
 Page 1 of 8  

E8 Manual 
 

Bill Silver 
13 April 2020 

Version 5 
 

E8 is an Emacs-like text editor for the PDP-8/I. It runs under OS/8 and communicates with the 
user via character I/O on the console terminal. The console is expected to be, or behave like, a 
simple fixed-size character-oriented display terminal, able to process a few basic ANSI escape 
sequences. This document assumes some familiarity with the PDP-8, OS/8, and Emacs. 

I Have to Say This 

The source code described here is copyright (c) 2020 by Bill Silver and is distributed under the 
terms of the GNU General Public License, Version 3, which grants you certain rights to copy, 
modify, and redistribute. The license can be found at http://www.gnu.org/licenses/. There is no 
express or implied warranty, including merchantability or fitness for a particular purpose. You 
assume full liability for the use of this code. 

Cautions 

I’ve been using E8 to further its own development with no trouble, but it has not yet been 
tested extensively. Save often and make backups. Note that OS/8 provides almost no 
protection for its file system from errant application code. E8 has some fail-safes to prevent 
bugs from overwriting other files, and there are no known bugs, but still, this is software. Until 
community use is further along, I recommend editing files on some removable media that 
doesn’t contain stuff you can’t afford to lose. 

“Hardware” Requirements 

E8 needs at least an 8/I with EAE and at least three fields of memory (12K). The maximum file 
size (characters) that can be edited is simply the number of words of memory minus fields 0 
and 1. So if you have all eight fields, you get a max size of 24K characters. E8 can display, but 
not properly edit, larger files. 

Terminal Requirements and Processing 

Display 

The terminal must be able to process the following ANSI escape sequences: 
 

Sequence Action To change, search for 
ESC [ row;col H set cursor position SETCUR, 

ESC [ 2 J clear screen CLRSC, 

ESC [ K clear to end of line CLREOL, 

http://www.gnu.org/licenses/


 Page 2 of 8  

E8 sends the BELL code (007) if you try to do something that can’t be done, like entering an 
unimplemented command character, moving the cursor past the ends of the buffer, or entering 
a bad filename character. If your terminal doesn’t beep or flash the screen, you’ll miss these.  

The basic Linux screen (e.g. CTRL-ALT-F1), and MobaXterm, are fine. 

Keyboard 

Many E8 commands are intended for use with the ALT key. E8 recognizes the sequence 

 ESC char 

to mean ALT-char. Many terminals and terminal emulators that have an ALT key will send that 
sequence when the Alt key is pressed. If yours doesn’t, just type the ESC. 

Many control characters that Emacs has used since the beginning are captured by Linux or SimH 
and not sent along to the terminal. ALT alternatives are provided in each case, but it takes a 
little getting used to if you have Emacs muscle memory. If you happen to be using an actual 
terminal, you can enjoy proper Emacs behavior. The captured characters that I’ve found so far 
are ^A, ^E, ^Q, ^S. 

There is some ambiguity about whether the contemporary backspace key should send the 
backspace code (^H, 010) or the delete code (177). E8 considers them the same and converts 
177 to 010. 

Installation 

Source Files 

There are three equivalent configurations of source files, depending on whether you use PIP, or 
something that can handle larger files, to transfer to OS/8, and depending on whether you want 
files smaller than 24K characters so E8 can edit them. 
 

Use PIP E8 can edit Files 

yes yes E8.PA, EA.PA, EB.PA, EC.PA, ED.PA, EE.PA, EF.PA, EG.PA 

no yes E8BASE.PA, E8FILE.PA, E8SRCH.PA 

no no E8ALL.PA 

Setting Screen and Buffer Size 

Before moving anything to OS/8, edit E8.PA , E8BASE.PA, or E8ALL.PA, as follows. All of these 
are near the beginning of the file. 

The symbols SCRWD and SCRHT define your screen size. These are decimal values. Make them 
whatever you like, as long as 

SCRWD * (SCRHT + 1) <= 3968 

There is no limit on the size of lines that can be in files and edited, but you can only see the first 
SCRWD characters of each line. What you can’t see is there and not lost. 



 Page 3 of 8  

The symbol ENDFLD specifies the size of memory. The default “100” is for all eight fields. If you 
actually have n fields (n > 1), make it “n0”, i.e. for 4 fields it would be “40”. 

Getting the Code Onto OS/8 

Choose an OS/8 device to hold the E8 source and the files you want to edit, and assign it to 
DSK: 

.AS <physical device> DSK 

My method is to copy/paste the source code into a MobaXterm session connected to OS/8, 
while PIP on the OS/8 receives it, like this: 

 
.R PIP 
*E8.PA<TTY: 

After each file is copied this way, type ^Z to PIP to signify end of file, and then you’re back at 
the PIP command prompt ready to do the next file. I have found that PIP can’t handle files 
longer than 549 lines, so use the eight small files. Often my MobaXterm stops sending 
characters for a few seconds and then resumes, so make sure to wait until the last line is sent. 
This also can happen during an E8 screen update, so beware. 

This link has other and probably better ways to do it. If your method can handle arbitrarily large 
files, you can use the other source configurations. 

Build and Run 
 
.R PAL8 
*E8<E8,EA,EB,EC,ED,EE,EF,EG/L 
*E8<E8BASE,E8FILE,E8SRCH/L 
*E8<E8ALL/L 
*^C 
.SA SYS E8;200=1000 
.R E8 

The screen will start cleared expect for the mode line showing an empty text buffer. 

Files 
• E8 can display and edit OS/8 text files, which contain 7-bit ASCII codes that include 

lowercase. 
• The character parity bit is cleared on input. If your file has the parity bits set, E8 will 

clear them. Usually this is not a problem, but it could be fixed if it is. 
• On input the CR code (^M, 015) is considered new line, and the LF code (^J, 012) is 

discarded. On output, CR is written as CR, LF. 
• I/O to files is one OS/8 block per transfer, sequential over the file, and therefore may be 

inefficient on real DECtape, if anyone still has such a thing. 

Internal Errors 

Certain internal errors will print ASSERTION FAILURE AT xxxx and exit to OS/8. Edits since the 
last save are lost. Report the address to me. I have never seen this happen, but just in case. 

one of these three 

https://tangentsoft.com/pidp8i/wiki?name=Getting+Text+In


 Page 4 of 8  

Mode Lines 

 
Entering Filenames 

In a single edit session you can create new files and view or edit as many files as you like. When 
prompted for a filename: 

• Names must be alphanumeric, no more than six characters, with an optional extension 
of up to two characters. 

• Lowercase letters are made uppercase. 
• Any character that would not result in a legal filename will be rejected. 
• The CR code (Enter on modern keyboards) terminates and accepts the entry. 
• Backspace clears the filename so you can start over. 
• ^G aborts the operation. 
• You cannot enter a device. DSK: is assumed. 

Query-Replace (ALT-%) 

When entering strings at the REPLACE and WITH prompts: 
 

CR Accept string 

BS Delete last character entered 

^G Abort query-replace 

^N Put CR (newline) in string 

If REPLACE is null you’ll be asked again. WITH can be null. You will be shown successive instances 
of the replace string, and you can: 
 

SP Replace and continue 

n or N Don’t replace and continue 

. Replace and quit 

CR Quit 

! Replace all without asking 

Number of characters 
in the buffer 

** means buffer 
has changed 

current filename 
if any 

Input prompt Your input 



 Page 5 of 8  

Change Protection 

If there are unsaved changes in the buffer and you try to exit E8, create a new file, or read in an 
existing file, you will be offered the opportunity to save the changes. The responses are Y (yes), 
N (no), or ^G (abort). If you select Y and there is no filename, you will be asked for one. Only 
uppercase Y and N are accepted. 

Editing 

Like emacs, E8 is a character editor. All characters are traversed and edited the same way, 
including TAB and CR. The other control characters are displayed with the customary ^ prefix, 
but remember that they are just one character in the buffer. 

Limited Undo 

If you accidentally delete characters with any sequence of character-deleting commands, you 
can recover them if you act right away. The deleted characters are lost if you insert any 
characters or move the cursor. See ALT-R. 

Commands 

The ALT commands are case-insensitive. The ^X commands consider control, uppercase, and 
lowercase letters to be all the same. For example, ^X ^S, ^X S, and ^X s are all the same. 
Highlighted characters are captured by Linux or SimH so use the ALT version. 
 

^@ or ^SP Set the mark to the current position (cursor) 

^A or ALT-A Beginning of line 

^B Back one character 

^D Delete forward one character 

^E or ALT-E End of line 

^F Forward one character 

^H (BS) Delete backward one character 

^I (TAB) Insert TAB 

^J (LF) Insert CR, TAB 

^K Kill (delete) to end of line; if at end, delete CR 

^L Erase and redraw screen with cursor at the middle line 

^M (CR) Insert CR 

^N Beginning of next line 

^O Open new line (CR, ^B) 

^P Beginning of previous line 



 Page 6 of 8  

^Q Insert next typed char as is 

^S or ALT-S Incremental search (case sensitive): 
• CR terminates search with mark set to starting point 
• ^F finds the next occurrence of the search string 
• BS erases last search character and backs up 
• ^N matches CR (newline) in search text 

^V Forward one screen 

^W Write region (text between cursor and mark) to the file clip.e8 and delete 
the text in the region. 

^Y Insert the file clip.e8 at the cursor 

^Z Exit to OS/8 

ALT-% Query-replace (case sensitive) 

ALT-< Beginning of buffer 

ALT-> End of buffer 

ALT-B Back one word 

ALT-D Delete forward one word 

ALT-F Forward one word 

ALT-H (BS) Delete backward one word 

ALT-N Search for the last search or replace string 

ALT-Q Insert next typed character as a control character, e.g. ALT-Q A inserts ^A. 

ALT-R Recover deleted characters if possible 

ALT-V Back one screen 

ALT-W Write region to the file clip.e8; do not delete the region. 

^X F Open existing file or create new one 

^X I Insert file at cursor 

^X R If the previous file read filled the buffer before the end of the file, clear the 
buffer and read more text from the file starting at some point up to 384 
characters before the last one read. 

^X S Save buffer to current file, prompt for filename if none 

^X W Write buffer to new filename. 

^X ^X Exchange cursor and mark. 



 Page 7 of 8  

Theory of Operation 

Storing and Editing Text 

Text is conceptually just a list of character codes. For editing purposes, there are no special 
characters—newline (CR), TAB, and other control characters are treated like any other (they are 
displayed differently, of course). 

Inserting and deleting occurs at a place in the text called the point. The point is conceptually 
between two characters, before the first one, or after the last one. The screen cursor is on the 
character just ahead of the point. All editing operations are built from three fundamentals: 

• insert characters at the point; 
• delete characters in front of or behind the point; and 
• move the point somewhere. 

Characters are stored in a text buffer comprising one or more complete fields starting at field 2, 
one character per word of memory. The fields are considered contiguous—there is no 
significance to field boundaries. Every word in the buffer can hold a character—there are no 
special codes, link pointers, or the like. 

Inserting and deleting are fast, O(1) operations (independent of the number of characters in the 
buffer). Moving the point is O(n), where n is the distance to be moved. On a real 8/I, moving 
backwards takes 20 cycles (30 µs) per character and forward 29 cycles (43.5 µs) per character 
(plus some small constant overhead). Typical operations move the point small distances (one 
character, line, or screen) and are fast. The worst case is moving from the beginning of a full 
buffer (24K characters) to the end, which takes slightly over 1 second. 

Text buffer memory looks like this: 

 
Almost all actions operate on text that is exclusively either ahead of or behind the point, the 
characters of which are always contiguous in memory. Only rare actions cross the gap (e.g. 
writing the text to a file). The gap structure makes everything simple and fast. 

point 

gap 

beginning of buffer 

end of buffer 

text after 
point 

text before 
point 



 Page 8 of 8  

Display 

Display is completely separate from and independent of editing. The editing commands know 
nothing about the display and contribute no information to it. The display code does not know 
what editing commands have been issued since the last display. Its job is to make the display 
match the current contents of the text buffer with few unnecessary characters transmitted to 
the console terminal. This complete separation simplifies the code and avoids all manner of 
potential bugs that would arise from editing and display miscommunication—no 
communication, no communication bugs. 

A complete copy of the screen is kept in field 1. The first step in a screen update is to determine 
what character in the text buffer should be top of screen (TOS), so that the point is visible. TOS 
is always either at the beginning of the buffer, or just after a newline. If the point is visible with 
the current TOS, it is kept. Otherwise it is chosen to place the point somewhere on the screen’s 
middle line if possible. 

Once TOS is established, text lines are processed one at a time and independently. Each line is 
first rendered to a one-line buffer in field 1, whose size is the width of the screen (SCRWD). 
Rendering converts tabs to spaces, adds the ^ prefix to control characters, and enforces the 
SCRWD limit on visible text. 

Each rendered line is then compared to the appropriate line of the screen copy. If a mismatch is 
found at some position, the screen cursor is set to that position and the rest of the characters 
from the render buffer are sent to TTY and replace the screen copy. After all those characters 
have been sent and copied, if the screen copy shows that the rest of the screen line is not 
blank, an escape sequence is sent to clear to end of line. 

After the text buffer has been processed, the two mode lines at the bottom of the screen are 
rendered and updated in the same way. Finally, the screen cursor is set to the point position. 

Every character written to the screen goes through this update process. Nowhere is a character 
written directly. The only direct write to TTY other than screen update is the BELL code. 

Code Organization 

All executable code is in field 0. The last page of fields 0 and 1 holds core-resident OS/8. The 
two pages just below that in field 0 hold the DSK device handler. The screen copy and render 
buffer can use the entire rest of field 1 (31 pages, 3968 words). 

Every subroutine that implements an editor command skip-returns if successful, even if failure 
is impossible (e.g. move to end of buffer can’t fail). Many other utility subroutines also skip-
return on success. This allows what in modern high-level languages would be a catch-throw 
mechanism—failures can unwind up to whatever code can deal with them, and unwinding all 
the way to top level just rings the console bell. If a subroutine that logically can’t fail takes the 
non-skip return, a fatal assertion failure is reported. 

15-bit addresses and 24-bit integers are always stored little-endian. The high-order word of a 
15-bit address is a CDF instruction. 


