Security in OpenLMIS

We suggest that the best option would be to implement Token Based Authentication in
OpenLMIS. Our suggestion is to create new repository “openimis-auth” with a microservice
called AuthService, that would handle both authentication and authorization.

Additionally, there will be an APl Gateway (ticket “OLMIS-761: Reverse proxy server
deployment (nginx)”) that will forward all requests to an appropriate microservice.

Front end clients authentication

When front-end client wants to log in by sending request with his credential, reverse proxy
forwards the request to AuthService and if the credentials are correct a token is returned.
Client passes his token as a header in every request sent to APl Gateway. APl Gateway
validates this token by calling AuthService. If it is valid, APl Gateway routes request to
appropriate service.

Authentication between microservices

Microservices authenticate each other also by using tokens. When one service is calling
another, it passes a token that he received from client. The other service validates the token
by calling AuthService.

Authorization

User can have one of two roles in OpenLMIS - User or Admin. When he is authenticated and
his request gets passed to a microservice, this microservice can ask AuthService whether
user has rights to perform given action.

Tokens format

We suggest using JSON Web Tokens (JWT) as a format of tokens. They are signed, so
they can be transported between client and service with the guarantee that its content is not
changed. When using shared key to sign token, we can easily verify the authenticity of the
token. Shared key should be saved in configuration file.

OAuth2

OAuth 2.0 is a standard that applications can use to provide client applications with a ‘secure
delegate access’. OAuth works over HTTP and authorizes Devices, APIs, Servers and
Applications with access tokens. In our implementation we suggest to use Spring Security
OAuth2 with JWT as the format of the OAuth2 token.

For our point of view OAuth 2.0 defines the following roles of users and applications:
Client

API Gateway (Nginx)

AuthService

Target Service



We can define authorization flow for two cases:

1. Unauthenticated Client request a protected action.

Authentication
and authorization

micro service
User +
o«
. g g
. . 1. Requesta i G 5
protected action . = g
» nginx zF ]
U +* wi
8. Response from MS ™
¥

Target micro service

2. Authenticated Client request a protected action.

Authentication
and authorization
micro service
User +
=
. S 2
1. Requesta i S 4
. . protected action . ] g
> ngginx = i
,U < o
6. Response from MS ™
¥

Target micro service

As you might notice the only difference is that user was or was not authenticated. It means
that User already has (or doesn’t have) an access token stored.

Spring Security OAuth
Spring Security OAuth provides support for using Spring Security with OAuth1 or OAuth2

using standard Spring and Spring Security programming models and configuration idioms.
(API documentation: http://docs.spring.io/spring-security/oauth/apidocs/index.html).



http://docs.spring.io/spring-security/oauth/apidocs/index.html

Recommended way to get started using Spring Security OAuth is with a dependency
management system. We just need to add this line to build.gradle:

dependencies {

compile
‘org.springframework.security.oauth:spring-security-oauth2:2.0.10.RELEASE"
}

For more information about Spring Security OAuth please read the presentation about
security for microservices written by Dave Syer, the lead of Spring Security OAuth:
https://speakerdeck.com/dsyer/security-for-microservices-with-spring

JSON Web Tokens

JSON Web Token (JWT) is an open standard that defines a compact and self-contained way
for securely transmitting information between parties as a JSON object. The information can
be verified and trusted because it is digitally signed. JWTs can be signed using a secret or a
public/private key pair using RSA.

JSON Web Tokens consist of three part separated by dots (.), which are:
e Header
e Payload
e Signature

Header typically consists of two parts: the type of the token, which is JWT and the hashing
algorithm being used, such as HMAC SHA256 or RSA.
In OpenLMIS we suggest using the following header:

“alg”: ”HS256,
“typ” s “JNT”

Payload is the second part of the token, which contains the claims. Claims are statements
about the entity (for now the user) and additional metadata. There are three types of claims:
reserved, public and private claims.

e Reserved claims: These is a set of predefined claims which are not mandatory but
recommended, to provide a set of useful, interoperable claims. Some of them are: iss
(issuer), exp (expiration time), sub (subject), aud (audience) and others.

e Public claims: These can be defined at will by those using JWTs. But to avoid
collisions they should be defined in the IANA JSON Web Token Registry or be
defined as a URI that contains a collision resistant namespace.

e Private claims: These are the custom claims created to share information between
parties that agree on using them.


https://speakerdeck.com/dsyer/security-for-microservices-with-spring

For our needs we suggest the following payload example:

{
"iss": "OLMIS",
“exp”: 1300819380,
“name”: “Username”
}

To create the signature part you have to take the encoded header, the encoded payload, a
secret, the algorithm specified in the header and sign that. The signature is used to verify
that the sender of the JWT is who it says it is and to ensure that the message wasn’t
changed along the way.

For OLMIS, we suggest to creating signature in the following way:

HMACSHA256 (
base64UrlEncode(header) + “.” +
base64UrlEncode(payload),
secret)

The output is three Base64 strings separated by dots that can be easily passed in HTML
and HTTP environments, while being more compact when compared to XML-based
standards such as SAML.

The following shows a JWT that has the previous header and payload encoded and it is
signed with a “qwertyuiopasdfghjkizxcvbnm123456” key:

eyJ0eXAiO0iJKV1QiLCIhbGci0iJIUzI1INiJ9.eyIpc3MiOiIiLCIpYXQiOm51bGwsImV4cC
I6bnVsbCwiYXVkIjoiIiwic3ViIjoiTOXNSVMiLCIuYW11IjoiVXN1cm5hbWUiLCIhZG1pb
iI6IMZhbHN1Iiwicm9sZXMi01J7IFwiVXN1clwiIHOifQ.MF1Vg6Fm5bJ1uTx89YXs11ojH
kizsYEXY1YWZJjKbREU



