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1. Prove the following properties about divisibility (for any integers a, b,
and c):

• If a | b and a | c then a | b + c and a | b− c.

Proof. Since a | b, there is an integer j such that aj = b. Likewise
there is an integer k such that ak = c. We have a(j + k) =
aj + ak = b+ c, so a | b+ c. We have a(j − k) = aj − ak = b− c,
so a | b− c.

• If a | b then a | bc.
Proof. Since a | b, there is an integer k such that ak = b. Then
akc = bc, so a | bc with divisor kc.

• a | 0.

Proof. We need an integer k such that ak = 0. Choose k = 0.

• If 0 | a then a = 0.

Proof. If 0 | a, then there is an integer k such that 0k = a. But
0k = 0 for any k, so a = 0.

• If a 6= 0 then the statements b | c and ab | ac are equivalent.

Proof. From b | c we have that there is a k such that bk = c. But
then we have abk = ac, so the same k serves as a divisor to show
that ab | ac. In the other direction, if ab | ac, we have a divisor
k such that abk = ac. Then, since a 6= 0, we can factor it out of
both sides of the equation, giving us bk = c. Thus b | c.
• If a | b and b 6= 0 then |a| ≤ |b|.
Proof. If a = 0, then b must be 0 (see above), so |a| = 0 = |b|.
Otherwise, from a | b, we have a k such that ka = b. Suppose
that a and b are positive. Then k must be positive. Since 1 ≤ k,
we have a ≤ ka = b. Now suppose a is positive but b is negative.
Then k must be negative. Then |a| = a ≤ −ka = |b|. Now
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suppose a is negative but b is positive. Then k must be negative.
Then |a| = −a ≤ −ka = b = |b|. Finally, if a and b are both
negative, then k is positive. Then |a| = −a ≤ −ak = −b = |b|.

2. Prove that for any integer n, n2 leaves a remainder of 0 or 1 when you
divide it by 4. Conclude that n2 + 2 is never divisible by 4.

Proof. Translating the problem into modular arithmetic, the quotient-
remainder theorem says we can have 4 possible remainders when di-
viding n by 4. By the rule of exponentiation for modular arithmetic,
we can compute the remainders for n2:

02 ≡ 0 (mod 4)

12 ≡ 1 (mod 4)

22 ≡ 0 (mod 4)

32 ≡ 1 (mod 4)

Thus the remainder will always be 0 or 1 when dividing n by 4. There-
fore, n2 + 2 will be congruent to 2 or 3 modulo 4. So it can never be
divisible by 4.

3. Prove that if n is odd, n2 − 1 is divisble by 8.

Proof. If n is odd, then n will be congruent to 1, 3, 5, or 7 modulo 8.
Then we can compute the remainders for n2 − 1:

12 − 1 ≡ 0 ≡ 0 (mod 8)

32 − 1 ≡ 8 ≡ 0 (mod 8)

52 − 1 ≡ 24 ≡ 0 (mod 8)

72 − 1 ≡ 48 ≡ 0 (mod 8)

Thus, n2 − 1 for odd n will always be divisible by 8.

4. Prove that if m and n are odd, then m2 + n2 is even but not divisible
by 4.

Proof. If m is odd, then it will be congruent to 1, 3, 5, or 7 modulo 8.
Then we can compute the remainders for m2:
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12 ≡ 1 ≡ 1 (mod 4)

32 ≡ 9 ≡ 1 (mod 4)

52 ≡ 25 ≡ 1 (mod 4)

72 ≡ 49 ≡ 1 (mod 4)

The same applies to n and n2. Thus by the rule of addition in modular
arithemetic, m2 + n2 is congruent to 1 + 1 = 2 modulo 4. Since all
multiples of 4 are even, any number congruent to 2 modulo 4 is also
even. However, it is not divisible by 4: for that it would have to be
congruent to 0 modulo 4.

5. Say that two integers “have the same parity” if they are both even or
both odd. Prove that if m and n are any two integers, then m+n and
m− n both have the same parity.

Proof. Any integer is congruent to 0 or 1 modulo 2. The even numbers
are congruent to 0, and the odd numbers are congruent to 1. Thus we
can use the remainder when dividing by 2 to represent the parity.

We have four possibilities for the parities of m and n: (0, 0), (0, 1),
(1, 0), and (1, 1). By the rule of modular addition, adding m and n
will produce a value congruent to the sum of the values to which m
and n are congruent. In other words, we can add the parities modulo
2. Likewise, when we subtract n from m, we get a value congruent to
the difference of the values to which m and n are congruent:

m n m + n m− n

0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 0

As you can see, m + n and m− n are matched in parity.

6. Write 11660 as the product of primes.

Ans. 11160 = 23 · 32 · 5 · 31.

7. List all the divisors of 42 and 198, and find the greatest common divisor
by looking at the largest number in both lists. Also compute the
greatest common divisor of the numbers by the Euclidean Algorithm.
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Ans. The divisors of 42 are: −42, −21, −14, −7, −6, −3, −2, −1, 1,
2, 3, 6, 7, 14, 21, and 42. The divisors of 198 are: −198, −99, −66,
−33, −22, −18, −11, −9 , −6, −3, −2, −1, 1, 2, 3, 6, 9, 11, 18, 22,
33, 66, 99, and 198. The common divisors are: −6, −3, −2, −1, 1, 2,
3, and 6. The greatest of those is 6.

By the Euclidean algorithm, we have gcd(42, 198) = gcd(198, 42) =
gcd(42, 30) = gcd(30, 12) = gcd(12, 6) = 6.

8. Compute gcd(15, 55), gcd(12345, 54321) and gcd(−77, 110).

Ans. By Euclid’s algorithm, gcd(15, 55) = gcd(55, 15) = gcd(15, 10) =
gcd(10, 5) = 5.

For the second example: gcd(12345, 54321) = gcd(54321, 12345) =
gcd(12345, 4941) = gcd(4941, 2463) = gcd(2463, 15) = gcd(15, 3) = 3.

For the third example: gcd(77, 110) = gcd(110, 77) = gcd(77, 33) =
gcd(33, 11) = 11.

9. Show by induction on n that for every pair of integers x and y, x− y
divides xn − yn. (Hint: In the induction step, write xn+1 − yn+1) as
xn(x− y) + xny − yn+1.)

Proof. For the base case, we must show that x − y divides x0 − y0.
But x0 − y0 = 1− 1 = 0, and every integer divides 0, so we are done.

For the inductive step, our hypothesis is that x−y divides xn−yn. We
must show that x−y divides xn+1−yn+1. We can rewrite xn+1−yn+1 as
xnx−xny+xny−yn+1 and factor out x−y to get xn(x−y)+xny−yn+1.
Clearly, the first term is divisible by x−y, so we can subtract that out.
This leaves us with xny−yn+1, which is just y times xn−yn, which we
know to be divisible by x− y according to our inductive hypothesis.

10. Compute 212 (mod 13). Use this to compute 21212004 (mod 13).

Ans. Since 212 = 4096 and 13 ·315 = 4095, we have 212 ≡ 1 (mod 13).
Since 1212004 = 12 · 101000 + 4, we have 21212004 = (212)101000 · 24.
The law of exponentiation for modular arithmetic says that if a ≡ b
(mod n), then ak ≡ bk (mod n). Since 212 ≡ 1 (mod 13), that tells us
that (212)101000 ≡ 1101000 = 1 (mod 13). To get to 21212004, we have
to multiply both sides by 24, that is, 16. We are justified in applying
this by the law of multiplication in modular arithmetic. The result is
that 21212004 = (212)101000 · 24 ≡ 1 ∗ 24 = 16 ≡ 3 (mod 13).
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11. Find the last digit of 9999. Can you also find the last two digits of this
number?

Ans. To find the last digit, we need to work in arithmetic modulo
10. Since 99 is 1 less than 100, we have that 99 ≡ −1 (mod 10). We
can then raise each side to the 99th power: 9999 ≡ (−1)99 = −1 ≡ 9
(mod 10). So, the last digit is 9.

To find the last two digits, we need to work in arithmetic modulo 100.
Since 99 is 1 less than 100, we have that 99 ≡ −1 (mod 100). The
same logic as above applies, so 9999 ≡ (−1)99 = −1 ≡ 99 (mod 100).
Thus, the last two digits are 99.

Since odd powers of −1 result in −1, and even powers result in 1, we
can see a pattern: the last two digits of an odd power of 99 will be 99,
and the last two digits of an even power of 99 will be 01.

12. Prove that 5022 − 2250 is divisible by 7.

Proof. First, since 7 · 7 = 49, we have that 50 ≡ 1 (mod 7). Thus
5022 ≡ 122 = 1 (mod 7). Since 7·3 = 21, we have that 22 ≡ 1 (mod 7).
Thus 2250 ≡ 150 = 1 (mod 7). Subtracting the two congruences, we
get 5022 − 2250 ≡ 1− 1 = 0 (mod 7). Thus 5022 − 2250 is divisible by
7.

13. Check whether the following multiplicative inverses exist, and if so,
find them:

• the multiplicative inverse of 5 modulo 7

Ans. It must have an inverse, because 5 and 7 are coprime. To
help us find the inverse, let’s make a table of multiples of 5:

k 5k 5k mod 7

1 5 5
2 10 3
3 15 1
4 20 6
5 25 4
6 30 2

The inverse is the value of k for which 5k mod 7 = 1. So, our
inverse is 3.

• the multiplicative inverse of 17 modulo 21

Ans. Since 5 · 17 = 85 = 4 · 21 + 1, the inverse is 5.
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• the multiplicative inverse of 4 modulo 14

Ans. There is no inverse, since 4 and 14 have a common factor
of 2.

• the multiplicative inverse of −2 modulo 9

Ans. Since 4 · (−2) = −8 = (−1) · 9 + 1, the inverse is 4. This
could also be calculated by noting that −2 ≡ 7 (mod 9), then
finding the inverse for 7.

14. Find all integers x such that 75x ≡ 45 (mod 8).

Ans. We can cast out 8s from 75 and 45, reducing the problem to
finding integers x such that 3x ≡ 5 (mod 8). Because 3 and 8 are
coprime, there is exactly one integer which will satisfy this congruence.
Since 3 · 7 = 21 ≡ 5 (mod 8), that number is 7. So the answer is the
set of integers which are multiples of 8 plus 7: In other words, the
coset 8Z + 7.

15. Show that for every integer n the number n4 is congruent to 0 or 1
modulo 5. Hint: To simplify the computation, use that 44 ≡ (−1)4

(mod 5).

Proof. Here’s a table of calculations using the rule of exponentiation
for modular arithmetic to show the congruences for each possible con-
gruence of n:

04 = 0 ≡ 0 (mod 5)

14 = 1 ≡ 1 (mod 5)

24 = 16 = 3 · 5 + 1 ≡ 1 (mod 5)

34 = 81 = 16 · 5 + 1 ≡ 1 (mod 5)

44 ≡ (−1)4 ≡ 1 (mod 5)

16. Prove that the equation n4 + m4 = k4 + 3 has no solutions in the
integers. (Hint: Use the previous exercise.)

Proof. If there were some integers n, m, and k such that n4 + m4 =
k4 + 3, then it would also have to be true that n4 + m4 ≡ k4 + 3
(mod 5). From the previous exercise, we know that any integer raised
to the fourth power is congruent to 0 or 1 modulo 5. Therefore n4+m4

must be congruent to 0, 1, or 2 modulo 5. And k4+3 must be congruent
to 3 or 4 modulo 5. Therefore the two sides cannot be congruent to
each other. There is therefore no solution to the original equation.

6



17. Suppose p is a prime number such that p - k. Show that if kn ≡ km
(mod p) then n ≡ m (mod p).

Proof. If kn ≡ km (mod p) then there is an integer i such that kn−
km = ip, that is, k(n −m) = ip. Since the left-hand side is divisible
by k, the right-hand side must be as well. Since p is prime and does
not divide k, k must divide i. So there is an integer j such that jk = i.

We can write k(n −m) = ip as k(n −m) = jkp. Note that k cannot
be 0, otherwise p would divide it. So we can divide both sides by k to
get n−m = jp. Therefore n ≡ m (mod p).

18. Let n, m and c be given integers. Use Bézout’s Lemma to prove that
the equation an + bm = c has a solution for integers a and b if and
only if gcd(n,m) | c.
Proof. Define d = gcd(n,m). Then we must prove the implication in
each direction.

Start with the assumption that gcd(n,m) | c. Then there is an integer
k such that dk = c. We know from Bézout’s Lemma that there exist
integers i and j such that in + jm = d. Multiplying on both sides
by k, we get ikn + jkm = dk = c. Let a = ik and b = jk. Then
an + bm = c.

In the other direction, assume we have a and b such that an+ bm = c.
Since d divides both n and m, it must divide both an and bm, and
an + bm, and c.

19. Suppose that a | n and a | m and let d = gcd(n,m). Prove that
gcd(na ,

m
a ) = d

a . Conclude that for any two integers n and m with
greatest common divisor d the numbers n

d and m
d are coprime.

Proof. First of all, it is necessary to assume that n and m are not both
zero. If they were, d would be zero, so we could not divide by it.

To prove that gcd(na ,
m
a ) = d

a , we need to prove two things: 1) that d
a

divides both n
a and m

a , and 2) that any other integer dividing both n
a

and m
a must also divide d

a .

Since a divides both n and m, we know that a | d, by the corollary of
Bézout’s Lemma. It cannot be zero, otherwise it would not be able to
divide both n or m, since at least one of them is nonzero. Thus there
exists an integer d

a .

Since d = gcd(n,m), we know that d divides both n and m. Thus
there exist integers n

d and m
d .
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Then d
a
n
d = n

a , and d
a
m
d = m

a , so d
a divides both m

a and n
a .

Suppose some integer e divides both n
a and m

a . Then there exist inte-

gers n
ae and m

ae . But if e > d
a , then ae > d, and we already know that

d is the greatest integer dividing both n and m. So e ≤ d
a .

Thus if n and m have a greatest common divisor d, we have

gcd(
n

d
,
m

d
) =

d

d
= 1,

so n
d and m

d are coprime.
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