
Proposed edits to http://code.google.com/apis/opensocial/docs/0.8/restfulspec.html:

1. Overview

Existing Text New Text

No single data representation is ideal for

every client. This protocol defines dual

representations for each resource in two

widely supported formats, JSON

[RFC4627] and Atom/AtomPub

[RFC4287][RFC5023], using a set of

generic mapping rules. The mapping rules

allow a server to write to a single interface

rather than implementing the protocol

twice.

No single data representation is ideal for

every client. This protocol defines

representations for each resource in three

widely supported formats, JSON

[RFC4627], Atom/AtomPub

[RFC4287][RFC5023], and XML using a

set of generic mapping rules. The mapping

rules allow a server to write to a single

interface rather than implementing the

protocol multiple times.

OpenSocial container servers are free to

define additional representations but

MUST support at least the JSON and

Atom formats defined in this document.

OpenSocial container servers are free to

define additional representations but

MUST support at least the JSON, Atom,

and XML formats defined in this document.

2. Data Representations

Existing Text New Text

Each resource has a two representations, as JSON
and Atom (XML). All data must be representable in
both formats, but we do not attempt to map from
generic XML or Atom to JSON. Instead, we define
an internal data model using English and JSON
syntax, and then define the mappings between
this and Atom/JSON.

Each resource has three representations, as JSON,
Atom (XML), and generic XML. All data must be
representable in both formats, but we do not
attempt to map from generic XML or Atom to
JSON. Instead, we define an internal data model
using English and JSON syntax, and then define the
mappings between this and Atom/JSON as well as
JSON and generic XML.

Mapping consists of converting between the
internal hierarchy and the JSON / Atom protocol
format.

Mapping consists of converting between the
internal hierarchy and the JSON / Atom protocol
/generic XML format.

N/A (insert prior to “Examples of the primary types of
data follow. Each example shows both
representations, JSON and Atom, with the payload
data highlighted for ease of comparison.”)

http://code.google.com/apis/opensocial/docs/0.8/restfulspec.html
http://www.ietf.org/rfc/rfc.txt
http://www.rfc-editor.org/rfc/rfc4287.txt
http://www.rfc-editor.org/rfc/rfc4287.txt
http://www.ietf.org/rfc/rfc.txt
http://www.rfc-editor.org/rfc/rfc4287.txt
http://www.rfc-editor.org/rfc/rfc4287.txt

The general rules for mapping between the
generic XML and JSON formats are as
follows.

 The default location for all data in the

generic XML format is in datatype,

where datatype is a root node naming

the type of data delivered: <person>,

<group>, <activity>, or <appdata>.

 The field names are the same as in the

JS documentation, in camelCase (the

same format as the JS field accessors;

e.g, "lastName".

 Strings are represented as strings in

both formats.

 Dates and timestamps are represented

as strings containing XML Schema Part

2, section 3.2.7 values

(http://www.w3.org/TR/2004/REC-

xmlschema-2-20041028/#dateTime).

These are also known as "XSD Dates".

In cases where only a day-of-the-year is

desired, e.g., a birthday, the year

SHOULD be specified as 0000.

 Enums are represented as objects with

"displayvalue" (localizable, customizable

string) and "key" (key) fields.

 Arrays are represented as arrays in the

JSON representation and as repeated

fields in the XML representation.

 Sub-objects are represented as sub-

elements in both formats.

 Fields are placed directly in the root

object in the JSON format. In the generic

XML format, they are by default placed

under datatype (e.g., person for person

data). Fields are NEVER encoded as

attributes on elements. Instead, fields

are always included as elements plus

text data.

http://code.google.com/apis/opensocial/docs/0.8/reference/#opensocial
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#dateTime
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#dateTime

Examples of the primary types of data follow. Each
example shows both representations, JSON and
Atom, with the payload data highlighted for ease
of comparison

Examples of the primary types of data follow. Each
example shows representations in JSON, Atom,
and generic XML with the payload data highlighted
for ease of comparison

2.1 Collections

Existing Text New Text

Collections are a useful abstraction for dealing
generically with multiple things, whether those
things are persons, groups, activities, or
application data sets. They have both Atom and
JSON representations; the Atom representation is
simply a standard Atom feed whose entries are
one of the entry types specified above. The
default JSON collection representation is a JSON
object containing an "entry" slot containing a list
of JSON objects. Collections use the OpenSearch
conventions for reporting totalResults (for
complete unpaged feed), startIndex of current
page, and itemsPerPage.

Collections are a useful abstraction for dealing
generically with multiple things, whether those
things are persons, groups, activities, or application
data sets. They have the Atom, JSON and generic
XML representations; the Atom representation is
simply a standard Atom feed whose entries are one
of the entry types specified above. The default JSON
collection representation is a JSON object
containing an "entry" slot containing a list of JSON
objects. The default generic XML collection
representation is a <collection> node containing an
“entry” slot containing a list of generic XML
elements. Collections use the OpenSearch
conventions for reporting totalResults (for complete
unpaged feed), startIndex of current page, and
itemsPerPage.

 (insert as generic XML example)
application/xml representation:
<collection
xmlns="http://ns.opensocial.org/2008/opensocial">
 <author>
 example.org:58UIDCSIOP233FDKK3HD44
 </author>
 <link>
 <rel>next</rel>
 <href>http://api.example.org/...</href>
 </link>
 <totalResults>100</totalResults>
 <startIndex>1</startIndex>
 <itemsPerPage>10</itemsPerPage>
 <entry>
 <entry>{...first thingie...}</entry>
 <entry>{...second thingie...}</entry>
 ...
 </entry>
</collection>

2.2 Person

Existing Text New Text

 (insert as generic XML example)
application/xml representation:
<person
xmlns="http://ns.opensocial.org/2008/opensocial">>
<id>example.org:34KJDCSKJN2HHF0DW20394</id>
 <name>
 <unstructured>Jane Doe</unstructured>
 </name>
 <gender>

 <displayvalue>女性</displayvalue>
 <key>FEMALE</key>
 </gender>
</person>

2.3 Group

Existing Text New Text

 (insert as generic XML example)
application/xml representation:
<group
xmlns="http://ns.opensocial.org/2008/opensocial">

<id>example.org:34KJDCSKJN2HHF0DW20394/friend
s</id>
 <title>Peeps</title>
 <link>
 <rel>alternate</rel>

<href>http://api.example.org/people/example.org:3
4KJDCSKJN2HHF0DW20394/@friends</href>
 </link>
</group>

2.4 Activity

Existing Text New Text

 (insert as generic XML example)
application/xml representation:
<activity
xmlns="http://ns.opensocial.org/2008/opensocial">

<id>http://example.org/activities/example.org:87ea
d8dead6beef/self/af3778</id>
 <title>
 <type>html</type>
 <value>
 some activity
 </value>

 </title>
 <updated>2008-02-20T23:35:37.266Z</updated>
 <body>Some details for some activity</body>
 <bodyId>383777272</bodyId>

<url>http://api.example.org/activity/feeds/.../af377
8</url>

<userId>example.org:34KJDCSKJN2HHF0DW20394</
userId>
</activity>

2.5 AppData

Existing Text New Text

 (insert as generic XML example for isolated AppData)
application/xml representation:
<appdata
xmlns="http://ns.opensocial.org/2008/opensocial">
 <pokes>3</pokes>
 <last_poke>2008-02-13T18:30:02Z</last_poke>
</appdata>

 (insert as generic XML example for AppData
Collection)
application/xml representation:
<appdata
xmlns="http://ns.opensocial.org/2008/opensocial">
 <entry>
 <entry>

<id>example.org:34KJDCSKJN2HHF0DW20394</id>
 <pokes>3</pokes>
 <last_poke>2008-02-
13T18:30:02Z</last_poke>
 </entry>
 <entry>

<id>example.org:58UIDCSIOP233FDKK3HD44</id>
 <pokes>2</pokes>
 <last_poke>2007-12-
16T18:30:02Z</last_poke>
 </entry>
 </entry>
</appdata>

