
Linux Server Profiling

Linux Server Profiling

M. Edward (Ed) Borasky

http://linuxcapacityplanning.com

LinuxCon, September 23, 2009

Linux Server Profiling

Where Is This Stuff?
http://github.com/znmeb/LinuxCon2009/tree/master/Linux_Server_Profiling_
Using_Open_Source_Tools_for_Bottleneck_Analysis/

http://github.com/znmeb/LinuxCon2009/tree/master/Linux_Server_Profiling_Using_Open_Source_Tools_for_Bottleneck_Analysis/
http://github.com/znmeb/LinuxCon2009/tree/master/Linux_Server_Profiling_Using_Open_Source_Tools_for_Bottleneck_Analysis/

Linux Server Profiling

Why Profile Linux Servers?

Server profiling is an integral part of your comprehensive software
performance engineering / capacity planning process, which is itself
integrated with your organization’s mission.

Linux Server Profiling

Why Profile Linux Servers?

Your server tanked, customers are screaming, nobody did any
software performance engineering or capacity planning, all of the
subject matter experts are on vacation and you are on call.

Linux Server Profiling

Why Profile Linux Servers?

It’s fun, and you can do it all with open source tools.

Linux Server Profiling

sysstat Overview

I Available in nearly all Linux distributions
I Usually not installed by default
I Main user-level tools are sar and iostat
I Can be set up to automatically collect data and generate

reports

Linux Server Profiling

Should I Use sar or iostat?

I iostat only collects overall processor utilization and disk data
I sar collects data for each processor and other performance

metrics
I iostat collects merges and both reads and writes per second
I sar does not collect merges and only collects total operations

per second
I iostat only gives a report, and requires some parsing to

post-process
I sar can collect binary data using sadc, then format results as a

report (sar), a database input format or a Perl-parsable data
file (sadf)

Linux Server Profiling

Partition Statistics in sysstat

I Only available in some kernels
I Most 2.4 kernels
I Not in 2.6 kernels before 2.6.25
I Re-introduced in 2.6.25

I Partition statistics make the operational analysis of swapping
(and other things) easier

Linux Server Profiling

Primary Bottleneck

Definition
The primary bottleneck is the processor or disk with the highest
utilization.

Linux Server Profiling

Starting iostat

$ iostat -cdmxt 2 > iostat.log

I -c: report CPU usage
I -d: report device usage
I -m: report device transfer rates in megabytes
I -x: report extended device statistics
I -t: time stamp the output
I 2: number of seconds between samples

Linux Server Profiling

Sample iostat Report

Linux 2.6.27.29-0.1-default (DreamScape) 09/20/2009 _x86_64_
Time: 10:33:17 PM
avg-cpu: %user %nice %system %iowait %steal %idle

1.05 0.00 1.56 4.72 0.00 92.70
Device: rrqm/s wrqm/s r/s w/s rMB/s wMB/s avgrq-sz avgqu-sz await svctm %util
sda 11.22 10.57 11.76 2.69 0.24 0.05 41.23 0.24 16.46 6.12 8.84
sda1 2.21 0.00 0.45 0.01 0.01 0.00 46.58 0.00 7.96 7.62 0.35
sda2 0.60 0.00 0.09 0.00 0.00 0.00 35.90 0.00 20.60 17.40 0.15
sda3 8.33 10.57 10.91 2.68 0.23 0.05 41.93 0.23 16.79 6.33 8.60
sdb 19.19 0.05 0.92 0.04 0.02 0.00 37.51 0.01 6.53 4.47 0.43
sdb1 14.66 0.03 0.40 0.01 0.01 0.00 37.40 0.00 5.31 3.96 0.16
sdb2 0.60 0.00 0.04 0.00 0.00 0.00 16.56 0.00 15.11 12.00 0.05
sdb3 3.63 0.02 0.41 0.03 0.01 0.00 38.74 0.00 6.91 6.33 0.28

Linux Server Profiling

What Do We Want From Above?

I Do “man iostat” for a full explanation of all the fields
I CPU utilization: %user + %nice + %system + %steal

I This is the average over all processors / cores

I For each device, device utilization: %util
I Ignoring partition statistics

Linux Server Profiling

I Love It When A Plan Comes Together

I Collect iostat data
I Write a parser in Perl to convert to CSV
I Read the CSV data into R and make a boxplot

Linux Server Profiling

Boxplot Notes

I Bottom whisker is approximately 5th percentile
I Bottom of box is 25th percentile
I Center line is median
I Top of box is 75th percentile
I Top whisker is approximately 95th percentile
I Circles are outliers

Linux Server Profiling

Interpreting Boxplots

I Location (how high is the median?)
I Is smaller or larger better? It depends on the metric!

I Scale (how wide is the box?)
I smaller usually better

I Practical range (how far apart are the whiskers?)
I smaller is usually better

I Are there outliers?
I “bad” outliers may represent things you need to fix
I “good” outliers may represent “lucky breaks” you can’t depend

on

I Limitation: does not work well if distribution is bi-modal

Linux Server Profiling

I/O Bound System – Utilization Boxplot
iozone benchmark on a SATA drive

●●●

●
●

●
●

●

●

●

●

●●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●●
●

●

●
●●
●

●

●

●
●●●
●
●
●

●
●●
●
●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●
●●●●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●
●●

●

●

●
●●

●

●●
●
●

●●
●
●
●●
●
●●

●

●●●●●
●
●
●

●●●●●●●●
●
●
●●●●●●●●●
●●●●
●●
●●●

●●
●●●●●●●
●●●
●
●
●●●
●
●●●●
●●
●

cp
u

sd
a

sd
b

0

20

40

60

80

100

Where's the Bottleneck?

Linux Server Profiling

CPU Bound System – Utilization Boxplot
Recompiling R from Source

●

●

●●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●
●
●●

●●

●

●

●

cp
u

sd
a

sd
b

0

20

40

60

80

100

Where's the Bottleneck?

Linux Server Profiling

Summary

1. Install sysstat.
2. Install R.
3. Start iostat and collect data while workload is running.
4. Stop iostat and parse log.
5. Make boxplot with R.
6. Are you CPU or I/O bound?

Linux Server Profiling

Why blktrace and seekwatcher?
I I/O subsystems are expensive and complicated
I Processor capacity increasing faster than hard drive bandwidth
I Linux I/O is complicated

I Four different schedulers
I Tradeoffs between page cache and other uses of RAM
I Four major journaled filesystems, and more on the way
I Dozens of tunable parameters
I Logical volume managers, hardware and software RAID,

storage area networks, solid-state disks
I Many applications are I/O bound

I Especially interested in large PostgreSQL databases
I blktrace and seekwatcher let you capture, analyze and

visualize behavior of real applications on real I/O subsystems!

Linux Server Profiling

Software

I openSUSE 11.1 Linux 2.6.27 kernel
I Default scheduler – completely fair queuing (CFQ)
I iozone 3.321
I blktrace 2.0.0 from developer Git tree
I seekwatcher 0.12
I Data located in an XFS partition towards the outside of the

disk
Filesystem Size Used Avail Use% Mounted on
/dev/sda5 20G 13G 7.6G 63% /

Linux Server Profiling

Who?

I blktrace
I Jens Axboe (Oracle)

I Also maintains the Linux block I/O layer
I Wrote most of the kernel-level code

I Alan Brunelle (HP)
I Wrote most of the analysis packages
I Wrote the documentation

I seekwatcher
I Chris Mason (Oracle)

I Also developing btrfs

Linux Server Profiling

Overview Of blktrace

I Brunelle, Alan P. (2006) “Block I/O Layer Tracing: blktrace”
http://www.gelato.org/pdf/apr2006/gelato_ICE06apr_blktrace_
brunelle_hp.pdf

http://www.gelato.org/pdf/apr2006/gelato_ICE06apr_blktrace_brunelle_hp.pdf
http://www.gelato.org/pdf/apr2006/gelato_ICE06apr_blktrace_brunelle_hp.pdf

Linux Server Profiling

When?

I Underlying kernel mechanisms introduced 2.6.16 – 2.6.17
I Between Red Hat Enterprise Linux 4 (2.6.9) and Red Hat

Enterprise Linux 5 (2.6.18)

I Requires 2.6.17 or later kernel
I Git repository for blktrace goes back to August of 2005
I 1.0.0 release October 31, 2008

Linux Server Profiling

How?

1. Install blktrace
2. Run your application and gather data
3. Post-process / analyze the data
4. Remove a bottleneck
5. Is it fast enough yet?

I Yes? Ship it!
I No? Go back to 2.

Linux Server Profiling

Installing From Source

I 1.0.0 release tarball is at
http://brick.kernel.dk/snaps/blktrace-1.0.0.tar.bz2

I October 30, 2008
I “Latest” Git tarball is at http:

//brick.kernel.dk/snaps/blktrace-git-latest.tar.gz

I Latest is September 1, 2009
I I used Feburary 18, 2009 tarball

I Git repository is at git://git.kernel.dk/blktrace.git

git clone git://git.kernel.dk/blktrace.git
http://git.kernel.dk/?p=blktrace.git;a=summary

I Mailing list is linux-btrace@vger.kernel.org

http://brick.kernel.dk/snaps/blktrace-1.0.0.tar.bz2
http://brick.kernel.dk/snaps/blktrace-git-latest.tar.gz
http://brick.kernel.dk/snaps/blktrace-git-latest.tar.gz
git://git.kernel.dk/blktrace.git

Linux Server Profiling

bash Script To Build blktrace, btt, btrecord, btreplay And
Documents

#! /bin/bash -v
build from upstream Git source
rm -fr blktrace
git clone git://git.kernel.dk/blktrace.git
cd blktrace
make 2>&1 | tee ../make.log
make docs 2>&1 | tee ../docs.log
sudo make install 2>&1 | tee ../install.log
cd ..

Linux Server Profiling

Client and Server

I blktrace records every major event in the life of every I/O
I That includes its own I/Os!
I This skews the results and adds overhead
I So:

I We capture trace data on a system under test
I Ship the trace data to another machine over the network

I blktrace calls the system under test the client and the other
machine the server

Linux Server Profiling

Server Setup

I Install blktrace
I Open up port 8462 in your firewall!
I Set aside disk space for the traces
I Type

blktrace -l

I You don’t need to be root!

Linux Server Profiling

Client Setup
System Under Test

I Get some hardware :)
I Install Linux, blktrace, application and data
I Open up port 8462 on your firewall
I Start up blktrace

I Here you do need to be root

Linux Server Profiling

Basic blktrace Command Line

sudo blktrace -s -h server list-of-devices

I server is the name or IP address of the server
I list-of-devices is a list of the devices you want to trace

I List needs to be in quotes

I Remember: you get a trace record for every major event in
the life of every I/O!

I Start your application up
I Order more disk space for your blktrace server :)

Linux Server Profiling

Client Example

I Client (SUT) is 192.168.1.101, server is 192.168.1.100
I Device is /dev/sda
I So, on 192.168.1.101, typing

> sudo blktrace -s -h 192.168.1.100 /dev/sda

I Yields

blktrace: connecting to 192.168.1.100
blktrace: connected!

Linux Server Profiling

On The Server

> blktrace -l
server: waiting for connections
server: connection from 192.168.1.101

Linux Server Profiling

Now Do Some I/O On The System Under Test

I Your benchmark goes here

Linux Server Profiling

Stop The Client

^CDevice: /dev/sda
CPU 0: 0 events, 3455 KiB data
CPU 1: 0 events, 715 KiB data
Total: 0 events (dropped 0), 4170 KiB data

Linux Server Profiling

Stop The Server

server: end of run for sda
Device: sda
CPU 0: 0 events, 3455 KiB data
CPU 1: 0 events, 715 KiB data
Total: 0 events (dropped 0), 4170 KiB data

^C

Linux Server Profiling

Where Are The Trace Files On The Server?

> ls -1tF
192.168.1.101-2009-01-11-03:55:04/
> cd 192.168.1.101-2009-01-11-03\:55\:04/
> ls -lt
total 4172
-rw-r–r– 1 znmeb users 3537555 2009-01-10 20:19 sda.blktrace.0
-rw-r–r– 1 znmeb users 731868 2009-01-10 20:19 sda.blktrace.1

Linux Server Profiling

What’s That Stuff?

I Directory name gives client IP address and time stamp
I About 766 megabytes for my iozone run!
I One file for each CPU

I Dual-core Athlon64 X2
I blktrace tracks I/Os by the CPU that initiated them

I These are binary files

Linux Server Profiling

Post-Processing Options

I blkparse: formats the raw events
I pages and pages ... not really useful without filtering
I useful as input to other processing steps, however
I seekwatcher runs this to get data, for example

I btt: analysis tool that comes with the package
I flexible
I designed by I/O engineers
I can make some graph input files

I seekwatcher
I makes pictures and movies from raw data

Linux Server Profiling

seekwatcher

I Written by Chris Mason (Oracle)
I Python script
I Gives a quick look
I Makes still plots or movies

I Depends on mplayer to make movies
I Depends on Python, Python python-matplotlib package

I Not in most distros – source is at
http://oss.oracle.com/~mason/seekwatcher/

http://oss.oracle.com/~mason/seekwatcher/

Linux Server Profiling

btt

I Can create a report and raw data files for further processing
I Documentation created by “make docs”
I Requires knowledge of Linux block I/O layer for interpretation
I A bit tricky to specify the command line

Linux Server Profiling

post-process.sh

#! /bin/bash -v
export label=’sda’
export devices=’/dev/sda’
blkrawverify ${label} # check data for errors
make pictures and movies
seekwatcher -z 0:0 -R -t ${label} -o ${label}-read.eps -d ${devices}
seekwatcher -z 0:0 -W -t ${label} -o ${label}-write.eps -d ${devices}
seekwatcher -z 0:0 -t ${label} -o ${label}-both.eps -d ${devices}
seekwatcher -z 0:0 -R -t ${label} -o ${label}-read.ogg -d ${devices} –movie
seekwatcher -z 0:0 -W -t ${label} -o ${label}-write.ogg -d ${devices} –movie
seekwatcher -z 0:0 -t ${label} -o ${label}-both.ogg -d ${devices} –movie
generate reports
blkparse -d ${label}.bin -i ${label} -O # merge the binaries
blkparse -s -h -t -i ${label} > ${label}.blkparse # (huge) text output
btt -A -i ${label}.bin > ${label}.btt # basic btt report
cd ..
exit

Linux Server Profiling

Reads Only

0 112 225 337 450 562 675 787 900
Time (seconds)

0.0

0.5

0.9

1.4

1.8

M
B

/s

Throughput
0

2

4

6

9

S
e
e
ks

 /
 s

e
c

Seek Count
141

22254

44368

66481

88595

D
is

k
o
ff

se
t

(M
B

)

Disk IO
 Read

Linux Server Profiling

Writes Only

0 112 225 337 450 562 675 787 900
Time (seconds)

0

17

35

52

70

M
B

/s

Throughput
0

20

40

60

80

S
e
e
ks

 /
 s

e
c

Seek Count
141

22254

44368

66481

88595

D
is

k
o
ff

se
t

(M
B

)

Disk IO
 Write

Linux Server Profiling

Reads and Writes

0 112 225 337 450 562 675 787 900
Time (seconds)

0

17

35

52

70

M
B

/s

Throughput
0

20

40

60

80

S
e
e
ks

 /
 s

e
c

Seek Count
141

22254

44368

66481

88595

D
is

k
o
ff

se
t

(M
B

)

Disk IO
 Read
 Write

