
Examples by topic

This is a small excerpt from the REDUCE User's Manual [REDUM],
translated to Pure syntax. For any details we refer to that document. With

this guide it should be straightforward to interprete back and forth. The
REDUCE User's Manual as well as the documentation of each package and
other valuable information may be found at

http://www.reduce-algebra.com/documentation.htm

Differentiation

The operator df is used to represent partial differentiation with respect to

one or more variables.

syntax: df exprn [var <num>]+.

Differentiation of the function with respect to , two, three

and four times respectively, i.e :

> simplify $ df (x^2*y^3*z^4) x 2 y 3 z 4 ;
288

The derivative of :

> simplify $ df (log(sin x)^2) x;
2*cos x*log (sin x)/sin x

Note the parentheses.

Suppose : Let's calculate and :

> declare depend [z,cos x,y];
[]
> simplify (df (sin z) (cos x));
cos z*df z (cos x)
> simplify (df (z^2) x);
2*df z x*z

Note how to declare dependencies.

The results are and respectively, as expected.

Integration

INT is an operator in REDUCE for indefinite integration using a combination

of the Risch-Norman algorithm and pattern matching.

x2y3z4 x, y, z
∂9x2y3z4

∂ ∂ ∂x2 y3 z4

log sin(x)2

z(cos(x), y)
∂ sin(z)

∂ cos(x)
∂z2

∂x

cos(z) ∂z

∂ cos(x)
2z)∂z

∂x

Examples by topic http://localhost:58035/#id1

1 von 19 08.10.2012 16:28

syntax: intg exprn var.

Note that in Pure the operator is called intg in order not to clash with the

integer type int .

Example 1:

> simplify $ intg (1/(a*x+b)) x;
log (a*x+b)/a

Example 2:

> I a b n = simplify $ intg (x^2*(a*x+b)^n) x;
> I a b n;
((a*x+b)^n*a^3*n^2*x^3+3*(a*x+b)^n*a^3*n*x^3+2*(a*x +b)^n*a^3*x^3+
 (a*x+b)^n*a^2*b*n^2*x^2+(a*x+b)^n*a^2*b*n*x^2-2*(a *x+b)^n*a*b^2*
 n*x+2*(a*x+b)^n*b^3)/(a^3*n^3+6*a^3*n^2+11*a^3*n+ 6*a^3)
> I a b 0 ;
x^3/3
> I 0 b n;
b^n*x^3/3
> I a 0 k;
x^k*a^k*x^3/(k+3)

Example 3:

> simplify $ intg (sqrt(x+sqrt(x^2+1))/x) x ;
intg (sqrt (sqrt (x^2+1)+x)/x) x

Apparently no solution was found. There is a package ALGINT in REDUCE,

that is specialized to deal with algebraic functions. The REDUCE User's
Manual [REDUM] says

... will analytically integrate a wide range of expressions
involving square roots where the answer exists in that class of
functions. It is an implementation of the work described in J.H.
Davenport [LNCS102]

> reduce::load "algint" ;
0
> simplify $ intg (sqrt(x+sqrt(x^2+1))/x) x ;
atan ((sqrt (sqrt (x^2+1)+x)*sqrt (x^2+1)-sqrt (sqr t (x^2+1)+x)*x-sqrt
(sqrt (x^2+1)+x))/2)+2*sqrt (sqrt (x^2+1)+x)+log (s qrt (sqrt
(x^2+1)+x)-1)-log (sqrt (sqrt (x^2+1)+x)+1)

Note how to load packages.

Length and Map

∫ dx
1

ax + b

I(a, b, n) = ∫ (ax + b dxx2)n

∫ x + + 1x2− −−−−
√

− −−−−−−−−−√

x

Examples by topic http://localhost:58035/#id1

2 von 19 08.10.2012 16:28

LENGTH is a generic operator for finding the length of various objects in the

system, while the MAP operator applies a uniform evaluation pattern to all

members of a composite structure: a matrix, a list, or the arguments of an
operator expression.

syntax: length exprn

syntax: map fun obj

> simplify $ length (a+b);
2
> simplify $ length (x^n+a*x+2);
3

> simplify $ map sqrt [1,2,3];
[1,2^(1/2),3^(1/2)]
> simplify $ map log [x^n,x^m,sin x] ;
[log (x^n),log (x^m),log (sin x)]

> simplify $ map (\y->df y x) [x^n,x^m,sin x] ;
[x^n*n/x,x^m*m/x,cos x]
> simplify $ map (\y->intg y x) [x^n,x^m,sin x] ;
[x^n*x/(n+1),x^m*x/(m+1),-cos x]

Note that the lambda expression in REDUCE is replaced by the

corresponding Pure version.

Partial Fractions

The PF operator transforms an expression into a list of partial fractions with

respect to the main variable. PF does a complete partial fraction

decomposition.

syntax: pf expr var

Let us find the decomposition of:

> let f = 2/((x+1)ˆ2*(x+2))
> simplify $ pf f x;
[2/(x+2),(-2)/(x+1),2/(x^2+2*x+1)]

this means

If one wants the denominators in factored form, one has to use the switch
off exp :

> reduce::switch "exp" 0 ;
0
>
> simplify $ pf f x;
[2/(x+2),(-2)/(x+1),2/(((x:1):1):1)^2] // (x+1)^2 ? ??

f(x) =
2

(x + 1 (x + 2))2

f(x) = + +
−2

x + 3

2

x + 2

2

+ 2x + 1x2

Examples by topic http://localhost:58035/#id1

3 von 19 08.10.2012 16:28

Note how the switch off exp is used in Pure .

Selection

The SELECT operator extracts from a list, or from the arguments of an

n–ary operator, elements corresponding to a boolean predicate. It is used

with the syntax:

syntax: select fun list

Solving

SOLVE is an operator for solving one or more simultaneous algebraic

equations. It is used with the syntax:

syntax: solve expr [var | varlist]

where expr is a list of one or more expressions. Each expression is an

algebraic equation, or is the difference of the two sides of the equation.

Example 1:

Find the solutions to

> let eqn1 = log(sin (x+3))^5 == 8 ;
> let sol1 = simplify $ solve eqn1 x;

The variable sol1 now contains a huge list of solutions. How many?

> #sol1 ;
10

The first one is:

> sol1!0;
x==2*val "\0x256c\(0x2593)5"*pi+asin (e^(2^(3/5)*co s (2*pi/5))/e^(2^(3/5)*
sin (2*pi/5)*i))-3

where n is an arbitrary integer constant.

It is also possible - for example - to obtain the righthand side of any
solution in the list via REDUCE commands:

> simplify $ rhs $ first $ solve eq1 x;
2*val "\0x256c\(0x2593)10"*pi+asin (e^(2^(3/5)*cos (2*pi/5))/e^(2^(3/5)*
sin (2*pi/5)*i))-3
>

log(sin(x + 3) = 8)5

x = 2 ⋅ n ⋅ π + asin() − 3
e ⋅cos()2

3
5 2⋅π

5

e ⋅sin()⋅i2
3
5 2⋅π

5

Examples by topic http://localhost:58035/#id1

4 von 19 08.10.2012 16:28

where first gets the first solution in the list and rhs takes the righthand

side. Hence there is a wealth of possibilities to process the solution list.

Example 2:

For the sake of clarity some simpler examples:

> simplify $ solve [X^2+1==0] X;
[X==i,X==-i]

> simplify $ solve [x+3*y==7,y-x==1] [x,y] ;
[[x==1,y==2]]

To get the multiplicities turn on the switch multiplicities :

> simplify $ solve [x^2==2*x-1] x;
[x==1]

> reduce::switch "multiplicities" 1;
0

> simplify $ solve [x^2==2*x-1] x;
[x==1,x==1]

For details consult the REDUCE user manual.

Even and Odd Operators

An operator can be declared to be even or odd in its first argument by the
declarations EVEN and ODD respectively.

> declare operator [f1,f2];
[]
> declare odd f1;
[]
> declare even f2;
[]

> simplify $ f1(-a);
-f1 a

> simplify $ f2 (-a);
f2 a

> simplify $ f1 (-a) (-b);
-f1 a (-b)

Linear Operators

An operator can be declared to be linear in its first argument over powers
of its second argument.

+ 1 = 0X2

(x + 3 y = 7) ∧ (y − x = 1)

L(a + b x + c, x) = L(, x) ⋅ a + L(x, x) ⋅ b + L(1, x) ⋅ cx5 x5

Examples by topic http://localhost:58035/#id1

5 von 19 08.10.2012 16:28

> declare operator L;
[]
> declare linear L;
[]
> simplify $ L (a*x^5+b*x+c) x ;
L (x^5) x*a+L x x*b+L 1 x*c

> simplify $ L (a+b+c+d) y;
L 1 y*a+L 1 y*b+L 1 y*c+L 1 y*d

Note that L x y binds stronger than (*).

Non-commuting Operators

An operator can be declared to be non-commutative under multiplication
by the declaration NONCOM.

>
> declare operator [u,v];
[]
> simplify (u(x)*u(y)-u(y)*u(x));
0
> declare noncom [u,v];
[]
> simplify (u(x)*u(y)-u(y)*u(x));
u x*u y-u y*u x

Symmetric and Antisymmetric

Operators

An operator can be declared to be symmetric with respect to its arguments
by the declaration SYMMETRIC, Similarly the declaration ANTISYMMETRIC
declares an operator antisymmetric.

> declare operator [A,S];
[]
> declare symmetric S;
[]
> declare antisymmetric A;
[]

> simplify $ A x x ;
0

> simplify $ (A x y z) + (A x z y) ;
0

> simplify $ S y x ;
S x y

> simplify $ A y x ;
-A x y

Creating/Removing Variable

L(a + b + c + d, y) = L(1, y) ⋅ (a + b + c + d)

Examples by topic http://localhost:58035/#id1

6 von 19 08.10.2012 16:28

Dependency

There are several facilities in REDUCE, such as the differentiation operator

and the linear operator facility, that can utilize knowledge of the
dependency between various variables. Such dependency may be
expressed by the command DEPEND.

> declare operator D ;
[]
> declare depend [D,x,y];
[]

> simplify $ df D a;
0

D does not depend on a => 0, but

> simplify $ df D x;
df D x

because D depends on x by definition.
If we let a also depend on x, then

> declare depend [a,x];
[]
> simplify $ df (D*a) x;
df D x*a+df a x*D

Note that dependencies remain active until they are explicitly removed

> declare nodepend [a,x];
> simplify $ df a x;
0
> simplify $ df (D*a) x;
df D x*a

Internal Order of Variables

It is possible for the user to change the internal order of variables by
means of the declaration KORDER. The syntax for this is:

syntax: declare korder [v1,...,vn];

Unlike the ORDER declaration, that has a purely cosmetic effect on the way
results are printed, the use of KORDER can have a significant effect on
computation time.

> declare korder [z,y,x];
[]
> x+y+z;
x+y+z
> simplify $ x+y+z;
z+y+x

Parts of Algebraic Expressions

The following operators can be used to obtain a specific part of an

Examples by topic http://localhost:58035/#id1

7 von 19 08.10.2012 16:28

expression, or even change such a part to another expression.

coeff expr::polynomial var
coeffn expr::polynomial var n::int
part expr::algebraic [n::int])

Examples:

> simplify $ coeff ((y^2+z)^3/z) y ;
[z^2,0,3*z,0,3,0,1/z]

> simplify $ coeffn ((y^2+z)^3/z) y 6;
1/z

> simplify $ part (a+b) 2 ;
b

> simplify $ part (a+b) 1 ;
a

> simplify $ part (a+b) 0 ;
(+)

PART may also be used to substitute for a given part of an expression. In

this case, the PART construct appears on the left-hand side of an
assignment statement, and the expression to replace the given part on the
right-hand side.

> simplify $ xx:=a+b;
a+b
> simplify $ part xx 2 := c ;
c
> simplify $ xx;
a+c

Polynomials and Rationals

Factorization of Polynomials

REDUCE is capable of factorizing univariate and multivariate polynomials
that have integer coefficients, finding all factors that also have integer
coefficients. The package for doing this was written by Dr. Arthur C.
Norman and Ms. P. Mary Ann Moore at The University of Cambridge. It is
described in [SYMSAC81].

factorize expr::polynomial [p::prime]

Some examples:

> simplify $ factorize (x^105-1) ;
[[x^48+x^47+x^46-x^43-x^42-2*x^41-x^40 ...]
>
> reduce::switch "ifactor" 1;
0
> simplify $ factorize (12*x^2 - 12) ;
[[2,2],[3,1],[x+1,1],[x-1,1]]
> reduce::switch "ifactor" 0;

The following operators should be well known:

Examples by topic http://localhost:58035/#id1

8 von 19 08.10.2012 16:28

gcd expr1::polynomial expr2::polynomial ->
polynomial
lcm expr1::polynomial expr2::polynomial ->
polynomial
remainder expr1::polynomial expr2::polynomial ->
polynomial
resultant expr1::polynomial expr2::polynomial var ->
polynomial
decompose expr::polynomial -> list
interpol <values> <variable> <points>) ->
polynomial
deg expr::polynomial var ->int
den expr::rational -> polynomial
lcof expr::polynomial var -> polynomial
lpower expr::polynomial var-> polynomial
lterm expr::polynomial var -> polynomial
mainvar expr::polynomial -> expr
num expr::rational -> polynomial
reduct expr::polynomial var -> polynomial

Some examples of each operator:

GCD/LCM

> simplify $ gcd (x^2+2*x+1) (x^2+3*x+2) ;
x+1
> simplify $ gcd (2*x^2-2*y^2) (4*x+4*y) ;
2*x+2*y
> simplify $ gcd (x^2+y^2) (x-y) ;
1
>
> simplify $ lcm (x^2+2*x+1) (x^2+3*x+2) ;
x^3+4*x^2+5*x+2
> simplify $ lcm (2*x^2-2*y^2) (4*x+4*y) ;
4*x^2-4*y^2
>

REMAINDER/RESULTANT

> simplify $ remainder ((x+y)*(x+2*y)) (x+3*y) ;
2*y^2
> simplify $ remainder (2*x+y) 2 ;
y
>
> simplify $ resultant (x/r*u+y) (u*y) u ;
-y^2
>

DECOMPOSE

> simplify $ decompose (x^8-88*x^7+2924*x^6-43912*x ^5+263431*x^4-
> 218900*x^3+65690* x^2-7700*x+234) ;
[u^2+35*u+234,u==v^2+10*v,v==x^2-22*x]
>
> simplify $ decompose (u^2+v^2+2*u*v+1) ;
[w^2+1,w==u+v]
>

DEG/DEN

Examples by topic http://localhost:58035/#id1

9 von 19 08.10.2012 16:28

> simplify $ deg ((a+b)*(c+2*d)^2) d ;
2
> simplify $ deg ((x+b)*(x^6+2*y)^2) x ;
13
>
> simplify $ den (x/y^2) ;
y^2
>

LCOF/LPOWER/LTERM

> simplify $ lcof ((a+b)*(c+2*d)^2) a ;
c^2+4*c*d+4*d^2
> simplify $ lcof ((a+b)*(c+2*d)^2) d ;
4*a+4*b
> simplify $ lcof ((a+b)*(c+2*d)) ('e) ;
a*c+2*a*d+b*c+2*b*d
>
> simplify $ lpower ((a+b)*(c+2*d)^2) a ;
a
> simplify $ lpower ((a+b)*(c+2*d)^2) d ;
d^2
> simplify $ lpower ((a+b)*(c+2*d)) x ;
1
>
> simplify $ lterm ((a+b)*(c+2*d)^2) a ;
a*c^2+4*a*c*d+4*a*d^2
> simplify $ lterm ((a+b)*(c+2*d)^2) d ;
4*a*d^2+4*b*d^2
> simplify $ lterm ((a+b)*(c+2*d)) x ;
a*c+2*a*d+b*c+2*b*d
>

MAINVAR/NUM/REDUCT

> simplify $ mainvar ((a+b)*(c+2*d)^2) ;
a
> simplify $ mainvar 2 ;
0
>
> simplify $ num (x/y^2) ;
x
> simplify $ num ('(100/6)) ;
50
> simplify $ num (a/4+b/6) ;
3*a+2*b
>
> simplify $ reduct ((a+b)*(c+2*d)) a ;
b*c+2*b*d
> simplify $ reduct ((a+b)*(c+2*d)) d ;
a*c+b*c
> simplify $ reduct ((a+b)*(c+2*d)) x ;
0
>

Substitution

An important class of commands in REDUCE define substitutions for
variables and expressions to be made during the evaluation of expressions.
Such substitutions use (among others) the prefix operator SUB.

syntax: sub <substlist> exprn::algebraic -> algebra ic

> simplify $ sub [x==a+y,y==y+1] (x^2+y^2) ;

Examples by topic http://localhost:58035/#id1

10 von 19 08.10.2012 16:28

a^2+2*a*y+2*y^2+2*y+1

> simplify $ sub [a==sin x, b==sin y] (a^2+b^2) ;
> sin x^2+sin y^2

Assignment

One may assign values to variables in the REDUCE environment. Note that
in Pure the set operator and := are equivalent, i.e. both sides are

evaluated, contrary to the := version in REDUCE.

syntax: set expr expr ; or expr := expr

> simplify $ P := a*x^n + b* x^m + c ; // P:=a *x^n + b* x^m + c;
x^m*b+x^n*a+c
> simplify P ; // retu rn P (from Reduce)
x^m*b+x^n*a+c
> simplify $ df P x; // diff P x
(x^m*b*m+x^n*a*n)/x
> simplify $ Q := intg P x ; // inte grate P x, store in Q
(x^m*b*n*x+x^m*b*x+x^n*a*m*x+x^n*a*x+c*m*n*x+c*m*x+ c*n*x+c*x)/(m*n+m+n+1)
>

> simplify $ set Q (a*x^n + b* x^m + c) ;
x^m*b+x^n*a+c

Matrix Calculations

A very powerful feature of REDUCE is the ease with which matrix
calculations can be performed. It fits very well into Pure's native matrix
type.

To keep it simple we show the usage of the different operators by
examples using the well known Pauli matrices . There is no loss of

generality using only (2x2) matrices.

Pauli matrices (sigma 1..3). see e.g. http://en.wikipedia.org
/wiki/Pauli_matrices for a reference.

let s0 = {1,0;0,1} ;
let s1 = {0,1;1,0} ;
let s2 = {0,-i;i,0};
let s3 = {1,0;0,-1};

Check the identities

where denotes the unit matrix.

Note: s1^2 or s1*s1 works.

> let r1 = simplify $ (s1*s1) ; r1;

= () = () = ()σ1
0
1

1
0

σ2
0
i

−i

0
σ3

1
0

0
−1

= = = −i =σ2
1 σ2

2 σ2
3 σ1 σ2 σ3 σ0

σ0

Examples by topic http://localhost:58035/#id1

11 von 19 08.10.2012 16:28

{1,0;0,1}
> let r2 = simplify $ (s2*s2) ; r2;
{1,0;0,1}
> let r3 = simplify $ (s3*s3) ; r3;
{1,0;0,1}
> let r4 = simplify $ (-i*s1*s2*s3) ; r4;
{1,0;0,1}
> let r5 = all (==s0) [r1,r2,r3,r4] ; r5;
1

Check:

> map (simplify . det) [s1,s2,s3] ;
[-1,-1,-1]

Calculate the Eigenvalues/-vectors of :

> let r7 = simplify $ mateigen s2 q; r7;
[[q-1,1,{-c1*i;c2}],[q+1,1,{c3*i;c4}]]

> let r8 = map head r7; r8; // -> [q-1,q+1] => Eige nvalues q=+/-1
[q-1,q+1]

> let r9 = map (head.tail) r7 ; r9; // multipliciti es
[1,1]

> let r10 = map last r7 ; r10; // eigenvectors
[{-c1*i;c2},{c3*i;c4}]

Transpose (operator tp):

> map (simplify.tp) [s1,s2,s3] ; // -> [s1',s2',s3']
[{0,1;1,0},{0,i;-i,0},{1,0;0,-1}]

Trace (operator trace):

> map (simplify.trace) [s1,s2,s3] ;
[0,0,0]

Cofactor (trivial here)

> simplify $ cofactor s2 1 1 ;
0

Nullspace of + {0,i;0,0}

> simplify $ nullspace (s2+{0,i;0,0}) ;
[{0;1}]

Rank

> map (simplify . rank) [s0,s1,s2,s3] ;
[2,2,2,2]

Inverse (simply)

> let r15 = simplify $ 1/s2 ; r15;
{0,1/i;(-1)/i,0}

> simplify $ s2*r15 ;
{1,0;0,1}

Solving without solve :

det = −1, ∀i ∈ {1, 2, 3}.σi

σ2

σ2

1
matrix

Examples by topic http://localhost:58035/#id1

12 von 19 08.10.2012 16:28

> simplify $ (1/{a11,a12;a21,a22}*{y1;y2}) ; // A^- 1 * y' ;
{(-a12*y2+a22*y1)/(a11*a22-a12*a21);(a11*y2-a21*y1) /(a11*a22-a12*a21)}

Limits

From the package description: LIMITS is a fast limit package for REDUCE
for functions which are continuous except for computable poles and
singularities, based on some earlier work by Ian Cohen and John P. Fitch.
This package defines a LIMIT operator, called with the syntax:

limit expr::alg var limpoint::alg -> alg

> simplify $ limit (x*sin(1/x)) x infinity ;
1

> simplify $ limit (1/x) x 0 ;
inf

Notes: This package loads automatically. Author: Stanley L. Kameny.

Ordinary differential equations

solver

The ODESOLVE package is a solver for ordinary differential equations.

Problem 1:

> declare depend [y,x]; // declare: y depends on x
[]

> simplify $ odesolve [df y x == x^2+exp(x)] [y] x ;
[y==(3*C+3*e^x+x^3)/3]

Problem 2:

> simplify $ odesolve [(df y x 2) == y] [y] x [[x== 0,y==A],[x==1,y==B]] ;
[y==(-e^(2*x)*A+e^(2*x)*B*e+A*e^2-B*e)/(e^x*e^2-e^x)]

Remember to remove dependencies

> declare nodepend [y,x];

+ =a11 x1 a12 x2 y1
+ =a21 x1 a22 x2 y2

x sin =? ∧ =?lim
x→∞

1

x
lim
x→0

1

x

= +
dy

dx
x2 ex

= y(x) ∧ y(0) = A ∧ y(1) = B
yd2

dx2

Examples by topic http://localhost:58035/#id1

13 von 19 08.10.2012 16:28

[]

Series Summation and Products

SUM: A package for series summation

From the package description:

The package implements the Gosper algorithm for the summation of
series. It defines operators SUM and PROD. The operator SUM returns the

indefinite or definite summation of a given expression, and PROD returns

the product of the given expression. This package loads automatically.
Author: Fujio Kako.

Calculate

> simplify $ sum (n^3) n 1 N ;
(N^4+2*N^3+N^2)/4

> simplify $ sum (a+k*r) k 0 (n-1) ;
(2*a*n+n^2*r-n*r)/2

> simplify $ sum (1/((p+(k-1)*q)*(p+k*q))) k 1 (n+1) ;
(n+1)/(n*p*q+p^2+p*q)

> simplify $ prod (k/(k+2)) k 1 N ;
2/(N^2+3*N+2)

Taylor Series

TAYLOR: Manipulation of Taylor series

From the package description:

This package carries out the Taylor expansion of an expression in one or
more variables and efficient manipulation of the resulting Taylor series.
Capabilities include basic operations (addition, subtraction, multiplication
and division) and also application of certain algebraic and transcendental
functions. Author: Rainer Schöpf.

Example:

For details consult the package documentation in the REDUCE distribution.

> simplify $ taylor (exp (x^2+y^2)) x 0 2 y 0 2 ;
x^2*y^2+x^2+y^2+1

> simplify $ taylor (exp x) x 0 3;
(x^3+3*x^2+6*x+6)/6

… (a + k r)… …∑
n=1

N

n3 ∑
k=0

n−1

∑
k=1

n+1 1

(p + (k − 1) q) ⋅ (p + k q)
∏
k=1

N
k

k + 2

= 1 + + + ⋅ + O(,)e +x2 y2
y2 x2 y2 x2 x3 y3

Examples by topic http://localhost:58035/#id1

14 von 19 08.10.2012 16:28

> simplify $ implicit_taylor (x^2+y^2-1) x y 0 1 5 ;
(-x^4-4*x^2+8)/8

> simplify $ inverse_taylor (exp(x)-1) x y 0 8;
(-105*y^8+120*y^7-140*y^6+168*y^5-210*y^4+280*y^3-4 20*y^2+840*y)/840

Boolean Expressions

The truth values within REDUCE are t and nil = () but are mapped to 1
and 0 respectively when interchanging results using simplify . Not all

predicates (functions returning a truth value), however, can be called by
simplify , so one has to use the lisp function in some rare cases.

Some examples:

> simplify $ evenp 200 ;
1
> simplify $ evenp 201 ;
0

> lisp (fixp 200) ;
t

where fixp tests for integers.

The following example shows a pitfall. Since there is a numberp in Pure as

well as in REDUCE one has to be careful:

 > lisp (numberp x) ;
 0

 > lisp (quote (numberp x)) ;
[]

 > lisp (quote (numberp 111)) ;
 t

In the first case numberp x evaluates to zero in Pure, so the lisp function

gets 0 and returns 0. In the second case (quoted) the function numberp is

evaluated in REDUCE and returns nil , i.e. [] in Pure. Of course, both

results are correct but there may be other cases where equally named
functions have different meanings in the two environments.

Some other useful predicates in REDUCE are ordp and freeof :

> lisp (ordp x y) ;
t
> lisp (ordp y x) ;
[]
> lisp (ordp "abc" "abd") ;
t
> lisp (ordp "abd" "abc") ;
[]
> lisp (ordp 3 5) ;
[]
> lisp (ordp 5 3) ;
t

> simplify $ freeof (x^2+y) x ;
0

Examples by topic http://localhost:58035/#id1

15 von 19 08.10.2012 16:28

> simplify $ freeof (x^2+y) z ;
1
> simplify $ freeof (x^n*y^m) (y^m) ;
0

Mathematical Functions

REDUCE provides many mathematical functions that can take arbitrary
scalar expressions as their single argument:

ACOS ACOSH ACOT ACOTH ACSC ACSCH ASEC ASECH
ASIN ASINH
ATAN ATANH ATAN2 COS COSH COT COTH CSC CSCH
DILOG EI EXP
HYPOT LN LOG LOGB LOG10 SEC SECH SIN SINH SQRT
TAN TANH ERF

Note, however, if there is an equally named function in Pure and no quotes
are used then the Pure function is used, that is for example, cos x , means

cos in Pure, (quote cos) x means cos in REDUCE ...

See the difference:

> simplify $ (cos 4.3);
cos (43/10)
> using math;
warning: external 'exp' shadows previous undefined use of this symbol
warning: external 'sin' shadows previous undefined use of this symbol
warning: external 'cos' shadows previous undefined use of this symbol
> simplify $ (cos 4.3);
(-21601483)/53896027

Some examples:

> simplify $ cos (-x) ;
cos x
> simplify $ cos (n*pi) ;
cos (80143857*n/25510582)
> simplify $ (quote e)^(3*i*(quote pi)/2) ;
-i
> simplify $ sec (quote pi);
-1
> let simplify $ log10 10 ;
1
> simplify $ erf (-a);
-erf a

The special functions are in two separate packages SPECFN and SPECFN2:

Bernoulli Numbers and Euler Numbers;
Stirling Numbers;
Binomial Coefficients;
Pochhammer notation;
The Gamma function;
The Psi function and its derivatives;
The Riemann Zeta function;
The Bessel functions J and Y of the first and second kind;
The modified Bessel functions I and K;

Examples by topic http://localhost:58035/#id1

16 von 19 08.10.2012 16:28

The Hankel functions H1 and H2;
The Kummer hypergeometric functions M and U;
The Beta function, and Struve, Lommel and Whittaker
functions;
The Airy functions;
The Exponential Integral, the Sine and Cosine Integrals;
The Hyperbolic Sine and Cosine Integrals;
The Fresnel Integrals and the Error function;
The Dilog function;
Hermite Polynomials;
Jacobi Polynomials;
Legendre Polynomials;
Spherical and Solid Harmonics;
Laguerre Polynomials;
Chebyshev Polynomials;
Gegenbauer Polynomials;
Euler Polynomials;
Bernoulli Polynomials.
Jacobi Elliptic Functions and Integrals;
3j symbols, 6j symbols and Clebsch Gordan coefficients;

In SPECFN2 are the generalized hypergeometric functions and Meijer’s G

function.

Author: Chris Cannam, with contributions from Winfried Neun, Herbert
Melenk, Victor Adamchik, Francis Wright and several others.

Definite Integrals

Package: DEFINT (definite integrals) Calculating integrals by using the
Meijer G integration formula.

> reduce::load "defint" ;
0

> simplify $ intg (exp(-x)) x 0 infinity ;
1

> simplify $ intg (x^2*cos(x)*exp(-2*x)) x 0 infini ty ;
4/125

> simplify $ intg (x*exp(-1/2*x)) x 0 1 ;
2*sqrt e*(2*sqrt e-3)/e

dx∫ ∞

0
e−x

cos(x) dx∫ ∞

0
x2 e−2 x

x dx∫ 1

0
e− x

1
2

Examples by topic http://localhost:58035/#id1

17 von 19 08.10.2012 16:28

> simplify $ intg (x*log(1+x)) x 0 1 ;
1/4

> simplify $ intg (cos(2*x)) x y (2*y);
(sin (4*y)-sin (2*y))/2

Various transformations:

> simplify $ laplace_transform (exp(-a*x)) x ;
1/(a+s)

> simplify $ hankel_transform (exp(-a*x)) x ;
s^(n/2)*gamma (n/2)*hypergeometric [(n+2)/2] [n+1]
((-s)/a)*n/(2*a^(n/2)*gamma (n+1)*a)

> simplify $ y_transform (exp(-a*x)) x ;
(a^n*gamma (n+1)*gamma ((-n)/2)*gamma ((-2*n-1)/2)* gamma
((2*n+3)/2)*hypergeometric [(-n+2)/2] [-n+1] ((-s)/ a)+s^n*gamma
(-n)*gamma (n/2)*hypergeometric [(n+2)/2] [n+1] ((- s)/a)*n*pi)/
(2*s^(n/2)*a^(n/2)*gamma ((-2*n-1)/2)*gamma ((2*n+3)/2)*a*pi)

> simplify $ k_transform (exp(-a*x)) x ;
(-a^n*gamma (n+1)*gamma ((-n)/2)*hypergeometric [(- n+2)/2] [-n+1]
(s/a)+s^n*gamma (-n)*gamma (n/2)*hypergeometric [(n +2)/2] [n+1] (s/a)*n)/
(4*s^(n/2)*a^(n/2)*a)

> simplify $ struveh_transform (exp(-a*x)) x ;
2*s^((n+1)/2)*gamma ((n+3)/2)*hypergeometric [1,(n+ 3)/2] [(2*n+3)/2,3/2]
((-s)/a)/(sqrt pi*a^((n+1)/2)*gamma ((2*n+3)/2)*a)

> simplify $ fourier_sin (exp(-a*x)) x ;
s/(a^2+s^2)
> simplify $ fourier_cos (exp(-a*x)) x ;
a/(a^2+s^2)

Declarations, Switches and

Loading

Lisp evaluation can be used in the REDUCE system, in particular, to declare
operator symbols and their properties (simplify won't do that). E.g.:

> lisp ('operator [myop]);
> lisp ('flag [myop] odd);
> lisp ('prop myop); // => [odd:t,simpfn:simpiden]
> simplify (myop (-x)); // => -myop x

For the most common kinds of declarations, the reduce module already
provides the 'declare' function which takes care of the necessary Lisp
magic and is safe to use. The above example can also be done as follows:

> declare operator myop;
> declare odd myop;
> simplify (myop (-x));

x log(1 + x) dx∫ 1

0

cos(2 x) dx∫ 2 y

y

Examples by topic http://localhost:58035/#id1

18 von 19 08.10.2012 16:28

-myop x

For a list of supported declarations via declare consult the module file

reduce.pure .

In Pure the REDUCE switches can be turned on/off as follows:

reduce::switch "switch-id" 0/1 ;

A package can be loaded by the command

reduce::load "package-id" ;

A REDUCE source file may be read-in by the command:

lisp ('in ["path/filename.red"]) ;

Plotting

Using GnuPlot

> reduce::load "gnuplot";

Note that we have to quote the x..y ranges here so that they get through
to Reduce, rather than being evaluated on the Pure side.

> simplify $ 'plot (sin x/x) (x==(-15..15));

// Multiple ranges.
> simplify $ 'plot (sin(x^2 + y^2) / sqrt(x^2 + y^2))
[x==(-12 .. 12), y==(-12 .. 12)];

// Specifying options.
> simplify $ 'plot (cos (sqrt(x^2 + y^2))) [x==(-3 .. 3),y==(-3 .. 3)] hidden3d;

// Specifying points.
> simplify $ plot [[0,0],[0,1],[1,1],[0,0],[1,0],[0 ,1],[0.5,1.5],[1,1],[1,0]];

// Output options.
> simplify $ plot (sin x) [x== '(0 .. 10),terminal==postscript,output=="sin.ps"];

References:

[REDUM] (1, 2) REDUCE User’s Manual, Version 3.8, Anthony C. Hearn,
Santa Monica, CA, USA.

[LNCS102] On the Integration of Algebraic Functions, LNCS 102, Springer
Verlag, 1981.

[SYMSAC81] P. M. A. Moore and A.C. Norman, Implementing a Polynomial
Factorization and GCD Package, Proc. SYMSAC ’81, ACM (New
York) (1981), 109-116.

todo -> replace python by pure

Examples by topic http://localhost:58035/#id1

19 von 19 08.10.2012 16:28

