentation, which limits the argument range.

18.69 Shi

SHI Operator

The Shi operator returns the hyperbolic Sine Integral function.

Shi(expression)

Examples
df(shi(x),x); ⇒ sinh(x) / x

on rounded;

Shi(0.35); ⇒ 0.352390716351

Comments

The numeric values for the operator Shi are computed via the power series repre-
sentation, which limits the argument range.

18.70 s i

S I Operator

The s i operator returns the Sine Integral function si.

s i(expression)

Examples
s_i(xx); ⇒ (2*Si(xx) - pi) / 2

df(s_i(x),x); ⇒ sin(x) / x

Comments

The operator name s i is simplified towards SI. Since REDUCE is not case sensi-
tive by default the name “si” can’t be used.

18.71 Ci

CI Operator

The Ci operator returns the Cosine Integral function.

Ci(expression)

Examples
defint(cos(t)/t,t,x,infinity);

⇒ - ci (x)

on rounded;

Ci(0.35); ⇒ - 0.50307556932

Comments

The numeric values for the operator Ci are computed via the power series repre-
sentation, which limits the argument range.

18.72 Chi

CHI Operator

The Chi operator returns the Hyperbolic Cosine Integral function.

Chi(expression)

Examples
defint((cosh(t)-1)/t,t,0,x);

⇒ - log(x) + psi(1) + chi(x)

on rounded;

Chi(0.35); ⇒ - 0.44182471827

Comments

The numeric values for the operator Chi are computed via the power series repre-
sentation, which limits the argument range.

18.73 ERF extended

ERF EXTENDED Operator

The special function package supplies an extended support for the erf operator

which implements the error function

defint(e**(-x**2),x,0,infinity) * 2/sqrt(pi)

.

erf(expression)

Examples
erf(-x); ⇒ - erf(x)

on rounded;

erf(0.35); ⇒ 0.379382053562

Comments

The numeric values for the operator erf are computed via the power series repre-
sentation, which limits the argument range.

18.74 erfc

ERFC Operator

The erfc operator returns the complementary Error function

1 - defint(e**(-x**2),x,0,infinity) * 2/sqrt(pi)

.

erfc(expression)

Examples
erfc(xx); ⇒ - erf(xx) + 1

Comments

The operator erfc is simplified towards the erf operator.

18.75 Ei

EI Operator

The Ei operator returns the Exponential Integral function.

Ei(expression)

Examples

df(ei(x),x); ⇒
e
x

x

on rounded;

Ei(0.35); ⇒ - 0.0894340019184

Comments

The numeric values for the operator Ei are computed via the power series repre-
sentation, which limits the argument range.

18.76 Fresnel C

FRESNEL C Operator

The Fresnel C operator represents Fresnel’s Cosine function.

Fresnel C(expression)

Examples
int(cos(t^2*pi/2),t,0,x); ⇒ fresnel c(x)

on rounded;

fresnel_c(2.1); ⇒ 0.581564135061

Comments

The operator Fresnel C has a limited numeric evaluation of large values of its
argument.

18.77 Fresnel S

FRESNEL S Operator

The Fresnel S operator represents Fresnel’s Sine Integral function.

Fresnel S(expression)

Examples
int(sin(t^2*pi/2),t,0,x); ⇒ fresnel s(x)

on rounded;

fresnel_s(2.1); ⇒ 0.374273359378

Comments

The operator Fresnel S has a limited numeric evaluation of large values of its
argument.

18.78 Combinatorial Operators

18.79 BINOMIAL

BINOMIAL Operator

The Binomial operator returns the Binomial coefficient if both parameter are in-
teger and expressions involving the Gamma function otherwise.

Binomial(integer , integer)

Examples
Binomial(49,6); ⇒ 13983816

Binomial(n,3); ⇒
gamma(n + 1)

6*gamma(n - 2)

Comments

The operator Binomial evaluates the Binomial coefficients from the explicit form
and therefore it is not the best algorithm if you want to compute many binomial
coefficients with big indices in which case a recursive algorithm is preferable.

18.80 STIRLING1

STIRLING1 Operator

The Stirling1 operator returns the Stirling Numbers S(n,m) of the first kind, i.e.
the number of permutations of n symbols which have exactly m cycles (divided by
(-1)**(n-m)).

Stirling1(integer , integer)

Examples
Stirling1 (17,4); ⇒ -87077748875904

Stirling1 (n,n-1); ⇒
-gamma(n+1)

2*gamma(n-1)

Comments

The operator Stirling1 evaluates the Stirling numbers of the first kind by rulesets
for special cases or by a computing the closed form, which is a series involving the
operators BINOMIAL and STIRLING2.

18.81 STIRLING2

STIRLING2 Operator

The Stirling1 operator returns the Stirling Numbers S(n,m) of the second kind,
i.e. the number of ways of partitioning a set of n elements into m non-empty
subsets.

Stirling2(integer , integer)

Examples
Stirling2 (17,4); ⇒ 694337290

Stirling2 (n,n-1); ⇒
gamma(n+1)

2*gamma(n-1)

Comments

The operator Stirling2 evaluates the Stirling numbers of the second kind by
rulesets for special cases or by a computing the closed form.

18.82 3j and 6j symbols

18.83 ThreejSymbol

THREEJSYMBOL Operator

The ThreejSymbol operator implements the 3j symbol.

ThreejSymbol(listofj1 ,m1 , listofj2 ,m2 , listofj3 ,m3)

Examples
ThreejSymbol({j+1,m},{j+1,-m},{1,0});

⇒

(- 1)
j
*(abs(j - m + 1) - abs(j + m + 1))

--

2*sqrt(2*j
3
+ 9*j

2
+ 13*j + 6)*(- 1)

m

18.84 Clebsch Gordan

CLEBSCH GORDAN Operator

The Clebsch Gordan operator implements the Clebsch Gordan coefficients. This
is closely related to the Threejsymbol.

Clebsch Gordan(listofj1 ,m1 , listofj2 ,m2 , listofj3 ,m3)

Examples
Clebsch_Gordan({2,0},{2,0},{2,0});

⇒
-2

sqrt(14)

18.85 SixjSymbol

SIXJSYMBOL Operator

The SixjSymbol operator implements the 6j symbol.

SixjSymbol(listofj1 , j2 , j3 , listofl1 , l2 , l3)

Examples
SixjSymbol({7,6,3},{2,4,6});

⇒
1

14*sqrt(858)

Comments

The operator SixjSymbol uses the ineq package in order to find minima and max-
ima for the summation index.

18.86 Miscellaneous

18.87 HYPERGEOMETRIC

HYPERGEOMETRIC Operator

The Hypergeometric operator provides simplifications for the generalized hyper-
geometric functions. The Hypergeometric operator is included in the package
specfn2.

hypergeometric(listofparameters , listofparameters , argument)

Examples
load specfn2;

hypergeometric ({1/2,1},{3/2},-x^2);

⇒
atan(x)

x

hypergeometric ({},{},z); ⇒ e
z

Comments

The special case where the length of the first list is equal to 2 and the length of the
second list is equal to 1 is often called “the hypergeometric function” (notated as
2F1(a1,a2,b;x)).

18.88 MeijerG

MEIJERG Operator

The MeijerG operator provides simplifications for Meijer’s G function. The sim-
plifications are performed towards polynomials, elementary or special functions or
(generalized) hypergeometric functions.

The MeijerG operator is included in the package specfn2.

MeijerG(listofparameters , listofparameters , argument)

The first element of the lists has to be the list containing the first group (mostly
called “m” and “n”) of parameters. This passes the four parameters of a Meijer’s
G function implicitly via the length of the lists.

Examples
load specfn2;

MeijerG({{},1},{{0}},x); ⇒ heaviside(-x+1)

MeijerG({{}},{{1+1/4},1-1/4},(x^2)/4) * sqrt pi;

⇒
sqrt(2)*sin(x)*x

2

4*sqrt(x)

Comments

Many well-known functions can be written as G functions, e.g. exponentials, log-
arithms, trigonometric functions, Bessel functions and hypergeometric functions.
The formulae can be found e.g. in
A.P.Prudnikov, Yu.A.Brychkov, O.I.Marichev: Integrals and Series, Volume 3:
More special functions, Gordon and Breach Science Publishers (1990).

18.89 Heaviside

HEAVISIDE Operator

The Heaviside operator returns the Heaviside function.

Heaviside(w) =¿ if (w ¡ 0) then 0 else 1
when numberp w;

Heaviside(argument)

Comments

This operator is often included in the result of the simplification of a generalized
hypergeometric function or a MeijerG function.

No simplification is done for this function.

18.90 erfi

ERFI Operator

The erfi operator returns the error function of an imaginary argument.

erfi(x) =¿ 2/sqrt(pi) * defint(e**(t**2),t,0,x);

erfi(argument)

Comments

This operator is sometimes included in the result of the simplification of a general-
ized hypergeometric function or a MeijerG function.

No simplification is done for this function.

19 Taylor series

19.1 TAYLOR

TAYLOR Introduction

This short note describes a package of REDUCE procedures that allow Taylor
expansion in one or more variables and efficient manipulation of the resulting Taylor
series. Capabilities include basic operations (addition, subtraction, multiplication
and division) and also application of certain algebraic and transcendental functions.
To a certain extent, Laurent expansion can be performed as well.

19.2 taylor

TAYLOR Operator

The taylor operator is used for expanding an expression into a Taylor series.

taylor(expression,var,expression,number
{,var,expression,number}∗)

expression can be any valid REDUCE algebraic expression. var must be a kernel,
and is the expansion variable. The expression following it denotes the point about
which the expansion is to take place. number must be a non-negative integer and
denotes the maximum expansion order. If more than one triple is specified taylor

will expand its first argument independently with respect to all the variables. Note
that once the expansion has been done it is not possible to calculate higher orders.

Instead of a kernel, var may also be a list of kernels. In this case expansion will
take place in a way so that the sum of the degrees of the kernels does not exceed the
maximum expansion order. If the expansion point evaluates to the special identifier
infinity, taylor tries to expand in a series in 1/var .

The expansion is performed variable per variable, i.e. in the example above by first
expanding exp(x2 +y2) with respect to x and then expanding every coefficient with
respect to y.

Examples
taylor(e^(x^2+y^2),x,0,2,y,0,2);

⇒ 1 + Y
2
+ X

2
+ Y

2
*X
2
+ O(X

2
,Y
2
)

taylor(e^(x^2+y^2),{x,y},0,2);

⇒ 1 + Y
2
+ X

2
+ O({X

2
,Y
2
})

The following example shows the case of a non-analytical function.

taylor(x*y/(x+y),x,0,2,y,0,2);

⇒

***** Not a unit in argument to QUOTTAYLOR

Comments

Note that it is not generally possible to apply the standard reduce operators to
a Taylor kernel. For example, part, coeff, or coeffn cannot be used. In-
stead, the expression at hand has to be converted to standard form first using
the taylortostandard operator.

Differentiation of a Taylor expression is possible. If you differentiate with respect
to one of the Taylor variables the order will decrease by one.

Substitution is a bit restricted: Taylor variables can only be replaced by other
kernels. There is one exception to this rule: you can always substitute a Taylor
variable by an expression that evaluates to a constant. Note that REDUCE will
not always be able to determine that an expression is constant: an example is
sin(acos(4)).

Only simple taylor kernels can be integrated. More complicated expressions that
contain Taylor kernels as parts of themselves are automatically converted into a
standard representation by means of the taylortostandard operator. In this case
a suitable warning is printed.

19.3 taylorautocombine

TAYLORAUTOCOMBINE Switch

If you set taylorautocombine to on, REDUCE automatically combines Taylor ex-
pressions during the simplification process. This is equivalent to applying taylorcombine
to every expression that contains Taylor kernels. Default is on.

19.4 taylorautoexpand

TAYLORAUTOEXPAND Switch

taylorautoexpand makes Taylor expressions “contagious” in the sense that taylorcombine
tries to Taylor expand all non-Taylor subexpressions and to combine the result with
the rest. Default is off.

19.5 taylorcombine

TAYLORCOMBINE Operator

This operator tries to combine all Taylor kernels found in its argument into one.
Operations currently possible are:

• Addition, subtraction, multiplication, and division.

• Roots, exponentials, and logarithms.

• Trigonometric and hyperbolic functions and their inverses.

Examples
hugo := taylor(exp(x),x,0,2);

⇒ HUGO := 1 + X +
1

2
*X
2
+ O(X

3
)

taylorcombine log hugo; ⇒ X + O(X
3
)

taylorcombine(hugo + x); ⇒ (1 + X +
1

2
*X
2
+ O(X

3
)) + X

on taylorautoexpand;

taylorcombine(hugo + x); ⇒ 1 + 2*X +
1

2
*X
2
+ O(X

3
)

Comments

Application of unary operators like log and atan will nearly always succeed. For
binary operations their arguments have to be Taylor kernels with the same tem-
plate. This means that the expansion variable and the expansion point must match.
Expansion order is not so important, different order usually means that one of them
is truncated before doing the operation.

If taylorkeeporiginal is set to on and if all Taylor kernels in its argument have
their original expressions kept taylorcombine will also combine these and store
the result as the original expression of the resulting Taylor kernel. There is also the
switch taylorautoexpand.

There are a few restrictions to avoid mathematically undefined expressions: it is
not possible to take the logarithm of a Taylor kernel which has no terms (i.e. is
zero), or to divide by such a beast. There are some provisions made to detect

singularities during expansion: poles that arise because the denominator has zeros
at the expansion point are detected and properly treated, i.e. the Taylor kernel will
start with a negative power. (This is accomplished by expanding numerator and
denominator separately and combining the results.) Essential singularities of the
known functions (see above) are handled correctly.

19.6 taylorkeeporiginal

TAYLORKEEPORIGINAL Switch

taylorkeeporiginal, if set to on, forces the taylor and all Taylor kernel manipu-
lation operators to keep the original expression, i.e. the expression that was Taylor
expanded. All operations performed on the Taylor kernels are also applied to this
expression which can be recovered using the operator taylororiginal. Default is
off.

19.7 taylororiginal

TAYLORORIGINAL Operator

Recovers the original expression (the one that was expanded) from the Taylor kernel
that is given as its argument.

taylororiginal(expression) or taylororiginal simple expression

Examples
hugo := taylor(exp(x),x,0,2);

⇒ HUGO := 1 + X +
1

2
*X
2
+ O(X

3
)

taylororiginal hugo; ⇒

***** Taylor kernel doesn’t have an original part in TAYLORORIGINAL

on taylorkeeporiginal;

hugo := taylor(exp(x),x,0,2);

⇒ HUGO := 1 + X +
1

2
*X
2
+ O(X

3
)

taylororiginal hugo; ⇒ E
X

Comments

An error is signalled if the argument is not a Taylor kernel or if the original expres-
sion was not kept, i.e. if taylorkeeporiginal was set off during expansion.

19.8 taylorprintorder

TAYLORPRINTORDER Switch

taylorprintorder, if set to on, causes the remainder to be printed in big-O nota-
tion. Otherwise, three dots are printed. Default is on.

19.9 taylorprintterms

TAYLORPRINTTERMS Variable

Only a certain number of (non-zero) coefficients are printed. If there are more, an
expression of the form n terms is printed to indicate how many non-zero terms
have been suppressed. The number of terms printed is given by the value of the
shared algebraic variable taylorprintterms. Allowed values are integers and the
special identifier all. The latter setting specifies that all terms are to be printed.
The default setting is 5.

Examples
taylor(e^(x^2+y^2),x,0,4,y,0,4);

⇒

1 + Y
2
+

1

2
*Y
4
+ X

2
+ Y

2
*X
2
+ (4 terms) + O(X

5
,Y
5
)

taylorprintterms := all; ⇒ TAYLORPRINTTERMS := ALL

taylor(e^(x^2+y^2),x,0,4,y,0,4);

⇒

1 + Y
2
+

1

2
*Y
4
+ X

2
+ Y

2
*X
2
+

1

2
*Y
4
*X
2
+

1

2
*X
4
+

1

2
*Y
2
*X
4

+
1

4
*Y
4
*X
4
+ O(X

5
,Y
5
)

19.10 taylorrevert

TAYLORREVERT Operator

taylorrevert allows reversion of a Taylor series of a function f, i.e., to compute
the first terms of the expansion of the inverse of f from the expansion of f .

taylorrevert(expression,var,var)

The first argument must evaluate to a Taylor kernel with the second argument
being one of its expansion variables.

Examples

taylor(u - u**2,u,0,5); ⇒ U - U
2
+ O(U

6
)

taylorrevert (ws,u,x); ⇒

X + X
2
+ 2*X

3
+ 5*X

4
+ 14*X

5
+ O(X

6
)

19.11 taylorseriesp

TAYLORSERIESP Operator

This operator may be used to determine if its argument is a Taylor kernel.

taylorseriesp(expression) or taylorseriesp simple expression

Examples
hugo := taylor(exp(x),x,0,2);

⇒ HUGO := 1 + X +
1

2
*X
2
+ O(X

3
)

if taylorseriesp hugo then OK;

⇒ OK

if taylorseriesp(hugo + y) then OK else NO;

⇒ NO

Comments

Note that this operator is subject to the same restrictions as, e.g., ordp or numberp,
i.e. it may only be used in boolean expressions in if or let statements.

19.12 taylortemplate

TAYLORTEMPLATE Operator

The template of a Taylor kernel, i.e. the list of all variables with respect to which
expansion took place together with expansion point and order can be extracted
using

taylortemplate(expression) or taylortemplate simple expression

This returns a list of lists with the three elements (VAR,VAR0,ORDER). An error
is signalled if the argument is not a Taylor kernel.

Examples
hugo := taylor(exp(x),x,0,2);

⇒ HUGO := 1 + X +
1

2
*X
2
+ O(X

3
)

taylortemplate hugo; ⇒ {{X,0,2}}

19.13 taylortostandard

TAYLORTOSTANDARD Operator

This operator converts all Taylor kernels in its argument into standard form and
resimplifies the result.

taylortostandard(expression) or taylortostandard simple expression

Examples
hugo := taylor(exp(x),x,0,2);

⇒ HUGO := 1 + X +
1

2
*X
2
+ O(X

3
)

taylortostandard hugo; ⇒
X
2
+ 2*X + 2

2

Index
, 41
*, 50
**, 52
+, 48
-, 49
., 43, 468
/, 51
:=, 44
;, 40
=, 46, 66
,53
, 58, 87

ABS, 98
absolute value, 98
accuracy, 499
ACOS, 292
ACOSH, 293
ACOT, 294
ACOTH, 295
ACSC, 296
ACSCH, 297
ADJPREC, 99
AGM FUNCTION, 541
Airy Ai, 524
Airy Aiprime, 526
Airy Bi, 525
Airy Biprime, 527
ALGEBRAIC, 229
algebraic, 28
ALGINT, 321
ALLBRANCH, 322
ALLFAC, 323
AND, 60
ANTISYMMETRIC, 230
APPEND, 168

approximation, 176, 189, 491, 493
ARBCOMPLEX, 170
ARBINT, 169
arbitrary value, 169, 170
ARBVARS, 324
arccosecant, 296–298
arccosine, 292
arccotangent, 294
arcsine, 300
arctangent, 302
ARG, 100
ARGLENGTH, 171
argument, 171, 254, 363
arithmetic, 66
ARITHMETIC OPERATIONS, 97
ARRAY, 231
ASEC, 298
ASECH, 299
ASIN, 300
ASINH, 301
assign, 44, 91, 92
assumptions, 25
ATAN, 302
ATAN2, 304
ATANH, 303

BALANCED MOD, 325
BEGIN, 61
BERNOULLI, 508
BERNOULLIP, 509
BESSELI, 517
BESSELJ, 513
BESSELK, 518
BESSELY, 514
BETA, 551
BFSPACE, 326

601

BINOMIAL, 575
block, 62
boolean value, 138
bounds, 490
Buchberger algorithm, 414, 430
BYE, 153

CARD NO, 26
Catalan’s constant, 507
CEILING, 101
character, 380
Chebyshev fit, 491
ChebyshevT, 556
ChebyshevU, 557
Chi, 569
CHOOSE, 102
Ci, 568
CLEAR, 233
CLEARRULES, 235
Clebsch Gordan, 579
close, 290
COEFF, 172
coefficient, 172, 174, 190
COEFFN, 174
COFACTOR, 401
COMBINEEXPT, 327
COMBINELOGS, 328
Command

, 41

;, 40
ALGEBRAIC, 229
BEGIN, 61
block, 62
BYE, 153
CLEAR, 233
CLEARRULES, 235
COMMENT, 63
CONT, 154

DEFINE, 236
DISPLAY, 155
END, 65
FOR, 68
FORALL, 241
FOREACH, 71
GOTO, 73
group, 59
IF, 75
IN, 287
INPUT, 288
LET, 246
LISP, 253
LOAD PACKAGE, 156
MASS, 473
MATCH, 256
MKID, 200
MSHELL, 474
OFF, 261
ON, 262
OUT, 289
PAUSE, 157
PROCEDURE, 79
QUIT, 159
REDERR, 161
REPEAT, 82
RETRY, 162
RETURN, 84
SAVEAS, 163
SETMOD, 133
SHOWTIME, 164
SHUT, 290
SYMBOLIC, 274
VECDIM, 478
WEIGHT, 280
WHILE, 284
WRITE, 165
WTLEVEL, 285

COMMENT, 63

commutative, 258
COMP, 329
compiler, 329
complementary error function, 571
COMPLEX, 331
complex, 31, 100, 123, 175, 186, 210,

331, 384, 502, 503
composite structure, 198
Concept

boolean value, 138
Chebyshev fit, 491
Constants, 507
false, 141
graded term order, 427
gradlex term order, 420
gradlexgradlex term order, 422
gradlexrevgradlex term order, 423
Ideal Parameters, 415
lex term order, 419
lexgradlex term order, 424
lexrevgradlex term order, 425
matrix term order, 428
Module, 461
numeric accuracy, 484
revgradlex term order, 421
TRUE, 151
weighted term order, 426

Confluent Hypergeometric function, 521–
523

CONJ, 175
conjugate, 175
CONS, 64
Constant

E, 27
I, 31
INFINITY, 32
NIL, 34
PI, 35
T, 38

Constants, 507
CONT, 154
CONTINUED FRACTION, 176
COS, 305
cosecant, 309
COSH, 306
cosine integral function, 568
COT, 307
COTH, 308
CRAMER, 333
CREF, 332
cross reference, 332
CSC, 309
CSCH, 310

dd groebner, 445
Declaration

ANTISYMMETRIC, 230
ARRAY, 231
DEPEND, 237
EVEN, 238
FACTOR, 239
INDEX, 472
INFIX, 243
INTEGER, 244
KORDER, 245
LINEAR, 250
LINELENGTH, 252
LISTARGP, 254
MATRIX, 406
NODEPEND, 255
NONCOM, 258
NONZERO, 259
NOSPUR, 475
ODD, 260
OPERATOR, 263
ORDER, 265
PRECEDENCE, 266
PRECISION, 267

PRINT PRECISION, 268
REAL, 269
REMFAC, 270
REMIND, 476
SCALAR, 271
SCIENTIFIC NOTATION, 272
SHARE, 273
SPUR, 477
SYMMETRIC, 275
TR, 276
UNTR, 278
VARNAME, 279
VECTOR, 479

DECOMPOSE, 177
decomposition, 67, 83, 90, 94, 177, 205,

222
DEFINE, 236
DEFN, 334
DEG, 178
DEG2DMS, 103
DEG2RAD, 104
degree, 30, 33, 178
degrees, 103, 104, 107, 108, 128, 129
DEMO, 336
DEN, 179
denominator, 179
DEPEND, 237
depend, 255
dependency, 237
derivative, 180, 337, 370
DET, 402
determinant, 402
DF, 180
DFPRINT, 337
DIFFERENCE, 105
differential equation, 203
DILOG, 106
DILOG extended, 554
dilogarithm function, 106, 554

DISPLAY, 155
distributive polynomials, 416, 463–465
DIV, 338
DMS2DEG, 107
DMS2RAD, 108

E, 27
ECHO, 339
Ei, 572
eigenvalue, 404
EllipticE, 546
EllipticF, 543
EllipticK, 544
EllipticKprime, 545
EllipticTHETA, 547
else, 76
END, 65
EPS, 469
EQUAL, 139
equal, 66
EQUATION, 66
equation, 66, 139, 193, 213, 218, 341
equation solving, 218, 487
equation system, 218, 487
ERF, 311
ERF extended, 570
erfc, 571
erfi, 584
ERRCONT, 340
error function, 311, 570, 571
error handling, 161, 340
EULER, 510
Euler’s constant, 507, 552
EULERP, 511
EVAL MODE, 28
EVALLHSEQP, 341
evaluation, 229
EVEN, 238
EVENP, 140

EXP, 312, 342
EXPAND CASES, 181
EXPANDLOGS, 343
exponent simplification, 327
exponential function, 312
exponential integral function, 572
EXPREAD, 182
EXPT, 113
EZGCD, 344

FACTOR, 239, 345
factor, 270
FACTORIAL, 109
FACTORIZE, 183
factorize, 183, 355, 361, 375, 394, 395
FAILHARD, 347
false, 34, 141, 151
Faugere-Gianni-Lazard-Mora algorithm,

414
FIRST, 67
firstroot, 495
FIX, 110
FIXP, 111
Fletcher Reeves, 486
floating point, 267, 268, 272, 326, 388,

390
FLOOR, 112
FOR, 68
FORALL, 241
FOREACH, 71
FORT, 348
FORT WIDTH, 29
FORTRAN, 26, 29, 348, 349
FORTUPPER, 349
Free Variable, 88
FREEOF, 142
Fresnel C, 573
Fresnel S, 574
FULLPREC, 350

FULLROOTS, 351

G, 470
GAMMA, 550
gamma, 109
GC, 352
GCD, 114, 353
gdimension, 443
GegenbauerP, 562
generalized hypergeometric function, 581
GEQ, 72
geq, 54
getroot, 495
gindependent sets, 444
glexconvert, 446
gltb, 437
gltbasis, 436
glterms, 438
gmodule, 462
Golden Ratio, 507
Gosper algorithm, 208, 225
GOTO, 73
graded term order, 427
gradlex term order, 420
gradlexgradlex term order, 422
gradlexrevgradlex term order, 423
greater, 55
GREATERP, 74
greatest common divisor, 114, 344, 353
greduce, 447
groebfullreduction, 435
groebmonfac, 454
groebner, 430, 443, 444
Groebner bases, 414
groebner walk, 431
groebnerf, 452
groebnert, 459
groebopt, 432
groebprereduce, 434

groebprot, 457
groebprotfile, 458
groebresmax, 455
groebrestriction, 456
groebstat, 439
group, 59
gsort, 463
gsplit, 464
gspoly, 465
gvars, 429
gvarslast, 433
gzerodim?, 442

HANKEL1, 515
HANKEL2, 516
Heaviside, 583
HEPHYS, 467
HermiteP, 558
HIGH POW, 30
hilbertpolynomial, 450
history, 155
Hollmann algorithm, 414, 450
HORNER, 354
hyperbolic arccosecant, 299
hyperbolic arccosine, 293
hyperbolic arcsine, 301
hyperbolic arctangent, 303
hyperbolic cosecan, 310
hyperbolic cosine, 306
hyperbolic cosine integral function, 569
hyperbolic cotangent, 295, 308
hyperbolic secant, 314
hyperbolic sine, 316
hyperbolic sine integral function, 566
hyperbolic tangent, 318
HYPERGEOMETRIC, 581
hypergeometric function, 581
HYPOT, 185

I, 31
ideal dimension, 443, 444
Ideal Parameters, 415
ideal variables, 444, 446
idealquotient, 449
IDENTIFIER, 21
identifier, 200
IF, 75
IFACTOR, 355
imaginary part, 186
IMPART, 186
IN, 287
INDEX, 472
INFINITY, 32
INFIX, 243
initial value problem, 489
INPUT, 288
input, 99, 182, 287, 380
INT, 187, 356
INTEGER, 244
integer, 101, 110–112, 132, 355, 376
integral function, 565–567, 569
integration, 187, 321, 347, 371, 397, 488
interactive, 155, 157, 162, 226, 288, 336,

356
INTERPOL, 189
interpolation, 189, 496
Interval, 483
Introduction

ARITHMETIC OPERATIONS, 97
Groebner bases, 414
HEPHYS, 467
Numeric Package, 482
Roots Package, 495
Special Function Package, 505
SWITCHES, 320
TAYLOR, 586
Term order, 416

INTSTR, 357

isolater, 495

JacobiAMPLITUDE, 540
Jacobian matrix, 487
JacobiCD, 531
JacobiCN, 529
JacobiCS, 539
JacobiDC, 534
JacobiDN, 530
JacobiDS, 538
JacobiNC, 535
JacobiND, 533
JacobiNS, 537
JacobiP, 561
JacobiSC, 536
JacobiSD, 532
JacobiSN, 528
JacobiZETA, 548

KERNEL, 22
kernel order, 245
Khinchin’s constant, 507
KORDER, 245
Kredel-Weispfenning algorithm, 414, 444
KummerM, 521
KummerU, 522

l’Hopital’s rule, 194
LaguerreP, 559
Lambert W function, 555
LANDENTRANS, 542
LCM, 358
LCOF, 190
leading power, 195
leading term, 196
least squares, 493
left-hand side, 193
LegendreP, 560
LENGTH, 191

LEQ, 143
leq, 56
less, 57
LESSP, 144
LESSSPACE, 360
LET, 246
lex term order, 419
lexgradlex term order, 424
lexrevgradlex term order, 425
LHS, 193
LIMIT, 194
limit, 194
LIMITEDFACTORS, 361
LINEAR, 250
linear system, 333
LINELENGTH, 252
LISP, 253
lisp, 334, 387
LIST, 77, 362
list, 43, 67, 77, 83, 86, 90, 94, 145, 168,

191, 215, 254, 363
LISTARGP, 254
LISTARGS, 363
LN, 115
LOAD PACKAGE, 156
LOG, 116
logarithm, 115–117, 328, 343
LOGB, 117
loop, 68, 71, 82, 284
LOW POW, 33
LPOWER, 195
LTERM, 196

main variable, 197
MAINVAR, 197
MAP, 198
map, 198, 215
MASS, 473
MAT, 403

MATCH, 256
MATEIGEN, 404
MATRIX, 406
matrix, 333, 401–404, 408, 410–412
matrix term order, 428
MAX, 118
maximum, 118
MCD, 364
MeijerG, 582
MEMBER, 145
memory, 160, 352
MIN, 119
minimum, 119, 486
MINUS, 120
MKID, 200
MKPOLY, 496
MODULAR, 365
modular, 133, 325, 365
Module, 461
MSG, 366
MSHELL, 474
MULTIPLICITIES, 367

NAT, 368
NEARESTROOT, 497
NEQ, 146
NERO, 369
Newton iteration, 487
NEXTPRIME, 121
NIL, 34
NOARG, 370
NOCONVERT, 122
NODEPEND, 255
NOLNR, 371
non commutative, 258
NONCOM, 258
NONZERO, 259
NORM, 123
NOSPLIT, 372

NOSPUR, 475
NOT, 147
NPRIMITIVE, 201
NULLSPACE, 408
NUM, 202
num fit, 493
num int, 488
num min, 486
num odesolve, 489
num solve, 487
NUMBERP, 148
numerator, 202
numeric accuracy, 484
Numeric Package, 482
NUMVAL, 373

ODD, 260
ODE, 489
ODESOLVE, 203
OFF, 261
ON, 262
ONE OF, 204
open, 289
OPERATOR, 263
Operator

*, 50
**, 52
+, 48
-, 49
., 43, 468
/, 51
:=, 44
=, 46
,53
, 58

ABS, 98
ACOS, 292
ACOSH, 293
ACOT, 294

ACOTH, 295
ACSC, 296
ACSCH, 297
AGM FUNCTION, 541
Airy Ai, 524
Airy Aiprime, 526
Airy Bi, 525
Airy Biprime, 527
AND, 60
APPEND, 168
ARBCOMPLEX, 170
ARBINT, 169
ARG, 100
ARGLENGTH, 171
ASEC, 298
ASECH, 299
ASIN, 300
ASINH, 301
ATAN, 302
ATAN2, 304
ATANH, 303
BERNOULLI, 508
BERNOULLIP, 509
BESSELI, 517
BESSELJ, 513
BESSELK, 518
BESSELY, 514
BETA, 551
BINOMIAL, 575
bounds, 490
CEILING, 101
ChebyshevT, 556
ChebyshevU, 557
Chi, 569
CHOOSE, 102
Ci, 568
Clebsch Gordan, 579
COEFF, 172
COEFFN, 174

COFACTOR, 401
CONJ, 175
CONS, 64
CONTINUED FRACTION, 176
COS, 305
COSH, 306
COT, 307
COTH, 308
CSC, 309
CSCH, 310
dd groebner, 445
DECOMPOSE, 177
DEG, 178
DEG2DMS, 103
DEG2RAD, 104
DEN, 179
DET, 402
DF, 180
DIFFERENCE, 105
DILOG, 106
DILOG extended, 554
DMS2DEG, 107
DMS2RAD, 108
Ei, 572
EllipticE, 546
EllipticF, 543
EllipticK, 544
EllipticKprime, 545
EllipticTHETA, 547
EPS, 469
EQUAL, 139
ERF, 311
ERF extended, 570
erfc, 571
erfi, 584
EULER, 510
EULERP, 511
EVENP, 140
EXP, 312

EXPAND CASES, 181
EXPREAD, 182
EXPT, 113
FACTORIAL, 109
FACTORIZE, 183
FIRST, 67
FIX, 110
FIXP, 111
FLOOR, 112
FREEOF, 142
Fresnel C, 573
Fresnel S, 574
G, 470
GAMMA, 550
GCD, 114
gdimension, 443
GegenbauerP, 562
GEQ, 72
geq, 54
gindependent sets, 444
glexconvert, 446
greater, 55
GREATERP, 74
greduce, 447
groebner, 430
groebner walk, 431
groebnerf, 452
groebnert, 459
gsort, 463
gsplit, 464
gspoly, 465
gvars, 429
gzerodim?, 442
HANKEL1, 515
HANKEL2, 516
Heaviside, 583
HermiteP, 558
hilbertpolynomial, 450
HYPERGEOMETRIC, 581

HYPOT, 185
idealquotient, 449
IMPART, 186
INT, 187
INTERPOL, 189
JacobiAMPLITUDE, 540
JacobiCD, 531
JacobiCN, 529
JacobiCS, 539
JacobiDC, 534
JacobiDN, 530
JacobiDS, 538
JacobiNC, 535
JacobiND, 533
JacobiNS, 537
JacobiP, 561
JacobiSC, 536
JacobiSD, 532
JacobiSN, 528
JacobiZETA, 548
KummerM, 521
KummerU, 522
LaguerreP, 559
Lambert W function, 555
LANDENTRANS, 542
LCOF, 190
LegendreP, 560
LENGTH, 191
LEQ, 143
leq, 56
less, 57
LESSP, 144
LHS, 193
LIMIT, 194
LIST, 77
LN, 115
LOG, 116
LOGB, 117
LPOWER, 195

LTERM, 196
MAINVAR, 197
MAP, 198
MAT, 403
MATEIGEN, 404
MAX, 118
MeijerG, 582
MEMBER, 145
MIN, 119
MINUS, 120
MKPOLY, 496
NEARESTROOT, 497
NEQ, 146
NEXTPRIME, 121
NORM, 123
NOT, 147
NPRIMITIVE, 201
NULLSPACE, 408
NUM, 202
num fit, 493
num int, 488
num min, 486
num odesolve, 489
num solve, 487
NUMBERP, 148
ODESOLVE, 203
OR, 78
ORDP, 149
PART, 205
PERM, 124
PF, 207
PLUS, 125
POCHHAMMER, 549
POLYGAMMA, 553
preduce, 448
preducet, 460
PRIMEP, 150
PROD, 208
PSI, 552

QUOTIENT, 126
RAD2DEG, 128
RAD2DMS, 129
RANK, 410
REALROOTS, 498
RECIP, 130
RECLAIM, 160
REDUCT, 209
REMAINDER, 131
REPART, 210
replace, 47
REST, 83
RESULTANT, 211
REVERSE, 86
RHS, 213
ROOT OF, 214
ROOT VAL, 501
ROOTACC, 499
ROOTS, 500
ROUND, 132
s i, 567
saturation, 451
SEC, 313
SECH, 314
SECOND, 90
SELECT, 215
SET, 91
SETQ, 92
Shi, 566
SHOWRULES, 217
Si, 565
SIGN, 134
SIN, 315
SINH, 316
SixjSymbol, 580
SolidHarmonicY, 563
SOLVE, 218
SORT, 221
SphericalHarmonicY, 564

SQRT, 135
STIRLING1, 576
STIRLING2, 577
STRUCTR, 222
StruveH, 519
StruveL, 520
SUB, 224
SUM, 225
TAN, 317
TANH, 318
taylor, 587
taylorcombine, 591
taylororiginal, 594
taylorrevert, 597
taylorseriesp, 598
taylortemplate, 599
taylortostandard, 600
THIRD, 94
ThreejSymbol, 578
TIMES, 136
torder, 417
torder compile, 418
TP, 411
TRACE, 412
WHEN, 95
WHERE, 282
WhittakerW, 523
WS, 226
ZETA, 512

operator, 243, 250, 258–260, 266, 275,
363

Optional Free Variable, 89
OR, 78
ORDER, 265
order, 149, 245, 265
ORDP, 149
OUT, 289
OUTPUT, 374

output, 26, 29, 165, 217, 239, 252, 265,
268, 270, 272, 289, 290, 323,
326, 336–339, 345, 354, 357, 360,
366, 368–370, 372, 374, 376, 378,
379, 381, 385, 386

OVERVIEW, 375

package, 156
PART, 205
partial derivative, 180
partial fraction, 207
PAUSE, 157
PERIOD, 376
PERM, 124
permutation, 124
PF, 207
PI, 35
PLUS, 125
POCHHAMMER, 549
polar angle, 100
POLYGAMMA, 553
polynomial, 30, 33, 37, 114, 131, 177,

178, 183, 189, 190, 195–197, 201,
209, 211, 344, 351, 354, 361,
382, 383, 396, 415, 495, 496,
500, 501

PRECEDENCE, 266
PRECISE, 377
PRECISION, 267
precision, 99, 350
preduce, 448
preducet, 460
PRET, 378
PRI, 379
prime number, 121, 150
PRIMEP, 150
primitive part, 201
PRINT PRECISION, 268
PROCEDURE, 79

PROD, 208
product, 208
PSI, 552

QUIT, 159
QUOTIENT, 126

RAD2DEG, 128
RAD2DMS, 129
radians, 103, 104, 107, 108, 128, 129
RAISE, 380
RANK, 410
RAT, 381
RATARG, 382
RATIONAL, 383
rational expression, 179, 202, 207, 353,

358, 364, 382–385, 388
rational numbers, 176
RATIONALIZE, 384
RATPRI, 385
REAL, 269
real part, 210
REALROOTS, 498
RECIP, 130
RECLAIM, 160
REDERR, 161
REDUCT, 209
reductum, 209
REMAINDER, 131
REMFAC, 270
REMIND, 476
REPART, 210
REPEAT, 82
replace, 47
requirements, 36
REST, 83
RESULTANT, 211
RETRY, 162
RETURN, 84

REVERSE, 86
revgradlex term order, 421
REVPRI, 386
RHS, 213
right-hand side, 213
RLISP88, 387
rlrootno, 495
root, 37, 218, 487
ROOT MULTIPLICITIES, 37
ROOT OF, 214
ROOT VAL, 501
ROOTACC, 499
ROOTS, 500
roots, 214, 495–503
Roots Package, 495
rootsat-prec, 495
ROOTSCOMPLEX, 502
ROOTSREAL, 503
rootval, 495
ROUND, 132
ROUNDALL, 388
ROUNDBF, 389
ROUNDED, 390
rounded, 267, 268, 272, 350, 373, 388
RULE, 87
rule, 87, 95, 217, 235, 246
rule list, 87
Runge-Kutta, 489

s i, 567
saturation, 451
SAVEAS, 163
SAVESTRUCTR, 391
SCALAR, 271
SCIENTIFIC NOTATION, 272
SEC, 313
SECH, 314
SECOND, 90
SELECT, 215

SET, 91
SETMOD, 133
SETQ, 92
SHARE, 273
Shi, 566
SHOWRULES, 217
SHOWTIME, 164
SHUT, 290
Si, 565
SIGN, 134
simplification, 342, 377, 384
SIN, 315
sine, 315
Sine integral function, 565
sine integral function, 564, 567
SINH, 316
SixjSymbol, 580
Solid harmonic polynomials, 563
SolidHarmonicY, 563
SOLVE, 218
solve, 25, 36, 37, 181, 203, 214, 218, 324,

333, 351, 367, 392, 396, 398,
399, 497, 498, 500, 501

SOLVESINGULAR, 392
SORT, 221
sorting, 221
Special Function Package, 505
Spence’s Integral, 554
Spherical harmonic polynomials, 564
SphericalHarmonicY, 564
SPUR, 477
SQRT, 135
square root, 135, 377
steepest descent, 486
STIRLING1, 576
STIRLING2, 577
STRING, 23
STRUCTR, 222
STRUCTR OPERATOR, 391

StruveH, 519
StruveL, 520
SUB, 224
substitution, 224, 241, 246, 256, 282
SUM, 225
summation, 225
Switch

ADJPREC, 99
ALGINT, 321
ALLBRANCH, 322
ALLFAC, 323
ARBVARS, 324
BALANCED MOD, 325
BFSPACE, 326
COMBINEEXPT, 327
COMBINELOGS, 328
COMP, 329
COMPLEX, 331
CRAMER, 333
CREF, 332
DEFN, 334
DEMO, 336
DFPRINT, 337
DIV, 338
ECHO, 339
ERRCONT, 340
EVALLHSEQP, 341
EXP, 342
EXPANDLOGS, 343
EZGCD, 344
FACTOR, 345
FAILHARD, 347
FORT, 348
FORTUPPER, 349
FULLPREC, 350
FULLROOTS, 351
GC, 352
GCD, 353
gltbasis, 436

groebfullreduction, 435
groebopt, 432
groebprereduce, 434
groebprot, 457
groebstat, 439
HORNER, 354
IFACTOR, 355
INT, 356
INTSTR, 357
LCM, 358
LESSSPACE, 360
LIMITEDFACTORS, 361
LIST, 362
LISTARGS, 363
MCD, 364
MODULAR, 365
MSG, 366
MULTIPLICITIES, 367
NAT, 368
NERO, 369
NOARG, 370
NOCONVERT, 122
NOLNR, 371
NOSPLIT, 372
NUMVAL, 373
OUTPUT, 374
OVERVIEW, 375
PERIOD, 376
PRECISE, 377
PRET, 378
PRI, 379
RAISE, 380
RAT, 381
RATARG, 382
RATIONAL, 383
RATIONALIZE, 384
RATPRI, 385
REVPRI, 386
RLISP88, 387

ROUNDALL, 388
ROUNDBF, 389
ROUNDED, 390
SAVESTRUCTR, 391
SOLVESINGULAR, 392
taylorautocombine, 589
taylorautoexpand, 590
taylorkeeporiginal, 593
taylorprintorder, 595
TIME, 393
TRALLFAC, 394
TRFAC, 395
trgroeb, 440
trgroebs, 441
TRIGFORM, 396
TRINT, 397
TRNONLNR, 398
TRNUMERIC, 485
VAROPT, 399

switch, 261, 262
SWITCHES, 320
SYMBOLIC, 274
symbolic, 28
SYMMETRIC, 275

T, 38
TAN, 317
TANH, 318
TAYLOR, 586
taylor, 587
taylorautocombine, 589
taylorautoexpand, 590
taylorcombine, 591
taylorkeeporiginal, 593
taylororiginal, 594
taylorprintorder, 595
taylorprintterms, 596
taylorrevert, 597
taylorseriesp, 598

taylortemplate, 599
taylortostandard, 600
Term order, 416
term order, 418–428, 446
then, 76
THIRD, 94
ThreejSymbol, 578
TIME, 393
time, 164, 393
TIMES, 136
torder, 417
torder compile, 418
TP, 411
TR, 276
TRACE, 412
trace, 276, 278
tracing Groebner, 456
TRALLFAC, 394
transpose, 411
TRFAC, 395
trgroeb, 440
trgroebs, 441
TRIGFORM, 396
TRINT, 397
TRNONLNR, 398
TRNUMERIC, 485
TRUE, 151
Type

EQUATION, 66
Free Variable, 88
IDENTIFIER, 21
Interval, 483
KERNEL, 22
ONE OF, 204
Optional Free Variable, 89
RULE, 87
STRING, 23

ultraspherical polynomials, 562

univariate polynomial, 446
until, 82
UNTR, 278

Variable
assumptions, 25
CARD NO, 26
EVAL MODE, 28
FORT WIDTH, 29
gltb, 437
glterms, 438
gmodule, 462
groebmonfac, 454
groebprotfile, 458
groebresmax, 455
groebrestriction, 456
gvarslast, 433
HIGH POW, 30
LOW POW, 33
requirements, 36
ROOT MULTIPLICITIES, 37
ROOTSCOMPLEX, 502
ROOTSREAL, 503
taylorprintterms, 596

variable, 88, 89
variable elimination, 419
variable order, 245, 265
VARNAME, 279
VAROPT, 399
VECDIM, 478
VECTOR, 479

Weber’s function, 514
WEIGHT, 280
weighted term order, 426
WHEN, 95
WHERE, 282
WHILE, 284
WhittakerW, 523

work space, 226
WRITE, 165
WS, 226
WTLEVEL, 285

ZETA, 512

	Contents
	Preface
	Concepts
	IDENTIFIER
	KERNEL
	STRING

	Variables
	assumptions
	CARD_NO
	E
	EVAL_MODE
	FORT_WIDTH
	HIGH_POW
	I
	INFINITY
	LOW_POW
	NIL
	PI
	requirements
	ROOT_MULTIPLICITIES
	T

	Syntax
	semicolon
	dollar
	percent
	dot
	assign
	equalsign
	replace
	plussign
	minussign
	asterisk
	slash
	power
	caret
	geqsign
	greater
	leqsign
	less
	tilde
	group
	AND
	BEGIN
	block
	COMMENT
	CONS
	END
	EQUATION
	FIRST
	FOR
	FOREACH
	GEQ
	GOTO
	GREATERP
	IF
	LIST
	OR
	PROCEDURE
	REPEAT
	REST
	RETURN
	REVERSE
	RULE
	Free Variable
	Optional Free Variable
	SECOND
	SET
	SETQ
	THIRD
	WHEN

	Arithmetic Operations
	ARITHMETIC_OPERATIONS
	ABS
	ADJPREC
	ARG
	CEILING
	CHOOSE
	DEG2DMS
	DEG2RAD
	DIFFERENCE
	DILOG
	DMS2DEG
	DMS2RAD
	FACTORIAL
	FIX
	FIXP
	FLOOR
	EXPT
	GCD
	LN
	LOG
	LOGB
	MAX
	MIN
	MINUS
	NEXTPRIME
	NOCONVERT
	NORM
	PERM
	PLUS
	QUOTIENT
	RAD2DEG
	RAD2DMS
	RECIP
	REMAINDER
	ROUND
	SETMOD
	SIGN
	SQRT
	TIMES

	Boolean Operators
	boolean value
	EQUAL
	EVENP
	false
	FREEOF
	LEQ
	LESSP
	MEMBER
	NEQ
	NOT
	NUMBERP
	ORDP
	PRIMEP
	TRUE

	General Commands
	BYE
	CONT
	DISPLAY
	LOAD_PACKAGE
	PAUSE
	QUIT
	RECLAIM
	REDERR
	RETRY
	SAVEAS
	SHOWTIME
	WRITE

	Algebraic Operators
	APPEND
	ARBINT
	ARBCOMPLEX
	ARGLENGTH
	COEFF
	COEFFN
	CONJ
	CONTINUED_FRACTION
	DECOMPOSE
	DEG
	DEN
	DF
	EXPAND_CASES
	EXPREAD
	FACTORIZE
	HYPOT
	IMPART
	INT
	INTERPOL
	LCOF
	LENGTH
	LHS
	LIMIT
	LPOWER
	LTERM
	MAINVAR
	MAP
	MKID
	NPRIMITIVE
	NUM
	ODESOLVE
	ONE_OF
	PART
	PF
	PROD
	REDUCT
	REPART
	RESULTANT
	RHS
	ROOT_OF
	SELECT
	SHOWRULES
	SOLVE
	SORT
	STRUCTR
	SUB
	SUM
	WS

	Declarations
	ALGEBRAIC
	ANTISYMMETRIC
	ARRAY
	CLEAR
	CLEARRULES
	DEFINE
	DEPEND
	EVEN
	FACTOR
	FORALL
	INFIX
	INTEGER
	KORDER
	LET
	LINEAR
	LINELENGTH
	LISP
	LISTARGP
	NODEPEND
	MATCH
	NONCOM
	NONZERO
	ODD
	OFF
	ON
	OPERATOR
	ORDER
	PRECEDENCE
	PRECISION
	PRINT_PRECISION
	REAL
	REMFAC
	SCALAR
	SCIENTIFIC_NOTATION
	SHARE
	SYMBOLIC
	SYMMETRIC
	TR
	UNTR
	VARNAME
	WEIGHT
	WHERE
	WHILE
	WTLEVEL

	Input and Output
	IN
	INPUT
	OUT
	SHUT

	Elementary Functions
	ACOS
	ACOSH
	ACOT
	ACOTH
	ACSC
	ACSCH
	ASEC
	ASECH
	ASIN
	ASINH
	ATAN
	ATANH
	ATAN2
	COS
	COSH
	COT
	COTH
	CSC
	CSCH
	ERF
	EXP
	SEC
	SECH
	SIN
	SINH
	TAN
	TANH

	General Switches
	SWITCHES
	ALGINT
	ALLBRANCH
	ALLFAC
	ARBVARS
	BALANCED_MOD
	BFSPACE
	COMBINEEXPT
	COMBINELOGS
	COMP
	COMPLEX
	CREF
	CRAMER
	DEFN
	DEMO
	DFPRINT
	DIV
	ECHO
	ERRCONT
	EVALLHSEQP
	EXP
	EXPANDLOGS
	EZGCD
	FACTOR
	FAILHARD
	FORT
	FORTUPPER
	FULLPREC
	FULLROOTS
	GC
	GCD
	HORNER
	IFACTOR
	INT
	INTSTR
	LCM
	LESSSPACE
	LIMITEDFACTORS
	LIST
	LISTARGS
	MCD
	MODULAR
	MSG
	MULTIPLICITIES
	NAT
	NERO
	NOARG
	NOLNR
	NOSPLIT
	NUMVAL
	OUTPUT
	OVERVIEW
	PERIOD
	PRECISE
	PRET
	PRI
	RAISE
	RAT
	RATARG
	RATIONAL
	RATIONALIZE
	RATPRI
	REVPRI
	RLISP88
	ROUNDALL
	ROUNDBF
	ROUNDED
	SAVESTRUCTR
	SOLVESINGULAR
	TIME
	TRALLFAC
	TRFAC
	TRIGFORM
	TRINT
	TRNONLNR
	VAROPT

	Matrix Operations
	COFACTOR
	DET
	MAT
	MATEIGEN
	MATRIX
	NULLSPACE
	RANK
	TP
	TRACE

	Groebner package
	Groebner bases
	Ideal Parameters
	Term order
	Term order
	torder
	torder_compile
	lex term order
	gradlex term order
	revgradlex term order
	gradlexgradlex term order
	gradlexrevgradlex term order
	lexgradlex term order
	lexrevgradlex term order
	weighted term order
	graded term order
	matrix term order
	Basic Groebner operators
	gvars
	groebner
	groebner_walk
	groebopt
	gvarslast
	groebprereduce
	groebfullreduction
	gltbasis
	gltb
	glterms
	groebstat
	trgroeb
	trgroebs
	gzerodim?
	gdimension
	gindependent_sets
	dd_groebner
	glexconvert
	greduce
	preduce
	idealquotient
	hilbertpolynomial
	saturation
	Factorizing Groebner bases
	groebnerf
	groebmonfac
	groebresmax
	groebrestriction
	Tracing Groebner bases
	groebprot
	groebprotfile
	groebnert
	preducet
	Groebner Bases for Modules
	Module
	gmodule
	Computing with distributive polynomials
	gsort
	gsplit
	gspoly

	High Energy Physics
	HEPHYS
	HE-dot
	EPS
	G
	INDEX
	MASS
	MSHELL
	NOSPUR
	REMIND
	SPUR
	VECDIM
	VECTOR

	Numeric Package
	Numeric Package
	Interval
	numeric accuracy
	TRNUMERIC
	num_min
	num_solve
	num_int
	num_odesolve
	bounds
	Chebyshev fit
	num_fit

	Roots Package
	Roots Package
	MKPOLY
	NEARESTROOT
	REALROOTS
	ROOTACC
	ROOTS
	ROOT_VAL
	ROOTSCOMPLEX
	ROOTSREAL

	Special Functions
	Special Function Package
	Constants
	Bernoulli Euler Zeta
	BERNOULLI
	BERNOULLIP
	EULER
	EULERP
	ZETA
	Bessel Functions
	BESSELJ
	BESSELY
	HANKEL1
	HANKEL2
	BESSELI
	BESSELK
	StruveH
	StruveL
	KummerM
	KummerU
	WhittakerW
	Airy Functions
	Airy_Ai
	Airy_Bi
	Airy_Aiprime
	Airy_Biprime
	Jacobi's Elliptic Functions and Elliptic Integrals
	JacobiSN
	JacobiCN
	JacobiDN
	JacobiCD
	JacobiSD
	JacobiND
	JacobiDC
	JacobiNC
	JacobiSC
	JacobiNS
	JacobiDS
	JacobiCS
	JacobiAMPLITUDE
	AGM_FUNCTION
	LANDENTRANS
	EllipticF
	EllipticK
	EllipticKprime
	EllipticE
	EllipticTHETA
	JacobiZETA
	Gamma and Related Functions
	POCHHAMMER
	GAMMA
	BETA
	PSI
	POLYGAMMA
	Miscellaneous Functions
	DILOG extended
	Lambert_W function
	Orthogonal Polynomials
	ChebyshevT
	ChebyshevU
	HermiteP
	LaguerreP
	LegendreP
	JacobiP
	GegenbauerP
	SolidHarmonicY
	SphericalHarmonicY
	Integral Functions
	Si
	Shi
	s_i
	Ci
	Chi
	ERF extended
	erfc
	Ei
	Fresnel_C
	Fresnel_S
	Combinatorial Operators
	BINOMIAL
	STIRLING1
	STIRLING2
	3j and 6j symbols
	ThreejSymbol
	Clebsch_Gordan
	SixjSymbol
	Miscellaneous
	HYPERGEOMETRIC
	MeijerG
	Heaviside
	erfi

	Taylor series
	TAYLOR
	taylor
	taylorautocombine
	taylorautoexpand
	taylorcombine
	taylorkeeporiginal
	taylororiginal
	taylorprintorder
	taylorprintterms
	taylorrevert
	taylorseriesp
	taylortemplate
	taylortostandard

	Index

