
1 The Kit Box: More Than One
Way to Skin a Fox
Andy Kramek and Marcia Akins

6 Editorial: The Great Linux
EULA Controversy
Whil Hentzen

9 Base Classes Revisited
Doug Hennig

13 Exploring Python From a
Visual FoxPro Perspective
Paul McNett

17 Securing VFP Data
Alf Borrmann

20 September 2003 Downloads

September 2003
Volume 15, Number 9

FoxTalk
Solutions for Microsoft® FoxPro® and Visual FoxPro® Developers

Accompanying files available online
at www.pinnaclepublishing.com/ft

Applies specifically to one of these platforms

Applies to
VFP v3.0

Applies to
VFP v6.0

Applies to
VFP v5.0

Applies to
VFP v7.0

7.07.0 6.06.0

Applies to
VFP v8.0

8.08.0

The Kit Box

More Than One Way
to Skin a Fox
Andy Kramek and Marcia Akins

This month, Andy Kramek (with the trusty help of Marcia Akins) is looking for a
way to make his forms more appealing. Despite VFP’s enormous flexibility in most
things, it’s actually rather limited when it comes to the appearance of the user
interface. Fortunately the FoxPro community, in the shape of Pablo Molina of La
Rioja, Argentina, comes to his rescue with a very cool implementation of “Skins” for
Visual FoxPro forms.

Andy: I’ve just been creating a whole bunch of forms for a new application I’m
working on and I’m getting very bored.

Marcia: What do you mean “bored”? I know you prefer playing in the database
to working with UIs, but that’s no excuse for saying it’s boring.

Andy: Not with doing it (though it is a challenge at times), but with the results.
Everything is in the standard Windows “American Civil War” colors—just
blue and gray! It’s so uninteresting.

Marcia: Well, you can change your Windows color scheme easily enough.
There are all sorts of different color sets that ship as standard, and you can
even create your own. Just right-click on the Windows desktop, choose
Properties from the pop-up menu, and then go to the Appearance tab. You
can define exactly how the various UI components will look. If you’re
running Windows XP (and are using VFP 8.0) you can even use “themes”
within your application.

Andy: But all these things (including themes) do is affect all components

7.07.0 8.08.0

www.pinnaclepublishing.com/ft 17FoxTalk September 2003

Securing VFP Data
Alf Borrmann

FoxTalk

What VFP lacks in comparison to the big iron databases are
special security mechanisms. Everyone who has a copy of
VFP or who can deal with ODBC may manipulate your data
without running your business rules. Alf Borrmann shows you
how you can store your VFP data in a Windows network
environment securely using standard Windows routines.

SINCE version 3.0, VFP has been a real entity
relationship database engine that supports stored
procedures, referential integrity, triggers, and more.

The only difference (besides the limited DBF file size)
between VFP and the big iron databases like Oracle or
Microsoft SQL Server is the lack of security integrated into
the engine (well, there are some other things, but security
matters most).

If you develop a VFP application that has to access
data located in a VFP database, you have to store the
required files in a directory where the application’s
users can see them. This means that users who are able
to start the VFP application also have access to the data
files. Even if they aren’t capable of starting a VFP
development version where they can BROWSE (or
worse, ZAP) your data, they at least have access via
ODBC, and can manipulate the data in Excel or other
ODBC-enabled applications. Sometimes this leads to
VFP being excluded from the list of acceptable
applications in some enterprises.

But if you’re allowed to use Windows in these
enterprises, it should be completely acceptable to secure
the data using standard Windows mechanisms to stay in
business. Let’s take a look at those mechanisms, and I’ll
show you how to use these within a VFP application.
All you need is VFP and a few Windows API calls—so
everything you need should already be installed on
your system.

The principle
The idea behind the technique I’ll show you is to separate
the user rights needed for starting the application from
those user rights necessary for accessing its data. You
have to configure one user account (or a group) that’s
capable of starting the EXE but can’t see or even find the
database files. You then need another account for read/
write access to the data. This account isn’t an equivalent
to a “real” user. Set up this way, a user or the group
member can start the application, but can’t manipulate
the database—and your data is pretty safe against getting

accessed without your application, isn’t it? But if the users
can’t see the data, how does your application? The key to
achieving this is called “impersonation.”

Perhaps you’re already familiar with this concept
from your Internet Information Service (IIS) that ships
with Windows NT and higher: If you set up a folder to
be accessible through the Internet, you can configure
Anonymous access (in Administrative Tools click on
Internet Information Service, find a Web site on your
computer and open the Properties dialog, open the
Directory Security page, and click on Edit for Enable
Anonymous access). If you allow Anonymous access,
no one connecting to this directory will be asked for a
username or password. Instead, the Windows thread
representing these connections has its own account. You
can configure the account’s credentials to be used as well.
Set up this way, the access to this site is impersonated
because Windows can’t identify the actual user reading
the data.

If the application running between the user and the
data isn’t IIS but your own VFP application, you can do
the same—limit access to the directory containing the data
to just one user account. Your application must reside in
another directory from which a separate list of users can
start it. When your application starts it may get the
current user’s information and verifies his rights. Then
the program impersonates and accesses the data. This
way you can manipulate the data from within your
application, but no user can see it from outside.

How do you do it?
Here’s how to accomplish this:

1. Create a directory to contain the data that the
application will use.

2. Set up a new user account and make it the only one
that has complete rights to this data directory (maybe
you want to grant access to an additional real user like
yourself or the administrator; that’s completely okay).

3. Make your application “impersonation aware” by
taking the following steps.

Register these Windows API calls:

Declare Short LogonUser in Win32API;
 String lcNewUserName,;
 String lcDomainName,;
 String lcPassWord,;
 Integer lnLogonType,;
 Integer lnLogonProvider,;

6.06.0 7.07.0 8.08.0

18 www.pinnaclepublishing.com/ftFoxTalk September 2003

 Integer @lnUserHandle

Declare Short ImpersonateLoggedOnUser;
 in Win32API;
 Integer lnUserHandle

Declare Integer WNetGetUser in Win32API;
 String @lcName,;
 String @lcUser,;
 Integer @lnBuffersize

Declare Short RevertToSelf in Win32API

Declare Short CloseHandle in Win32API Integer

Now you’re ready to impersonate your application.
First, try to logon the user you configured for

accessing the data. The logon type and the logon provider
can be standard values of 3 (logon to a Win2000/XP
server) and 0 (NTLM), respectively. For more information,
refer to the Windows API documentation:

lcNewUserName = <name of the account that has;
 access to the data>
lcDomainName = <name of the domain the;
 account belongs to>
lcPassWord = <you're guessing, right>
lnUserHandle = 0

lnSuccess = LogonUser(lcNewUsername,;
 lcDomainName,;
 lcPassWord,;
 3,;
 0,;
 @lnUserHandle)

This call creates a new user handle and stores it to
lnUserHandle. The return value of this call is a non-zero
value if the call succeeded, and a value of zero if it didn’t.
But beware: The return value only says whether the call
was made without errors. No errors simply means that it
did find a logon type and a logon provider for the values
specified. The returning value doesn’t tell you whether
the logon itself succeeded. The function stores a handle
(simply an integer value) to the variable given as the sixth
parameter. You can use this value to impersonate the user
represented by the handle:

lnSuccess = ImpersonateLoggedOnUser(lnUserHandle)

This call also returns a value based on whether it
succeeded. But again: This also doesn’t give you
information about whether the impersonation itself was
achieved. You need to test the newly logged in user by
getting the current session’s username:

lcName = chr(0)
lnBufferSize = 64
lcUser = Replicate(lcName, lnBufferSize)

If WNetGetUser(@lcName, @lcUser, @lnBufferSize) = 0
 lcUser = Left(lcUser, At(Chr(0), lcUser) - 1)
 llSuccess = lcUser = lcNewUserName
Endif

If the logon did fail, the session is typically running
under the “Guest” login. By comparing the current

username with the desired name, you can verify that
everything went as planned. If something went wrong,
you can simply return to the user session that ran
previously by calling the RevertToSelf function:

If !llSuccess
 * show some error messages here
 RevertToSelf()
Endif

There may exist cases where you have to access
resources that aren’t accessible to the special user
account you’ve configured. Using these resources can
be accomplished in several ways. First, you can call the
RevertToSelf function before accessing the resource and
invoke the ImpersonateLoggedOnUser function for
getting back. Second, you can have more than one user
handle representing several user accounts. Those
accounts could belong to different user groups that define
the rights needed for the resources. You can switch
between the different accounts with subsequent calls
of ImpersonateLoggedOnUser.

After using the handles, you should release them by
calling the CloseHandle function:

CloseHandle(lnUserHandle)

Tips and traps
Be aware that all of the code that runs after the
impersonation only has rights limited to the user account
you created. This is also true for all calls you have to make
to OLE servers you’re instantiating and the OLE server
objects themselves.

As a VFP developer, you know that it’s not a good
practice to store usernames or passwords in your code.
But if they identify an important user account, where else
should you store them? One possibility is to use an INI
file. Yes, using the encryption functionality that’s buried
in the Windows API you can securely save this
information. For applying these functions, have a look
at the _CryptAPI class in _Crypt.VCX of the FoxPro
Foundation Classes.

One drawback to this approach is that inside of
your application you can’t identify the current user with
built-in VFP functions like ID() or Sys(0). To get this
information, you should create a user object that contains
all of the information on the logged-in user before you
impersonate (but since you’re a good OO developer, you
already did it this way). You may also create several
account objects that isolate the utilization of special
resources and their accounts.

For a secure application, you should consider
protecting your code against decompiling. If someone
can read your encryption strategy, he can figure out
the key you’re using for storing the user values in the
INI file.

www.pinnaclepublishing.com/ft 19FoxTalk September 2003

Subscribe to FoxTalk today and receive a special one-year introductory rate:
Just $139* for 12 issues (that’s $20 off the regular rate)

Pinnacle, A Division of Lawrence Ragan Communications, Inc. ▲ 800-493-4867 x.4209 or 312-960-4100 ▲ Fax 312-960-4106

NAME

COMPANY

ADDRESS

CITY STATE/PROVINCE ZIP/POSTAL CODE

COUNTRY IF OTHER THAN U.S.

E-MAIL

PHONE (IN CASE WE HAVE A QUESTION ABOUT YOUR ORDER)

Don’t miss another issue! Subscribe now and save!

❑ Check enclosed (payable to Pinnacle Publishing)

❑ Purchase order (in U.S. and Canada only); mail or fax copy

❑ Bill me later

❑ Credit card: __ VISA __MasterCard __American Express

CARD NUMBER EXP. DATE

SIGNATURE (REQUIRED FOR CARD ORDERS)

* Outside the U.S. add $30. Orders payable in
U.S. funds drawn on a U.S. or Canadian bank.

Detach and return to:
Pinnacle Publishing ▲ 316 N. Michigan Ave. ▲ Chicago, IL 60601
Or fax to 312-960-4106

309INP

Conclusion
The technique shown pulls VFP in-line with other
databases that handle security by themselves. In addition,
it has the possible advantage of getting rid of an
additional user management layer. You can simply
manage your users via the built-in Windows mechanisms

and the user interface the administrator already knows. ▲

Alf Borrmann is a .NET developer located in Berlin, Germany, who began

his career in 1990 using FoxPro 1.0. Since then he’s specialized in object

orientation, project management, and teaching courses on software

development. alf.borrmann@denk-modell.de.

Great Linux EULA Controversy...
Continued from page 8

computer on the Internet, and that second computer’s
CPU was running Microsoft Windows—would that
satisfy the “in conjunction with” terminology?

Or maybe all you have to do is go out to eBay and
buy a copy of Windows 95 for $1.99, and use the CD to
prop up your system unit that’s running your VFP app,
the runtime, and Linux. In this case, the runtime would be
definitely be operating “in conjunction with a Microsoft
Windows platform.”

The rest of the EULA has very explicit descriptions of
what is and isn’t allowed. Why is this issue being covered
with evasive words? Why use vague terms when there are
perfectly clear ways of saying what you want to say?

There are three reasons to be vague. The first is when
you don’t understand the question, and thus have to
resort to waving your hands because you don’t know
how to answer. You see this in computer stores all the
time, right?

The second is when you don’t want to answer
the question.

And the third is when you want to confuse the issue.
Which of these three do you think is the reason Microsoft
chose to provide a vague and thus potentially misleading
answer instead of simply answering my questions?

As with any contract, you should seek your own legal
counsel's advice when interpreting your rights and
obligations under the Visual FoxPro End User License
Agreement.

I see. So Microsoft is telling its customers that it’s
not going to answer their questions about its EULA,
but, instead, the customer has to hire a lawyer to do so.
How many companies can afford to treat their customers
this way? ▲

EULAEMAIL.TXT at www.pinnaclepublishing.com/ft

Whil Hentzen, the Editor of FoxTalk, is president of Hentzenwerke

Corporation (www.hentzenwerke.com), an 18-year-old firm that

specializes in developing strategic database applications for Fortune

2000 firms in the manufacturing, financial, and healthcare industries.

He also owns Hentzenwerke Publishing, a technical book publisher

that specializes in high-end software development topics. He

spends his spare time with his kids and is an avid runner.

whil@hentzenwerke.com.

20 www.pinnaclepublishing.com/ftFoxTalk September 2003

FoxTalk (ISSN 1042-6302)
is published monthly (12 times per year) by:

Pinnacle, A Division of Lawrence Ragan Communications, Inc.
316 N. Michigan Ave., Suite 400

Chicago, IL 60601

POSTMASTER: Send address changes to Lawrence Ragan Communications, Inc., 316 N. Michigan
Ave., Suite 400, Chicago, IL 60601.

Copyright © 2003 by Lawrence Ragan Communications, Inc. All rights reserved. No part of this
periodical may be used or reproduced in any fashion whatsoever (except in the case of brief
quotations embodied in critical articles and reviews) without the prior written consent of
Lawrence Ragan Communications, Inc. Printed in the United States of America.

Brand and product names are trademarks or registered trademarks of their respective
holders. Microsoft is a registered trademark of Microsoft Corporation. The Fox Head logo,
FoxBASE+, FoxPro, and Visual FoxPro are registered trademarks of Microsoft Corporation.
FoxTalk is an independent publication not affiliated with Microsoft Corporation. Microsoft
Corporation is not responsible in any way for the editorial policy or other contents of
the publication.

This publication is intended as a general guide. It covers a highly technical and complex
subject and should not be used for making decisions concerning specific products or
applications. This publication is sold as is, without warranty of any kind, either express or
implied, respecting the contents of this publication, including but not limited to implied
warranties for the publication, performance, quality, merchantability, or fitness for any particular
purpose. Lawrence Ragan Communications, Inc., shall not be liable to the purchaser or any
other person or entity with respect to any liability, loss, or damage caused or alleged to be
caused directly or indirectly by this publication. Articles published in FoxTalk reflect the views of
their authors; they may or may not reflect the view of Lawrence Ragan Communications, Inc.
Inclusion of advertising inserts does not constitute an endorsement by Lawrence Ragan
Communications, Inc., or FoxTalk.

Questions?

Customer Service:
Phone: 800-493-4867 x.4209 or 312-960-4100
Fax: 312-960-4106
Email: PinPub@Ragan.com

Editorial: FarionG@Ragan.com

Pinnacle Web Site: www.pinnaclepublishing.com

Subscription rates

United States: One year (12 issues): $159; two years (24 issues): $270
Other:* One year: $189; two years: $321

Single issue rate:
$20 ($25 outside the United States)*

* Funds must be in U.S. currency.

Editor: Whil Hentzen (whil@hentzenwerke.com)
CEO & Publisher: Mark Ragan

Group Publisher: Connie Austin
Executive Editor: Farion Grove

Production Editor: Andrew McMillan

file (available at www.pinnaclepublishing.com/ft)
includes this functionality, but it does assume that the
only text files in the current working directory are valid
skin configuration files. In reality we’d need to be a bit
more sophisticated about this, but we’re running out of
space in this article, so we’ll look at some implementation
possibilities next time.

Andy: I have to say that we owe Pablo a huge vote of
thanks. Despite the little nitpicks we’ve made, this is a
tremendous piece of work on his part and I’m really
looking forward to using skins to make my applications

more interesting for my users. ▲

09KITBOX.ZIP at www.pinnaclepublishing.com/ft

Andy Kramek is a long-time FoxPro developer, FoxPro MVP, independent

consultant, and joint owner of Tightline Computers Inc., based in Akron,

OH. A veteran conference speaker, he has published widely and can be

found online in the CompuServe forums (http://go.compuserve.com/

msdevapps) and the Virtual FoxPro Users Group (www.vfug.org).

andykr@compuserve.com.

Marcia Akins is a FoxPro MVP, independent consultant, and joint

owner of Tightline Computers Inc., based in Akron, OH. A veteran

conference speaker, she has published widely and is well known

for her contributions to CompuServe (http://go.compuserve.com/

msdevapps) and the Universal Thread (www.Universalthread.com).

marciagakins@compuserve.com.

The Kit Box...
Continued from page 5

September 2003 Downloads
• 09KITBOX.ZIP—Source code to accompany Andy Kramek

and Marcia Akins’ column, “The Kit Box: More Than One Way

to Skin a Fox”

• EULAEMAIL.TXT—Copy of the e-mail referenced in Whil

Hentzen’s Editorial, “The Great Linux EULA Controversy.”

• 09DHENSC.ZIP—Source code to accompany Doug

Hennig’s article, “Base Classes Revisited.”

• 09MCNESC.ZIP—Source code to accompany Paul

McNett’s article, “Exploring Python from a Visual FoxPro

Perspective.”

User name

Password

For access to all current and archive content and source code, log in at
www.pinnaclepublishing.com/ft and enter the User name and Password at right when prompted.

