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1. Show that addition for the integers, as defined in Section 21.2, is com-
mutative and associative.

Proof. Recall that the relation ≡ is defined on N × N by (m,n) ≡
(m′, n′) if and only if m+ n′ = m′ + n.

First we will prove commutativity. Suppose we have integers [(m1, n1)]
and [(m2, n2)].

Then [(m1, n1)] + [(m2, n2)] = [(m1 + m2, n1 + n2)]. Commuting the
terms, [(m2, n2)]+[(m1, n1)] = [(m2+m1, n2+n1)]. By commutativity
of addition on natural numbers, we have that m1 +m2 = m2 +m+ 1
and n1 + n2 = n2 + n1, so their equivalence classes must be the same,
as well.

Now we will prove associativity. Again, we just base the proof on the
associativity of addition on the natural numbers.

([(m1, n1)] + [(m2, n2)]) + [(m3, n3)]

= [(m1 +m2, n1 + n2)] + [(m3, n3)]

= [((m1 +m2) +m3, (n1 + n2) + n3)]

= [(m1 + (m2 +m3), n1 + (n2 + n3))]

= [(m1, n1)] + [(m2 +m3, n2 + n3)]

= [(m1, n1)] + ([(m2, n2)] + [(m3, n3)])

2. Show from the construction of the integers in Section 21.2 that a+0 =
a for every integer a.

Proof. For an integer a represented as [(m,n)], we can add zero:

[(m,n)] + [(0, 0)] = [(m+ 0, n+ 0)] = [(m,n)]

Yes, we could have used some other representation of a or of 0, but
we’ve already proven that addition respects the equivalence relation.
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3. Define subtraction for the integers by a− b = a+ (−b), and show that
a− b+ b = a for every pair of integers a and b.

Representing a as [(ma, na)] and b as [(mb, nb)], we have

a− b+ b = a+ (−b) + b

= [(ma, na)] +−[(mb, nb)] + [(mb, nb)]

= [(ma, na)] + [(nb,mb)] + [(mb, nb)]

= [(ma + nb, na +mb)] + [(mb, nb)]

= [(ma + nb +mb, na +mb + nb)]

= [(ma + (mb + nb), na + (mb + nb))]

To show that the last line is equal to a, we use the equivalence relation.
Since we have:

ma + (mb + nb) + na = ma + na + (mb + nb)

we can rewrite this as the equivalence:

[(ma + (mb + nb), na + (mb + nb))] ≡ [(ma, na)].

4. Define multiplication for the integers, by first defining it on the un-
derlying representation and then showing that the operation respects
the equivalence relation.

Def. Since [(m,n)] represents m − n, we can think of [(m1, n1)] ×
[(m2, n2)] as (m1 − n1)(m2 − n2). The ms are both positive and thus
will end up in the left of the resulting pair, along with the ns, which
are both negative. The terms of opposite sign will produce negative
numbers, and thus will end up on the right side of the pair.

Thus we can define multiplication [(m1, n1)]× [(m2, n2)] to be

[(m1m2 + n1n2,m1n2 + n1m2)].

Proof. Now to show that this definition respects the equivalence re-
lation. Suppose that (m1, n1) ≡ (m′

1, n
′
1) and (m2, n2) ≡ (m′

2, n
′
2).

Then we must show that (m1m2 + n1n2,m1n2 + n1m2) ≡ (m′
1m

′
2 +

n′1n
′
2,m

′
1n

′
2 + n′1m

′
2).

The first equivalence gives us:

m1 + n′1 = m′
1 + n1, (1)
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and the second gives us

m2 + n′2 = m′
2 + n2. (2)

The third one, which we’re trying to prove, expands to:

m1m2 + n1n2 +m′
1n

′
2 + n′1m

′
2

= m′
1m

′
2 + n′1n

′
2 +m1n2 + n1m2 (3)

We can use (1) and (2) as follows: We know that some number multi-
plied by the left side of (1) is equal to the same number multiplied by
the right side of (1). The same holds for (2), or any equation. Here
we carefully choose some factors to multiply by the one side of (1) on
the left side of the equation, and by the other side of (1) on the other
side of the equation. And the same with (2).1

m2(m1 + n′1) + n2(m
′
1 + n1) +m′

1(m2 + n′2) + n′1(m
′
2 + n2)

=m2(m
′
1 + n1) + n2(m1 + n′1) +m′

1(m
′
2 + n2) + n′1(m2 + n′2)

We can transform that by expanding the multiplications using the
distributive law for natural numbers:

m2m1 +m2n
′
1 + n2m

′
1 + n2n1 +m′

1m2 +m′
1n

′
2 + n′1m

′
2 + n′1n2

=m2m
′
1 +m2n1 + n2m1 + n2n

′
1 +m′

1m
′
2 +m′

1n2 + n′1m2 + n′1n
′
2.

Then reorder each term using commutativity so that the subscripts
are always in increasing order:

m1m2 + n′1m2 +m′
1n2 + n1n2 +m′

1m2 +m′
1n

′
2 + n′1m

′
2 + n′1n2

=m′
1m2 + n1m2 +m1n2 + n′1n2 +m′

1m
′
2 +m′

1n2 + n′1m2 + n′1n
′
2.

Finally, we can cancel out terms that appear on both sides of the
equation. Specifically, all the terms that have one factor with a prime
and the other factor without a prime cancel out:

m1m2 + n1n2 +m′
1n

′
2 + n′1m

′
2

=n1m2 +m1n2 +m′
1m

′
2 + n′1n

′
2

Compare this to (3). It’s the same except for rearranging the terms
on the right side. Thus, we have proven that our definition for multi-
plication of integers respects the equivalence relation.

1I got some help from https://www.math.wustl.edu/~freiwald/310integers.pdf.
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5. Show that every Cauchy sequence is bounded: that is, if (qi)i∈N is
Cauchy, there is some rational M such that |qi| ≤ M for all i. Hint:
try letting ε = 1.

Proof. For reference, the definition of a Cauchy sequence: A sequence
of rational numbers (qi)i∈N is Cauchy if for every rational number
ε > 0, there is some natural number N ∈ N such that for all i, j ≥ N ,
we have that |qi − qj | < ε.

Choose ε = 1. Then there is some natural number N such that for all
i, j ≥ N , |qi − qj | < ε. Let m be the maximum value of |qi| for i ≤ N .
Then we can choose M to be m+ 1.

Why? For any i ≤ N , this is true by how we constructedm. For i > N ,
we have from the definition of Cauchy sequence that |qi−qN | < ε. We
know from the construction of m that |qN | ≤ m. Then we have:

|qi| ≤ |qN |+ |qi − qN | (triangle inequality)

≤ m+ |qi − qN | (substitution)

< m+ ε (substitution)

= m+ 1 (substitution)

= M (substitution)

So, by transitivity, |qi| ≤M .

6. Let p = (pi)i∈N and q = (qi)i∈N be Cauchy sequences. Define p+ q =
(pi + qi)i∈N and pq = (piqi)i∈N.

a. Show that p+q is Cauchy. That is, for arbitrary ε > 0, show that
there exists an N such that for all i, j ≥ N , |(pi+qi)−(pj +qj)| <
ε.

Proof. Assume we are given an arbitrary ε. Since p is Cauchy,
there is an Np such that for all i, j ≥ Np, |pi−pj | < ε/2. Since q is
Cauchy, there is an Nq such that for all i, j ≥ Nq, |qi− qj | < ε/2.

Then choose N = max(Np, Nq). Since N ≥ Np, we have that for
all i, j ≥ N , |pi − pj | < ε/2. Likewise, since N ≥ Nq, we have for
all i, j ≥ N that |qi − qj | < ε/2.

Combining these, we have for all i, j ≥ N that |pi−pj |+|qi−qj | <
ε. The triangle inequality tells us that |(pi + qi) − (pj + qj)| ≤
|pi− pj |+ |qi− qj |. Transitively, we get |(pi + qi)− (pj + qj)| < ε.

b. Show that pq is Cauchy. In addition to the triangle inequality,
you will find the previous exercise useful.
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Proof. Assume we are given an arbitrary ε. Since p is Cauchy,
there is an Np such that for all i, j ≥ Np, |pi − pj | < ε. Since q is
Cauchy, there is an Nq such that for all i, j ≥ Nq, |qi − qj | < 1.

Then choose N = maxNp, Nq. Since N ≥ Np, we have that for
all i, j ≥ N , |pi − pj | < ε. Likewise, since N ≥ Nq, we have for
all i, j ≥ N that |qi − qj | < 1.

Combining these, we have for all i, j ≥ N that |pi−pj ||qi−qj | < ε.
It’s a straightforward case analysis on negative versus positive
factors to show that |(pi − pj)(qi − qj)| < ε.

7. These two parts show that addition of Cauchy sequences respects
equivalence.

a. Show that if p, p′, q are Cauchy sequences and p ≡ p′, then p+q ≡
p′ + q.

Proof. Since p ≡ p′, we have that for every rational number ε > 0,
there is some natural number N such that for all i ≥ N , we have
that |pi − p′i| < ε.

Since for all i ≥ N , qi−qi = 0, we have that |pi−p′i +qi−qi| < ε.
We can rearrange those terms to get |(pi + qi) − (p′i + qi)| < ε.
And that’s what we need, to show that p+ q ≡ p′ + q.

b. Using the first part of this problem, show that if p, p′, q, q′ are
Cauchy sequences, p ≡ p′, and q ≡ q′, then p + q ≡ p′ + q′. You
can use the fact that addition on the real numbers is commutative.

Proof. From the first part of the problem, p ≡ p′ implies that
p+ q ≡ p′ + q. And q ≡ q′ implies that q + p′ ≡ q′ + p′.

Now let’s prove a lemma that addition of Cauchy sequences is
commutative. For any two Cauchy sequences p and q, we have
p + q = (pi + qi)i∈N. Since addition of rational numbers is com-
mutative, we can also write the sum as (qi + pi)i∈N = q + p.

Therefore we can write q + p′ as p′ + q, and q′ + p′ as p′ + q′. By
transitivity of the equivalence relation, we get p + q ≡ p′ + q ≡
p′ + q′.

8. Show that if (A1, B1) and (A2, B2) are Dedekind cuts, then (A1, B1)+
(A2, B2) is also a Dedekind cut.

Proof. As a reminder, the definition given in the book for a Dedekind
cut is a pair of sets of rational numbers (A,B) such that:
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• Every rational number q is in either A or B.

• Each a ∈ A is less than every b ∈ B.

• There is no greatest element of A.

• A and B are both nonempty.

Addition is defined by:

(A1, B1) + (A2, B2) = (4)

({a1 + a2 | a1 ∈ A1, a2 ∈ A2},
{b1 + b2 | b1 ∈ B1, b2 ∈ B2}).

It turns out that this sum does not necessarily produce a Dedekind
cut! For a counterexample, take:

A1 = {x ∈ Q | x < 0 ∧ x2 > 2},
B1 = {x ∈ Q | x > 0 ∨ x2 < 2},
A2 = {x ∈ Q | x < 0 ∨ x2 < 2},
B2 = {x ∈ Q | x > 0 ∧ x2 > 2}.

Since there is no rational number x such that x2 = 2, A1 and B1 are
complements, and A2 and B2 are complements, as required.

Intuitively, (A1, B1) represents the real number −
√

2, and (A2, B2)
represents

√
2. Add them together, and you should get 0.

The problem is that, in the sum, 0 should appear in set B, but it does
not. The set A will contain all rationals less than 0, and the set B
will contain all the rationals greater than 0. But that violates the rule
that all rationals should appear in either set A or set B.

Can we fix the definition of addition? Sure. One way is to define the
left set A of the sum as before, but define the right set B to be the
complement in Q of A. Then let’s check the four required properties
for the sum.

The first property, that every rational number q is in A or B, is true
by definition of the complement.

One lemma we can prove is that in any Dedekind cut, for every element
a of the left set A, every rational number q < a is also in A. To see
why this is so, imagine that q were not in A. Then, by the first rule of
Dedekind cuts, it would have to be in the right set, B. But the second
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rule tells us that each a ∈ A is less than every b ∈ B. Yet q, in B,
would be less than a, a contradiction.

To show that each a ∈ A is less than every b ∈ B, imagine that for
some a ∈ A and b ∈ B, we had a ≥ b. We can rule out a = b,
because B is the complement of A. So that leaves us with a > b. Now
choose any a1 ∈ A1 and a2 ∈ B2 such that a1 + a2 = a. Then we
can choose a value a′1 = a1 − (a− b), which is less than a1, so by the
lemma above, must also be in A1. Also, a′1 + a2 = a1 − (a− b) + a2 =
a1 + a2 − (a− b) = a− (a− b) = b. Since we have just shown that an
element of A1 plus an element of A2 equals b, b must be in A. That
contradicts our assumption that b was in B.

To show that there is no greatest element of A, suppose there is a
greatest element a. According to the definition, there must exist some
a1 ∈ A1 and a2 ∈ A2 that sum to a. But because there is no greatest
element in A1, there exists an a′1 ∈ A1 such that a′1 > a1. Then
a′1 + a2 > a1 + a2 = a, yet by the definition of A, a′1 + a2 must be in
A. This contradicts our assumption that there is a greatest element
of A.

To show that A is nonempty, we need only show that there is some
a1 ∈ A1 and a2 ∈ A2. But we know that because A1 and A2 are the
left sets of Dedekind cuts.

To show that B is nonempty, we need to show that there is some
element b ∈ B that is not the sum of any a1 ∈ A1 and a2 ∈ A2. To do
this, we just need to choose a b1 ∈ B1 and a b2 ∈ B2 and add them
together to get our b. We can do this because we know that B1 and
B2 are nonempty. Since any a1 ∈ A must be less than b1, and any
a2 ∈ A2 must be less than b2, the sum of a1 + a2 must be less than b.

Another way we could represent Dedekind cuts is to drop the right set
entirely, and just use a single set of rationals, A. The requirements
would be that:

• A is nonempty.

• A does not contain all the rationals.

• There is no greatest element of A.

• For every element a ∈ A, every rational q < a is also in A.
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