
 1

FoxyPreviewer
Version 2.99z

May 2013
Cesar Chalom

 2

INTRODUCTION / MAIN FEATURES 4

BASIC USAGE 14

 REQUIREMENTS 14

 INSTALLATION 14

 RUNNING FOXYPREVIEWER 14

 DO I NEED TO RELEASE FOXYPREVIEWER AFTER EVERY REPORT RUN? 15

EXPORTING WITHOUT USING THE REPORT PREVIEW 16

CUSTOMIZING YOUR REPORTS 17

 AUTOMATING WITH INTELLISENSE 17

SPECIAL FEATURES 23

 FULL JUSTIFIED TEXTS 23

 WATERMARKS 25

 TAGGED FORMATTING 30

 REPEAT REPORT IN SAME PAGE 32

 ENHANCED PROGRESSBAR 32

 SENDING BY EMAIL 33

 1 - MAPI 33

 2 - MAPI ALTERNATIVE 33

 3 - CUSTOM PROCEDURE 33

 4 - CDO 33

 5 - SEND BY EMAIL WITHOUT PREVIEWING 36

 THE ADRESS BOOK TO SEND EMAILS 38

 SENDING BY FAX 40

 UNICODE SUPPORT 41

CONFIGURING AT RUNTIME 42

 THE SETTINGS DIALOG 42

 1 - GENERAL PAGE 43

 2 - CONTROLS PAGE 44

 3 - OUTPUT PAGE 46

 4 - EMAIL PAGE 47

 5 - ABOUT PAGE 48

 3

 PROVIDING USER SPECIFIC SETTINGS 49

 TRANSLATING TO NON ENGLISH LANGUAGES 50

THE OUTPUT FILES AVAILABLE 51

 PDF 51

 RTF 52

 XLS / XML 52

 HTML / MHTML 53

 IMAGE TYPES 53

KNOWN ISSUES 54

CREDITS / COLLABORATORS / SPECIAL THANKS 56

LICENSE 57

 4

Export your Visual FoxPro reports to Images, RTF, PDF, HTML or XLS super easy! Send them by email! Enhance the look of your

previews, and allow your users to decide how their report previews will be.

FoxyPreviewer is a VFP report generating class, which brings some cool and useful functions, as you can see in the pictures

below.

Introduction / Main Features

1 - Preview Toolbar

The original toolbar was modified, with some new button images, and new buttons too !

2 - Printers ComboBox

The printers combobox will show you all the available printers (local and in the network), and allows you to change the output

destination to any printer that you want.

3 - Copies spinner

Determine on the fly the quantity of copies that you want to print!

4 - Miniatures button

View miniatures of all pages of the current report. Clicking on any miniature will jump the output page to the selected one.

 5

5 - Save As button.

A new button that calls a context menu that allows you to save the current report as:

- Image Files - EMF, PNG, JPG, BMP, GIF, TIFF

- HTML, MHTML

- PDF

- RTF, a MS-Word compatible format

 -XLS, a MS-Excel XML worksheet

6 - Context menu

The report context menu was updated as well, receiving all the new buttons and pictures. For the case of the "Save as." button, a

submenu brings all the output possibilities.

 6

7 - Changing the Printer Preferences.

Now you can access the Printer Preferences dialog to change the default printer settings of the selected printer directly from the

report toolbar. Works on all Windows versions!

8 - Send report by Email.

Sending a report by email is super easy. You may choose between using your default Email application via MAPI (compatible

with Outlook Express, MS Outlook and Windows Live Mail), CDO, or even your custom email procedure. Users will be able to

 7

send the current report with a single click!

Using the CDO option, you'll use your own SMTP server to deliver your messages. You can send HTML or Plain Text email

bodies.

The enhanced new email form below allows you to:

*Generate HTML outputs for the body of your message

*Changing the formatting, alignments, fonts, adding pictures, hyperlinks, etc...

*Preloading an HTML

*Attaching more files is allowed

*Mark message as Priority

*Ask for read receipt

Another cool thing is that after you click on "send", a Continuous progress bar, with the cool Marquee effect (thanks to Carlos

Alloatti) will appear, till the message is delivered:

 8

And this is the dialog shown when you send an email with the CDO - TXT option, that allows you to send emails using a plain

text body

9 - User Setup allowed.

Users may configure the “Print Preview” window and toolbar appearance for the current and for all the subsequent report

sessions, customizing almost everything!

 9

10 - International support

Right now FoxyPreviewer supports 12 languages: English, Spanish, Portuguese, Greek, Turkish, French, German, Italian, Persian,

Czech, Polish and Indonesian. You may switch between languages setting just one property.

 10

11 - Search texts during preview

 11

FoxyPreviewer allows you to make searches in the preview canvas. The corresponding cell will be highlighted as below:

 12

12 - Full justified texts in ALL your reports!

Just include the tag "<FJ>" in the desired report control's "User Data"

 13

13 - New enhanced progress bar, according to your Windows OS version

Win Vista Progress bar

Win XP Progress bar

Win 2000 / 98 ProgressBar

 14

Basic Usage

FoxyPreviewer is an enhanced implementation of the default Visual FoxPro 9 report previewer. It is easy to install, easy to use and --

best of all -- free for you to use in both personal and commercial applications! (While donations are happily accepted from those who

appreciate the developer's past efforts and wish to encourage the future development of FoxyPreviewer, they are entirely voluntary.)

Originally, FoxyPreviewer was made available in two modes: Simplified and Complete. Complete Mode is no longer supported and,

accordingly, it is no longer covered in this documentation. However, for those who plan on continuing to use an earlier version of

FoxyPreviewer, all of the previous documentation on Complete Mode can now be found here:

https://foxypreviewer.codeplex.com/wikipage?title=Deprecated%20Complete%20Mode&referringTitle=Documentation.

REQUIREMENTS

FoxyPreviewer can only be used with Visual FoxPro 9, because it uses VFP 9's ReportListener and lots of other extensions to make all of

its changes to the original VFP previewer toolbar and providing new facilities.

INSTALLATION

The installation of FoxyPreviewer is straightforward:

1 - Download the ZIP file from the Downloads page.

2 - Extract the files from the ZIP archive.

3 - Copy the FoxyPreviewer.app file to a folder of your choice, subject to the following limitations: The folder must be on your local

disk. You must have read/write permissions for the folder when it is accessed, because FoxyPreviewer needs to generate some helper

files in that same folder. And the folder must be one that can be "seen" by your executable when it calls FoxyPreviewer (either your

application's home folder or one that is specified in your application's SET PATH TO setting).

If you add FoxyPreviewer.app to a project, it must be marked as "excluded". To update FoxyPreviewer from a previous version, just

replace the old FoxyPreviewer.app file with the new one.

RUNNING FOXYPREVIEWER

FoxyPreviewer uses a very small amount of memory. You can call FoxyPreviewer once when your application starts up, have it always

available to your app, and release it as part of your application's shut-down routine. Alternatively, you can call FoxyPreviewer whenever

you specifically need it and release it immediately afterward. To call FoxyPreviewer from within your VFP programs, simply issue the

following command:

DO FoxyPreviewer.app

When you make this call, a FoxyPreviewer object (_Screen.oFoxyPreviewer) is instantiated. It is accessible from anywhere within your

application, and it has all of the properties that can be programmatically set to customize the preview window, which is displayed

whenever you issue a REPORT FORM command with the PREVIEW clause.

To release temporarily the FoxyPreviewer object, simply issue the following command:
SET REPORTBEHAVIOR 80 && Turns off FoxyPreviewer and returns to the original report mode

To restore the FoxyPreviewer facilities again, another simple command:
SET REPORTBEHAVIOR 90 && Restores FoxyPreviewer

If you need to release it completely from the memory:
DO FoxyPreviewer.app WITH "Release"

Notice that if you need to use FoxyPreviewer again, you’ll need to
DO FoxyPreviewer.APP && Restarts the Preview container facilities and reloads the reportlisteners

 15

DO I NEED TO RELEASE FOXYPREVIEWER AFTER EVERY REPORT RUN?

No !!!

You need to initialize FoxyPreviewer ONLY ONE TIME, at your startup PRG. After that, all reports from your application will have the

benefits of FoxyPreviewer without any code change. If for any reason you need to return to the original behavior, just call SET

REPORTBEHAVIOR 80, to tell VFP to return to the old Reporting style. To get back to FoxyPreviewer style, just call SET

REPORTBEHAVIOR 90. In fact, when you switch between different REPORTBEHAVIOR settings, FoxyPreviewer keeps loaded in memory,

but is not used if you select "80". FoxyPreviewer occupies few resources, so there's no reason to release it all the time.

If you need a full release, then

DO FOXYPREVIEWER.APP WITH "Release"

This will restore the SET PROCEDURE, SET CLASSLIB, Extension handler, and PreviewContainer

 16

Exporting without using the Report Preview
FoxyPreviewer allows you to export your reports to several file types, both from the Report Preview toolbar and also directly. The trick is

to use the new "Object Type”‘s available after you initialize with a “DO FOXYPREVIEWER.APP” and the “TO FILE” parameters:

OBJECT TYPE

10 = Regular PDF

11 = PDF AS IMAGE, to be used when the report is somehow complicated, with many objects over the others. The rendered

PDF document pages are images, reproducing perfectly the report output, but not allowing searches, and a poor zoom.

12 = RTF

13 = XLS

14 = HTML (not recommended for people who work with languages with double-byte characters)

15 = HTML - Generates simplified HTML outputs. Good to be used in websites, no need of MSXML, faster rendering and

Double-byte languages friendly

16 = Image files - Saves the report as images. If you want exact, printable page copies, exporting to images is a very nice

option. The image type will be determined by the file extension passed in the “TO FILE” clause. The available image types are the ones

compatible with GDI+: BMP, GIF, JPG, PNG, TIFF and EMF.

TO FILE

 The destination file

PREVIEW (optional parameter)

 Opens automatically the generated file using the default application. Uses the “ShellExecute” Win32API.

DO LOCFILE("FoxyPreviewer.App")
* Make PDF
REPORT FORM ;
 (_Samples + "\Solution\Reports\Wrapping.frx") ;
 OBJECT TYPE 10 ; && OBJTYPE 10 = PDF , 11 = PDF AS IMAGE , 12 = RTF , 13 = XLS , 14 = HTML
 TO FILE "c:\TestReport.Pdf" ; && Destination
 PREVIEW && Open the default PDF viewer

More details about the outputs in the chapter “The output types available”

 17

Customizing your Reports

FoxyPreviewer allows you to take full control of your previews!

AUTOMATING WITH INTELLISENSE

After you initialize FoxyPreviewer by calling “DO FoxyPreviewer.APP”, a global object will become available: _Screen.oFoxyPreviewer.

This brings to you access to all the facilities available, taking benefit from VFP Intellisense. Just type at the Comand window, and all

properties available will come to hand:

The property names and what they do are very obvious:

 18

Properties (all optional)

You don't need to configure them at all. You can let your users determine all their preferences using the preferences button at the

Preview toolbar.

General

cTitle - character, the preview window title

nShowToolBar - numeric, determines the visibility of the report toolbar when the preview is run. (1 = Visible (default), 2 = Invisible, 3

= Use resource)

nWindowState - numeric, defines the previewform.WindowState 0 = Normal, 2 = Maximized

nDockType - logical or numeric (0-4). If False, the dock will follow the resource file used. Or numeric, to force the toolbar docking.

–1 Undocks the toolbar or form.

0 Positions the toolbar or form at the top of the main Visual FoxPro window.

1 Positions the toolbar or form at the left side of the main Visual FoxPro window.

2 Positions the toolbar or form at the right side of the main Visual FoxPro window.

3 Positions the toolbar or form at the bottom of the main Visual FoxPro window.

4 Keep the current dock settings from the resource file

nMaxMiniatureDisplay - numeric, the quantity of reports to be shown in the miniatures form.

cFormIcon - character, the file name of the icon to be used in the preview and other helper forms

lDirectPrint - logical, Flag that directs the output directly to the printer, without preview (default = False)

nThermType - numeric, the thermometer (progress bar) type used (1 = VFP9 Default, 2 = Enhanced windows compatible,

recommended)

 nThermFormWidth – numeric, specifies the width in Pixels of the Thermometer form. Useful when a big caption is needed. Works

only if the property “.nThermType = 2 && Windows default

lUseListener - logical, determines if ReportListeners will be used during printing. The report previsualization will always use listeners.

There are some situations or incompatibilities between some printers and report listeners so you may try setting this property to .F. to

get an "old way" printing. So, when .F., REPORTBEHAVIOR will be set to 80. Useful for dot-matrix printers. (Available only in complete

mode)

lQuietMode - logical, determines the QuietMode property for the listeners used. The progressbar for the report generation and

email sending is determined by this property. && Default = .F.

cDestFile - character, determines the filename of the output file to be generated when "RunReport()" is called. If you set this

property the report will not be previewed in the complete mode. This property is also populated with the last file name that the user

chose for saving the output of the current report session.

nSearchPages - numeric, determines the quantity of pages that will be scanned during Searches in previews. Default = -1 (all pages)

nButtonSize - numeric, determines the size of the buttons in the preview toolbar (1 = 16x16 pixels (default), 2 = 32x32 pixels)

cLanguage - character, the default language used in all dialogs and tooltips

cPrinterName - character, the name of the default printer to be used in the complete mode

lOpenViewer - logical, determines if the saved report will be automatically opened after generated, using the default app

cSuccessor - character, the name of the report successor class. (For advanced users only)

lExpandFields - logical, makes the report not to show the "*" if numeric values overflow. Since it makes the report running a little bit

slower, by default it will continue with the original behavior. You have to set it manualy if you need it.

cPrintJobName - character, the name of the current PrintJob used. That's the name that will appear in the printer spooler.

lRepeatInPage - logical, determines if the current report will print twice in the same page, repeating the contents, starting from the

half vertical part of the page. Works only when the report is printed from the “Print Preview”. In the preview window, the report will look

as original. The 2nd copy will be printed in the same page only when you click the "Print" button in the toolbar or Context menu.

 lShowFileFormatIcons - logical, allows hiding the file format icons in the context menus.

 nPreviewBackColor - numeric, RGB value, allows changing the back color of the report preview form.

 lDoubleByteLanguage - logical, allows to manually determine that the system is using a DoubleByte language, such as chinese,

Korean or japanese. This is primarily to make the context menu for the Save button in the report preview toolbar work in these

languages.

 19

Toolbar general options

cToolbarTitle - character, determines the title of the report toolbar

lSendToEmail - logical, determines if the "send to email" button will be shown (not available yet)

lSaveToFile - logical, determines if the "saveto file" button will be shown

lShowCopies - logical, shows the copies spinner

lShowMiniatures - logical, shows the miniatures page

lShowSetup - logical, shows user preferences button in toolbar

lShowPrinters - logical, determines if the available printers combo will be shown

lShowSearch - logical, determines if the Search buttons will be visible

lShowClose - logical, determines if the Close button will be visible

nCopies - numeric, the default quantity of copies to be printed

lPrintVisible - logical, shows the print and exporting related buttons in the toolbar and context menu; if .F., excludes ALL print-related

controls from the toolbar, regardless of their individual include/exclude property settings.

lShowPrintBtn - logical, allows to individually include/exclude the "Print Report" button, so that you can use the Print Prefs button

"instead of," rather than only "in addition to.". This is different from the property "lPrintVisible", that hides/shows all the printing related

buttons. This new prop, deals only with the "Print" button.

nZoomLevel - numeric, the initial zoom level of the preview window. Possible values are: 1-10%, 2-25%, 3-50%, 4-75%, 5-100%

default, 6-150%, 7-200%, 8-300%, 9-500%, 10-whole page, 11-page width

lPrinterPref - logical, shows the "Change printer preferences" button in the toolbar

nPrinterPropType - numeric, the type of printer preferences dialog (1 = PRINTER PROMPT Printer dialog, 2 = Current printer

properties)

nCanvasCount - numeric, the initial nr of pages rendered on the preview form. Valid values are 1 (default), 2, or 4.

lShowPageCount - logical, shows / hides the option to change page count in the preview toolbar.

Toolbar Appearance

The following properties are applicable only if the property 'nButtonSize = 1' (16x16 pixels)

cImgPrint - character, the FullPath of the image file to replace the image of the "Print" button in the preview toolbar.

cImgPrintPref - character, the FullPath of the image file to replace the image of the "Printer Prompt" button in the preview toolbar.

cImgSave - character, the FullPath of the image file to replace the image of the "Save" button in the preview toolbar.

cImgClose - character, the FullPath of the image file to replace the image of the "Close" button in the preview toolbar.

cImgClose2 - character, the FullPath of the image file to replace the image of the "Close" button in the preview toolbar. This 2nd

image will be switched in the MouseOver event of the "Close"button.

cImgEmail - character, the FullPath of the image file to replace the image of the "Email" button in the preview toolbar.

cImgSetup - character, the FullPath of the image file to replace the image of the "Setup" button in the preview toolbar.

cImgMiniatures - character, the FullPath of the image file to replace the image of the "Miniatures" button in the preview toolbar.

cImgSearch - character, the FullPath of the image file to replace the image of the "Search" button in the preview toolbar.

cImgSearchAgain - character, the FullPath of the image file to replace the image of the "Search Again" button in the preview toolbar.

cImgSearchBack - character, the FullPath of the image file to replace the image of the "Search Back" button in the preview toolbar.

The following properties are applicable only if the property 'nButtonSize = 2' (32x32 pixels)

cImgPrintBig - character, the FullPath of the 32x32 pixels image file to replace the image of the "Print" button in the preview toolbar.

Applicable when the property 'nButtonSize = 2' && big buttons

cImgPrintPrefBig - character, the FullPath of the 32x32 pixels image file to replace the image of the "Printer Prompt" button in the

preview toolbar. Applicable when the property 'nButtonSize = 2' && big buttons

cImgSaveBig - character, the FullPath of the 32x32 pixels image file to replace the image of the "Save" button in the preview toolbar.

Applicable when the property 'nButtonSize = 2' && big buttons

cImgCloseBig - character, the FullPath of the 32x32 pixels image file to replace the image of the "Close" button in the preview

toolbar. Applicable when the property 'nButtonSize = 2' && big buttons

 20

cImgClose2Big - character, the FullPath of the 32x32 pixels image file to replace the image of the "Close" button in the preview

toolbar. This 2nd image will be switched in the MouseOver event of the "Close"button. Applicable when the property 'nButtonSize = 2'

&& big buttons

cImgEmailBig - character, the FullPath of the 32x32 pixels image file to replace the image of the "Email" button in the preview

toolbar. Applicable when the property 'nButtonSize = 2' && big buttons

cImgSetupBig - character, the FullPath of the 32x32 pixels image file to replace the image of the "Setup" button in the preview

toolbar. Applicable when the property 'nButtonSize = 2' && big buttons

cImgMiniaturesBig - character, the FullPath of the 32x32 pixels image file to replace the image of the "Miniatures" button in the

preview toolbar. Applicable when the property 'nButtonSize = 2' && big buttons

cImgSearchBig - character, the FullPath of the 32x32 pixels image file to replace the image of the "Search" button in the preview

toolbar. Applicable when the property 'nButtonSize = 2' && big buttons

cImgSearchAgainBig - character, the FullPath of the 32x32 pixels image file to replace the image of the "Search Again" button in the

preview toolbar. Applicable when the property 'nButtonSize = 2' && big buttons

cImgSearchBackBig - character, the FullPath of the 32x32 pixels image file to replace the image of the "Search Back" button in the

preview toolbar. Applicable when the property 'nButtonSize = 2' && big buttons

Output types allowed in the "Save as.." button from the toolbar and context menu

lSaveAsImage - logical, includes the "save as Image" option in menu

lSaveAsHTML - logical, includes the "save as HTML" option in menu

lSaveAsMHT - logical, includes the "save as MHTML" option in menu (available only in Simplified mode)

lSaveAsRTF - logical, includes the "save as RTF" option in menu

lSaveAsXLS - logical, includes the "save as XLS" option in menu

lSaveAsPDF - logical, includes the "save as PDF" option in menu

lSaveAsTXT - logical, includes the "save as TXT" option in menu (available only in Complete mode)

cOutputPath - character, destination path used to save the outputs

Generic Email settings

nEmailMode - numeric, the email type (1 = MAPI, 2 = CDOSYS HTML, 3 = CDOSYS TEXT, 4 = Custom procedure)

lEmailAuto - logical, Automatically generates the report output file

cEmailType - character, the file type to be used in Emails (PDF, RTF, HTML or XLS)

cEmailPRG - character, the name of a PRG that will fire your custom email. In this PRG, you need to receive one parameter, tcFiIle, that

is the temporary output file that you'll send by email. A complete sample, "MYSENDMAIL.PRG" is available, showing you how you can

send your emails. To use it, you need to set the value of this property, for instance: .cEmilPrg = "MySendMail.Prg"

cSaveDefName - character, the default name of the save file. Available in the SAVE AS dialog OR automatically used if lEmailAuto

lAutoSendMail - logical, to send an email automatically when processing the report (available only in Complete mode)

Generic FAX settings

cFaxPRG - character, the name of a PRG that will fire your custom faxing application. In this PRG, you need to receive some

parameters: tcFile, which is the temporary output file that you'll send by fax, tcFaxNumber, tcHTMLBody, tcSubject. A complete sample,

"MYSENDFAX.PRG" is available, showing you how you can send your faxes. To use it, you need to set the value of this property, for

instance: .cFaxPrg = "MySendFax.Prg"

CDOSYS Email

cSMTPServer - character, the SMTP server address

nSMTPPort - numeric, the SMTP port (usually 25)

lSMTPUseSSL - logical, determines if the SMTP server requires SSL (security connection)

cSMTPUserName - character, your SMTP user name

cSMTPPassword - character, your SMTP password

 21

cEmailTo - character, the destination email. You may use the comma "," separator to use more than one address

cEmailCC - character, the destination COPY email. You may use the comma "," separator to use more than one address

cEmailBCC - character, the destination BLIND COPY email. You may use the comma "," separator to use more than one address

cEmailReplyTo - character, the email to be used for replies

cEmailSubject - character, the email subject

cEmailBody - character, the email text body

cEmailFrom - character, the email sender information. You may add some custom captions, eg: 'FoxyPreviewer

team<foxyteam@hotmail.com>'

cEmailBodyFile - character, the HTML file to be used as email body

lReadReceipt - logical, determines if the message will ask for a read receipt

lPriority - logical, determines if the priority level will be high

cEncryptProcedure - character, The programmer can apply his own Scrambling method on the password string (for advanced users)

cDecryptProcedure - character, The programmer can apply his own Scrambling method on the password string (for advanced users)

cCryptKey - character, the crypt key used to encrypt the SMTP password stored in the settings table (for advanced users)

cAttachments - character, the fullpath of the files to be attached to the email message. Use a comma "," as a delimiter between files

(for advanced users)

cAdressTable - character, the name of the alias or FullPath of a table that contains an adress book with emails to be used when

sending email messages using the provided form. This table MUST contain a Field of Character type, named "email". Apart from that, it

can contain any other data that you want to be visible in a search grid, helping the users to choose the destination. For a better

comprehension, please refer to the samples provided and the FAQS. (for advanced users)

cAdressSearch - character, optional, the name of the field to be used for making searches. (for advanced users)

PDF

lPDFasImage - logical, the PDF document will generated as an image document && Default = .F.

nPDFPageMode - integer, determines the Page mode for the PDF document. && Default = 0, 0 = Normal view, 1 = Show the

thumbnails pane

lPDFEmbedFonts - logical, determines if the PDF engine will embed the true type fonts in the PDF document

lPDFReplaceFonts - logical, determines if the PDF engine will replace some basic fonts that are already embedded in any PDF

document. Recommended for people using codepage different from 1252 (latin). Default = .T.

lPDFEncryptDocument - logical, determines if the PDF engine will encrypt the PDF document, allowing you to set other restrictions

to the documents, using the properties below

lPDFCanPrint - logical, determines if the 'encrypted' PDF document will allow printing. Works only if lPDFEncryptDocument = TRUE

(see above)

lPDFCanEdit - logical, determines if the 'encrypted' PDF document will allow editing. Works only if lPDFEncryptDocument = TRUE

(see above)

lPDFCanCopy - logical, determines if the 'encrypted' PDF document will allow copying. Works only if lPDFEncryptDocument = TRUE

(see above)

lPDFCanAddNotes - logical, determines if the 'encrypted' PDF document will allow adding notes. Works only if

lPDFEncryptDocument = TRUE (see above)

cPDFMasterPassword - logical, determines the master password of the 'encrypted' PDF document. Must be different from the 'User

Password' property below. Works only if lPDFEncryptDocument = TRUE (see above)

cPDFUserPassword - logical, determines the user password of the 'encrypted' PDF document. Must be different from the 'Master

Password' property above. Works only if lPDFEncryptDocument = TRUE (see above)

lPDFShowErrors - logical, determines if error messages during the PDF generation will be raised to the user. Please set this property

to TRUE if you are facing some PDF issues, missing fields, etc. This will help us find the source of the problem.

cPdfAuthor - character, the author of the document

cPdfTitle - character, the title of the document

cPdfSubject - character, the subject of the document

cPdfKeyWords - character, the keywords that you want to include in the PDF document

 22

cPdfCreator - character, default: "PDFx / FoxyPreviewer"

cPDFSymbolFontsList - character, a Fonts list that can't be converted in PDF. Usually, bar codes and symbol fonts. Delimited with

commas, eg. "Webdings,Biro". Internally, FoxyPreviewer has already a list of more than 30 fonts that will always be converted to images.

Please try first to generate your PDF without adding the font to the list. If it does not render correctly, just add it here!

cPDFDefaultFont - character, the name of the default font name to be used as default in the PDF document

Excel

cExcelDefaultExtension - character, default = "XLS". This is the default file extension shown in the PUTFILE() dialog to save as

worksheet. Fill it with "XML" if you don't have MS-EXCEL, OPENOFFICE or LIBREOFFICE installed. Fill it with "XML" if you want this

extension to be used in Excel outputs. Ideal for OpenOffice Calc users.

lExcelConvertToXLS - Logical, default .T., offers a new option to convert the worksheet to 'Excel 97' format. (requires MS Excel or

OpenOffice installed). FoxyPreviewer will always first generate an Excel compatible XML worksheet. If you choose XLS, it will use

MSOFFICE, OPENOFFICE or LIBREOFFICE automation to make the convertion to pure XLS.

lExcelRepeatHeaders - Logical, default .F., repeat report page headers in worksheet.

lExcelRepeatFooters - Logical, default .F., repeat report page footers in worksheet.

lExcelHidePageNo - Logical, default .F., hides report fields that contain "_PAGENO" information.

lExcelAlignLeft - logical, for Excel spreadsheets, Aligns to the left all the string fields.

nExcelSaveFormat - integer, the Excel automation constant that defines the type of output to be applied when converting to pure

Excel. Applicable only if the property "lExcelConvertToXLS = .T." . See list of possible values at

http://fox.wikis.com/wc.dll?Wiki~ExcelConstants. The default value is 43 (xlExcel9795)

Error related

lSilent - logical, Stay silent regarding errors AND write any messagebox to the cErrors properties

cErrors - character, brings error messages when lSilent = .F.

Watermark related

cWatermarkimage - character, the name of the WM image. Important: this image MUST be stored locally, CAN'T be embedded in

your EXE, obligatory property if you want to show the watermark

nWatermarktype - numeric, 1 = Colored (default), 2 = Converts the source image to grey scale, optional property

nWatermarktransparency - numeric, from .10 to 1, default = 0.25, the transparency level of the WM image; 1 = Opaque, optional

property

nWaterMarkWidthRatio - numeric, default = 0.75, the width size in proportion of the watermark in the report page, optional

property

nWaterMarkHeightRatio - numeric, default = 0.75, the height size in proportion of the watermark in the report page, optional

property

Returned information (Read only properties)

nVersion - numeric, returns the simplified FoxyPreviewer version information

cVersion - character, returns the detailed FoxyPreviewer version information

lPrinted - logical, to be checked after the report is run. Tells you if the user printed the current report

lSaved - logical, to be checked after the report is run. Tells you if the user saved the current report to a file

lEmailed - logical, to be checked after the report is run. Tells you if the user emailed the current report

nPageTotal - numeric, the quantity of pages of the current report

 23

Special Features

FULL JUSTIFIED TEXTS

Text justification is a feature that was missing in VFP till now. With the help of GDI+ and the VFP9 report possibilities, we have this

possible in a very simple way: Just add the <FJ> Tag in the User tab in the Report designer

- Select the field that you want to justify

- Double-click that field to access the properties dialog

- Select the "Other" Tab

- Click "Edit User Data" button

- Add the "<FJ>" tag in the textbox

- When you run your report, that field will appear justified.

This setting works also when you export your report to PDF, RTF and HTML!

 24

 25

WATERMARKS

You can add watermarks to your reports without having absolutely any knowledge about GDI+ or ReportListeners, just by setting some

few properties! In fact, by filling just one property you can have watermarks in all pages of your reports. In fact, this feature was asked

by many people, but I had to postpone it because I had to implement to the original Gdi+ classes some new classes and functions, to

create the transparencies and grayscale effects. If you're curious, and want to check for these functions, have a look at the file

pr_gdiplushelper.prg in the sources folder.

Related properties:

• cWatermarkImage - character, the name of the WM image. Important: this image MUST be stored locally, CAN'T be

embedded in your EXE, obligatory property if you want to show the watermark. To remove the watermark from the next reports,

just store an empty value to this property.

• nWatermarkType - numeric, 1 = Colored (default), 2 = Converts the source image to grey scale, optional property

• nWatermarkTransparency - numeric, from .10 to 1, default = 0.25, the transparency level of the WM image; 1 = Opaque,

optional property

• nWaterMarkWidthRatio - numeric, default = 0.75, the width size in proportion of the watermark in the report page, optional

property

• nWaterMarkHeightRatio - numeric, default = 0.75, the height size in proportion of the watermark in the report page, optional

property

Basic usage sample:

DO FoxyPreviewer.App
* Adding watermarks to reports
_Screen.oFoxyPreviewer.cWatermarkImage = ADDBS(HOME()) + "Graphics\Gifs\Morphfox.gif"
_Screen.oFoxyPreviewer.nWaterMarkType = 1 && 1 = Colored (default), 2 = B&W
_Screen.oFoxyPreviewer.nWatermarktransparency = .30 && 0 = Transparent, 1 = Opaque
_Screen.oFoxyPreviewer.nWaterMarkWidthRatio = .75 && (0-1) Proportion that the WM will occupy in
page width
_Screen.oFoxyPreviewer.nWaterMarkHeightRatio = .75 && (0-1) Proportion that the WM will occupy in
page height

REPORT FORM LOCFILE(_Samples + "\Solution\Reports\Colors.frx") PREVIEW

If you only set the "cWatermarkImage" property to a valid image file existing on the disk, you'll have your first watermark.

To reset your reports to the original settings, without the watermark, just clear the value of the property '.cWatermarkImage = "" '.

 26

More samples:

Below you can see how the watermarks will appear, depending on the property values that you choose:

 1 -

.nWatermarkType = 1 && 1 = colored ; 2 = greyscale

.nWatermarkTransparency = 1 && 0 = transparent ; 1 = opaque

.nWatermarkWidthRatio = 0.90 && 0 - 1

.nWatermarkHeightRatio = 0.90 && 0 - 1

 27

2 -

.nWatermarkType = 1 && 1 = colored ; 2 = greyscale

.nWatermarkTransparency = 0.25 && 0 = transparent ; 1 = opaque

.nWatermarkWidthRatio = 0.50 && 0 - 1

.nWatermarkHeightRatio = 0.50 && 0 – 1

 28

3 -

.nWatermarkType = 2 && 1 = colored ; 2 = greyscale

.nWatermarkTransparency = 0.10 && 0 = transparent ; 1 = opaque

.nWatermarkWidthRatio = 1.00 && 0 - 1

.nWatermarkHeightRatio = 1.00 && 0 - 1

 29

4 -

.nWatermarkType = 2 && 1 = colored ; 2 = greyscale

.nWatermarkTransparency = 0.25 && 0 = transparent ; 1 = opaque

.nWatermarkWidthRatio = 0.75 && 0 - 1

.nWatermarkHeightRatio = 0.75 && 0 – 1

 30

TAGGED FORMATTING

Another cool facility, that allows you to draw your texts in the report surface (and export it) having control on each word. Forget those

old workarounds, generating images to draw some texts in your reports or even embedding RTF controls in your reports !

This brings a super cool new feature, allowing you to add some basic HTML texts to your fields. This means that you can from now on

determine how EACH WORD in your field should be formatted!

See the next image below, all the text is in ONE SINGLE FIELD !

How to do it ?

 - Open your report, in Edit mode

 - Double-click the field that you want to add the tagged formatting. This will open the field properties dialog

 - Click on the "Other" tab

 - Click on the "Edit user data..." button

 - Add the string "<TF>" as shown in the picture below:

 31

And just add the HTML code below to that field:

The search capabilities are kept, and exporting to PDF returns an excellent output as well.

Here is the list of the available TAGS that you can be used:

Feature Opening Tag Closing Tag

Bold

Italic <i> </i>

Underline <u> </u>

Strikethrough <s> </s>

text color <color=rgb/ncolor >

<c= >

</color>

</c>

text backcolor <highlight=rgb/ncolor>

<h=rgb/ncolor>

</highlight>

</h>

font name <fontname=”name”>

<fname=”name”>

</fontname>

</fname>

font size <fontsize=n>

<fsize=n>

</fontsize>

</fsize>

whole font style <fontstyle=”BIUS”>

<fstyle=”BIUS”>

</fontstyle>

</fstyle>

 32

force new line (CRLF)

CHR(13)

CHR(10)

CHR(13) + CHR(10)

NB: color could be stored a number with RGB()

NB: could prevent transform if '</' not in string

REPEAT REPORT IN SAME PAGE

You can also print the same report twice in the same page.

In several cases we need to print some receipts in 2 copies. Normally these reports are small, using only half the page. If you have this

situation, you can set just one property, and FoxyPreviewer will repeat the current report in the same page, starting from the half

vertical part of the page.

Works only when you run the report in the preview mode.

In the preview window, the report will look as original. The 2nd copy will be printed in the same page only when you click the "Print"

button in the toolbar or Context menu.

DO FOXYPREVIEWER.APP
_Screen.oFoxyPreviewer.lRepeatInPage = .T.
REPORT FORM YourReport PREVIEW

ENHANCED PROGRESSBAR

Use the '.nThermType = 2' property to tell FoxyPreviewer to use the cool progressbar below instead of the original.

 33

SENDING BY EMAIL

FoxyPreviewer brings 4 ways for you to send emails:

1 – MAPI

Uses the WinAPI MapiSendMail to try to send the current report as an attachment.

This setting sends a standard message, with one or more attached files and a cover note. The cover note is a dialog box that allows the

user to enter a list of recipients and an optional message and other sending options. It will open a dialog email sending message,

waiting for a user interaction. The message will not be sent automatically. It’s up to the user to verify the information of the message

and to click at the “Send” button.

This function tries to establish a session using the default messaging system's shared session. If no shared session exists, it will fail

sending the message.

This works pretty well if you have your default account set using MS Outlook Express, MS Outlook or Windows Live Mail. Definitely, it’s

the easiest way to send your messages, because this way, FoxyPreviewer will use the default Email configuration of the computer. Apart

from that, since the default email application will be used, the sent messages will be stored normally, as if you sent an emai directly

from Windows Mail, for instance.

2 - MAPI ALTERNATIVE

Uses the WinAPI MapiSendDocuments to try to send the current report as an attachment.

The MAPISendDocuments function sends a standard message with one or more attached files and a cover note. The cover note is a

dialog box that allows the user to enter a list of recipients and an optional message and other sending options.

This function tries to establish a session using the messaging system's shared session. If no shared session exists, it will fail sending the

message.

This works pretty well if you have your default account set using MS Outlook Express, MS Outlook or Windows Live Mail. Definitely, it’s

the easiest way to send your messages, because this way, FoxyPreviewer will use the default Email configuration of the computer.

Although MS says that “The use of this function is discouraged. It may be altered or unavailable in subsequent versions of Windows.”,

it’s been working well in all OS’s, from WinNT to WinSeven

3 – CUSTOM PROCEDURE

You can use your own procedure to send the current report. use foxypreviewer property "cEmailPrg", and fill it with the name of the prg

responsible for sending emails. This PRG receives as a parameter the file name of the file created that you will send as attachment. Have

a look at the samples provided, the file mysendmail.prg shows how you would need to make your custom procedure.

4 – CDO

Uses the CDO2000 component included in windows 2000 and later. It allows you to send emails using a SMTP server. All settings must

be accurate in order to make this work. For example, below is the configuration for a “Hotmail” or “Live” account to send emails.

 34

People always send messages in forums asking how they should make these configurations. In fact, they change from server to server,

the best you can do is to check the Email server that you are using, and get the right configurations for SMTP Server, SMTP Port and

SSL Connection.

The following link brings some SMTP general information about several servers:

http://mynokiamobile.blogspot.in/2008/01/smtp-pop3port-settings-for.html

And here is a list of servers with some common configurations for people who use Brazilian servers:

http://superlogica.com/faq/00259

None of the settings below were tested, please make your tests!

Server SMTP adress Port(s) Use SSL

HOTMAIL / LIVE smtp.live.com 25 TRUE

YAHOO smtp.mail.yahoo.com 25 or 465 TRUE

GOOGLE smtp.gmail.com 465 or 25 TRUE

AOL smtp.aol.com

NETSCAPE smtp.isp.netscape.com 25

MSN smtp.email.msn.com

REDIFF smtp.rediffmailpro.com

UOL smtp.uol.com.br 25 TRUE

UOL smtps.uol.com.br 587 or 465 TRUE

 35

The SMTP email mode allows providing a very complete range of information in your emails:

- Generate HTML outputs for the body of your message

- Change the formatting, alignments, fonts, adding pictures, hyperlinks, etc...

- Preload an HTML document

- Attach more files

- Mark message as priority

- Ask for read receipt

After you click on "send", a continuous progress bar, with the cool marquee effect will appear, till the message is delivered:

There is another simplified email form available, that generates only plain text messages. You can select the “CDO-TXT” option in the

settings form:

 36

5 – SEND BY EMAIL WITHOUT PREVIEWING

FoxyPreviewer provides a special method to allow you to send any file by email:

 SendEmailUsingCDO – Using this method, you can access directly the internal procedures used by FoxyPreviewer to send emails

using CDO.

- Start by using the REPORT FORM command with the specific OBJECTTYPE, saving the report to a file.

 - Set all the general email properties in the _Screen.oFoxyPreviewer global object

- Call the _Screen.oFoxyPreviewer.SendEmailUsingCDO method, passing the file name of the saved report as parameter:

* This sample shows how you can configure lots of email options, in order to determine how
* your reports will be sent by email
* Allows adding other attachments, see the cAttachments property
* Make sure to provide all the correct SMTP settings, the provided here are just samples

* Several useful email settings
* http://www.emailaddressmanager.com/tips/mail-settings.html

IF VARTYPE(_Screen.oFoxyPreviewer) <> "O"
 DO LOCFILE("FoxyPreviewer.App")
ENDIF

WITH _Screen.oFoxyPreviewer
 .cLanguage = "FRANÇAIS"
 REPORT FORM (_Samples + "\Solution\Reports\percent.frx") OBJECT TYPE 10 TO FILE
"c:\Temp\Email1.pdf"

 .cEmailTo = "foxypreviewer@hotmail.com"
 .lEmailAuto = .T. && Automatically generates the report output file
 .cEmailType = "PDF" && The file type to be used in Emails (PDF, RTF, HTML or XLS)
 .nEmailMode = 2 && 1 = MAPI, 2 = CDOSYS HTML, 3 = CDOSYS TEXT, 4 = Custom procedure

 37

 * GMAIL
 .cSMTPServer = "smtp.gmail.com"
 .cEmailFrom = "foxypreviewer@gmail.com"
 .cEmailSubject = "Subject test"
 .nSMTPPort = 465
 .lSMTPUseSSL = .T.
 .cSMTPUserName = "foxypreviewer@gmail.com"
 .cSMTPPassword = "*****"
 .lReadReceipt = .T.
 .lPriority = .T.
 .cAttachments = GETFILE() && Comma delimited

 * Other possible properties
 ! .cEmailCC
 ! .cEmailBCC
 ! .cEmailReplyTo

 .cEmailBody = "<HTML>
Email Test with FoxyPreviewer</HTML>"

 * Now we can send the file we created by email !
 .SendEmailUsingCDO("c:\Temp\Email1.pdf")
ENDWITH

 38

THE ADRESS BOOK TO SEND EMAILS

The address book shown above allows your customers to choose the destination from a given table. This form is called from the

HTML email form provided in the CDOSYS email settings. This form contains a grid that will bring all the fields provided by your

cursor or table, so please make sure to send only the fields that you want to appear. The grid brings some facilities:

- Column reorder by double-clicking at the column header

- The search field can be changed by right-clicking at the column header

- Selecting all the addresses, or inverting the selections, by clicking at the 1st column header

Just create a cursor or table, containing an obligatory field called "email", and set a property in the FoxyPreviewer object telling

the name of the Alias / Cursor or path to access that table.

The command below creates a table using the Customers table that comes in VFP samples, adding the "email" field, which

originated the above address book.

 39

* Creating a table with the address book
SELECT CAST(LOWER(GETWORDNUM(Contact, 1, " ")) + "@vfp4.com" AS C(30)) AS email, * ;
 FROM (_samples + '\data\customer') ;
 WHERE .T. INTO TABLE c:\Test2 READWRITE

Next step is to tell FoxyPreviewer the name of your table:

* Setting the global properties
DO FoxyPrevieweer.App
_Screen.oFoxyPreviewer.cAdressTable = "c:\Test2.dbf"
_Screen.oFoxyPreviewer.cAdressSearch = "Contact" && Optional
_Screen.oFoxyPreviewer.cEmailTo = "test@foxypreviewer.org" && Optional
_Screen.oFoxyPreviewer.nEmailMode = 2 && CDO/HTML
REPORT FORM YourReport PREVIEW

As the dialog image above said, you first need to configure your email SMTP. This can be done using the Settings dialog, at the

Email Tab. Make sure to select CDO-HTML and provide your SMTP server info.

Obviously, you can also set the according properties directly, or even edit the Settings table, providing the needed information.

Please refer at this documentation for more detailed information about the properties needed for setting your email.

 40

SENDING BY FAX

Although not natively supported, FoxyPreviewer opens a “door” to allow you send your faxes by using the email form shown above in

item #4 – Email with CDO.

By using the property “cFaxPRG”, you tell FoxyPreviewer your custom Faxing procedures. Notice that FoxyPreviewer does not bring any

internal code to manage faxes. Your PRG will be responsible for sending the document to the destination, for example:

_Screen.oFoxyPreviewer.cFaxPrg = “mySendFax.prg”

In that case your “MYSENDFAX.PRG” program MUST start with a LPARAMETERS statement, which will receive from FoxyPreviewer some

needed parameters to send your fax:

LPARAMETERS tcFile, tcFaxNumber, tcHTMLBody, tcSubject
* Where:
* tcFile = the file name that brings your report
* tcFaxNumber = the fax number that your client will fill in the email field in the email form
* tcHTMLBody = the text that your client wrote in the email form
* tcSubject = the subject filled

 41

UNICODE SUPPORT

If you need to print special characters from other languages than the native language selected in your Windows system configuration,

you can send unicode characters directly in your report fields. To turn this feature on, all you need is to add the magic tag “<UC>” in

the “User” tab in the field properties, and during the report run, FoxyPreviewer will preview (and print) the converted characters, as

shown in the image below:

 42

Configuring at Runtime

THE SETTINGS DIALOG

All properties are optional. You can leave to the users to decide what features they want to use. FoxyPreviewer will store a table –

FoxyPreviewerSettings.dbf - at the same location of the FoxyPreviewer.App file that will store the user’s preferences that he/she chose

in the dialog below

An additional button in the print preview toolbar and in the context menu (via right clicking at the report preview canvas) calls the

"settings definitions" dialog, that allows users to configure interactively 90% of the features of FoxyPreviewer.

That means, that every user can determine lots of things related to his report preview definitions.

Users may choose very easily how the toolbar will appear in the next section, what buttons will be visible, the buttons size, what output

types will be available. From the toolbar or the context menu, click at this button, to open the dialog.

At the bottom-left part of the dialog form you can see easily some details of the current version used; in the first line, shows the version

used and the release date; the second line shows the VFP runtimes version being used, and a “translation”, eg. SP2 HF3 means using

Service Pack 2 with the 3
rd
 hotfix version (this is the recommended version). Please include this information when asking for support!

This dialog form contains a pageframe with several pages, described below:

 43

1 - General page

 - Language - the combobox lets you change all your report dialogs, tooltips, and captions between several languages available

 - Toolbar visibility - here you define if in the next report preview session the toolbar will be visible, invisible, or if it will follow

the resource file settings

 - Dock position - determines how the toolbar will appear in the next session, undocked or docked. the combo allows you

define the dock position as well

 - Canvas count - determines how many pages will be shown in the preview. choose between 1, 2 or 4 pages at the same time

 - Zoom level - determines the zoom level that will be used in the next session

 - Window state - choose between, normal, minimized or maximized report preview window

 - Progressbar

 Quiet mode - determines if the progressbar will appear during the report generation and during the output

generation. if you include the "NODIALOG" clause in your report, this setting will be ignored

 Progressbar type - choose between the default progressbar (not beautiful at all) or the coolest windows compatible

progressbar, compatible with all windows versions, a courtesy of Carlos Alloatti and Dorin Vasilescu.

 44

2 - Controls page

 - Size of buttons - determines the size of the buttons to be used. 16x16 or 32x32. Internally, FoxyPreviewer stores 2 button size

options. Users may choose between these options. If you want to use your own buttons, you have two possibilities: 1 – Change the

following properties, sending the new image files: cImgPrintBig, cImgPrintPrefBig, cImgSaveBig, cImgCloseBig, cImgClose2Big,

cImgEmailBig, cImgSetupBig, cImgMiniaturesBig, cImgSearchBig, cImgSearchAgainBig, cImgSearchBackBig; or 2 – Recompile

FoxyPreviewer using your new images, go to the image folder, and replace with your own buttons. Make sure to use the same file

names. After recompiling, your FoxyPreviewer.app version will show your pictures. Below you can see the toolbar in the big size (32x32)

 - Printing preferences button - determines the visibility of "printing preferences" button in the toolbar and context menu

 - Preferences options: "global printer prompt options" - shows the vfp9 default printer prompt dialog. this is the most flexible

dialog, it allows your user to determine the printer for the output, change preferences, access an uninstalled printer from the local

network, etc. the disadvantage is that if the user clicks on the "cancel" button, the report preview will be closed.

 - Preferences options: "setup property sheet for the current printer" - shows the preferences dialog for the current printer. this

will not allow you to switch to another printer, but if the user clicks on "cancel", the preview will be restored.

 - Copies - determines if the copies spinner will be shown in the toolbar. this control will allow your users to change the

quantity of copies for the current report session.

 - Save report - determines if the "save" button will be available in the toolbar and context menu. See in the next section how to

determine which output file options you can make available.

 - Available Printers - determines if a combobox with all the available printers will be visible. This control will allow users to

switch the printer output during the preview.

 45

 - Send report by e-mail - determines if the email button will be visible. see in the 4th page information (in the "email" tab)

more instructions of usage

 - Miniatures - determines if the miniatures preview form button will be visible in the preview toolbar and context menu

 - Miniatures per page - determines the maximum quantity of miniatures that will be shown per page when you choose

miniatures preview mode

 - Find - determines if the search button will be available in the preview toolbar and context menu

 - Max pages to search - determines the quantity of pages that the search engine will store information. when you have a really

big report, of more than 200 pages, users will notice a very important performance difference, because during the report generation it

will be saving information of all the fields from the report. set the numeric value of "-1" to tell FoxyPreviewer to perform the searches in

all pages

 46

3 - Output page

Here you can define what output options you'll have available in the "save report" menu, like in the picture below:

- Save as image file - determines if the save to image option will be available in the output options menu

- Save as PDF

- Save as HTML

- Save as RTF

- Save as XLS / XML

- Save as TXT / CSV / XL5

- Output path - allows users to determine the path / directory where the output files will be saved

- Open using the default viewer – determines if the output file will be automatically opened after created

 47

4 - Email page

In this page you have several emailing options. choose the one that you find the most appropriate for your case. More details in the

previous section.

 48

5 - About page

This page provides information to the developer, providing handy useful links for FoxyPreviewer, and some information about the

location of the files being used by the current report session.

 - Source File: shows the FULLPATH() of the FoxyPreviewer version being used.

 - Settings File: shows the FULLPATH() of the FoxyPreviewer_Settings.DBF file being used. (this file stores the user’s preferences)

 - Browse Settings File – allows you to view immediately the contents of the settings file

IMPORTANT:

This page is exhibited only in development mode. When the report is ran from an EXE, this page will be hidden!

 49

PROVIDING USER SPECIFIC SETTINGS

There are several ways for you to do that.

At first run, FoxyPreviewer creates a Settings table that contains information about the settings chosen by the user, when setting

the Preferences window. This file is originally stored at the same folder of the file FoxyPreviewer.App. So, make save your

FoxyPreviewer.app file in a folder that has Read/Write permissions.

You can also tell FoxyPreviewer the location where you want it to store the Settings file, or the folder where the settings file that

you want is stored, by passing the directory as a parameter during the initialization:

DO FOXYPREVIEWER.APP WITH "c:\myApp\Users\John"

Apart from that, you can also determine which options will be available to each user in the Settings form. Apart from

determining if he'll have the settings button available, you can also determine which PgFrame pages will be available, and even

what controls will be enabled. Use the _Screen.oFoxyPreviewer.oSettingsDlg object. Use the Intellisense in development mode to

see all the available properties or refer to the docs of FoxyPreviewer.

DO FoxyPreviewer.App
_Screen.oFoxyPreviewer.cLanguage = "PORTUGUES"

* After initializing FoxyPreviewer, here are some optional properties that you can set:
* choosing what controls or tabs will be disabled in the settings form
* This brings you an option to control what functions each user will have available
WITH _Screen.oFoxyPreviewer.oSettingsDlg
 .lEnableTabPdf = .F.
 .lEnableLanguage = .F.
 .lEnableChkSaveasTxt = .F.
 .lEnableChkSaveasHtml = .F.
ENDWITH

 50

TRANSLATING TO NON ENGLISH LANGUAGES

As listed above, the property cLanguage allows you to change the language that all dialogs, forms, title bars and tooltips appear.

The default language is ENGLISH, and right now we have 22 available:

English, Portuguese, Spanish, Turkish, Italian, Persian, Polish, Indonesian, German, Czech, Arabic, Greek, French, Swahili,

Russian, Dutch, Chinese, Bulgarian, Traditional Chinese (Taiwan), Hungarian, Kazakh, Serbian

Special tweaks were applied to allow exporting to double-byte languages, such as Chinese, Korean and Japanese.

To set the language, you may pass the English language name or the local language name, for example, to change the language to

Spanish:

_Screen.oFoxyPreviewer.cLanguage = "SPANISH" && or "ESPAÑOL"

or to French:

_Screen.oFoxyPreviewer.cLanguage = "FRANÇAIS" && or "FRENCH"

Some of the languages are not updated. Feel free to send to vfpimaging at hotmail dot com your updated translations, or even

introduce a new language!

 51

The output files available

A good practice is to always test your reports in all modes to available. Some fonts or special features may not be compatible with all

outputs.

PDF

The PDF Engine is run by the LibHaru library, originally created by Takeshi Kano. FoxyPreviewer, during the first run will install the file

libhpdf.dll in the same folder of FoxyPreviewer.App. The PDFs generated can be opened by any PDF reader application.

You can export to two different types:

1 - The regular PDF (Object type 10): Allows making searches, with perfect zooming for fonts

2 – PDF as Image (Object type 11): Each page is an image captured from the report. Provides a perfect reproduction of the report, but

being an image brings some limitations, such as: not allows searches, poor zooming, and bigger files.

Most of the special features provided are available as well, such as the “Tagged Formatting” and “Full Justified”. Unicode’s are not

supported in PDF export in regular mode. For a good result with Unicode’s, use the PDF as Image option

The PDF engine allows lots of customizations. You can determine how your document will look by setting the specific properties below

or by using the Settings form to change these definitions interactively.

Properties:

lPDFasImage - logical, the PDF document will generated as an image document && Default = .F.

nPDFPageMode - integer, determines the Page mode for the PDF document. && Default = 0, 0 = Normal view, 1 = Show the

thumbnails pane

lPDFEmbedFonts - logical, determines if the PDF engine will embed the true type fonts in the PDF document

lPDFReplaceFonts - logical, determines if the PDF engine will replace some basic fonts that are already embedded in any PDF

document. Recommended for people using codepage different from 1252 (latin). Default = .T.

lPDFEncryptDocument - logical, determines if the PDF engine will encrypt the PDF document, allowing you to set other restrictions

to the documents, using the properties below

lPDFCanPrint - logical, determines if the 'encrypted' PDF document will allow printing. Works only if lPDFEncryptDocument = TRUE

(see above)

lPDFCanEdit - logical, determines if the 'encrypted' PDF document will allow editing. Works only if lPDFEncryptDocument = TRUE

(see above)

lPDFCanCopy - logical, determines if the 'encrypted' PDF document will allow copying. Works only if lPDFEncryptDocument = TRUE

(see above)

lPDFCanAddNotes - logical, determines if the 'encrypted' PDF document will allow adding notes. Works only if

lPDFEncryptDocument = TRUE (see above)

cPDFMasterPassword - logical, determines the master password of the 'encrypted' PDF document. Must be different from the 'User

Password' property below. Works only if lPDFEncryptDocument = TRUE (see above)

cPDFUserPassword - logical, determines the user password of the 'encrypted' PDF document. Must be different from the 'Master

Password' property above. Works only if lPDFEncryptDocument = TRUE (see above)

lPDFShowErrors - logical, determines if error messages during the PDF generation will be raised to the user. Please set this property

to TRUE if you are facing some PDF issues, missing fields, etc. This will help us find the source of the problem.

cPdfAuthor - character, the author of the document

cPdfTitle - character, the title of the document

cPdfSubject - character, the subject of the document

cPdfKeyWords - character, the keywords that you want to include in the PDF document

cPdfCreator - character, default: "PDFx / FoxyPreviewer"

cPDFSymbolFontsList - character, a Fonts list that can't be converted in PDF. Usually, bar codes and symbol fonts. Delimited with

commas, eg. "Webdings,Biro". Internally, FoxyPreviewer has already a list of more than 30 fonts that will always be converted to images.

 52

Please try first to generate your PDF without adding the font to the list. If it does not render correctly, just add it here!

cPDFDefaultFont - character, the name of the default font name to be used as default in the PDF document

Known issues:

Complicated documents, with objects being drawn ones over the others may produce undesired results.

The PDF engine supports only TrueType fonts. You can use only TrueType fonts which have cmap of unicode and following tables:

"OS/2", "cmap", "cvt ", "fpgm", "glyf", "head", "hhea", "hmtx", "loca", "maxp", "name", "post", "prep".

Most barcode fonts will not be loaded. For exporting barcodes to PDFs, the best option is to use the “FoxBarcode” project from VFPX.

When the PDF engine does not manage to render a string, it will try to capture the image of the text as image, but with some

imprecision.

Setting a password in a PDF document

You need to setup at least 3 properties: 'lPDFEncryptDocument = .T.' , 'cPdfMasterPassword = "YourPwd1", 'cPDFUserPassword =

"YourPwd2" . To encrypt a document, you ALWAYS need to setup 2 different passwords! One for the "Master", and the other for the

"User" passwords. Check the related properties in the documentation for more details.

DO FoxyPreviewer.app
_Screen.oFoxyPreviewer.lPDFEncryptDocument = .T.
_Screen.oFoxyPreviewer.cPDFUserPassword = "pwdmaster"
_Screen.oFoxyPreviewer.cPDFMasterPassword = "pwduser"
REPORT FORM (ADDBS(_Samples) + "SOLUTION\REPORTS\PERCENT.FRX") OBJECT TYPE 10 ;
 TO FILE "c:\Test1.pdf" PREVIEW

RTF

The RTF generated is very rich, and the result is really very close the original report. It can be viewed using MS Word, MS Word Viewer

(freeware), WordPad, OpenOffice (or LibreOffice) Writer and other tools.

Most of the special features provided are available as well, such as the “Tagged Formatting” and “Full Justified”. Unicode’s are not

supported.

XLS / XML

The XLS files are initially created as XML, and then converted to XLS using MS EXCEL or OpenOffice automation, if available in the local

machine.

"MS Excel" and "OpenOffice Calc" can open the XML spreadsheets without any pain. Excel 2003 can open these files normally, but

newer versions will probably show a dialog saying that the file is in a wrong format. Just ignore and tell it to try to open and the

worksheet will be opened. “OpenOffice Calc” needs that these files use the XML extension.

Properties:

cExcelDefaultExtension - character, default = "XLS". This is the default file extension shown in the PUTFILE() dialog to save as

worksheet. Fill it with "XML" if you don't have MS-EXCEL, OPENOFFICE or LIBREOFFICE installed. Fill it with "XML" if you want this

extension to be used in Excel outputs. Ideal for OpenOffice Calc users.

lExcelConvertToXLS - Logical, default .T., offers a new option to convert the worksheet to 'Excel 97' format. (requires MS Excel or

OpenOffice installed). FoxyPreviewer will always first generate an Excel compatible XML worksheet. If you choose XLS, it will use

MSOFFICE, OPENOFFICE or LIBREOFFICE automation to make the convertion to pure XLS.

lExcelRepeatHeaders - Logical, default .F., repeat report page headers in worksheet.

lExcelRepeatFooters - Logical, default .F., repeat report page footers in worksheet.

lExcelHidePageNo - Logical, default .F., hides report fields that contain "_PAGENO" information.

lExcelAlignLeft - logical, for Excel spreadsheets, Aligns to the left all the string fields.

nExcelSaveFormat - integer, the Excel automation constant that defines the type of output to be applied when converting to pure

Excel. Applicable only if the property "lExcelConvertToXLS = .T." . See list of possible values at

http://fox.wikis.com/wc.dll?Wiki~ExcelConstants. The default value is 43 (xlExcel9795)

 53

Known issues:

Images can’t be exported. The XML spreadsheet format does not allow all formatting.

If fields appear not aligned to the related header, edit your report, and make sure to align accurately the fields. Play with the “x”

coordinate, and make new tests.

Pure XLS files will not be available if neither Excel nor OpenOffice are installed.

Dates prior to the year of 1900 will be treated as “Text”.

The cell widths and Heights are always the default.

HTML / MHTML

FoxyPreviewer will use the file extension passed to decide the format to export. Choose between HTM, HTML and MHTML

From the Preview toolbar or OBJECT TYPE 15, FoxyPreviewer uses some very basic HTML Style commands to generate the output, with

a very good result, and without any external library. Supports double-byte character languages, and the output can be easily exported

to web pages.

Using OBJECT TYPE MODE 14, you will probably have a more accurate result, but with a bigger file, and not compatible to Double-byte

characters.

IMAGE TYPES

The exported images from FoxyPreviewer offer a perfect reproduction of your report as an image file. All Gdi+ compatible image types

are allowed: BMP, GIF, PNG, TIFF, JPEG and EMF. FoxyPreviewer will produce the output according to the file extension passed. For

TIFFs, one single Multipage image file will be generated for the current report. For all the other types, several images, one for each page

of the report will be generated, with the suffix of the page number in the file name.

Some few considerations about image files and reports:

EMF - Essentially, a EMF file stores a list of function calls that have to be issued to the Windows Graphics Device Interface (GDI) layer to

display an image on screen. This is a very cool mode, because it allows perfect resizing, if your viewer supports so. For later printing, or

even exporting to a PDF using a Ghostscript printer, the results are impressive.

PNG – The “Portable Network Graphics” is a raster graphics file format that supports lossless data compression. PNG was created as an

improved, non-patented replacement for GIFs, and is the most used lossless image compression format on the web. For VFP reports,

the outputs are perfect, and at a compressed file size, without loosing quality.

GIF – Provide a compressed file format, but limited to 256 colors.

TIFF – The “Tagged Image File Format” is a flexible format, providing a nice quality, with the advantage of saving several pages at the

same image file, making it easy to distribute reports that contain more than one page.

JPG – Very widely used file format, offers the possibility of controlled image compression, but compromising the quality. It’s very

common to see PNGs smaller than JPEGs with better quality, when dealing with VFP reports.

BMP – Uncompressed images, hence they are large; the advantage is their simplicity and wide acceptance in Windows programs

TXT – Not supported in the simplified mode, but can be very easily generated without previewing:

SET REPORTBEHAVIOR 80
REPORT FORM YourReport TO FILE "c:\Text1.txt" ASCII
SET REPORTBEHAVIOR 90 && Turns FoxyPreviewer on again

 54

Known Issues

The Print Preview Toolbar is visible but all buttons are disabled (not responding) in my Top-Level form report. How to

fix that?

There is a known bug in VFP9 SP2, that makes all toolbars inside Top-Level forms not to respond. Fortunately, MS is distributing

a hotfix for SP2, that fixes this issue. Please download the latest cumulative hotfix - KB968409 from

http://http://code.msdn.microsoft.com/KB968409/Release/ProjectReleases.aspx?ReleaseId=2445

Follow carefully all the instructions provided in the text file included in the download, and your toolbar will start working as

advertised.

The easiest way to update your VFP9SP2 with the latest hotfixes is to install Woody's runtime installer, that can be found here:

Woody's VFP9 SP2 Runtime Installer with all hotfixes (Rev 7423)

http://archive.msdn.microsoft.com/FoxPro/Release/ProjectReleases.aspx?ReleaseId=125

Mirror at Foxpert.com - http://www.foxpert.com/runtime.htm

Francis Faure also shares a very nice installer, that brings apart from the SP2 hotfix update, more nice utilities, such as the Fixed

HELP file, and the GdiPlusX library. http://www.vfp.fr/myvfpuptodate.asp

When I run my reports with FoxyPreviewer sometimes asterisks symbols ********************* appear instead of the

field. This was originally working, before using FoxyPreviewer

That happens because FoxyPreviewer uses the SET REPORTBEHAVIOR 90 mode, that uses GDI+ to render the texts.

Unfortunately there is a slight difference of the size of the strings between these modes. To fix it, just edit your report and

enlarge that field !

You can set the new property - lExpandFields to make the report engine show the field numeric value ignoring the field size.

Using "lExpandFields", FoxyPreviewer retrieves the value that overflowed and resends it to the report engine with an enlarged

field width.

This is a known issue, and Lisa Slater Nicholls wrote a short blog post regarding it:

Why do report layouts in VFP9 need wider field/expression controls than in VFP8 and earlier?

http://spacefold.com/colin/posts/2005/08-18GDIplusinreports.html

And here's another interesting text from Lisa, that explains the reason for that:

With REPORTBEHAVIOR=90, the new report engine uses GDI+ to render output, and text string rendering requires more space than

plain old GDI.

The Report Desiginer uses GDI - not GDI+ - to render the report layout components, including all the text strings that you see. So if

you visually right-align a label report element, the report designer records the leftmost co-ordinates of the element (the text start

position) in the layout.

The length of the string under GDI+ rendering will most likely be greater than what you would think, based on what you see in the

Designer.

My VERY BIG report can't run with FoxyPreviewer

Unfortunately the VFP9 reporting system has a limit of pages / characters to be rendered. In most cases, reports with more than

 55

3000 pages do not work, raising the error "Insufficient GDI+ resources". This is not a FoxyPreviewer issue. This limitation comes

from VFP. Please reduce the scope of your report, or use SET REPORTBEHAVIOR 80 to run that report.

Reports characters are appearing very small when printed in a dot-matrix printer

This is a limitation of the VFP9 reporting system. If you are using FoxyPreviewer in the complete mode, you can setup the

property lUseListener = .F. for that specific report. This will make FoxyPreviewer run the report in the ReportBehavior 80 mode.

If you are using FoxyPreviewer in the simplified mode, unfortunately there is nothing to do, except:

- Using FoxyPreviewer in the complete mode for this specific report

* Sample showing how to use the Complete mode for Dot-matrix printers
LOCAL loReport AS "PreviewHelper" OF "FoxyPreviewer.App"
loReport = CREATEOBJECT("PreviewHelper")
loReport.AddReport(_Samples + "\Solution\Reports\colors.frx") && FRX File, Clauses
loReport.lUseListener = .F.
loReport.RunReport()

or

- Run this report using SET REPORTBEHAVIOR 80

My PDF is too big!

Try setting the property "lEmbedFonts = .F."

Reports run slower when controlled by FoxyPreviewer

The ReportBehavior 90 per se runs slower than the old mode, because it needs to provide several interception points to the new

report engine to allow us to have full control of what is being printed (or exported).

Apart from that, FoxyPreviewer needs to store lots all the report information in some internal tables, that will be used to further

exporting and also to provide the search engine.

Images embedded in my EXE aren’t printed

In the sources folder you can find the file "FOXYGETIMAGE.PRG". Include this file in your EXE project if you have images embedded in

your EXE that you want to appear in your report. This may bring some security issues to your EXE, because this program will allow

FoxyPreviewer to access the embedded images of your EXE.

 56

Downloads
http://foxypreviewer.codeplex.com/releases

Online documentation
http://foxypreviewer.codeplex.com/documentation

Credits / Collaborators / Special Thanks

FoxyPreviewer encapsulates many free and fantastic tools developed by some great participants of the Visual FoxPro

community. Below is a partial list of the related tools and their creators, and other collaborators.

 Lisa Slater Nicholls - for the great job that she made with the reporting system of VFP9 SP2. And more than that, for her

great blog, the excellent and well documented articles, and the complement of for the Help files of VFP9SP2, regarding SP2 new

features.

 Colin Nicholls - Author of the new reporting system of VFP9, for his many great articles regarding the new reporting

system, specially for the article Exploring and Extending Report Previewing in VFP9. The miniatures preview form classes were

leveraged from that article, and also lots of ideas used in the whole utility.

 Luis Navas - He's the author of the PDF Listener. A terrific job, great code. More info about PDFx can be obtained in his

blog: PDFx Update Support for some SP2 Features. This brings a new, lightweight and very reliable option for us to export our

reports to PDFs. Thanks a lot for your support and help with this project!

 Takeshi Kanno - Author of the HARU PDF library and all his collaborators, for making PDFx come true with HARU library.

More information about this great project: http://libharu.org/wiki/Main_Page and http://libharu.sourceforge.net/

 Vladimir Zhuravlev - He's the author of the RTF Listener together with Dmitriy Petrov and Valeriy Liftshits with help of

Vadim Pirozhkov. It was first published in the Foxite downloads section - http://www.foxite.com/downloads/default.aspx?id=166.

Another impressive and courageous work. Thanks very much!

 Alejandro Sosa - He's the author of the XLS ReportListener. Another guy who made an "impossible" thing. The original

version was published in the UniversalThread downloads section

 Doug Hennig - The searching engine is completely based is his article and source from the outstanding article

ReportListener That Knows Where Objects Were Rendered

 Dorin Vasilescu - for an alternative search engine, from where I've obtained some tips, and also for the implementation

of the new ProgressBar

 Carlos Alloatti - for the ProgressBar classes

 Sergey Berezniker - The author of the CDO 2000 Mail class used, and for some codes used to get printer information.

Here you can find some other information on how to configure your email account in FoxyPreviewer: Sergey Berezniker blog

 Mike Gagnon - for the MAPI email classes

 Barbara Peisch - for the codes to open the "Printer Preferences" dialog window, posted in the Foxite forums:

http://www.foxite.com/archives/0000158197.htm

 Cathy Pountney - for fixes in the ReportListener classes - SET TALK appears to be on when running reports with SP2

 57

 Frédéric Steckzicki - for the HTML editor used in the Send email form

 Jacques Parent - for the miniatures form several tweaks, and his continuous support and tests in all parts of the code.

 Nick Porfirys - for his continuous support, fixes and suggestions

 Edwin Duran - for the first implementation of the XLS Listener

 Mauricio Braga - for some great suggestions and tweaks

 Soykan Ozcelik - New adress book idea owner and form developer, Turkish documentation editor

 Stefan Wuebbe, Nick Porfirys, Jacques Parent, Michel Levy, Cetin Basoz, Soykan Ozcelik, Ali Hussein Zadeh, Martin

Krivka, Rick Castro, Luis Maria Guayan, for their continuous tests, and translations to other languages

 Eric den Doop for hosting the VfpImaging weblog

 Foxite community - I should refer to at least more 100 persons who have been continuously testing and providing

suggestions that have been helping me a lot during this process.

 Kevin Baugh, for his extensive tests and samples helping to improve the product

 Fabio Vieira, for his improvements in the PDF Listener, several tests and suggestions

 PortalFox community and Spanish speaking VFP community - Another group of fantastic people, who did lots of

testings and suggestions. Special thanks to Luis Maria Guayan and Edgar Acevedo

 Max Arlikh, from the Russian VFP community, for the 1st version and idea for the HTML generator for the Simplified

mode.

 Mark S. Winston – for his support, and contribution at this documentation

 www.pixel-mixer.com – for the cool icons used in this project, that are free for commercial use.

Contribute
FoxyPreviewer is an Open Source project; you may use it free of charge.

If you think FoxyPreviewer brings value to your applications, please consider making a donation to support the continued development

of this tool. To get to the stage it is at this moment, thousands of hours have been spent!

https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=AVTDKLGYZ6KUC

License
The software is licensed "as-is." You bear the risk of using it. The contributors give no express warranties, guarantees or conditions. You

may have additional consumer rights under your local laws which this license cannot change. To the extent permitted under your local

laws, the contributors exclude the implied warranties of merchantability, fitness for a particular purpose and non-infringement.

