
Examples by topic

This  is  a  small  excerpt  from  the  REDUCE  User's  Manual  [REDUM],
translated to Pure  syntax. For any details we refer to that document. With

this guide it should be straightforward to interprete back and forth. The
REDUCE User's Manual as well as the documentation of each package and
other valuable information may be found at

http://www.reduce-algebra.com/documentation.htm

Differentiation

The operator df  is used to represent partial differentiation with respect to

one or more variables.

syntax: df exprn [var <num>]+.

Differentiation of the function  with respect to  , two, three

and four times respectively, i.e  :

> simplify $ df (x^2*y^3*z^4) x 2 y 3 z 4 ;
288

The derivative of  :

> simplify $ df (log(sin x)^2) x;
2*cos x*log (sin x)/sin x

Note the parentheses.

Suppose  : Let's calculate  and  :

> declare depend [z,cos x,y];
[]
> simplify (df (sin z) (cos x));
cos z*df z (cos x)
> simplify (df (z^2) x);
2*df z x*z

Note how to declare dependencies.

The results are  and  respectively, as expected.

Integration

INT  is an operator in REDUCE for indefinite integration using a combination

of the Risch-Norman algorithm and pattern matching.

x2y3z4 x, y, z
∂9x2y3z4

∂ ∂ ∂x2 y3 z4

log sin(x)2

z(cos(x), y)
∂ sin(z)

∂ cos(x)
∂z2

∂x

cos(z) ∂z

∂ cos(x)
2z )∂z

∂x
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syntax: intg exprn var.

Note that in Pure  the operator is called intg  in order not to clash with the

integer type int .

Example 1:

> simplify $ intg (1/(a*x+b)) x;
log (a*x+b)/a

Example 2:

> I a b n = simplify $ intg (x^2*(a*x+b)^n) x;
> I a b n;
((a*x+b)^n*a^3*n^2*x^3+3*(a*x+b)^n*a^3*n*x^3+2*(a*x +b)^n*a^3*x^3+
 (a*x+b)^n*a^2*b*n^2*x^2+(a*x+b)^n*a^2*b*n*x^2-2*(a *x+b)^n*a*b^2*
  n*x+2*(a*x+b)^n*b^3)/(a^3*n^3+6*a^3*n^2+11*a^3*n+ 6*a^3)
> I a b 0 ;
x^3/3
> I 0 b n;
b^n*x^3/3
> I a 0 k;
x^k*a^k*x^3/(k+3)

Example 3:

> simplify $ intg (sqrt(x+sqrt(x^2+1))/x) x ;
intg (sqrt (sqrt (x^2+1)+x)/x) x

Apparently no solution was found. There is a package ALGINT in REDUCE,

that is  specialized to  deal with algebraic  functions.  The REDUCE User's
Manual [REDUM] says

... will analytically integrate a wide range of expressions
involving square roots where the answer exists in that class of
functions. It is an implementation of the work described in J.H.
Davenport [LNCS102]

> reduce::load "algint" ;
0
> simplify $ intg (sqrt(x+sqrt(x^2+1))/x) x ;
atan ((sqrt (sqrt (x^2+1)+x)*sqrt (x^2+1)-sqrt (sqr t (x^2+1)+x)*x-sqrt
(sqrt (x^2+1)+x))/2)+2*sqrt (sqrt (x^2+1)+x)+log (s qrt (sqrt
(x^2+1)+x)-1)-log (sqrt (sqrt (x^2+1)+x)+1)

Note how to load packages.

Length and Map

∫ dx
1

ax + b

I(a, b, n) = ∫ (ax + b dxx2 )n

∫ x + + 1x2− −−−−
√

− −−−−−−−−−√

x
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LENGTH is a generic operator for finding the length of various objects in the

system, while the MAP operator applies a uniform evaluation pattern to all

members of a composite structure: a matrix, a list, or the arguments of an
operator expression.

syntax: length exprn

syntax: map fun obj

> simplify $ length (a+b);
2
> simplify $ length (x^n+a*x+2);
3

> simplify $ map sqrt [1,2,3];
[1,2^(1/2),3^(1/2)]
> simplify $ map log  [x^n,x^m,sin x] ;
[log (x^n),log (x^m),log (sin x)]

> simplify $ map (\y->df y x)  [x^n,x^m,sin x] ;
[x^n*n/x,x^m*m/x,cos x]
> simplify $ map (\y->intg y x)  [x^n,x^m,sin x] ;
[x^n*x/(n+1),x^m*x/(m+1),-cos x]

Note  that  the  lambda  expression  in  REDUCE  is  replaced  by  the

corresponding Pure  version.

Partial Fractions

The PF operator transforms an expression into a list of partial fractions with

respect  to  the  main  variable.  PF  does  a  complete  partial  fraction

decomposition.

syntax: pf expr var

Let us find the decomposition of:

> let f = 2/((x+1)ˆ2*(x+2))
> simplify $ pf f x;
[2/(x+2),(-2)/(x+1),2/(x^2+2*x+1)]

this means

If one wants the denominators in factored form, one has to use the switch
off exp :

> reduce::switch "exp" 0 ;
0
>
> simplify $ pf f x;
[2/(x+2),(-2)/(x+1),2/(((x:1):1):1)^2] // (x+1)^2 ? ??

f(x) =
2

(x + 1 (x + 2))2

f(x) = + +
−2

x + 3

2

x + 2

2

+ 2x + 1x2
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Note how the switch off exp  is used in Pure .

Selection

The SELECT operator extracts  from a list,  or from the arguments  of an

n–ary  operator, elements corresponding to a boolean predicate. It is used

with the syntax:

syntax: select fun list

Solving

SOLVE is  an  operator  for  solving  one  or  more  simultaneous  algebraic

equations. It is used with the syntax:

syntax: solve expr [var | varlist]

where expr  is  a list of one or more expressions. Each expression is an

algebraic equation, or is the difference of the two sides of the equation.

Example 1:

Find the solutions to

> let eqn1 = log(sin (x+3))^5 == 8 ;
> let sol1 = simplify $ solve eqn1 x;

The variable sol1  now contains a huge list of solutions. How many?

> #sol1 ;
10

The first one is:

> sol1!0;
x==2*val "\0x256c\(0x2593)5"*pi+asin (e^(2^(3/5)*co s (2*pi/5))/e^(2^(3/5)*
sin (2*pi/5)*i))-3

where n is an arbitrary integer constant.

It is  also  possible -  for example -  to  obtain the righthand side of any
solution in the list via REDUCE commands:

> simplify $ rhs $ first $ solve eq1 x;
2*val "\0x256c\(0x2593)10"*pi+asin (e^(2^(3/5)*cos (2*pi/5))/e^(2^(3/5)*
sin (2*pi/5)*i))-3
>

log(sin(x + 3) = 8)5

x = 2 ⋅ n ⋅ π + asin( ) − 3
e ⋅cos( )2

3
5 2⋅π

5

e ⋅sin( )⋅i2
3
5 2⋅π

5
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where first  gets the first solution in the list and rhs  takes the righthand

side. Hence there is a wealth of possibilities to process the solution list.

Example 2:

For the sake of clarity some simpler examples:

> simplify $ solve [X^2+1==0] X;
[X==i,X==-i]

> simplify $ solve [x+3*y==7,y-x==1] [x,y] ;
[[x==1,y==2]]

To get the multiplicities turn on the switch multiplicities :

> simplify $ solve [x^2==2*x-1] x;
[x==1]

> reduce::switch "multiplicities" 1;
0

> simplify $ solve [x^2==2*x-1] x;
[x==1,x==1]

For details consult the REDUCE user manual.

Even and Odd Operators

An operator can be declared to be even or odd in its first argument by the
declarations EVEN and ODD respectively.

> declare operator [f1,f2];
[]
> declare odd f1;
[]
> declare even f2;
[]

> simplify $ f1(-a);
-f1 a

> simplify $ f2 (-a);
f2 a

> simplify $ f1 (-a) (-b);
-f1 a (-b)

Linear Operators

An operator can be declared to be linear in its first argument over powers
of its second argument.

+ 1 = 0X2

(x + 3 y = 7) ∧ (y − x = 1)

L(a + b x + c, x) = L( , x) ⋅ a + L(x, x) ⋅ b + L(1, x) ⋅ cx5 x5

Examples by topic http://localhost:58035/#id1

5 von 19 08.10.2012 16:28



> declare operator L;
[]
> declare linear L;
[]
> simplify $ L (a*x^5+b*x+c) x ;
L (x^5) x*a+L x x*b+L 1 x*c

> simplify $ L (a+b+c+d) y;
L 1 y*a+L 1 y*b+L 1 y*c+L 1 y*d

Note that L x y binds stronger than (*).

Non-commuting Operators

An operator can be declared to be non-commutative under multiplication
by the declaration NONCOM.

>
> declare operator [u,v];
[]
> simplify (u(x)*u(y)-u(y)*u(x));
0
> declare noncom [u,v];
[]
> simplify (u(x)*u(y)-u(y)*u(x));
u x*u y-u y*u x

Symmetric and Antisymmetric

Operators

An operator can be declared to be symmetric with respect to its arguments
by  the  declaration  SYMMETRIC,  Similarly  the  declaration  ANTISYMMETRIC
declares an operator antisymmetric.

> declare operator [A,S];
[]
> declare symmetric S;
[]
> declare antisymmetric A;
[]

> simplify $ A x x ;
0

> simplify $ (A x y z) + (A x z y) ;
0

> simplify $ S y x ;
S x y

> simplify $ A y x ;
-A x y

Creating/Removing Variable

L(a + b + c + d, y) = L(1, y) ⋅ (a + b + c + d)
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Dependency

There are several facilities in REDUCE, such as the differentiation operator

and  the  linear  operator  facility,  that  can  utilize  knowledge  of  the
dependency  between  various  variables.  Such  dependency  may  be
expressed by the command DEPEND.

> declare operator D ;
[]
> declare depend [D,x,y];
[]

> simplify $ df D a;
0

D does not depend on a => 0, but

> simplify $ df D x;
df D x

because D depends on x by definition.
If we let a also depend on x, then

> declare depend [a,x];
[]
> simplify $ df (D*a) x;
df D x*a+df a x*D

Note that dependencies remain active until they are explicitly removed

> declare nodepend [a,x];
> simplify $ df a x;
0
> simplify $ df (D*a) x;
df D x*a

Internal Order of Variables

It is  possible for  the user to  change the internal order of variables  by
means of the declaration KORDER. The syntax for this is:

syntax: declare korder [v1,...,vn];

Unlike the ORDER declaration, that has a purely cosmetic effect on the way
results  are printed, the use of KORDER can have a significant effect on
computation time.

> declare korder [z,y,x];
[]
> x+y+z;
x+y+z
> simplify $ x+y+z;
z+y+x

Parts of Algebraic Expressions

The  following  operators  can  be  used  to  obtain  a  specific  part  of  an
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expression, or even change such a part to another expression.

coeff expr::polynomial var
coeffn expr::polynomial var n::int
part expr::algebraic [n::int])

Examples:

> simplify $ coeff ((y^2+z)^3/z) y ;
[z^2,0,3*z,0,3,0,1/z]

> simplify $ coeffn ((y^2+z)^3/z) y 6;
1/z

> simplify $ part (a+b) 2 ;
b

> simplify $ part (a+b) 1 ;
a

> simplify $ part (a+b) 0 ;
(+)

PART may also be used to substitute for a given part of an expression. In

this  case,  the  PART  construct  appears  on  the  left-hand  side  of  an
assignment statement, and the expression to replace the given part on the
right-hand side.

>  simplify $ xx:=a+b;
a+b
>  simplify $ part xx 2 := c ;
c
>  simplify $ xx;
a+c

Polynomials and Rationals

Factorization of Polynomials

REDUCE is capable of factorizing univariate and multivariate polynomials
that  have integer  coefficients,  finding  all  factors  that  also  have integer
coefficients.  The  package  for  doing  this  was  written  by  Dr.  Arthur  C.
Norman and Ms. P. Mary Ann Moore at The University of Cambridge. It is
described in [SYMSAC81].

factorize expr::polynomial [p::prime]

Some examples:

> simplify $ factorize (x^105-1) ;
[[x^48+x^47+x^46-x^43-x^42-2*x^41-x^40 ... ]
>
> reduce::switch "ifactor" 1;
0
> simplify $ factorize (12*x^2 - 12) ;
[[2,2],[3,1],[x+1,1],[x-1,1]]
> reduce::switch "ifactor" 0;

The following operators should be well known:
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gcd expr1::polynomial expr2::polynomial ->
polynomial
lcm expr1::polynomial expr2::polynomial ->
polynomial
remainder expr1::polynomial expr2::polynomial ->
polynomial
resultant expr1::polynomial expr2::polynomial var ->
polynomial
decompose expr::polynomial -> list
interpol <values> <variable> <points>)  ->
polynomial
deg expr::polynomial var ->int
den expr::rational -> polynomial
lcof expr::polynomial var -> polynomial
lpower expr::polynomial var-> polynomial
lterm expr::polynomial var -> polynomial
mainvar expr::polynomial -> expr
num expr::rational -> polynomial
reduct expr::polynomial var -> polynomial

Some examples of each operator:

GCD/LCM

> simplify $ gcd (x^2+2*x+1) (x^2+3*x+2) ;
x+1
> simplify $ gcd (2*x^2-2*y^2) (4*x+4*y) ;
2*x+2*y
> simplify $ gcd (x^2+y^2) (x-y) ;
1
>
> simplify $ lcm (x^2+2*x+1) (x^2+3*x+2) ;
x^3+4*x^2+5*x+2
> simplify $ lcm (2*x^2-2*y^2) (4*x+4*y) ;
4*x^2-4*y^2
>

REMAINDER/RESULTANT

> simplify $ remainder ((x+y)*(x+2*y)) (x+3*y) ;
2*y^2
> simplify $ remainder (2*x+y) 2 ;
y
>
> simplify $ resultant (x/r*u+y) (u*y) u ;
-y^2
>

DECOMPOSE

> simplify $ decompose (x^8-88*x^7+2924*x^6-43912*x ^5+263431*x^4-
>                                 218900*x^3+65690* x^2-7700*x+234) ;
[u^2+35*u+234,u==v^2+10*v,v==x^2-22*x]
>
> simplify $ decompose (u^2+v^2+2*u*v+1) ;
[w^2+1,w==u+v]
>

DEG/DEN
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> simplify $ deg ((a+b)*(c+2*d)^2) d ;
2
> simplify $ deg ((x+b)*(x^6+2*y)^2) x ;
13
>
> simplify $ den (x/y^2) ;
y^2
>

LCOF/LPOWER/LTERM

> simplify $ lcof ((a+b)*(c+2*d)^2) a ;
c^2+4*c*d+4*d^2
> simplify $ lcof ((a+b)*(c+2*d)^2) d ;
4*a+4*b
> simplify $ lcof ((a+b)*(c+2*d)) ('e) ;
a*c+2*a*d+b*c+2*b*d
>
> simplify $ lpower ((a+b)*(c+2*d)^2) a ;
a
> simplify $ lpower ((a+b)*(c+2*d)^2) d ;
d^2
> simplify $ lpower ((a+b)*(c+2*d)) x ;
1
>
> simplify $ lterm ((a+b)*(c+2*d)^2) a ;
a*c^2+4*a*c*d+4*a*d^2
> simplify $ lterm ((a+b)*(c+2*d)^2) d ;
4*a*d^2+4*b*d^2
> simplify $ lterm ((a+b)*(c+2*d)) x ;
a*c+2*a*d+b*c+2*b*d
>

MAINVAR/NUM/REDUCT

> simplify $ mainvar ((a+b)*(c+2*d)^2) ;
a
> simplify $ mainvar 2 ;
0
>
> simplify $ num (x/y^2) ;
x
> simplify $ num ('(100/6)) ;
50
> simplify $ num (a/4+b/6) ;
3*a+2*b
>
> simplify $ reduct ((a+b)*(c+2*d)) a ;
b*c+2*b*d
> simplify $ reduct ((a+b)*(c+2*d)) d ;
a*c+b*c
> simplify $ reduct ((a+b)*(c+2*d)) x ;
0
>

Substitution

An  important  class  of  commands  in  REDUCE  define  substitutions  for
variables and expressions to be made during the evaluation of expressions.
Such substitutions use (among others) the prefix operator SUB.

syntax: sub <substlist> exprn::algebraic -> algebra ic

> simplify $ sub [x==a+y,y==y+1] (x^2+y^2) ;
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a^2+2*a*y+2*y^2+2*y+1

> simplify $ sub [a==sin x, b==sin y] (a^2+b^2) ;
> sin x^2+sin y^2

Assignment

One may assign values to variables in the REDUCE environment. Note that
in  Pure  the  set  operator  and  :=  are  equivalent,  i.e.  both  sides  are

evaluated, contrary to the :=  version in REDUCE.

syntax: set expr expr ; or  expr := expr

> simplify $ P := a*x^n + b* x^m + c ;      // P:=a *x^n + b* x^m + c;
x^m*b+x^n*a+c
> simplify P ;                              // retu rn P (from Reduce)
x^m*b+x^n*a+c
> simplify $ df P x;                        // diff  P x
(x^m*b*m+x^n*a*n)/x
> simplify $ Q := intg P x ;                // inte grate P x, store in Q
(x^m*b*n*x+x^m*b*x+x^n*a*m*x+x^n*a*x+c*m*n*x+c*m*x+ c*n*x+c*x)/(m*n+m+n+1)
>

> simplify $ set Q (a*x^n + b* x^m + c) ;
x^m*b+x^n*a+c

Matrix Calculations

A  very  powerful  feature  of  REDUCE  is  the  ease  with  which  matrix
calculations can be performed. It fits  very well into Pure's  native matrix
type.

To  keep  it  simple  we  show  the  usage  of  the  different  operators  by
examples  using  the  well  known  Pauli  matrices .  There  is  no  loss  of

generality using only (2x2)  matrices.

Pauli  matrices  (sigma  1..3).  see  e.g.  http://en.wikipedia.org
/wiki/Pauli_matrices for a reference.

let s0 = {1,0;0,1} ;
let s1 = {0,1;1,0} ;
let s2 = {0,-i;i,0};
let s3 = {1,0;0,-1};

Check the identities

where  denotes the unit matrix.

Note: s1^2 or s1*s1 works.

> let r1 = simplify $ (s1*s1) ; r1;

= ( ) = ( ) = ( )σ1
0
1

1
0

σ2
0
i

−i

0
σ3

1
0

0
−1

= = = −i =σ2
1 σ2

2 σ2
3 σ1 σ2 σ3 σ0

σ0
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{1,0;0,1}
> let r2 = simplify $ (s2*s2) ; r2;
{1,0;0,1}
> let r3 = simplify $ (s3*s3) ; r3;
{1,0;0,1}
> let r4 = simplify $ (-i*s1*s2*s3) ; r4;
{1,0;0,1}
> let r5 = all (==s0) [r1,r2,r3,r4] ; r5;
1

Check: 

> map (simplify . det) [s1,s2,s3] ;
[-1,-1,-1]

Calculate the Eigenvalues/-vectors of  :

> let r7 = simplify $ mateigen s2 q; r7;
[[q-1,1,{-c1*i;c2}],[q+1,1,{c3*i;c4}]]

> let r8 = map head r7; r8; // -> [q-1,q+1] => Eige nvalues q=+/-1
[q-1,q+1]

> let r9 = map (head.tail) r7 ; r9; // multipliciti es
[1,1]

> let r10 = map last r7 ; r10; // eigenvectors
[{-c1*i;c2},{c3*i;c4}]

Transpose (operator tp ):

> map (simplify.tp) [s1,s2,s3] ; // -> [s1',s2',s3' ]
[{0,1;1,0},{0,i;-i,0},{1,0;0,-1}]

Trace (operator trace ):

> map (simplify.trace) [s1,s2,s3] ;
[0,0,0]

Cofactor (trivial here)

> simplify $ cofactor s2 1 1 ;
0

Nullspace of  + {0,i;0,0}

> simplify $ nullspace (s2+{0,i;0,0}) ;
[{0;1}]

Rank

> map (simplify . rank) [s0,s1,s2,s3] ;
[2,2,2,2]

Inverse (simply  )

> let r15 = simplify $ 1/s2 ; r15;
{0,1/i;(-1)/i,0}

> simplify $ s2*r15 ;
{1,0;0,1}

Solving without solve :

det = −1, ∀i ∈ {1, 2, 3}.σi

σ2

σ2

1
matrix
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> simplify $ (1/{a11,a12;a21,a22}*{y1;y2}) ; // A^- 1 * y' ;
{(-a12*y2+a22*y1)/(a11*a22-a12*a21);(a11*y2-a21*y1) /(a11*a22-a12*a21)}

Limits

From the package description: LIMITS is a fast limit package for REDUCE
for  functions  which  are  continuous  except  for  computable  poles  and
singularities, based on some earlier work by Ian Cohen and John P. Fitch.
This package defines a LIMIT operator, called with the syntax:

limit expr::alg var limpoint::alg -> alg

> simplify $ limit (x*sin(1/x)) x infinity ;
1

> simplify $ limit (1/x) x 0 ;
inf

Notes: This package loads automatically. Author: Stanley L. Kameny.

Ordinary differential equations

solver

The ODESOLVE package is a solver for ordinary differential equations.

Problem 1:

> declare depend [y,x];  // declare: y depends on x
[]

> simplify $ odesolve [df y x == x^2+exp(x)] [y] x ;
[y==(3*C+3*e^x+x^3)/3]

Problem 2:

> simplify $ odesolve [(df y x 2) == y] [y] x [[x== 0,y==A],[x==1,y==B]] ;
[y==(-e^(2*x)*A+e^(2*x)*B*e+A*e^2-B*e)/(e^x*e^2-e^x )]

Remember to remove dependencies

> declare nodepend [y,x];

+ =a11 x1 a12 x2 y1
+ =a21 x1 a22 x2 y2

x sin =? ∧ =?lim
x→∞

1

x
lim
x→0

1

x

= +
dy

dx
x2 ex

= y(x) ∧ y(0) = A ∧ y(1) = B
yd2

dx2
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[]

Series Summation and Products

SUM: A package for series summation

From the package description:

The  package  implements  the  Gosper  algorithm  for  the  summation  of
series. It defines operators SUM and PROD. The operator SUM returns the

indefinite or definite summation of a given expression, and PROD returns

the product of  the given expression.  This  package loads  automatically.
Author: Fujio Kako.

Calculate

> simplify $ sum (n^3) n 1 N ;
(N^4+2*N^3+N^2)/4

> simplify $ sum (a+k*r) k 0 (n-1) ;
(2*a*n+n^2*r-n*r)/2

> simplify $ sum (1/((p+(k-1)*q)*(p+k*q))) k 1 (n+1 ) ;
(n+1)/(n*p*q+p^2+p*q)

> simplify $ prod (k/(k+2)) k 1 N ;
2/(N^2+3*N+2)

Taylor Series

TAYLOR: Manipulation of Taylor series

From the package description:

This package carries out the Taylor expansion of an expression in one or
more variables  and efficient manipulation of the resulting  Taylor series.
Capabilities  include basic  operations (addition,  subtraction, multiplication
and division) and also application of certain algebraic and transcendental
functions. Author: Rainer Schöpf.

Example:

For details consult the package documentation in the REDUCE distribution.

> simplify $ taylor (exp (x^2+y^2)) x 0 2 y 0 2 ;
x^2*y^2+x^2+y^2+1

> simplify $ taylor (exp x) x 0 3;
(x^3+3*x^2+6*x+6)/6

… (a + k r)… …∑
n=1

N

n3 ∑
k=0

n−1

∑
k=1

n+1 1

(p + (k − 1) q) ⋅ (p + k q)
∏
k=1

N
k

k + 2

= 1 + + + ⋅ + O( , )e +x2 y2
y2 x2 y2 x2 x3 y3
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> simplify $ implicit_taylor (x^2+y^2-1) x y 0 1 5 ;
(-x^4-4*x^2+8)/8

> simplify $ inverse_taylor (exp(x)-1) x y 0 8;
(-105*y^8+120*y^7-140*y^6+168*y^5-210*y^4+280*y^3-4 20*y^2+840*y)/840

Boolean Expressions

The truth values within REDUCE are t  and nil =  ()  but are mapped to 1
and  0  respectively  when  interchanging  results  using  simplify .  Not  all

predicates (functions returning a truth value), however, can be called by
simplify , so one has to use the lisp  function in some rare cases.

Some examples:

> simplify $ evenp 200 ;
1
> simplify $ evenp 201 ;
0

> lisp (fixp 200) ;
t

where fixp tests for integers.

The following example shows a pitfall. Since there is a numberp  in Pure as

well as in REDUCE one has to be careful:

 > lisp (numberp x) ;
 0

 > lisp (quote (numberp x)) ;
[]

 > lisp (quote (numberp 111)) ;
 t

In the first case numberp x  evaluates to zero in Pure, so the lisp  function

gets 0 and returns 0. In the second case (quoted) the function numberp  is

evaluated in REDUCE and returns  nil ,  i.e.  []  in Pure.  Of course,  both

results  are correct but there may be other cases  where equally named
functions have different meanings in the two environments.

Some other useful predicates in REDUCE are ordp  and freeof :

> lisp (ordp x y) ;
t
> lisp (ordp y x) ;
[]
> lisp (ordp "abc" "abd") ;
t
> lisp (ordp "abd" "abc") ;
[]
> lisp (ordp 3 5) ;
[]
> lisp (ordp 5 3) ;
t

> simplify $ freeof (x^2+y) x ;
0
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> simplify $ freeof (x^2+y) z ;
1
> simplify $ freeof (x^n*y^m) (y^m) ;
0

Mathematical Functions

REDUCE provides  many mathematical  functions  that  can  take  arbitrary
scalar expressions as their single argument:

ACOS ACOSH ACOT ACOTH ACSC ACSCH ASEC ASECH
ASIN ASINH
ATAN ATANH ATAN2 COS COSH COT COTH CSC CSCH
DILOG EI EXP
HYPOT LN LOG LOGB LOG10 SEC SECH SIN SINH SQRT
TAN TANH ERF

Note, however, if there is an equally named function in Pure and no quotes
are used then the Pure function is used, that is for example, cos x , means

cos in Pure, (quote cos) x  means cos in REDUCE ...

See the difference:

> simplify $ (cos 4.3);
cos (43/10)
> using math;
warning: external 'exp' shadows previous undefined use of this symbol
warning: external 'sin' shadows previous undefined use of this symbol
warning: external 'cos' shadows previous undefined use of this symbol
> simplify $ (cos 4.3);
(-21601483)/53896027

Some examples:

> simplify $ cos (-x) ;
cos x
> simplify $ cos (n*pi) ;
cos (80143857*n/25510582)
> simplify $ (quote e)^(3*i*(quote pi)/2) ;
-i
> simplify $ sec (quote pi);
-1
> let simplify $ log10 10 ;
1
> simplify $ erf (-a);
-erf a

The special functions are in two separate packages SPECFN and SPECFN2:

Bernoulli Numbers and Euler Numbers;
Stirling Numbers;
Binomial Coefficients;
Pochhammer notation;
The Gamma function;
The Psi function and its derivatives;
The Riemann Zeta function;
The Bessel functions J and Y of the first and second kind;
The modified Bessel functions I and K;
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The Hankel functions H1 and H2;
The Kummer hypergeometric functions M and U;
The Beta function, and Struve, Lommel and Whittaker
functions;
The Airy functions;
The Exponential Integral, the Sine and Cosine Integrals;
The Hyperbolic Sine and Cosine Integrals;
The Fresnel Integrals and the Error function;
The Dilog function;
Hermite Polynomials;
Jacobi Polynomials;
Legendre Polynomials;
Spherical and Solid Harmonics;
Laguerre Polynomials;
Chebyshev Polynomials;
Gegenbauer Polynomials;
Euler Polynomials;
Bernoulli Polynomials.
Jacobi Elliptic Functions and Integrals;
3j symbols, 6j symbols and Clebsch Gordan coefficients;

In SPECFN2 are the generalized hypergeometric  functions and Meijer’s G

function.

Author:  Chris  Cannam,  with  contributions  from Winfried  Neun,  Herbert
Melenk, Victor Adamchik, Francis Wright and several others.

Definite Integrals

Package:  DEFINT  (definite  integrals)  Calculating  integrals  by  using  the
Meijer G integration formula.

> reduce::load "defint" ;
0

> simplify $ intg (exp(-x)) x 0 infinity ;
1

> simplify $ intg (x^2*cos(x)*exp(-2*x)) x 0 infini ty ;
4/125

> simplify $ intg (x*exp(-1/2*x)) x 0 1 ;
2*sqrt e*(2*sqrt e-3)/e

dx∫ ∞

0
e−x

cos(x) dx∫ ∞

0
x2 e−2 x

x dx∫ 1

0
e− x

1
2
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> simplify $ intg (x*log(1+x)) x 0 1 ;
1/4

> simplify $ intg (cos(2*x)) x y (2*y);
(sin (4*y)-sin (2*y))/2

Various transformations:

> simplify $ laplace_transform (exp(-a*x)) x ;
1/(a+s)

> simplify $ hankel_transform (exp(-a*x)) x ;
s^(n/2)*gamma (n/2)*hypergeometric [(n+2)/2] [n+1]
((-s)/a)*n/(2*a^(n/2)*gamma (n+1)*a)

> simplify $ y_transform (exp(-a*x)) x ;
(a^n*gamma (n+1)*gamma ((-n)/2)*gamma ((-2*n-1)/2)* gamma
((2*n+3)/2)*hypergeometric [(-n+2)/2] [-n+1] ((-s)/ a)+s^n*gamma
(-n)*gamma (n/2)*hypergeometric [(n+2)/2] [n+1] ((- s)/a)*n*pi)/
(2*s^(n/2)*a^(n/2)*gamma ((-2*n-1)/2)*gamma ((2*n+3 )/2)*a*pi)

> simplify $ k_transform (exp(-a*x)) x ;
(-a^n*gamma (n+1)*gamma ((-n)/2)*hypergeometric [(- n+2)/2] [-n+1]
(s/a)+s^n*gamma (-n)*gamma (n/2)*hypergeometric [(n +2)/2] [n+1] (s/a)*n)/
(4*s^(n/2)*a^(n/2)*a)

>  simplify $ struveh_transform (exp(-a*x)) x ;
2*s^((n+1)/2)*gamma ((n+3)/2)*hypergeometric [1,(n+ 3)/2] [(2*n+3)/2,3/2]
((-s)/a)/(sqrt pi*a^((n+1)/2)*gamma ((2*n+3)/2)*a)

> simplify $ fourier_sin (exp(-a*x)) x ;
s/(a^2+s^2)
> simplify $ fourier_cos (exp(-a*x)) x ;
a/(a^2+s^2)

Declarations, Switches and

Loading

Lisp evaluation can be used in the REDUCE system, in particular, to declare
operator symbols and their properties (simplify won't do that). E.g.:

> lisp ('operator [myop]);
> lisp ('flag [myop] odd);
> lisp ('prop myop); // => [odd:t,simpfn:simpiden]
> simplify (myop (-x)); // => -myop x

For the most common kinds of declarations, the reduce module already
provides  the  'declare'  function  which  takes  care  of  the  necessary  Lisp
magic and is safe to use. The above example can also be done as follows:

> declare operator myop;
> declare odd myop;
> simplify (myop (-x));

x log(1 + x) dx∫ 1

0

cos(2 x) dx∫ 2 y

y
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-myop x

For a list of supported declarations  via declare  consult the module file

reduce.pure .

In Pure  the REDUCE switches can be turned on/off  as follows:

reduce::switch "switch-id" 0/1 ;

A package can be loaded by the command

reduce::load "package-id" ;

A REDUCE source file may be read-in by the command:

lisp ('in ["path/filename.red"]) ;

Plotting

Using GnuPlot

> reduce::load "gnuplot";

Note that we have to quote the x..y ranges here so that they get through
to Reduce, rather than being evaluated on the Pure side.

> simplify $ 'plot (sin x/x) (x==(-15..15));

// Multiple ranges.
> simplify $ 'plot (sin(x^2 + y^2) / sqrt(x^2 + y^2 ))
[x==(-12 .. 12), y==(-12 .. 12)];

// Specifying options.
> simplify $ 'plot (cos (sqrt(x^2 + y^2))) [x==(-3 .. 3),y==(-3 .. 3)] hidden3d;

// Specifying points.
> simplify $ plot [[0,0],[0,1],[1,1],[0,0],[1,0],[0 ,1],[0.5,1.5],[1,1],[1,0 ]];

// Output options.
> simplify $ plot (sin x) [x== '(0 .. 10),terminal==postscript,output=="sin.ps"];
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todo -> replace python by pure
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