
ParaSail Reference Manual – Draft

S. Tucker Taft

June 4, 2011

Contents

1 Introduction 3

2 Lexical Elements 4
2.1 Character Set . 4
2.2 Delimiters . 4
2.3 Identifiers . 4
2.4 Literals . 5

2.4.1 Integer literals . 5
2.4.2 Real Literals . 5
2.4.3 Character Literals . 6
2.4.4 String Literals . 6
2.4.5 Enumeration Literals . 7

2.5 Comments . 7
2.6 Reserved Words . 7

3 Types and Objects 8
3.1 Types . 8
3.2 Objects . 9
3.3 Object References . 9
3.4 Declarations and Identifiers . 10

4 Names and Expressions 11
4.1 Names . 11

4.1.1 Component Selection . 11
4.2 Expressions . 12

4.2.1 Unary and Binary Operators . 12
4.2.2 Membership and Null Tests . 13
4.2.3 Other ParaSail Operators . 14
4.2.4 Aggregates . 14
4.2.5 Quantified Expressions . 15
4.2.6 Conditional Expressions . 15
4.2.7 Type Conversion . 16

5 Statements 18
5.1 Statement Separators . 18
5.2 Assignment Statements . 19
5.3 If Statements . 20
5.4 Case Statements . 20
5.5 Block Statements . 21
5.6 Loop Statements . 22

1

5.6.1 Continue Statements . 23
5.7 Exit statements . 25

6 Operations 26
6.1 Operation Declarations . 26
6.2 Operation Definitions . 28
6.3 Operation Calls . 29

6.3.1 Lambda expressions . 30
6.4 Return Statements . 30

7 Modules 32
7.1 Interface Declaration for a Module . 32
7.2 Module Inheritance and Extension . 33

7.2.1 Polymorphic Types . 34
7.3 Class Definition for a Module . 34
7.4 Module Instantiation . 36

8 Containers 37
8.1 Object Indexing and Slicing . 38
8.2 Container Aggregates . 39
8.3 Container Element Iterator . 40

9 Annotations 42

10 Concurrent Objects 45
10.1 Concurrent Modules . 45

10.1.1 Locked and Queued Operations . 46
10.2 Concurrent Evaluation . 47

11 ParaSail Library 48

2

Chapter 1

Introduction

ParaSail stands for “Parallel Specification and Implementation Language,” and is designed with the principle
that if you want programmers to write parallel algorithms, you have to immerse them in parallelism, and
force them to work harder to make things sequential. In ParaSail, parallelism is everywhere, and threads
are treated as resources like virtual memory – a given computation can use 100s of threads in the same way
it might use 100s of pages of virtual memory. ParaSail supports both lock-based and lock-free concurrent
objects.

ParaSail also supports annotations, and in fact requires them in some cases if they are needed to prove
that a given operation is safe. In particular, all checks that might normally be thought of as run-time
checks (if checked by the language at all) are compile-time checks in ParaSail. This includes uninitialized
variables, array index out of bounds, null pointers, race conditions, numeric overflow, etc. If an operation
would overflow or go outside of an array given certain inputs, then a precondition is required to prevent such
inputs from being passed to the operation. ParaSail is designed to support a formal approach to software
design, with a relatively static model to simplify proving properties about the software, but with an explicit
ability to specify run-time polymorphism where it is needed.

ParaSail has only four basic concepts – Modules, Types, Objects, and Operations. Every type is an
instantiation of a module. An object is an instance of some type. An operation operates on objects.

There are no global variables. Any object to be updated by an operation must be an explicit input or
output to the operation.

ParaSail has user-defined indexing (analogous to arrays or tables), user-defined literals (integers, reals,
strings, characters, and enumerations), user-defined “aggregates,” etc. Every type is the instantiation of some
module, including those that might be considered the built-in types, and there are no “special” operators or
constructs that only a built-in type can utilize.

ParaSail has no pointers, though it has references, optional and expandable objects, and user-defined
indexing, which together provide a rich set of functionally equivalent capabilities without any hidden aliasing
nor any hidden race conditions.

3

Chapter 2

Lexical Elements

2.1 Character Set

ParaSail programs are written using graphic characters from the ISO-10646 (Unicode) character set, as well
as horizontal tab, form feed, carriage return, and line feed. A line feed terminates the line.

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

binary_digit ::= 0 | 1

hex_digit ::= digit | A..F | a..f

extended_digit ::= digit | A..Z | a..z

2.2 Delimiters

The following single graphic characters are delimeters in ParaSail:

() { } [] , ; . : | < > + - * / ’ ?

The following combinations of graphic characters are delimeters in ParaSail:

:: ;; || == != =? <= >=
==> -> ** => [[]] << >>
:= :=: += -= *= /= **= <<= >>=
.. <.. ..< <..<

The following combinations of graphic characters have special significance in ParaSail:

and= or= xor=

2.3 Identifiers

Identifiers start with a letter, and continue with letters, digits, and underscores.

identifier ::= letter { _ | letter | digit }

4

Upper and lower case is significant in identifiers. Letters include any graphic character in the ISO-10646
character set that is considered a letter. An identifier must not be the same as a ParaSail reserved word (see
2.6).

Examples:

X, A__B, a123, A123, This_Is_An_Identifier, Xyz_

2.4 Literals

There are five kinds of literals in ParaSail: integer, real, character, string, and enumeration.

literal ::=
integer_literal

| real_literal
| character_literal
| string_literal
| enumeration_literal

2.4.1 Integer literals

Integer literals are by default decimal. Integers may also be written in binary, hexadecimal, or with an
explicit base in the range 2 to 36.

Integer literals are of type Univ Integer.

integer_literal ::=
decimal_integer_literal

| binary_integer_literal
| hex_integer_literal
| based_integer_literal

decimal_integer_literal ::= decimal_numeral

binary_integer_literal ::= 0 (b|B) binary_digit { [_] binary_digit}

hex_integer_literal ::= 0 (x|X) hex_digit { [_] hex_digit}

based_integer_literal ::= decimal_numeral # extended_numeral #

decimal_numeral ::= digit { [_] digit }

extended_numeral ::= extended_digit { [_] extended_digit }

Examples:

42, 1_000_000, 0xDEAD_BEEF, 8#0177#

2.4.2 Real Literals

Real literals are by default decimal, with an optional decimal exponent indicating the power of 10 by which
the value is to be multiplied. Reals may also be written with an explicit base in the range 2 to 36, with a
decimal exponent indicating the power of the base by which the value is to be multiplied.

Real literals are of type Univ Real.

5

real_literal ::= decimal_real_literal | based_real_literal

decimal_real_literal ::= decimal_numeral . decimal_numeral [exponent]

based_real_literal ::=
decimal_numeral # extended_numeral . extended_numeral # [exponent]

exponent ::= (e|E)[+|-] decimal_numeral

Examples:

3.14159, 0.15, 16#F.FFFF_FFFF_FFFF#e+16

2.4.3 Character Literals

Character literals are expressed as a pair of apostrophes bracketing a single unescaped character, being
any graphical character of the ISO-10646 character set other than apostrophe and backslash, or a single
escaped character, being a backslash followed by an escapable character.

Character literals are of type Univ Character.

character_literal ::= ’ unescaped_character ’ | ’ escaped_character ’

escaped_character ::= \ escapable_character

escapable_character ::= \ | ’ | " | n | r | t | f | 0

The following escapable characters have the following interpretation when preceded by \:

\ -- backslash
’ -- apostrophe
" -- double quote
n -- line feed
r -- carriage return
t -- horizontal tab
f -- form feed
0 -- Nul

Examples:

’a’, ’0’, ’\’’, ’\r’

2.4.4 String Literals

String literals are a sequence of graphical characters of the ISO-10646 character set enclosed in double quotes.
The backslash and double-quote characters may appear only as part of an escaped character.

String literals are of type Univ String.

string_literal ::= " { unescaped_character | escaped_character } "

Example:

"This is a multiline message\n and this is the second line."

6

2.4.5 Enumeration Literals

Enumeration literals are expressed with a # followed by an identifier or reserved word.
Enumeration literals are of type Univ Enumeration.

enumeration_literal ::= # (identifier | reserved_word)

Examples:

#red, #true, #Monday

2.5 Comments

Comments in ParaSail start with // and continue to the end of the line.
Examples:

// According to the Algol 68 report,
// comments are for the enlightenment of the human reader.

2.6 Reserved Words

The following words are reserved in ParaSail:

abs
abstract
all
and
block
case
class
concurrent
const
continue
each
else
elsif
end

exit
extends
exports
for
forward
function
global
if
implements
import
in
interface
is
lambda

locked
loop
mod
mutable
new
not
null
of
operator
optional
or
private
procedure
queued

ref
rem
return
reverse
select
some
then
until
var
while
with
xor

All reserved words in ParaSail are in lower case.

7

Chapter 3

Types and Objects

In ParaSail, every object is an instance of some type, and every type is defined by instantiating a module
and/or applying a constraint to an existing type.

3.1 Types

A type is declared by instantiating the interface of a module (see 7.1), or by constraining an existing type,
using the following syntax:

type_declaration ::=
’type’ identifier ’is’ [’new’] type_specifier [constraint_annotation] ’;’

type_specifier ::= type_name | module_name ’<’ module_actuals ’>’

constraint_annotation ::= annotation

See Chapter 9 for the syntax of an annotation.
The presence of ’new’ in a type declaration indicates that the type is not equivalent to any other type.

If no ’new’ is specified, then the type is value-equivalent to any other instantiation of the same module with
value-equivalent actuals. The type is constraint-equivalent to any other instantiation of the same module with
constraint-equivalent actuals, and with the same constraint annotation, if any. A constraint annotation does
not create a new type per se, but instead represents a constrained subtype of a type, with the constraint(s)
determining which values belong to the subtype. In other words, name equivalence is used between two
types if either was declared with the reserved word ’new.’ Otherwise structural equivalence applies, where
the basic structure is determined by the actuals supplied to the module instantiation, and the subset of
values of the type is determined by the constraint annotations, if any.

Two types are considered significantly different if they result from instantiating different modules, or if
they result from distinct instantiations of the same module at least one of which included the ’new’ reserved
word.

Example:
Given the interface of a List module defined as follows (see 7.1):

interface L i s t <Element Type i s Assignable<>> i s
function Create () −> L i s t ;
function Is Empty (L : L i s t) −> Boolean ;
procedure Append(L : ref var L i s t ; Elem : Element Type) ;
function Remove First (L : ref var L i s t) −> optional Element Type ;
function Nth Element (L : ref L i s t ; N : Univ Integer)
−> ref optional Element ;

8

end interface L i s t ;

A specific kind of list may be declared as follows:

type Boo l L i s t i s L i s t < Boolean >;

This declares a Bool List type which represents a list of Booleans.

3.2 Objects

Objects contain data, and may either be variables (declared with ’var’), allowing their data to be changed
after initialization, or constants (declared with ’const’), meaning the initial value of the data of the object
cannot be changed during the life of the object.

An object is declared using the following syntax:

object_declaration ::=
uninitialized_object_declaration

| initialized_object_declaration

uninitialized_object_declaration ::=
var_or_const identifier ’:’ object_type ’;’

initialized_object_declaration ::=
var_or_const identifier [’:’ object_type] ’:=’ expression ’;’

var_or_const ::= ’var’ | ’const’

object_type ::= object_qualifier type_specifier [constraint_annotation]

object_qualifier ::= [’optional’] [’concurrent’]

The value of an object may be null only if it is declared to have an ’optional’ type. An uninitialized object
with an ’optional’ type has the null value initially.

An uninitialized object that has a non-optional type must be assigned a value prior to being referenced.
An uninitialized constant object may be assigned a value at most once, and if it has an optional type, must
not be assigned a value after its (null) value is referenced.

Examples:

var BL : Boo l L i s t := Create () ;
const T : Boolean := #true ;
var Result : optional T;

These declare a variable boolean list, a constant with Boolean value #true, and a variable Result with
implicit initial value of null.

TBD: mutable objects.

3.3 Object References

A reference to an existing object is declared using the following syntax:

object_reference ::=
var_or_const identifier [’:’ type_specifier] ’=>’ object_name ’;’

9

A variable reference is only permitted to a variable object. A constant reference provides read-only access
to an object, whether or not the object itself is a constant.

Examples:

const F i r s t => Nth Element (L , 1) ;
var Elem => Nth Element (M, I) ;

These create a read-only reference to the first element of L, and a read-write reference to the Ith element of
M.

3.4 Declarations and Identifiers

The identifier introduced by the declaration of a type or object must not denote a currently visible declaration.
However, when declaring a module formal, an operation input, or a function output, the identifier may be
omitted, in which case it is taken, in the case of a type formal, from the module name, in the case of an
input to an operation, from the type name, and in the case of a function output, from the function name. In
addition, when inside a module, the module’s simple name also identifies a type which is the current instance
of the module.

The identifier introduced by the declaration of an operation must not denote a currently visible interface,
type, or object, but may be the same as that of an existing operation, provided it differs significantly in the
types of one or more inputs or outputs (see 3.1 for definition of significantly different types).

The full name of a module must be unique within a given program.

10

Chapter 4

Names and Expressions

4.1 Names

Names denote modules, types, objects, and operations.

name ::= module_name | type_name | object_name | operation_name

module_name ::= [module_name ’::’] identifier

type_name ::= type_identifier [’+’]

type_identifier ::= [type_identifier ’::’] identifier

object_name ::=
identifier

| object_indexing_or_slicing
| operation_call
| component_selection

See Operation Calls (Section 6.3) for the syntax of operation name and operation call. See Object Indexing
and Slicing (Section 8.1) for the syntax of object indexing or slicing.

4.1.1 Component Selection

If an object declaration occurs immediately within the interface (see 7.1) or class (see 7.3) for a module,
and the declaration is not for an initialized ’const’ object, then it declares a component object. Components
declared within a module comprise the data of each object of a type based on the module.

Components are named by naming the enclosing object, then a ’.’, and then the identifier of the compo-
nent:

component_selection ::= object_name ’.’ identifier

Examples:

C. Real Part , Point .X, List Node . Next , T. Right Subtree

11

4.2 Expressions

expression ::=
literal

| ’null’
| object_name
| postcondition_value
| unary_operator expression
| expression binary_operator expression
| membership_test
| null_test
| quantified_expression
| type_conversion
| [type_identifier ’::’] bracketed_expression

bracketed_expression ::=
aggregate

| conditional_expression
| universal_conversion
| ’(’ expression ’)’

Literals evaluate to a value of a corresponding universal type, and are implicitly convertible to a type that
has a corresponding "from_univ" operator, so long as the value satisfies the precondition of the operator.

The reserved word ’null’ evaluates to the null value, which can be used to initialize any object declared
to have an ’optional’ type.

A type identifier followed by ’::’ may be used to specify explicitly the result type of a bracketed_expression
– one of the forms of expression that is enclosed in () or [], where the type might not be resolvable without
additional context.

See Annotations (Chapter 9) for the syntax of postcondition value and universal conversion.
Examples:

Y := ”This i s a s t r i n g l i t e r a l ” ; // Y must be o f a type wi th a ” from univ ” opera tor
// from Univ Str ing

return null ; // func t i on must have a re turn type o f the form ” op t i ona l T”
// i n d i c a t i n g i t might re turn ” nu l l ” ra the r than a va lue o f type T

Display (Output , Complex : : (Real => 1 . 0 , Imaginary => 1 . 0)) ;
// E x p l i c i t l y s p e c i f y the r e s u l t type o f an aggrega t e

4.2.1 Unary and Binary Operators

The following are the unary operators in ParaSail:

"+", "-", "abs", "not"

The following are the binary operators in ParaSail:

"**" -- Exponentiation

"*", "/", "rem", "mod" -- Multiply, Divide, Remainder, and Modulo operators

"+", "-" -- Addition and subtraction

12

"..", "<..", -- Interval operators; closed, open-closed,
"..<", "<..<" -- closed-open, open-open

"|" -- Used to combine elements into a container

"<", "<=", "==", -- The usual relational operators
"!=", ">=", ">"
"=?" -- The "compare" operator; all relational

-- operators are defined in terms of "=?"

"<<", ">>" -- left shift and right shift

"and", "or", "xor" -- The basic boolean operators
"and then", "or else" -- Short-circuit boolean operators
"==>" -- "implication" operator

The highest precedence operators are the unary operators and the exponentiation (”**”) operator. The
next lower precedence operators are the multiplication, division, and remainder operators. The next lower
precedence operators are the addition and subtraction operators. Next are the interval operators. Next the
combine operator (”|”). Next the relational, compare, and shift operators. Lowest are the boolean operators.

Addition, subtraction, multiplication, and division are left-associative. Exponentiation is right-associative.
For other operators, parentheses are required to indicate associativity among operators at the same level
of precedence, except that for the boolean operators, a string of uses of the same operator do not require
parentheses, and are treated as left-associative.

The binary compare operator (”=?”) returns an Ordering value indicating the relation between the two
inputs, being #less, #equal, #greater, or #unordered. The value #unordered is used for types with only
a partial ordering. For example, the ”=?” operator for sets would typically return #equal if the sets have
the same members, #less if the left operand is a proper subset of the right, #greater if the left operand is
a proper superset of the right, and #unordered otherwise. All of the other relational operators are defined
in terms of ”=?” – only ”=?” is user-definable for a given type.

The evaluation of an expression using a unary or binary operator is in general equivalent to a call on
the corresponding operation, meaning that the operands are evaluated in parallel and then the operation
is called (see 6.3). The short-circuit boolean operators "and then" and "or else" and the implication
operator "==>" are implemented in terms of the corresponding if_expression (see 4.2.6):

A and then B // e qu i v a l e n t to (i f A then B e l s e #f a l s e)
A or else B // e qu i v a l e n t to (i f A then #true e l s e B)
A ==> B // e qu i v a l e n t to (i f A then B e l s e #true)

Examples of unary and binary operators:

S1 =? S2 // Compare S1 and S2 ,
// re turn #l e s s , #equal , #grea ter , or #unordered

X ∗∗ 3 // X cubed
abs (X − Y) // a b s o l u t e va lue o f d i f f e r e n c e
0 .. < Length // The i n t e r v a l 0 , 1 , . . Length − 1
(A and B) or C // paren these s r e qu i r ed
A or B or C // paren these s not r e qu i r ed
X ∗ Y + U ∗ V // paren these s not r e qu i r ed

4.2.2 Membership and Null Tests

A membership test is used to determine whether a value can be converted to a type, satisfies the constraints
of a type, or is in a particular interval or set. A null test is used to determine whether a value is the null
value. The result of a membership test or null test is of type Boolean.

13

membership_test ::=
expression [’not’] ’in’ expression

| expression [’not’] ’in’ type_name

null_test ::= expression ’is’ ’null’ | expression ’not’ ’null’

Examples:

X in 3 . . 5 // True i f X >= 3 and X <= 5
Y not in T+ // True i f Y i s not c o n v e r t i b l e to T+
#red in Color // True i f #red i s c o n v e r t i b l e to Color
Z not null // True i f Z does not have a nu l l va lue

4.2.3 Other ParaSail Operators

"from_univ" -- invoked implicitly to convert from a value of a universal type
"to_univ" -- invoked using "[[expression]]" to convert to a universal type
"convert" -- invoked using "type_name (expression)" to convert between types
"indexing" -- invoked by "object [operation_actuals]" to index into a container
"slicing" -- invoked by "object [operation_actuals]" to select a slice of a container
"index_set" -- invoked by an iterator to iterate over the elements of a container
"[]" -- invoked by "[]" to create an empty container; invoked implicitly

by "[key1 => value1, key2 => value2, ...]" followed by multiple calls
on "|=" to build up a container given the key/value pairs

"[..]" -- invoked by "[..]" to create a universal set
"()" -- invoked by "(operation_actuals)" to create an object from components

Examples:

X := 42 ; // Imp l i c i t convers ion from Univ In teger us ing ” from univ ” opera tor
Print ([[X]]) ; // Convert back to Univ In teger f o r p r i n t i n g us ing ” t o un i v ” opera tor
C[Key] // The element o f C a s s o c i a t e d wi th g iven Key us ing ” index ing ” opera tor
A[X.. <Y] // The s l i c e o f A going from X to Y−1 us ing ” s l i c i n g ” opera tor
[] // An empty conta iner us ing ” [] ” opera tor
(A => 25 , B => #true)

// An anonymous o b j e c t wi th g iven va l u e s f o r i t s components
// us ing ”()” opera tor

4.2.4 Aggregates

Aggregates are used for constructing values out of their constituents. There are two kinds of aggregates: the
class aggregate for creating an object of a type from its named components, and the container aggregate,
for creating an object of a container type (see 8.2) from a sequence of elements, optionally associated with
one or more keys.

The class aggregate is generally only available when inside the class defining a module, or for a type
based on a module that has only components declared in its interface. In addition, if the ”()” operator is
explicitly declared in the interface of a module, then the class aggregate may be used.

Aggregates have the following form:

aggregate ::= class_aggregate | container_aggregate

class_aggregate ::= ’(’ operation_actuals ’)’

14

See 6.3 Operation Calls for the syntax of operation actuals. See 8.2 Container Aggregates for the syntax of
a container aggregate.

Examples:

(X => 3 . 5 , Y => 6 . 2) // f u l l y named c l a s s a g g r e g a t e

(Element , Next => null) // mixed p o s i t i o n a l and named c l a s s a g g r e g a t e

4.2.5 Quantified Expressions

Quantified expressions are used to specify a boolean condition that depends on the properties of a set of
values.

A quantified expression has the form:

quantified_expression ::=
’(’ ’for’ all_or_some quantified_iterator ’=>’ condition ’)’

all_or_some ::= ’all’ | ’some’

quantified_iterator ::=
index_iterator | element_iterator | initial_next_while_iterator

See Loop Statements (section 5.6) for the syntax of the various iterator forms.
A quantified expression with the reserved word ’all’ is true if and only if the condition evaluates to true

for all of the elements of the sequence produced by the quantified iterator. A quantified expression with the
reserved word ’some’ is true if and only if the condition evaluates to true for at least one of the elements
of the sequence produced by the quantified iterator. It is not specified in what order the evaluations of the
condition are performed, nor whether they are evaluated in parallel. The condition might not be evaluated
for a given element of the sequence if the value for some other element already determines the final result.

Examples:

N Is Composite := (for some X in 2 . .N/2 => N rem X == 0) ;

Y Is Max := (for a l l I in Bounds (A) => A[I] <= Y) ;

4.2.6 Conditional Expressions

Conditional expressions are used to specify a value by conditionally selecting one expression to evaluate
among several.

Conditional expressions are of one of the following forms:

conditional_expression ::= if_expression | case_expression

An if expression has one of two alternative syntaxes:

if_expression ::=
condition ’?’ expression ’:’ expression

| ’(’ ’if’ condition ’then’ expression else_part_expression ’)’

else_part_expresssion ::=
{ ’elsif’ condition ’then’ expression } ’else’ expression

15

All expressions of an if expression must be null or implicitly convertible to the same type.
To evaluate an if expression, the conditions are evaluated in sequence, and the first one that evaluates

to true determines the expression to be evaluated (the one following the ’?’ or corresponding ’then’). If all
of the conditions evaluate to false, the last expression of the if statement is evaluated to produce the value
of the if expression.

Examples:

Bigger := (i f X > Y then X else Y) ;

return Y == 0? null : X/Y; // re turn nu l l i f would d i v i d e by zero

Case expressions have the following form:

case_expression ::=
’(’ ’case’ case_selector ’of’

case_expression_alternative { ’;’
case_expression_alternative } [’;’
case_expression_default]

’)’

case_expression_alternative ::=
’[’ choice_list ’]’ ’=>’ expression

| ’[’ identifier ’:’ type_name ’]’ ’=>’ expression

case_expression_default ::=
’[..]’ ’=>’ expression

See Case Statements (section 5.4) for the syntax of case selector and choice list.
All expressions following ’=>’ of a case expression must be null or implicitly convertible to the same

type.
The choice list or type name of each case expression alternative determines a set of values. If there is

not a case expression default, then the sets associated with the case expression alternatives must cover all
possible values of the case selector. The sets associated with the case alternatives must be disjoint with one
another.

To evaluate a case expression, the case selector is evaluated. If the value of the case selector is in a set
associated with a given case expression alternative, the corresponding expression is evaluated. If the value
is not a member of any set, then the expression of the case expression default is evaluated.

If a case expression alternative includes an identifier and a type name, then within the expression, the
identifier has the given type, with its value given by a conversion of the case selector to the given type.

Example:

return (case Key =? Node . Key of
[# l e s s] => Search (Node . Left , Key) ;
[#equal] => Node . Value ;
[# g r ea t e r] => Search (Node . Right , Key)) ;

4.2.7 Type Conversion

A type conversion can be used to convert an expression from one type to another, by using a syntax like
that of an operation call but with the operation identified by the name of the target type:

type_conversion ::= type_name ’(’ expression ’)’

16

The expression of a type conversion must be convertible to the target type. An expression of a type A is
convertible to a type B if the type A is convertible to type B and the value of the expression after conversion
satisfies any constraints on B.

Type A is convertible to type B if and only if:

• Types A and B are instances of the same module with value-equivalent (see 3.1) actuals (even if one
of them is a ’new’ type);

• Type B is a polymorphic type (see 7.2.1), and type A is an instance of a module that extends or
implements the root interface of B, with value-equivalent actuals;

• Type A is a polymorphic type, and the type-id of the expression identifies a type that is convertible
to B;

• Type A has a "to_univ" operator and type B has a "from_univ" operator such that the result type
of the "to_univ" operator is the input type of the "from_univ" operator;

• Type A or type B has a "convert" operator that has an input type that matches type A and a result
type that matches type B.

17

Chapter 5

Statements

Statements specify an action to be performed as part of a sequence of statements. A ParaSail statement can
either be a simple statement, a compound statement containing other statements as constituents, or a local
declaration:

statement ::= simple_statement | [label] compound_statement | local_declaration

simple_statement ::=
assignment_statement

| exit_statement
| continue_statement
| return_statement
| operation_call

label ::= ’*’ statement_identifier ’*’

statement_identifier ::= identifier

compound_statement ::=
if_statement | case_statement | loop_statement | block_statement

local_declaration ::= object_declaration | operation_declaration | operation_definition

If and only if a compound statement is preceded by a label, then the statement identifier must appear again
at the end of the compound statement.

If a compound statement completes normally, as opposed to ending via an exit statement or return statement,
then the with values clause, if any, at the end of the compound statement is executed.

with_values ::=
’with’ identifier ’=>’ expression

| ’with’ ’(’ identifier ’=>’ expression { ’,’ identifier ’=>’ expression } ’)’

5.1 Statement Separators

Statements are separated with ’;’, ’||’, or ’then’. The delimiter ’;’ may also be used as a statement
terminator.

statement_list ::=

18

statement_group { [’;’] ’then’ statement_group } ’;’

statement_group ::= statement_sequence | statement_thread_group

statement_sequence ::= statement { ’;’ statement }

statement_thread_group ::=
statement_thread [’;’]

’||’ statement_thread { [’;’]
’||’ statement_thread }

statement_thread ::= statement { ’;’ statement }

The scope of a local declaration occurring immediately within a statement sequence goes from the declaration
to the end of the immediately enclosing statement list. The scope of a local declaration occurring immediately
within a statement thread goes from the declaration to the end of the statement thread.

For the execution of a statement list, each statement group is executed to completion in sequence. For
the execution of a statement sequence or a statement thread, expressions are evaluated and assignments and
calls are performed in an order consistent with the order of references to sequential objects (see chapter
10) occurring in the statements. For the execution of a statement thread group, each statement thread is
executed concurrently with other statement threads of the same group.

Examples:

A := C(B) ; D := F(E) | | U := G(V) ; W := H(X) ;

The first two statements runs as one thread, the latter two run as a separate thread.

block
var A : Vector<Integer> := [X, Y] ;

then
Process (A [1]) ;

| |
Process (A [2]) ;

end block ;

The declaration of A is completed before beginning the two separate threads invoking Process on the two
elements of A.

5.2 Assignment Statements

An assignment statement allows for replacing the value of one or more objects with new values.

assignment_statement ::=
object_name ’:=’ expression

| object_name ’:=:’ object_name
| class_aggregate ’:=’ expression
| object_name operate_and_assign expression

There are builtin operations for simple assignment and for swapping the content of two objects:

":=" -- simple assignment of right-hand-side into left-hand-side
":=:" -- swap left and right hand content

Multiple objects may be assigned in a single assignment by using a class aggregate as the left hand side of
an assignment.

In addition, several of the binary operators may be combined with ”=” to produce an operate-and-assign
operation:

19

operate_and_assign ::=
’+=’ | ’-=’ | ’*=’ | ’/=’ | ’**=’ | ’<<=’ | ’>>=’

| ’and=’ | ’or=’ | ’xor=’ | ’|=’

Examples:

X := A + B; // Set X to sum of A and B
Y :=: Z ; // swap Y and Z
(Y, Z) := (Z , Y) ; // another way to swap Y and Z
X += 1 ; // Add one to X
Y ∗= 2 ; // Mu l t i p l y Y by 2
C |= Elem ; // Add Elem to the C conta iner

5.3 If Statements

If statements provide conditional execution based on the value of a boolean expression.
If statements are of the form:

if_statement ::=
’if’ condition ’then’

statement_list
[else_part]
’end if’ [statement_identifier] [with_values]

else_part ::=
’elsif’ condition ’then’

statement_list
[else_part]

| ’else’
statement_list

condition ::= expression -- must be of a boolean type

For the execution of an if statement, the condition is evaluated and if true, then the statement list of the
if statement is executed. Otherwise, the else part, if any, is executed.

For the execution of an else part, if the else part begins with ’elsif’, then the condition is evaluated and
if true, the statement list following ’then’ is executed. Otherwise, the nested else part, if any, is executed.
If the else part begins with ’else’, then the statement list following the ’else’ is executed.

Example:

i f This Were (A Real Emergency) then
You Would (Be Instructed , Appropr iate ly) ;

e l s i f Th i s I s (Only A Test) then
Not To Worry () ;

end i f ;

5.4 Case Statements

Case statements allow for the selection of one of multiple statement lists based on the value of an expression.
Case statements are of the form:

20

case_statement ::=
’case’ case_selector ’of’

case_alternative
{ case_alternative }
[case_default]

’end’ ’case’ [statement_identifier] [with_values]

case_selector ::= expression

case_alternative ::=
’[’ choice_list ’]’ ’=>’ statement_list

| ’[’ identifier ’:’ type_name ’]’ ’=>’ statement_list

choice_list ::= choice { ’|’ choice }

choice ::= expression [interval_operator expression]

interval_operator ::= ’..’ | ’..<’ | ’<..’ | ’<..<’

case_default ::=
’[..]’ ’=>’ statement_list

The choice list or type name of each case alternative determines a set of values. If there is not a case default,
then the sets associated with the case alternatives must cover all possible values of the case selector. The
sets associated with the case alternatives must be disjoint with one another.

For the execution of a case statement, the case selector is evaluated. If the value of the case selector is
in a set associated with a given case alternative, the corresponding statement list is executed. If the value
is not a member of any set, then the statement list of the case default is executed.

If a case alternative includes an identifier and a type name, then within the statement list, the identifier
has the given type, with its value given by a conversion of the case selector to the given type.

Example:

case Lookahead (Input) of
[’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’] =>

Handle Alphabet ic (Input) ;
[’ 0 ’ . . ’ 9 ’] =>

Handle Numeric (Input) ;
[’ \n ’] =>

Handle End Of Line (Input) ;
[’ \0 ’] =>

Handle End Of Input (Input) ;
[. .] =>

Handle Others (Input) ;
end case ;

5.5 Block Statements

A block statement allows the grouping of a set of statements with local declarations and an optional set of
assignments to perform if it completes normally.

A block statement has the following form:

block_statement ::=
’block’

21

statement_list
’end’ ’block’ [statement_identifier] [with_values]

For the execution of a block statement, the statement list is executed. If the statement list completes without
being left due to an exit or return statement, the with values clause at the end of the block, if any, is executed.

5.6 Loop Statements

A loop statement allows for the iteration of a statement list over a sequence of objects or values.
Loop statements have the following form:

loop_statement ::=
while_until_loop | for_loop | indefinite_loop

while_until_loop ::= while_or_until condition loop_body

while_or_until ::= ’while’ | ’until’

For the execution of a while until loop the condition is evaluated. If the condition is satisified, meaning it
evaluates to true when ’while’ is specified or evaluates to false when ’until’ is specified, then the statement list
of the loop body is executed, and if the statement list reaches its end, the process repeats. If the condition
is not satisfied, then the current iteration completes without executing the statement list. If this is the last
iteration active within the loop, the while until loop is completed, and the with values clause at the end of
the loop body, if any, is executed.

indefinite_loop ::= loop_body

An indefinite loop is equivalent to a while until loop that begins with ’while’ and has an expression of #true.

for_loop ::=
’for’ iterator [direction] loop_body

| ’for’ ’(’ iterator_list ’)’ [direction] loop_body

direction ::= ’forward’ | ’reverse’ | ’concurrent’

loop_body ::=
’loop’

statement_list
’end’ ’loop’ [statement_identifier] [with_values]

iterator_list ::= iterator { ’;’ iterator }

iterator ::=
index_iterator

| ’each’ element_iterator
| initial_next_while_iterator
| initial_value_iterator

index_iterator ::=
identifier [’:’ type_name] ’in’ expression

initial_next_while_iterator ::=

22

initial_value_iterator [next_values] while_or_until condition

next_values ::= ’then’ expression { ’||’ expression }

initial_value_iterator ::=
identifier [’:’ type_name] ’:=’ expression

| identifier ’=>’ object_name

See 8.3 for the syntax of an element iterator.
A direction of ’forward’ or ’reverse’ is permitted only when at least one of the iterators of the for statement

is an index iterator or an element iterator. The direction determines the order of the sequence of values
produced by such iterators. In the absence of a ’forward’ or ’reverse’ direction, such iterators may generate
their sequence of values in any order.

The identifier of an iterator declares a loop variable which is bound to a particular object or value for
each execution of the statement list of the loop body.

For the execution of a for loop with a single iterator, the statement list of the loop body is executed
once for each element in the sequence of values produced by the iterator (along with values specified by
continue statements that apply to the for loop and have a with values clause – see 5.6.1). For each execution
of the statement list, the loop variable is bound to the corresponding element of the sequence (or the value
specified by the continue statement – see 5.6.1).

For the execution of a for loop with multiple iterators, the statement list of the loop body is executed
once for each set of elements determined by the set of iterators (and any applicable continue statements
having a with values clause), with the iterator that produces the shortest sequence limiting the number of
executions of the statement list. That is, the for loop terminates as soon as any one of the iterators has
exhausted its sequence.

After a for loop terminates normally, that is, without being exited by an exit or return statement, the
with values clause, if any, is executed. Examples:

for I in 1 . . 1 0 concurrent loop
X[I] := I ∗∗ 2 ;

end loop ;

The above loop initializes a table of squares in parallel.

for S of Li s t Of Student s (Classroom) forward loop
Print (Report , Name(S)) ;

end loop ;

The above loop prints the names of the students in the given Classroom in the order returned by the
List Of Students function.

for X => Root then X. Le f t | | X. Right while X not null loop
Process (X. Data) ;

end loop ;

The above loop calls Process on the Data component of the Root, and then initiates two new iterations
concurrently, one on the Left subtree of X and one on the Right subtree. An iteration is not performed for
cases where X is null. The loop as a whole terminates when Process has been called on the Data component
of each element of the binary tree.

5.6.1 Continue Statements

A continue statement may appear within a loop, and causes a new iteration of the loop to begin, optionally
with new binding(s) for the loop variable(s).

A continue statement has the following form:

23

continue_statement ::= ’continue’ ’loop’ [statement_identifier] [with_values]

For the execution of a continue statement, the current thread completes the current iteration of the im-
mediately enclosing loop, and begins a new iteration of the specified loop (or in the absence of a state-
ment identifier, the immediately enclosing loop). If the identified loop is a for loop without a specified
sequence or next value, then there must be a with values clause, which determines the new binding(s) for
the loop variable(s).

Example:

for X => Root while X not null loop
Process (X. Data) ;

| | continue loop with X => X. Le f t ;
| | continue loop with X => X. Right ;

end loop ;

The above loop walks a binary tree in parallel, with the continue statements used to initiate additional
iterations of the loop body to process the Left and Right subtrees of X. This is equivalent to the example
given in 5.5, except that the subtrees of X are walked concurrently with calling Process on X.Data. (The
example given in 5.5 could be made exactly equivalent by making that loop into a concurrent loop, which
means that while performing the statement list of one iteration we proceed onto the next values.)

Note that the loop statement whose iteration is terminated by a continue statement may be nested within
the loop statement identified by the statement identifier, and this outer loop statement is the one that begins
a new iteration.

Example:

var So lu t i on s : Vector<Solut ion> := [] ;
∗Outer Loop∗
for (C : Column := 1 ; Tr i a l : So lu t i on := Empty ()) loop

for R in Row concurrent loop // I t e r a t e over the rows
i f Acceptable (Tr ia l , R, C) then

// Found a Row/Column l o c a t i o n t ha t i s a c c ep t a b l e
i f C < N then

// Keep going s ince haven ’ t reached Nth column .
continue loop Outer Loop with (C => C+1,

Tr i a l => Inco rpora te (Tr ia l , R, C)) ;
else

// A l l done , remember t r i a l r e s u l t t h a t works
So lu t i on s |= Incorpora te (Tr ia l , R, C) ;

end i f ;
end i f ;

end loop ;
end loop Outer Loop ;

If an inner loop statement has multiple iterations active concurrently, a continue statement terminates only
one of them. The other active iterations proceed independently. The inner loop statement as a whole only
completes when all of the active iterations within the loop are complete. If all of the iterations of the inner
loop statement end with a continue statement to an outer loop statement, then the thread that initiated the
inner loop statement is terminated. If at least one of the iterations of the inner loop statement completes
normally, then the thread that initiated the inner loop statement executes the with values clause, if any, and
proceeds with the statements following the inner loop statement.

In this example, the above doubly nested loop iterates over the columns of a chessboard, and for each
column iterates in parallel over the rows of the chessboard, trying to find a place to add a piece that satisfies
the Acceptable function. When a place is found at a given row on the current column, the continue statement
proceeds to the next column with the given Trial solution. Meanwhile, other rows are being checked, which
may also result in additional continuations to subsequent columns. If a given row is not acceptable in a

24

given column for the current Trial, it is ignored and the thread associated with that row completes rather
than being used to begin another iteration of the outer loop.

5.7 Exit statements

An exit statement may be used to exit a compound statement while terminating any other threads active
within the compound statement.

An exit statement has the following form:

exit_statement ::=
’exit’ compound_kind [statement_identifier] [with_values]

compound_kind ::= ’if’ | ’case’ | ’block’ | ’loop’

An exit statement exits the specified compound statement (or in the absence of a statement identifier, the
immediately enclosing compound statement of the specified compound kind), terminating any other threads
active within the identified statement. If the exit statement has a with values clause, then after terminating
all other threads active within the compound statement, the assignments specified by the with values clause
are executed.

Example:

const Result : Result Type ;
block

const Result1 := Compute One Way(X) ;
exit block with Result => Result1 ;

| |
const Result2 := Compute Other Way (X) ;
exit block with Result => Result2 ;

end block ;

The above block performs the same computation two different ways, and then exits the block with the Result
object assigned to whichever answer is computed first.

25

Chapter 6

Operations

Operations are used to specify an algorithm for computing a value or performing a sequence of actions. There
are three kinds of operations – functions, procedures, and operators. Operators have special meaning to the
language, and are invoked using special syntax. Functions produce one or more outputs. Most operators
also produce an output. Procedures generally update one or more of their variable inputs.

6.1 Operation Declarations

Operations are declared using the following forms:

operation_declaration ::=
function_declaration | procedure_declaration | operator_declaration

function_declaration ::=
[’abstract’ | ’optional’] ’function’ identifier inputs ’->’ outputs

procedure_declaration ::=
[’abstract’ | ’optional’] ’procedure’ identifier inputs

operator_declaration ::=
[’abstract’ | ’optional’] ’operator’ operator_symbol inputs [’->’ outputs]

operator_symbol ::= string_literal

inputs ::= input | ’(’ [input { ’;’ input }] ’)’

input ::= formal_object | formal_operation

formal_object ::=
[identifier ’:’] [input_mode] formal_object_type [’:=’ expression]

input_mode ::=
’ref’ [var_or_const]

| ’global’ var_or_const
| ’locked’ var_or_const
| ’queued’ var_or_const

26

formal_object_type ::= object_type | identifier ’is’ module_instantiation

formal_operation ::=
operation_declaration [’is’ operation_specification]

operation_specification ::=
operation_name | lambda_expression

outputs ::= output | ’(’ output { ’;’ output } ’)’

output ::=
[identifier ’:’] [output_mode] formal_object_type

output_mode ::= ’ref’ [var_or_const]

If an identifier is omitted for an input, the type name may be used within the operation to identify the
parameter if it is unique. Otherwise, the parameter is unnamed at the call point. In an operation definition
(see 6.2) all inputs must either have an identifier, or have a unique type name.

If an identifier is omitted for an output of a function, and there is only one output, the function identifier
may be used to identify the output. If there is more than one output, each one must have an identifier.

If a formal object type is of the form identifier ’is’ module_instantiation, the actual parameter
may be of any type that matches the module instantiation (see 7.4). The specified identifier refers to the type
of the actual parameter within the operation declaration, and within the corresponding operation definition.

If there is no input mode, or if ’var’ does not appear in the input mode, then the formal is read-only
within the body of the operation. If the input mode is ’ref’ without being followed by ’var’ or ’const’, then
within the operation the formal is read-only; however, for any output that is also of mode simply ’ref’, the
output is (in the caller) a variable reference to the returned object if and only if all of the inputs with mode
merely ’ref’ are variables in the caller. If any of the inputs with mode ’ref’ are constants, then all of the
outputs with mode ’ref’ are constants.

An output of mode ’ref’ must be specified via a return statement as a reference to all or part of an input
of mode ’ref’. An output of mode ’ref’ ’var’ must be specified via a return statement as a reference to all or
part of an input of mode ’ref’ ’var’. An output of mode ’ref’ ’const’ must be specified via a return statement
as a reference to all or part of some ’ref’ input (’var’, ’const’, or merely ’ref’).

The designator of a formal operation may not be the same as that of an already defined operation with the
same number of inputs and outputs, unless its parameter types are significantly different from the preexisting
operation.

Examples:

function Sin (X : Float) −> Float ;

operator ”=?” (Left , Right : Set) −> Ordering ;

function Divide (Dividend : In t eg e r ; D iv i s o r : I n t eg e r)
−> (Quotient : I n t eg e r ; Remainder : I n t e g e r) ;

procedure Update (Obj : ref var T; New Info : Info Type) ;

operator ”∗” (Le f t : Float With Units ;
Right : Right Type i s Float With Units <>)
−> (Result : Result Type i s Float With Units

<Unit Dimensions => Unit Dimensions + Right Type . Unit Dimensions >);

operator ” index ing ” (C : ref Container ; Index : Index Type)

27

−> ref Element Type ;

6.2 Operation Definitions

An operation may be defined with a body, or with an import clause.
An operation definition has the following form:

operation_definition ::=
function_definition

| procedure_definition
| operator_definition
| operation_import

function_definition ::=
function_declaration ’is’
operation_body

’end’ ’function’ identifier

procedure_definition ::=
procedure_declaration ’is’
operation_body

’end’ ’procedure’ identifier

operator_definition ::=
operator_declaration ’is’
operation_body

’end’ ’operator’ operator_symbol

operation_body ::= [dequeue_condition] statement_list

operation_import ::=
operation_declaration ’is’ ’import’ ’(’ operation_actuals ’)’

If an operation is declared with a separate, stand-alone operation declaration, then the operation declaration
in the operation definition must fully conform to it. If any annotations appear prior to the ’is’ of the
operation definition, then they must fully conform to the annotations on the separate operation declaration.
Similarly, if any comments appear prior to the ’is’ of the operation definition, then they must fully conform
to comments on the separate operation declaration.

Examples:

function Sin (X : Float) −> Float i s import (” s i n f ”) ;

procedure Update (Obj : ref var T; New Info : Info Type) i s
Obj . In f o := New Info ;

end procedure Update ;

function Fib (N : In t eg e r) −> I n t eg e r i s
// Recurs ive f i b ona c c i but wi th l i n e a r time

function Fib Helper (M : In t eg e r)
−> (Prev Result : I n t eg e r ; Result : I n t eg e r) i s

28

// Recurs ive ” he l p e r ” rou t ine which
// re turns the pa i r (Fib (M−1) , Fib (M))

i f M <= 1 then
// Simple case
return (Prev Result => M−1, Result => M) ;

else
// Recurs ive case
const Pr i o r Pa i r := Fib Helper (M−1);

// Compute next f i b ona c c i pa i r in terms o f p r i o r pa i r
return with

(Prev Result => Pr i o r Pa i r . Result ,
Result => Pr i o r Pa i r . Prev Result + Pr i o r Pa i r . Result) ;

end i f ;
end function Fib Helper ;

// Just pass the buck to the r e cu r s i v e h e l p e r f unc t i on
return Fib Helper (N) . Result ;

end function Fib ;

6.3 Operation Calls

Operation calls are used to invoke an operation, with inputs and/or outputs.
Operation calls are of the form:

operation_call ::= operation_name ’(’ operation_actuals ’)’

operation_name ::=
[type_identifier ’::’] operation_designator

| object_name ’.’ operation_designator

operation_designator ::= operator_symbol | identifier

operation_actuals ::= [operation_actual { ’,’ operation_actual }]

operation_actual ::=
[identifier ’=>’] actual_object

| [identifier ’=>’] actual_operation

actual_object ::= expression

actual_operation ::= operation_specification | ’null’

Unlike other names, an operation name need not identify an operation that is directly visible. Operations
declared within modules other than the current module are automatically considered, depending on the form
of the operation name:

• If the operation name is of the form type_identifier ’::’ operation_designator then only op-
erations with the given designator declared within the module associated with the named type are
considered.

• If the operation name is of the form object_name ’.’ operation_designator then the call is equiv-
alent to

29

type_of_object_name ’::’ operation_designator
’(’ object_name ’,’ operation_actuals ’)’

• Otherwise (the operation name is a simple operation designator), all operations with the given desig-
nator declared in the modules associated with the types of the operation inputs and outputs, if any,
are considered, along with locally declared operations with the given designator.

Any named operation actuals, that is, those starting with identifier ’=>’, must follow any positional
operation actuals, that is, those without identifier ’=>’.

For the execution of an operation call, the operation actuals are evaluated (in parallel – see 10.2), as are
any default expressions associated with non-global operation inputs for which no actual is provided. For
’global’ inputs, a global concurrent object with the given identifier must be visible both to the caller and
the called operation, and if it is a ’var’ input, the caller must also have it as a ’global’ ’var’ input. After
parallel evaluation of the operation actuals, the body of the operation is executed, and then any outputs are
available for use in the enclosing expression or statement.

If the type of one or more of the operation actuals is polymorphic (see 7.2.1), and the operation is declared
in the module that is associated with the root type of the polymorphic type, then the actual body invoked
depends on the run-time type-id of the actual. If multiple operation actuals have this same polymorphic
type, then their run-time type-ids must all be the same.

Examples:

Result := Fib (N => 3) ;

Graph . Di sp lay Po int (X, Y => Sin (X)) ;

var A := Sparse Array : : Create (Bounds => 1 . .N) ;

6.3.1 Lambda expressions

A lambda expression is used for defining an operation as part of passing it as an actual parameter to a
module instantiation or an operation call.

A lambda expression has the following form:

lambda_expression ::=
’lambda’ inputs [’->’ outputs] ’is’ lambda_body

lambda_body ::= expression | ’(’ expression { ’;’ expression } ’)’

Example:

Graph Function (Window , lambda (X : Float) −> Float i s s i n (X)∗∗2) ;

6.4 Return Statements

A return statement is used to exit the nearest enclosing operation, optionally specifying one or more outputs.
A return statement has the following form:

return_statement ::=
’return’

| ’return’ expression
| ’return’ with_values

30

If there is no output value specified, any outputs of the immediately enclosing operation must have already
been assigned prior to the return statement. If there is only a single expression, the immediately enclosing
operation must have only a single output.

Examples:

return Fib (N−1) + Fib (N−2);

return with (Quotient => Q, Remainder => R) ;

31

Chapter 7

Modules

Modules define a logically related group of types, operations, data, and, possibly, nested modules. Modules
may be parameterized by types, operations, or values.

Every module has an interface that declares its external characteristics. If the interface of a module
declares any non-abstract operations, the module must have a class that defines its internal representation
and algorithms.

7.1 Interface Declaration for a Module

The interface of a module is declared using the following syntax:

interface_declaration ::=
[’abstract’] [’concurrent’] ’interface’ module_identifier
< module_formals >
[module_ancestry]

’is’
{interface_item}

’end’ ’interface’ identifier ’;’

module_identifier ::= identifier { ’::’ identifier }

interface_item ::=
type_declaration | operation_declaration | object_declaration | interface_declaration

Module formal parameters have the following form:

module_formals ::= [module_formal { ’;’ module_formal }]

module_formal ::= formal_type | formal_operation | formal_object

formal_type ::= [identifier ’is’] interface_name ’<’ module_actuals ’>’

Example (also used in section 3.1):

interface L i s t <Element Type i s Assignable<>> i s
function Create () −> L i s t ;
function Is Empty (L : L i s t) −> Boolean ;
procedure Append(L : ref var L i s t ; Elem : Element Type) ;

32

function Remove First (L : ref var L i s t) −> optional Element Type ;
function Nth Element (L : ref L i s t ; N : Univ Integer) −> ref optional Element ;

end interface L i s t ;

This defines the interface to a List module, which provides operations for creating a list, checking whether
it is empty, appending to a list, removing the first element of the list, and getting a reference to the Nth
element of the list.

TBD: Import clause

7.2 Module Inheritance and Extension

A module may be defined as an extension of an existing module, and may be defined to implement the
interface of one or more other modules.

module_ancestry ::=
[’extends’ [identifier ’:’] module_name [’<’ module_actuals ’>’]]
[’implements’ module_list]

module_name ::= module_identifier

module_list ::=
module_name ’<’ module_actuals ’>’
{ ’,’ module_name ’<’ module_actuals ’>’ }

If a module M2 extends a module M1, but does not specify the module actuals for M1, then M2 inherits
all of the module formals of M1. Otherwise, module M2 must have its own set of formals, which are then
used to instantiate M1. The instance of M1 defined by the specified module actuals, or by substituting the
corresponding formals of M2 into M1, is called the underlying type for M2. A module has an underlying type
only if it is defined to extend some other module. If a module M2 has an underlying type, then there is an
underlying component of each object of any type produced by instantiating the module M2. This underlying
component is of the underlying type, and is by default named by the identifier of the module being extended
(e.g. M1), but may be given its own identifier by specifying it immediately after ’extends’.

A module inherits operations from the interfaces of the modules that it extends or implements. When
an operation is inherited from the interface of a module M1 by a new module M2, the types of the inputs
and outputs of any operation are altered by replacing each occurrence of the original module name M1 with
the new module name M2, and by substituting in the formal parameter names of M2 for the corresponding
formal parameter names of M1.

If the module M2 extends the module M1, then an operation inherited from M1 is abstract only if the
corresponding operation in M1 is abstract, or if the operation has an output which is of a type based on M1.
If the operation inherited from M1 is not abstract, then its implicit body is defined to call the operation of
M1, with any input to this operation that is of the underlying type being passed the underlying component
of the corresponding input to the inherited operation.

If the module M2 implements the module M1, then an operation inherited from M1 is optional if the
corresponding operation in M1 is optional, and is otherwise abstract.

If two operations of the same name inherited from different modules end up with identical numbers and
types of inputs and outputs, the non-abstract, non-optional one hides the others, and the optional one(s)
hide the abstract one(s).

An inherited operation may be overridden by providing a declaration for the operation in the interface of
the new module with the same name and number and types of inputs and outputs as the inherited operation.
An abstract inherited operation must be overridden unless the new module is itself specified as ’abstract’.

Example:

33

interface Sk ip L i s t
<Skip Elem Type i s Assignable <>; I n i t i a l S i z e : Un iv Integer := 8>
implements List<Element Type => Skip Elem Type> i s

// The f o l l ow i n g opera t i ons are i m p l i c i t l y dec l a r ed
// due to be ing i n h e r i t e d from Lis t<Skip Elem Type >:

// a b s t r a c t f unc t i on Create () −> Sk i p L i s t ;
// func t i on Is Empty (L : S k i p L i s t) −> Boolean ;
// procedure Append(L : r e f var S k i p L i s t ; Elem : Skip Elem Type) ;
// func t i on Remove First (L : r e f var S k i p L i s t) −> op t i ona l Skip Elem Type ;
// func t i on Nth Element (L : r e f S k i p L i s t ; N : Univ In teger)
// −> r e f o p t i ona l Skip Elem Type ;

function Create () −> Sk ip L i s t ;
// This o v e r r i d e s the a b s t r a c t i n h e r i t e d opera t ion

. . . // Here we may ove r r i d e o ther i n h e r i t e d opera t i ons
// or in t roduce new opera t i ons

end interface Sk ip L i s t ;

7.2.1 Polymorphic Types

If the name of a type is of the form identifier ’+’, it denotes a polymorphic type. A polymorphic type
represents the identified type plus any type that extends or implements the identified type’s interface, with
matching module actuals. The identified type is called the root type for the corresponding polymorphic type.

For example, given the Skip List interface from the example in 7.2, and the Bool List type from section
3.1:

type Boo l Sk ip L i s t i s Sk ip L i s t <Boolean >;

var BL : Boo l L i s t+ := Boo l Sk ip L i s t : : Create () ;

The variable BL can now hold values of any type that is an instance of a module that implements the List
interface, with Element Type specified as Boolean. In this case it is initialized to hold an object of type
Bool Skip List.

An object of a polymorphic type (a polymorphic object) includes a type-id, a run-time identification of
the (non-polymorphic) type of the value it currently contains. The type-id of a polymorphic object may
be tested with a membership test (see 4.2.2) or a case statement (see 5.4), and it controls which body is
executed in certain operation calls (see 6.3). In the above example, the type-id of BL initially identifies the
Bool Skip List type.

7.3 Class Definition for a Module

A class defines local types, operations, and data for a module, as well as a body for each operation declared
in the module’s interface.

A class has the following form:

class_definition ::=
[’concurrent’] ’class’ module_identifier
[< module_formals >]
[module_ancestry]

’is’
{local_class_item}

34

’exports’
{exported_class_item}

’end’ ’interface’ identifier ’;’

local_class_item ::=
type_declaration

| operation_declaration
| operation_definition
| object_declaration
| interface_declaration
| class_definition

exported_class_item ::=
operation_definition

| object_declaration
| class_definition

An exported class item must correspond to an item declared in the module’s interface.
Within an object declaration in a class, a name may refer to any prior class item using its simple identifier.

Within a type declaration in a class, a name within a constraint annotation may refer to a local constant,
but if the constant is not initialized at its declaration, the type has an object-specific constraint and may
only be used within subsequent local (object-specific) type and object declarations (see the Index Type of the
Stack class in chapter 9 for an example of an object-specific constraint). Within other kinds of class items,
local interfaces, non-object-specific types, operations, and initialized constants may be referred to directly,
but local variables and uninitialized constants are considered components of objects of a type associated
with the enclosing class, and must be referred to using component_selection notation (see 4.1.1).

Example:

class L i s t i s
interface List Node<> i s

var Elem : Element Type ;
var Next : optional List Node ;

end interface List Node ;
var Head : optional List Node <>;

exports
function Create () −> L i s t i s

return (Head => null) ;
end function Create ;

function Is Empty (L : L i s t) −> Boolean i s
return L . Head i s null ; // Must say ”L .Head ,” not s imply ”Head”

end function Is Empty ;

procedure Append(L : ref var L i s t ; Elem : Element Type) i s
for X => L . Head loop

i f X i s null then
// Found the end , add new component here
X := (Elem => Elem , Next => null) ;

else
// I t e r a t e wi th next node
continue loop with X => X. Next ;

end i f ;
end loop ;

end procedure Append ;

35

function Remove First (L : ref var L i s t) −> optional Element Type i s
i f L . Head i s null then

// L i s t i s empty , noth ing to re turn
return null ;

else
// Save f i r s t e lement and then d e l e t e node from l i s t
Remove First := L . Head . Elem ;
L . Head := L . Head . Next ;
return ; // Output a l r eady as s i gned

end i f ;
end function Remove First ;

function Nth Element (L : ref L i s t ; N : Univ Integer)
−> ref optional Element i s

for (X => L . Head ; I := 1) loop
i f X i s null then

// reached end o f l i s t
return null ;

e l s i f I == N then
// reached Nth element
return X. Elem ;

else
// cont inue wi th next node o f l i s t
continue loop with (X => X. Next , I => I +1);

end i f ;
end loop ;

end function Nth Element ;

end class L i s t ;

The above class defines the module List whose interface is given in 7.1. The items preceding exports are
local to the module, and are used to implement the linked list structure. The items after exports correspond
to the items declared in the List interface.

TBD: Private interfaces, module extensions, module specializations

7.4 Module Instantiation

Modules are instantiated by providing actuals to correspond to the module formals. If an actual is not
provided for a given formal, then the formal must have a default specified in its declaration, and that default
is used.

The actual parameters used when instantiating a module to produce a type have the following form:

module_actuals ::= [module_actual { ’,’ module_actual }]

module_actual ::=
[identifier ’=>’] actual_type

| [identifier ’=>’] actual_operation
| [identifier ’=>’] actual_object

actual_type ::= object_type

Any module actuals with a specified identifier must follow any actuals without a specified identifier. The
identifier given preceding ’=>’ in a module actual must correspond to the identifier of a formal parameter
of the corresponding kind.

36

Chapter 8

Containers

A container is a type that defines an ”indexing” operator, an ”index set” operator, a container aggregate
operator ”[]”, a combining assignment operator ”|=”, and, optionally, a ”slicing” operator. It will also typi-
cally define a Length or Count function, other operations for creating containers with particular capacities,
for iterating over the containers, etc.

The index type of a container type is determined by the type of the second parameter of the ”indexing”
operator, and the value type of a container type is determined by the type of the result of the ”indexing”
operator.

The index-set type of a container type is the result type of the ”index set” operator, and must be either
a set or interval over the index type.

Examples:

interface Map<Key Type i s Hashable<>; Element Type i s Assignable<>> i s
operator ” [] ” () −> Map;
operator ” |=” (M : ref var Map; Key : Key Type ; Elem : Element Type) ;
operator ” index ing ” (M : ref Map; Key : Key Type)
−> ref optional Element Type ;

operator ” i nd ex s e t ” (M : Map) −> Set<Key Type>;
end interface Map;

The Map interface defines a container with Key Type as the index type and Element Type as the value
type. The interface includes a parameterless container aggregate operator ”[]” which produces an empty
map, a combining operator ”|=” which adds a new Key => Elem pair to the map, ”indexing” which returns
a reference to the element of M identified by the Key (or null if none), and ”index set” which returns the
set of Keys with non-null associated elements in the map.

interface Set<Element Type i s Hashable<>> i s
operator ” [] ” () −> Set ; // Empty s e t
operator ” |=” (S : ref var Set ; Elem : Element Type) ;
function Count (S : Set) −> Univ Integer ;
operator ” in ” (Elem : Element Type ; S : Set) −> Boolean ;
operator ” index ing ” (S : ref Set ;

Index : Un iv Integer { Index in 1 . . Count (S)})
−> ref Elem ;

operator ” i nd ex s e t ” (S : Set) −> In t e rva l <Univ Integer >;
operator ”=?” (Left , Right : Set) −> Ordering ;

end interface Set ;

The Set interface defines a container with the Element Type as the value type and Univ Integer as the index
type. The interface includes a parameterless container aggregate operator ”[]” which produces an empty set,
a combining operator ”|=” which adds a new element to the set, an ”in” operator which tests whether a given

37

element is in the set, an ”indexing” operator which returns the n-th element of the set, and an ”index set”
operator which returns the interval of indices defined for the set (i.e. 1..Count(S)). The compare operator
(”=?” – see 4.2.1) is provided for comparing sets for equality and subset/superset relationships.

interface Array<Component Type i s Assignable <>; Indexed By i s Countable<>> i s
type Bounds Type i s In t e rva l <Indexed By >;
function Bounds (A : Array) −> Bounds Type ;

operator ” [] ”
(Index Set : Bounds Type ; Values : Map<Bounds Type , Component Type>)
−> Result : Array {Bounds (Resu l t) == Index Se t } ;

operator ” index ing ” (A : ref Array ;
Index : Indexed By { Index in Bounds (A)})
−> ref Component Type ;

operator ” i nd ex s e t ” (A : Array)
−> Result : Bounds Type {Resu l t == Bounds (A)} ;

operator ” s l i c i n g ” (A : ref Array ;
S l i c e : Bounds Type { S l i c e <= Bounds (A)})
−> Result : ref Array {Bounds (Resu l t) == S l i c e } ;

operator ” |=” (A : ref var Array ;
Index : Indexed By { Index in Bounds (A)} ;
Value : Component Type) ;

operator ” |=” (A : ref var Array ;
S l i c e : Bounds Type { S l i c e <= Bounds (A)} ;
Value : Component Type) ;

end interface Array ;

The Array interface defines a container with Component Type as the value type and Indexed By as the
index type. The index-set type is Bounds Type. The interface includes a container aggregate operator ”[]”
which creates an array object with the given overall Index Set and the given mapping of indices to values.
It also defines an ”indexing” operator which returns a reference to the component of A with the given
Index, a ”slicing” operator which returns a reference to a slice of A with the given subset of the Bounds, plus
combining operators ”|=” which can be used to specify a new value for a single component or all components
of a slice of the array A.

8.1 Object Indexing and Slicing

Object indexing is used to invoke the ”indexing” operator to obtain a reference to an element of a container
object. Object slicing is used to invoke the ”slicing” operator to obtain a reference to a subset of the elements
of a container object.

Object indexing and slicing share the following syntax:

object_indexing_or_slicing ::= object_name ’[’ operation_actuals ’]’

If one or more of the operation actuals are sets or intervals, then the construct is interpreted as an invocation
of the ”slicing” operator. Otherwise, it is interpreted as an invocation of the ”indexing” operator. The
object name denotes the container object being indexed or sliced.

When interpreted as an invocation of the ”slicing” operator, the construct is equivalent to:

object_name."slicing" ’(’ operation_actuals ’)’

When interpreted as an invocation of the ”indexing” operator, the construct is equivalent to:

38

object_name."indexing" ’(’ operation_actuals ’)’

The implementation of an ”indexing” operator must ensure that, given two invocations of the same ”indexing”
operator, if the actuals differ between the two invocations, then the results refer to different elements of
the container object. Similarly, the implementation of a ”slicing” operator must ensure that, given two
invocations of the same ”slicing” operator, if at least one of the actuals share no values between the two
invocations, then the results share no elements.

If an implementation of the ”indexing” operator and an implementation of the ”slicing” operator for
the same container type have types for corresponding inputs that are the same or differ only in that the
one for the ”slicing” operator is an interval or set of the one for the ”indexing” operator, then the two
operators are said to correspond. Given invocations of corresponding ”indexing” and ”slicing” operators,
the implementation of the operators must ensure that if at least one pair of corresponding inputs share no
values, then the results share no elements of the container object.

Examples:

Table [Key] += 1 ; // bump up Table entry a s s o c i a t e d wi th Key

A[1 . . 3] :=: A [4 . . 6] ; // swap ha l v e s o f 6−element array

8.2 Container Aggregates

A container aggregate is used to create an object of a container type, with a specified set of elements,
optionally associated with explicit indices.

container_aggregate ::=
empty_container_aggregate

| universal_container_aggregate
| positional_container_aggregate
| named_container_aggregate
| iterator_container_aggregate

empty_container_aggregate ::= ’[]’

universal_container_aggregate ::= ’[..]’

positional_container_aggregate ::=
’[’ positional_container_element { ’,’ positional_container_element } ’]’

positional_container_element ::= expression | default_container_element

default_container_element ::= ’..’ => expression

named_container_aggregate ::=
’[’ named_container_element { ’,’ named_container_element } ’]’

named_container_element ::=
choice_list ’=>’ expression

| default_container_element

iterator_container_aggregate ::=
’[’ ’for’ iterator ’=>’ expression ’]’

39

An empty container aggregate is only permitted if the container type has a parameterless container aggregate
operator ”[]”.

A universal container aggregate is only permitted if the container type has a universal set operator ”[..]”.
The choice list in a named container element must be a set of values of the index type of the container.

The expression in a container element must be of the value type of the container.
If present in a container aggregate, a default container element must come last. A default container element

is only permitted when the container aggregate is being assigned to an existing container object, or the index-
set type of the container has a universal set operator ”[..]”.

In an iterator container aggregate, the iterator must not be an initial value iterator, and if it is an
initial next while iterator, it must have a next values part.

The evaluation of a container aggregate is defined in terms of a call on a container aggregate operator
”[]” or ”[..]”, optionally followed by a series of calls on the combining assignment operation ”|=”.

For the evaluation of an empty container aggregate, the parameterless container aggregate operator ”[]” is
called. For the evaluation of a universal container aggregate, the parameterless universal container aggregate
operator ”[..]” is called.

For the evaluation of a positional container aggregate or a named container aggregate:

• if there is a container aggregate operator ”[]” which takes an index set and a mapping of index subsets to
values, this is called with the index set a union of the indices defined for the aggregate, and the mapping
based on the container elements specified in the container aggregate. The default container element is
treated as equivalent to the set of indices it represents.

• if there is only a parameterless container aggregate operator ”[]” then it is called to create an empty
container; the combining operator ”|=” is then called for each container element in the aggregate, with
a choice list of more than one choice resulting in multiple calls.

If there is a default container element, it is equivalent to a container element with a choice list that covers
all indices of the overall container not covered by earlier container elements.

For the evaluation of an iterator container aggregate, the expression is evaluated once for each element of
the sequence of values produced by the iterator, with the loop variable of the iterator bound to that element.

Examples:

[1 , 2 , 3 , 4 , 5] // p o s i t i o n a l con ta iner agg rega t e
[1 . . 5 => 1 , . . => 0] // named with d e f a u l t
[#red => 0x1 , #green => 0x10 , #blue => 0x100]

// a l l named
[for I in 1 . . 1 0 => I ∗∗ 2] // t a b l e o f squares

8.3 Container Element Iterator

An element iterator may be used to iterate over the elements of a container.
An element iterator has the following form:

element_iterator ::=
identifier [’:’ type_name] ’of’ expression

| ’[’ identifier ’=>’ identifier ’]’ ’of’ expression

An element iterator is equivalent to an iterator over the index set of the container identified by the expression.
In the first form of the element iterator, in each iteration the identifier denotes the element of the con-
tainer with the given index. In the second form of the element iterator, the first identifier has the value
of the index itself, and the second identifier denotes the element at the given index in the container. The
identifier denoting each element of the container is a variable if and only if the container identified by the
expression is a variable.

Example:

40

for each [Key => Value] of Table loop
// I t e r a t e over key/ va lue pa i r s o f t a b l e
Display (Output , Key , Value) ;

end loop ;

41

Chapter 9

Annotations

Annotations may appear at various points within a program. Depending on their location, they can represent
a precondition of an operation, a postcondition of an operation, a constraint on a type, an invariant of a
class, or a simple assertion at a point in a sequence of statements.

Annotations have the following form:

annotation ::= ’{’ condition { ’;’ condition } ’}’

postcondition_value ::= object_name ’’’

universal_conversion ::= ’[[’ expression ’]]’

Annotations must evaluate to true under all situations where they are used. The ParaSail program is illegal
if an annotation is violated, or if it cannot be proved true by the implementation.

Within an annotation that is used as a postcondition, a postcondition value (e.g. S’) refers to the value
of the specified object (e.g. S) after the operation is complete. The specified object must be a variable input
to the operation.

An expression of the form ’[[’ expression ’]]’ may be used to convert an expression to a universal
type, generally for use in an annotation. The type of the expression must have a "to_univ" operator; the
type of the universal conversion is the result type of this operator.

Examples:

function Sqrt (X : Float { X >= 0.0 }) −> Float { Sqr t >= 0.0 } ;

The first annotation is a precondition; the second is a postcondition.

type Age i s new Integer <0..200 > ;
type Minor i s Age { Minor < 18 } ;
type Sen ior i s Age { Senior >= 50 } ;

These annotations define constraints on two different subtypes of the Age type.

interface Modular< Modulus : Un iv Integer {Modulus >= 2} > i s
operator ” from univ ” (Univ : Univ Integer {Univ in 0 ..< Modulus})
−> Modular ;

operator ” to un iv ” (Val : Modular) −> Result : Un iv Integer
{ Resu l t in 0 ..< Modulus } ;

operator ”+” (Left , Right : Modular) −> Result : Modular
{ [[Resu l t]] == ([[Le f t]] + [[Right]]) mod Modulus } ;

. . .
end interface Modular ;

42

The precondition on "from_univ" indicates the range of integer literals that may be used with a modular
type with the given modulus. The postcondition on "to_univ" indicates the range of values returned on
conversion back to Univ Integer. The postcondition on "+" expresses the semantics of the Modular "+"
operator in terms of the language-defined operations on Univ Integer.

Here is a longer example:

interface Stack
<Component i s Assignable <>;

S ize Type i s Integer<>> i s
function Max Stack Size (S : Stack) −> Size Type ;
function Count (S : Stack) −> Size Type ;

function Create (Max : Size Type {Max > 0}) −> Stack
{Max Stack Size (Create) == Max ; Count (Create) == 0} ;

procedure Push
(S : ref var Stack {Count (S) < Max Stack Size (S)} ;
X : Component) {Count (S ’) == Count (S) + 1} ;

function Top(S : ref Stack {Count (S) > 0}) −> ref Component ;

procedure Pop(S : ref var Stack {Count (S) > 0})
{Count (S ’) == Count (S) − 1} ;

end interface Stack ;

class Stack i s
const Max Len : Size Type ;
var Cur Len : Size Type {Cur Len in 0 . . Max Len} ;
type Index Type i s Size Type { Index Type in 1 . . Max Len} ;
var Data : Array<optional Component , Indexed By => Index Type >;

exports
{ f o r a l l I in 1 . . Cur Len => Data [I] not n u l l } // in va r i an t f o r Top ()

function Max Stack Size (S : Stack) −> Size Type i s
return S . Max Len ;

end function Max Stack Size ;

function Count (S : Stack) −> Size Type i s
return S . Cur Len ;

end function Count ;

function Create (Max : Size Type {Max > 0}) −> Stack
{Max Stack Size (Create) == Max ; Count (Create) == 0} i s
return (Max Len => Max, Cur Len => 0 , Data => [. . => null]) ;

end function Create ;

procedure Push
(S : ref var Stack {Count (S) < Max Stack Size (S)} ;
X : Component) {Count (S ’) == Count (S) + 1} i s

S . Cur Len += 1 ;
S . Data [S . Cur Len] := X;

end procedure Push ;

function Top(S : ref Stack {Count (S) > 0}) −> ref Component i s
return S . Data [S . Cur Len] ;

end function Top ;

43

procedure Pop(S : ref var Stack {Count (S) > 0})
{Count (S ’) == Count (S) − 1} i s

S . Cur Len −= 1 ;
end procedure Pop ;

end class Stack ;

This example illustrates annotations used as preconditions ({Count(S) > 0}), postconditions ({Count(S’) ==
Count(S) - 1}), type constraints ({Cur_Len in 0..Max_Len}), and a class invariant ({for all I in 1..Cur_Len
=> Data[I] not null}).

44

Chapter 10

Concurrent Objects

Expression evaluation in ParaSail proceeds in parallel (see 6.3), as do statements separated by ’||’ (see 5.1),
and the iterations of a concurrent loop (see 5.6 and 5.6.1). The ParaSail implementation ensures that this
parallelism does not introduce race conditions, situations where a single object is manipulated concurrently
by two distinct threads without sufficient synchronization. A program that the implementation determines
might result in a race condition is illegal.

Objects in ParaSail are either concurrent or sequential, according to whether their type is defined by
instantiating a concurrent or non-concurrent module. Concurrent objects allow concurrent operations by
multiple threads by using appropriate hardware or software synchronization. Sequential objects allow con-
current operations only on non-overlapping components.

10.1 Concurrent Modules

A module is concurrent if its interface is declared with the reserved word ’concurrent’. The class defining
a concurrent module must also have the reserved word ’concurrent’. Types produced by instantiating a
concurrent module are concurrent types.

Example:

concurrent interface Atomic<Item Type i s Machine Integer<>> i s
function Create (I n i t i a l V a l u e : Item Type) −> Atomic ;
function Test And Set (X : ref var Atomic) −> Item Type ;

// I f X == 0 then s e t to 1 ; re turn o ld va lue o f X
function Compare And Swap (X : ref var Atomic ;

Old Val , New Val : Item Type) −> Item Type ;
// I f X == Old Val then s e t to New Val ; re turn o ld va lue o f X

end interface Atomic ;
. . .
var X : Atomic<Int 32> := Create (0) ;
var TAS Result : In t 32 := −1;
var CAS Result : In t 32 := −1;
block

TAS Result := Test And Set (X) ;
| |

CAS Result := Compare And Swap (X, 0 , 2) ;
end block ;
// Now e i t h e r TAS Result == 0 , CAS Result == 1 , and X i s 1 ,
// or TAS Result == 2 , CAS Result == 0 and X i s 2 .

This is an example of a concurrent module which defines an atomic object which can hold a single Ma-
chine Integer, and can support concurrent invocations by multiple threads of Test And Set and Com-

45

pare And Swap operations. The implementation of this module would presumably use hardware synchro-
nization.

10.1.1 Locked and Queued Operations

The operations of a concurrent module M may include the reserved word ’locked’ or ’queued’ for inputs of
a type based on M. If a concurrent module has any operations that have such inputs, then it is a locking
module; otherwise it is lock-free. Any object of a type based on a locking module includes an implicit lock
component.

If an operation has an input that is marked ’locked’, then upon call, a lock is acquired on that input.
If it is specified as a ’var’ input, then an exclusive read-write lock is acquired; if it is specified as a ’const’
input than a sharable read-only lock is acquired. Once the lock is acquired, the operation is performed, and
then the caller is allowed to proceed.

If an operation has an input that is marked ’queued’, then the body of the operation must specify a
dequeue condition. A dequeue condition has the following form:

dequeue_condition ::= ’queued’ while_or_until condition ’then’

A dequeue condition is satisfied if the condition evaluates to true and the reserved word ’until’ appears, or
if the condition evaluates to false and the reserved word ’while’ appears.

Upon call of an operation with a ’queued’ input, a read-write lock is acquired, the dequeue condition
of the operation is checked, and if satisfied, the operation is performed, and then the caller is allowed to
proceed. If the dequeue condition is not satisfied, then the caller is added to a queue of callers waiting to
perform a queued operation on the given input.

Within an operation of a concurrent module, given an input that is marked ’locked’ or ’queued’, the
components of that input may be manipulated knowing that an appropriate lock is held on that input
object. If there is a concurrent input that is not marked ’locked’ or ’queued’, then there is no lock on that
input, and only concurrent components of such an input may be manipulated directly.

If upon completing a locked or queued operation on a given object, there are other callers waiting to
perform queued operations, then before releasing the lock, these callers are checked to see whether the
dequeue condition for one of them is now satisfied. If so, the lock is transferred to that caller and it performs
its operation. If there are no callers whose dequeue conditions are satisfied, then the lock is released, allowing
other callers not yet queued to contend for the lock.

Example:

concurrent interface Queue<Element Type i s Assignable<>> i s
function Create () −> Queue ;
procedure Append(Q : locked var Queue ; Elem : Element Type) ;
function F i r s t (Q : locked const Queue) −> optional Element Type ;
function Remove First (Q : queued var Queue) −> Element Type ;

end interface Queue ;
. . .
var Q : Queue<Int32> := Create () ;
var A : Int32 := 0 ;
var B : Int32 := 0 ;
block

Append(Q, 1) ; Append(Q, 2) ;
| |

A := Remove First (Q) ;
| |

B := Remove First (Q) ;
end block ;
// At t h i s point , e i t h e r A == 1 and B == 2
// or A == 2 and B == 1.

46

In this example, we use a locking module Queue and use locked and queued operations from three separate
threads to concurrently add elements to the queue and remove them, without danger of unsynchronized
simultaneous access to the underlying queuing data structures.

10.2 Concurrent Evaluation

Two expressions that are inputs to an operation call (see 6.3) or a binary operator (see 4.2.1) are evaluated
in parallel in ParaSail, as are the expressions that appear on the right hand side of an assignment and those
within the object name of the left hand side (see 5.2). In addition, the separate statement threads of a
statement thread group (see 5.1) are performed in parallel. Finally, the iterations of a concurrent loop (see
5.6) are performed in parallel.

Two object names that can be part of expressions or statements that are evaluated concurrently must
not denote overlapping parts of a single sequential object, if at least one of the names is the left-hand
side of an assignment or the actual parameter for a ’var’ parameter of an operation call. Distinctly named
components of an object are non-overlapping. Elements of a container associated with distinct indices are
non-overlapping (see 8.1).

Examples:

function Bump(A : ref var Int) −> Int ;
X := 3 | | X := 5 // i l l e g a l
X := 3 | | Y := X // i l l e g a l
A := X | | B := X // l e g a l
A[I] := 2 | | A[J] := 3 // i l l e g a l i f I can equa l J
Bump(X) + X // i l l e g a l
X := Bump(X) // l e g a l

47

Chapter 11

ParaSail Library

ParaSail includes a small number of predefined types and a number of language-provided modules.
The predefined types are:

Univ Integer arbitrary length integers

Univ Real ratio of two Univ Integers, with plus/minus zero and plus/minus infinity

Univ Character 31-bit ISO-10646 (Unicode) characters

Univ String vector of Univ Characters

Univ Enumeration all values of the form # identifier

Boolean an enumeration type with two values #false and #true

Ordering an enumeration type with four values #less, #equal, #greater, and #unordered

The language-provided modules are:

abstract interface Any<> i s
end interface Any ;

interface Assignable<> i s
operator ”:=” (A : ref var Ass ignab le ; B : Ass ignab le) ;

// This i s a pseudo−opera t ion which i s prov ided au t oma t i c a l l y
// to a l l modules t h a t extend Ass i gnab l e .
// By de f au l t , a module ex tends Ass i gnab l e ;
// can be overr idden by e x p l i c i t l y ex t end ing ”Any<>”.

end interface Ass ignab le ;

abstract interface Comparable<> i s
operator ”=?” (Left , Right : Comparable) −> Ordering ;

end interface Comparable ;

abstract interface Hashable<> extends Assignable<>
implements Comparable<> i s

function Hash (X : Hashable) −> Univ Integer ;
end interface Hashable ;

abstract interface Countable<> extends Hashable<> i s
operator ”+” (Le f t : Countable ; Right : Un iv Integer) −> Countable ;
operator ”+” (Le f t : Un iv Integer ; Right : Countable) −> Countable ;

48

operator ”−” (Le f t : Countable ; Right : Un iv Integer) −> Countable ;
operator ”−” (Le f t : Countable ; Right : Countable) −> Univ Integer ;

end interface Countable ;

interface In t e rva l <Bound Type i s Countable<>> i s
. . .

end interface I n t e r v a l ;

interface I n t eg e r
<Range : In t e rva l <Univ Integer> := Default Range>
extends Countable<> i s

. . .
end interface I n t eg e r ;

interface Float<Dig i t s : Un iv Integer := De fau l t D ig i t s >
extends Hashable<> i s

. . .
end interface Float ;

interface Character<Bit s : Un iv Integer := 8 ; . . . >
extends Countable<> i s

. . .
end interface Character ;

interface Str ing<Character Type i s Character<>>
extends Hashable<> i s

. . .
end interface St r ing ;

abstract interface Container
<Value Type i s Assignable <>; Index Type i s Hashable<>>
extends Hashable<> i s

. . .
end interface Container ;

interface Vector
<Element Type i s Assignable<>>
extends Container<Element Type , Univ Integer> i s

. . .
end interface Vector ;

interface Enum<Values i s Vector<Univ Enumeration>>
extends Countable<> i s

. . .
end interface Enum;

interface Array
<Element Type i s Assignable <>; Indexed By i s Countable<>>
extends Container<Element Type , Indexed By> i s

. . .
end interface Array ;

interface Set
<Element Type i s Hashable<>>
extends Container<Element Type , Univ Integer> i s

. . .

49

end interface Set ;

interface Map
<Key Type i s Hashable<>; Element Type i s Assignable<>>
extends Container<Element Type , Key Type> i s

. . .
end interface Map;

50

