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Abstract. We consider a configuration problem for high-performance
pumps, where the configurations that are technically possible are spec-
ified in restriction tables. For this problem we propose a Constraint
Programming based feasibility model and present an algorithm for de-
termining and resolving conflicts. Computational results show that the
approach is very well suited for various use cases in practice.
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1 Introduction

High-performance pumps and valves are often sold in markets with extremely
diverse customer requirements. Although they are assembled from a standardized
set of parts kept in stock, hardly any two orders are exactly the same. To be
able to fulfill the customer’s specification but ensure that the product can be
manufactured and that all the technical, pricing, lead time and business limits
are respected, a product configuration software is used.

The software is used by sales people to configure and quote the product and to
later automatically generate the parts lists and work plans needed in the factory.
Sometimes the configuration software will report that there is a conflict with the
choices made to satisfy the customer requirements. Due to the complexity of the
product model, it is practically impossible for the user to resolve these manually.
Automated assistance for conflict resolution is needed.

2 The Configuration Problem

The product is described by a set of features F with finite domains. The goal
is to have a valid configuration with an assignment of a specific value to each
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feature such that all the constraints are fulfilled. The constraints fall into two
categories, a consistent product model that stays the same, and a set of user
decisions and domain restrictions that vary for each request.

The product structure is a tree-like maximal bill of materials (BOM). The
tree nodes can themselves also have sub-nodes, etc., but loops are not allowed
and the depth is of course finite. The nodes in the BOM are optional and may
or may not exist in a particular configuration depending on feature evaluations.

The main constraints are formulated using restriction tables and conditional
assignments. A restriction table simply lists allowed combinations of values for a
set of features. A combination of values not corresponding to a line in the table
is not allowed. The restriction tables are assigned to nodes and are only active
if their node exists. This can lead to nodes being rejected in a solution if the
tables they contain cannot be fulfilled due to other constraints. A conditional
assignment is an implication that a feature take on a certain value if a condition
holds.

A typical model has around 500 features with 4 values on average, 300 rele-
vant nodes, 150 conditional assignments and about 600 restriction tables with 1
to 10 columns each and containing 140,000 lines in total for all tables.

3 The CP Model

We model the configuration problem using a Constraint Programming (CP) ap-
proach. The CP formulation is the basis for finding feasible configurations (using
a backtracking search based on feature and evaluation priorities) and for deter-
mining conflicts and resolutions. For the description of the model we use decision
variables and constraints provided by Google’s OR-Tools CP library (see [2]).

For each feature f ∈ F we define an integer decision variable xf with domain
{−1, 0, . . . , |f | − 1}}, where |f | is the number of possible evaluations for f . The
value −1 is used to represent intentional nonevaluation of a feature. Furthermore,
for each node n in the set of all nodes N we define a binary decision variable xn

which is equal to 1 if n exists and 0 otherwise.
The most important constraints are the table restrictions. For each node

n ∈ N let Rn be the set of its restriction tables. The set of all restriction tables
is denoted by R =

⋃
n∈N Rn. A restriction table r ∈ R constrains the possible

combinations of values for pr features by a set Ar of qr vectors of length pr.
As the nodes are optional and for n ∈ N the restriction tables in Rn need

only to be satisfied if n exists, we introduce a local feature variable xn
f for each

feature f referenced in a restriction table in Rn. Each of these local variables xn
f

has the same domain as xf and we add the constraint

xn ≤
(
xf = xn

f

)
.Var() (1)

to the CP formulation. In this constraint, (. . .).Var() is a binary decision vari-
able which is equal to 1 if the inner constraint is satisfied and 0 otherwise (see [2]).
Thus, (1) enforces that xf and xn

f are equal if node n exists.
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Given the local feature variables, the restriction tables are then represented
in the CP formulation by the Google OR Tools constraint

AllowedAssignment
((

xn
f1 , . . . , x

n
fpr

)
,Ar

)
, (2)

which ensures the vector of values assigned to
(
xn
f1
, . . . , xn

fpr

)
is an element ofAr.

In combination with (1) these constraints make sure that the restriction tables
are respected if node n exists. Note that the usage of the local feature variables is
necessary as (. . .).Var() is not available for AllowedAssignment(. . .) (see [2]).

Apart from the table restrictions, the nodal existence each depend on the
values of certain features and other feature values depend on the existence of
certain nodes. In the CP model this is reflected by conjunctions and disjunc-
tions of value assignments to feature and node existence variables. Furthermore,
some features f ∈ F must not take a certain set of values Vt

f if the feature
OPRTN PLNTS, which selects the production plant, is set to a certain value t:

max
v∈Vt

f

(xf = v) .Var() ≤ 1− (xOPRTN PLNTS = t) .Var(). (3)

In addition to these constraints, which describe the feasible configurations of
the product in general, the CP model can be extended by explicit user requests.
The requests either lead to instantiations of decision variables (assignment of a
certain value to a feature or determination of node existence) or further domain
restrictions for feature variables.

4 Conflict Determination and Resolution

Especially in early stages of product modeling or when users specify many feature
assignments, the CP model may be infeasible. In these cases, the determination
of the minimal conflicts is crucial. They describe the core of the infeasibility and
thus form the basis for resolutions that fulfill the specifications as far as possible.

In the following we present a bottom-up approach combined with a binary
search for finding all minimal conflicts of a set of constraints. We use this ap-
proach since the minimal conflicts are usually rather small. Other procedures for
determining all minimal conflicts can for example be found in [3] (top-down ap-
proach) and [1] (simultaneous construction of maximal satisfiable and minimal
conflicting constraint sets).

Let C be a set of constraints. C is a conflict if not all constraints in C can
be fulfilled at the same time. C is minimal if no proper subset of C is a conflict.
Moreover, let S be a set of sets. Then H is a hitting set of S if S ′ ∩H ≠ ∅ for all
S ′ ∈ S. H is minimal if no proper subset of H is a hitting set.

Let MinC be the set of minimal conflicts found so far and H be the set of min-
imal hitting sets of MinC. Then the bottom-up approach for finding all minimal
conflicts of a conflict C has the following steps:

1. Set C′ = C.



4 Fischer, Hamkins, Velten, Wortel

Algorithm 1: Determination of one minimal conflict.

Input: Conflict C′.
Result: Minimal conflict C∗.

1 if |C′| = 1 then
2 Return C′.
3 Set L := c1, . . . , cN (ordered constraints of C′), nmin = 0, nmax = N , C∗ = ∅.
4 while true do
5 while true do

6 Set n∗ = ⌈(nmax − nmin)/2⌉ and C̃ = C∗ ∪ {c1, . . . , cn∗}.
7 if C̃ is a conflict then
8 if n∗ = nmax then
9 C∗ = C∗ ∪ {cn∗} and Break.

10 else
11 Set nmin = n∗.

12 else
13 Set nmin = n∗.

14 if C∗ is a conflict then
15 Break.
16 else
17 Set nmin = 0, nmax = n∗ − 1.

18 Return C∗.

2. Find a minimal conflict C∗ ⊆ C′ by Algorithm 1. MinC := MinC ∪{C∗}.
3. Update H with respect to C∗.
4. For all H ∈ H:

– If C\H is a conflict: Set C′ = C\H, go to Step 2.
– Otherwise: Remove H from H.

5. Return MinC.

The update of H with respect to C∗ in Step 3 is done as follows:

– Extend each element of H by each element of C∗: H := {H ∪ c : H ∈ H, c ∈ C∗}.
– Remove all duplicate and non minimal hitting sets from H.

In addition, note that C\H resolves all minimal conflicts of the current set MinC.
Therefore, if C\H is a conflict, this set contains a new minimal conflict and no
duplicates are generated. Finally, the approach guarantees that MinC is complete
(i.e. all minimal conflicts have been found) as in Step 5 the complements C\H
for all hitting sets H of MinC are feasible.

Given the set of minimal conflicts MinC resolutions are determined by relaxing
minimal hitting sets of this set and applying the prioritized backtracking search.

5 Use Cases and Computational Results

5.1 Conflict Resolution

In this use case the end user would like to be informed which of the user decisions
cause conflicts with the product model and be given suggestions for changing
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Fig. 1. Solution time for conflict resolution use case

them to get a valid configuration. During product configuration a user proceeds
by selecting values for some of the features and the system is to return a valid
assignment for the rest of them or to determine that no valid solution exists and
return a number of suggestions on how to resolve the problem by changing some
of the decisions. Normally the user proceeds feature by feature with the system
responding after each choice, so a fast response is very important.

Since this is the same as the use case described in [4] the following variant of
this approach was implemented as a baseline. The user decisions were prioritized
based on the order in which they were made. Because of the step-by-step decision
procedure the QUICKXPLAIN algorithm in [4] simply reports ”relax your last
decision” as resolution, rather unsatisfying for the end user. As the product
model is soluble without user decision constraints, and each feature value can
occur in at least one solution, there are always at least two possible conflict
resolutions, so the algorithm was extended to also find all relaxations of single
user decisions that resolve the conflict and if there are less than two, also a
general relaxation different than ”relax your last decision”.

Fig. 1 shows a comparison of the solution times for the algorithm developed
here (Section 4) with the modified QUICKXPLAIN for about 6000 test cases
taken from actual and conflicting end user interactions . It can be seen that the
new algorithm usually completes in 25% of the time that the baseline required.
Further, in general it reports more possible conflict resolutions (potentially one
for each minimal hitting set). At the far right of the figure we see that there are
a few cases in which both algorithms required substantially more time or didn’t
complete, reminding us that the problem at hand remains NP-complete.

5.2 Conflict Analysis

In this use case the product modeler assigns values to some features and finds
that no solution is possible, although the feature assignment is intended to be
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Fig. 2. Running time for conflict analysis use case

a valid configuration. In this case, the product modeler needs to know which of
the constraints in the model prevent the assignments to check the formulation
of those constraints for errors. The response time is not so important, but the
completeness of the answer is. Manual analysis of the conflict usually takes days,
so if the system can automatically deliver a complete analysis in less time it is
a great benefit for the modeler looking for problems in the model.

The performance of the algorithms for conflict analysis was demonstrated
on 3700 test cases with conflicts, also taken from real end user interactions.
Fig. 2 shows the processing time required vs. the number of minimal conflicts
discovered. The solution time of up to a few minutes is perfectly acceptable for
practical use. The large number of minimal conflicts appears surprising at first
but can be explained due to (necessary) redundancies in the restriction tables.

For the tests, a time limit of roughly 150 s was enforced. When the time
limit was reached, the algorithm had always reported some minimal conflicts.
Since every single minimal conflict needs to be addressed to resolve the overall
conflict, reporting even one minimal conflict is a help for the product modelers.
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