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Abstract

This report presents measurements of the quality of various different dictionar-
ies learned from two different language-learning pipelines; one is the ULL/Kolonin
variant, the other is the Linas variant. The ULL/Kolonin dictionaries suggest two
major breakthroughs: they suggest how the learning pipeline should be tuned, and
they indicate how the pipeline is relatively insensitive to early stages of process-
ing. The Linas variant results indicate that the sheer quantity of training data has a
strong impact on the quality of the learned grammars.

This report briefly reviews the dictionaries, the algorithms used to obtain them,
and measurement results. It is assumed that the reader has a general familiarity
with the project.

Introduction
The language learning project attempts to extract symbolic grammars from a sampling
of raw text. The general process is conceptually straight-forward:

1. Obtain provisional parses for a (very) large quantity of text.

2. Chop up up the resulting parses into individual words, with co-occurring connec-
tors. That is, each word-instance in the text is associated with a set of connectors
pointing at the other words it connected to in that particular parse. Thus, one
has a word-instance, and a connector-set extracted from the parse in the first
step. These connector-sets are variously referred to as “disjuncts” or “germs” in
related texts.

3. Treat connector-sets as the basis vectors in a vector space. Thus, a word is actu-
ally a collection of (word, connector-set) pairs, with an associated count of the
number of times that particular (word, connector-set) was seen during parsing.

4. The vector representation allows different kinds of word-similarity judgments to
be used, and thus allows words to be clustered into classes. These classes should
be called “grammatical classes”, as all of the members of that class behave in a
grammatically-similar fashion.
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5. The grand-total collection of grammatical classes forms a dictionary or a lexis
or a “grammar”; this dictionary is now a valid symbolic description of grammar,
in that it can be use to parse new, previously-unseen sentences, and extract their
syntactic structure, as well as some fair amount of semantic content.

The language-learning project contains two distinct implementations of the above pipeline.
The first implementation, tightly coupled to the OpenCog AtomSpace, was created by
Linas (the author), but put on hold as various other intervening priorities interceded.
Development of that pipeline has recently resumed. A second implementation, termed
“the ULL Project” was subsequently developed by a team lead by Anton Kolonin, in-
cluding Andres Suarez Madrigal and Alexei Glushchenko. It is partly derived from the
first implementation, but diverges in many important ways. In particular, it eschews the
use of the AtomSpace, replacing it by a collection of ad-hoc text-file data formats and
Python tools.

This paper reports on early results from these two different systems. It is structured
as follows. The first several sections review the status and datasets used by the author,
in his own pipeline. As such, this becomes a bit like a laboratory notebook diary, mak-
ing notes of datasets in possession of the author, their names, their status, their general
characteristics. The next section reviews some very early dictionaries that were pro-
duced by the author. They are highly preliminary: many important processing stages
have not been implemented, various shortcuts and hacks were applied to the stages that
do exist, and the evaluated dictionaries are just tiny.

The last section reviews the ULL datasets. These suggest not one, but two ex-
tremely important breakthroughs for the project. The first is that it seems like a method
for tuning the learning pipeline has been discovered, as well as an objective measure for
the fidelity of the pipeline. In short, it seems that there is a way of validating that, when
given a fixed grammar, the pipeline preserves the structure of that grammar, despite
the steps 2-through-5 above. That is, it seems that steps 2 through 5, when performed
with some care and diligence, preserve the structure of a grammar, and do not wreck
it, nor do they alter it into something else. This is still a preliminary result, and needs
additional validation. But if it holds true, it is extremely important, as it allows the
quality of the 2-through-5 pipeline to be measured and tuned. Once tuned, the pipeline
can be trusted: whatever grammar goes in, that is the grammar that comes out. Thus,
when an unknown grammar is put in, then whatever comes out must be correct.

A second breakthrough from the ULL datasets is that the resulting grammar is rela-
tively insensitive to step 1. As long as the provisional parses have some accuracy above
random chance, then, by accumulating enough samples, the errors in the provisional
parses will cancel out. This is as it should be in radio receivers, or any kind of statisti-
cal sampling: The bigger the sample, the better the signal-to-noise ratio. Although the
provisional parses of step 1 are noisy and often incorrect, they are good enough, when
enough samples are collected.

There are several minor results worth mentioning. From the ULL datasets, it is
clear that the Project Gutenberg tests provide an inadequate sample of modern English.
From the Linas dictionaries, its clear that large sample size really makes a difference;
the Linas dictionaries, although tiny, inadequate and hacked, trounce the ULL datasets
when measured out-of-training-set.
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One last result is worth mentioning: an “unknown word” system, described below,
appears to be quite effective in offering broad coverage when new, unknown words
are encountered in the test texts. Due to Zipfian distributions and long tails, the over-
lap of the test-vocabulary with the dictionary vocabulary is shockingly tiny. Thus, an
unknown-word mechanism is critical for providing reasonable coverage.

June 2019 Restart
Work by the author was suspended in the Fall of 2018, and was restarted in June 2019.
This is an attempt to pick up where things got left off. It summarizes the grammar
learning dataset, the algorithms and some preliminary results, as it stands at the mo-
ment.

• The primary dataset, en_dj_cfive, appears to be in good condition and
should be usable for a good long while, before updates are needed.

• The algorithms are incomplete; much work remains to be done. Work on the
core ideas, such as the “sheaf” idea, has not yet started in earnest, although some
scaffolding has been laid.

• Existing code is sufficient to generate word-classes, word-sense disambiguation
and grammars.

An eyeball inspection of the word-classes suggests that they are quite healthy, but there
are no automated tools to verify their quality. The clustering seems to be able to split
words into word-senses, placing them into correct clusters. The assignments look rea-
sonable, when judged by eye, but there are no automated measurements. These last
two results were previously reported in detail in the Winter of 2017 and Spring of
2018. This report focuses on the resulting grammars that can currently be generated,
and an automated process to measure their quality.

To repeat: these are highly preliminary, as most of the important parts of the gram-
mar generation mechanism have not yet been implemented. The results here are a
sniff-test or proof-of-concept, to show that the idea works at some minimal level.

Baseline Dataset
The baseline is the en_dj_cfive dataset. Let’s recall how this dataset was obtained:

1. All five “tranches” of the training corpora were used to obtain word-pair MI
scores. Unlike the earlier en_rfive datasets, this uses a bug-fixed tokenizer.

2. All five (the same five) tranches were run through the strict-MST parser, to obtain
word-disjunct pairs. The disjunct connectors are all single-word connectors. The
MST parser was “strict”, in that it always created a tree (no loops) that always
connected every word in a sentence. Each word-disjunct pair has an associated
count, which is the number of times it was seen during MST parsing.
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That’s it. Starting with this dataset, various subsets were created:

• en_micro_marg – Keep only words with observation count>500, sections with
count>10; discard all sections that contain connectors that cannot link to any-
thing.

• en_mini_marg – Keep only words with observation count>40, sections with
count>5; discard all sections that contain connectors that cannot link to anything.

• en_large_marg – Keep only words with observation count>8, sections with
count>3; discard all sections that contain connectors that cannot link to anything.

• en_midj_links – Discard all sections that contain connectors that cannot link to
anything. (todo: rename to full-marg)

Recall that each dataset can be thought of as a (very) sparse matrix. Rows of the matrix
are words; columns of the matrix are disjuncts. Each entry in the matrix is a word-
disjunct pair; it is called a “Section” (a SectionLink in the AtomSpace). Below are the
stats from the (print-matrix-summary-report) function.

Size Secs Obs’ns Obs/sec Sparsity Entropy MI Dataset
1610 x 67K 184K 14.7M 80.3 9.20 15.17 4.60 en_micro_marg

7385 x 270K 608K 20.8M 34.2 11.67 16.79 4.96 en_mini_marg
en_large_marg

438K x 23.3M 31.7M 69.2M 2.18 18.30 en_midj_links
445K x 23.4M 31.9M 69.4M 2.18 18.32 23.09 8.16 en_dj_cfive

The columns are:

• Size – Dimensions of the matrix. Number of words x Number of disjuncts.
Notation: |w|× |d|.

• Secs – Total number of Sections. That is, total number of word-disjunct pairs in
the matrix. Notation: |(w,d)| (sometimes written as |(∗,∗)|).

• Obs’ns – Total number of observations of Sections. Sum total of how many
times the sections were observed. Notation: N (∗,∗).

• Obs/sec – The average number of observations per Section.

• Sparsity – The log (base two) of the fraction of non-zero entries in the matrix.
That is, log2 (|w|× |d|/ |(w,d)|) where |(w,d)| is the number from the second
column.

• Entropy – As usual for a matrix: −∑w,d p(w,d) log2 p(w,d). Note that the log-
base-two means this is in bits. Here, (w,d) are word-disjunct pairs, i.e. sections.
The probability is actually a frequency: p(w,d) = N (w,d)/N (∗,∗).

• MI – As usual for a matrix: −∑w,d p(w,d) log2 p(w,d)/(p(w,∗) p(∗,d)).
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Note that the MI score drops as words are trimmed from the dataset. All of those
infrequently-observed words carry a lot of information, it seems.

These are promising to be a lot cleaner, and stronger than the previous en_rfive
dataset.

Grammars
A grammar is obtained by clustering words into grammatical classes. A variety of dif-
ferent clustering strategies and clustering parameters were used to obtain several gram-
mars. See the files learn/scm/gram-agglo.scm and learn/scm/gram-projective.scm
for details about how clustering is done. Results are reported in multiple tables.

First table: summary report for the first four survey sets. The second table is like
the first; it just explores more parameter settings. These are just a rough first-cut, and
are not expected to be good, for five reasons:

• These use the cosine-distance metric (I expect the MI metric to be much better).

• Parameters are not tuned (some parameters were picked that seemed reasonable
to start with; the second table explores some tuning.)

• Clustering remainders are being ignored. (When a word is placed into a cluster,
the counts of any shared disjuncts are transfered to the cluster. This leaves behind
a left-over word-vector, containing disjuncts that did not fit into the cluster. This
remainder represents a second word-sense for that word; it’s part of how WSD
happens “automatically” in these algorithms. Currently, these left-over bits are
either being reclustered, if possible, otherwise they are being discarded at the
end (I think, I’m not sure). They should not be discarded.)

• The disjunct-shapes are not being clustered (“shapes” are disjuncts with wild-
cards in them; see elsewhere for a detailed explanation. I expect that cluster
quality will improve when shapes are included.)

• Connectors are not being assigned to word-classes (i.e. the “sheaves” concept is
not being used; the code for the sheaves algo has not yet been written; it needs
to be coupled with the shapes code.)

All columns in the tables are obtained from the gram-class matrix report. That is,
the matrix-rows are now grammatical classes, not words. The matrix columns are still
word-disjuncts, not gram-class disjuncts (this is partly related to the “shapes” problem).
A correct grammar would use gram-classes in the connectors as well. So again – this
is a rough cut.

The table is much like the above:

• Size – Number of grammatical class x Number of disjuncts. Note that many of
these classes are “singleton classes”, containing only one word. See the WC and
Sing columns for a breakout of the number of classes with one and more than
one word. WC+Sing equals the total.
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• Secs – Total number of Sections. That is, total number of word-disjunct pairs in
the matrix.

• Obs’ns – Total number of observations of Sections. How many have been ob-
served.

• Entropy – As before, just using gram-classes instead of words.

• MI – As before, just using gram-classes instead of words.

• WC – Number of grammatical classes with two or more words in them.

• Sing – Number of singleton classes – that is, classes with only one word in them.

The table below shows only the basic-baseline datasets. There are more, which explore
additional parameters.

Size Secs Obs’ns Entropy MI WC Sing Dataset
675 x 67K 142K 12.0M 13.75 4.03 135 540 en_micro_fuzz_exp
416 x 67K 133K 11.5M 13.23 3.62 124 292 en_micro_discrim

3692 x 269K 502K 16.6M 15.39 4.35 366 3326 en_mini_fuzz_exp
2468 x 269K 499K 15.5M 14.76 3.89 371 2097 en_mini_discrim

The datasets are:

• en_micro_fuzz_exp – Created with (gram-classify-greedy-fuzz 0.65
0.3 4). This dataset does not have LEFT-WALL linkages in it. Created from
en_micro_marg. Here, the parameter 0.65 is the cosine-distance cutoff;
vectors with a cosine distance less than this are not clustered. The parameter 0.3
is the broadening parameter: it means that 30% of the counts of disjuncts NOT
already in the cluster are added to the cluster. This makes the cluster boundaries
“fuzzy”, whence the name.

• en_micro_discrim – Created with (gram-classify-greedy-disc rim
0.5 4). Casual observation shows the clusters are less accurate than above.
The parameter 0.5 is the cosine-distance cutoff. The broadening is not fixed;
broadening is accomplished by assigning anywhere from 0% to 100% of the non-
shared disjunct counts to the cluster, varying linearly by cosine distance (e.g. if
the distance is 0.83, then (0.83-0.5)/0.5=66% of the counts will be merged).

• en_mini_fuzz_exp – Just like en_micro_fuzz_exp, but with a larger vocabulary,
from en_mini_marg.

• en_mini_discrim – Just like en_micro_discrim, but with a larger vocabulary,
from en_mini_marg.

The table below is much like that above, except that it explores a greater range of
learning parameters. It is trying to get a sense of where the sweat spot is.
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Size Secs Obs’ns Entropy MI WC Sing Dataset
680 x 67K 143K 13.2M 14.08 3.95 136 544 en_micro_fuzzier
948 x 67K 155K 12.6M 14.23 4.29 115 833 en_micro_fizz
672 x 67K 142K 12.1M 13.75 4.00 135 537 en_micro_diss
948 x 67K 155K 12.5M 14.19 4.30 115 833 en_micro_dissier

1260 x 67K 168K 13.7M 14.66 4.46 85 1175 en_micro_dissiest

The datasets are:

• en_micro_fuzzier – Created with (gram-classify-greedy-fuzz 0.65
0.6 4). Note the fuzz parameter is 0.6 not 0.3 as before. This means that when
a words is being merged into an existing word-class, it will merge in 60% of the
non-shared disjuncts from the new word. This will probably harm word-sense
disambiguation. However, WSD probably plays a small role, at this time.

• en_micro_fizz – Created with (gram-classify-greedy-fuzz 0.75 0.3
4). The fuzz parameter is the same as for en_micro-fuzz, but the discriminator
is tighter – 0.75 instead of 0.65.

• en_micro_diss – Created with (gram-classify-greedy-disc rim 0.65
4). Similar to en_micro_discrim, but more discriminating (0.65 instead of 0.5).

• en_micro_dissier – Created with (gram-classify-greedy-disc rim
0.75 4). Similar to en_micro_discrim, but more discriminating (0.75 instead
of 0.5).

• en_micro_dissiest – Created with (gram-classify-greedy-disc rim
0.85 4). Similar to en_micro_discrim, but more discriminating (0.85 instead
of 0.5).

Measurements
There does not appear to be any good way to assess the quality of a grammar. So
instead, a trick is used that is obviously flawed, but is “better than nothing”. The trick
is to compare the grammar to the LG English dictionary. That is, a sentence is parsed,
once with the grammar-under-test, and once with the LG English grammar. The parses
are compared side-by-side, looking to see if they have the same links between words, or
not. This allows both precision and recall to be measured: A linkage is high-precision,
if it does not contain link that it shouldn’t. A linkage has high recall, if it contains most
of the links that it should.

There are obvious problems with this:

• There is no particular reason to believe that the above algorithms will reproduce
LG dictionaries. This is a comparison of apples-to-oranges: the learned dictio-
naries are obtained by apply probability theory to sparse observational data of
strings of words. By contrast, the LG dictionary is hand-curated, by linguists
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applying innate, common-sense theories of grammatical relationships. The re-
sulting linkages are just opinions expressed by linguists as to what English must
be like. That there is significant overlap between statistical results and linguist
opinion is itself remarkable.

• The LG English dictionary is imperfect, sometimes creating incorrect parses.
Thus, it is possible that the grammar-under-test produced a better parse, while
still being scored poorly, because it failed to match LG.

• LG parses in general contain loops, i.e. are not trees. The grammar-under-test
might also contain loops, but maybe less than LG. Thus, the grammar-under-
test will often have a low recall, simply because of how it was built. Using a
non-strict MST at earlier stages might improve the situation.

• Some links are more important than others. It is more important to get links
to subject and object correct, than it is to get links to punctuation correct. In
particular, LG links to punctuation are rather ad hoc, especially for the end-
of-sentence punctuation. It is unlikely that the grammar-under-test will handle
punctuation the same way.

• If there is a combinatorial explosion of LG parses, then the parse-scoring system
in LG is partially blinded, and the resulting chosen parses might not be the ones
with the best scores. It might be possible to ameliorate this with changes to LG.

Thus, due to the above concerns, the actual meaning of the scores is unclear. Never
the less, its a good starting point. Some future version of the measurement tool will
keep track of subject and object links, and maybe other link types that are considered
important.

Currently, all of the dictionaries-under-test are missing a LEFT-WALL marker. I’m
not sure why; this will be revisited later. Thus, LEFT-WALL links are not compared,
and are not a part of the evaluation process.

The test-corpora contain many words not in the dictionary, and vice-versa: the dic-
tionaries contain many words not in the test-corpora. The overlap between these two
vocabularies is shockingly small (but perhaps entirely normal – see extended commen-
tary about Zipf’s law, elsewhere). In particular, the “micro” dictionaries have only
1.6K words in them, and of these, less than a third show up in the test corpora. Thus,
we have three testing options:

• Skip the evaluation of a sentence, if it contains words that are not in the dictionary-
under-test. The test corpora contain a lot of proper names that never appeared in
the training corpora, and this alone accounts for many of the sentence rejections.

• Evaluate the sentence anyway; words not in the dictionary will be null-linked
(i.e. have no links going to them.) Mostly all that happens is that precision
scores are mostly unaffected, while recall scores are obviously lower.

• Perform unknown-word-guessing. This is not hard to do, and ultimately is a
required ability for any dictionary usable in the real world. The current guessing
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strategy is to try each unknown word with each gram-class, and then let the parse-
scoring system pick the one with the highest score. Note that unknown-word
guessing leads to a combinatoric explosion in LG, which can cause extremely
long parse-times (hours!); see notes below. Combinatoric explosions can also
result in sub-optimal choice of linkage. The determination of the pertinence of
this effect is TBD.

Two sets of dictionaries were created: with and without unknown words. Results for
both are reported below.

Comparisons were performed for five different corpora. These are also an imperfect
choice, but adequate for this initial rough-cut evaluations. The are:

• CDS – The “Child Directed Speech” corpus from the ULL project. Contains
1837 sentences uttered by parents towards children. These have a characteristi-
cally small vocabulary, and a simple grammatical structure. Average length is 5
words per sentence. This corpus consistently results in the highest scores during
testing, for all test dictionaries.

• basic – The corpus-basic.batch file from LG. This contains 1000 sen-
tences, of which 421 are intentionally ungrammatical, leaving 579 valid English
sentences. These contain a balanced selection of a wide variety of different kinds
of English constructions; it was meant to showcase the rich variety of different
sentences that LG can handle. (Note, however, that evolving fixes means that
not all of these parse correctly). Most of these sentences are of short-to-medium
length.

• fixes – The corpus-fixes.batch file from LG. This contains 4236 sen-
tences, illustrating fixes to the early versions of the LG dictionary. Although
there is a wide variety of different kinds of English constructions, it’s not par-
ticularly “balanced”, and the sentences tend to be short; just long enough to
illustrate some phenomenon. Most of these sentences are of short length.

• gold – The “Golden Corpus” from the ULL project. This contains 229 sentences.
Note that the parses provided by the ULL project are NOT used for evaluation.
The LG parses are used instead. Most of these sentences are medium-short.

• silver – A subset of the “Silver Corpus” from the ULL project. This contains
2513 sentences, taken from three different Project Gutenberg books: “Kilmeny
of the Orchard” by Lucy Maud Montgomery; “Peter Rabbit” by Thornton W
Burgess; and a portion of “Under the Lilacs” by Louisa May Alcott. Average
sentence length is 12 words.

• wiki – A concatenation of three Wikipedia articles: “Autoethnography”, “Astor
House Hotel (Shanghai)” and “History of Virginia”. All of these sentences are
long, averaging 24 words in length. The long sentence length can lead to combi-
natorial explosions in most of the dictionaries, resulting in painfully long parse
times.
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All five corpora are available in the learn/run/3-gram-class/test-data
directory.

The table below shows results. The columns in the table are as follows:

• Sents – The total number of sentences in the corpus. This repeats the number
given above.

• Skip – Percentage of total sentences that were skipped, because they contained
unknown words. (Reported only when unknown-word guessing is disabled.)

• Parsed – The number of sentences that were evaluated. Equal to number of
sentences times (100% - Skip).

• Diff – The number of sentences that had parses that differed from the first parse
given by the English dictionary in Link Grammar version 5.6.1.

• Words – The total number of words in the evaluated sentences. This varies from
dictionary to dictionary, depending on whether sentences were skipped or not.

• Vocab – The size of the vocabulary in the evaluated sentences; that is, the number
of unique words. When rejecting sentences with unknown words, this becomes
the intersection of the vocabulary of the accepted sentences and the dictionary-
under-test.

• Links – The number of links that the LG English parse generated. This varies
from dictionary to dictionary, depending on whether sentences were skipped or
not.

• P – Precision of links: TP/(TP+FP) where TP is the count of the links that both
dictionaries generated, and FP is the count of the links that the dictionary-under-
test generated, but LG did not.

• R – Recall of the links: TP/P where TP as above, and P the total number of links
produced by the LG English parse.

• F1 – The harmonic mean of precision and recall.

Results for the micro-fuzz dataset. This is a tiny dataset, with only 1600 words in it; its
the first shot at anything even vaguely workable. Not expecting good results. But they
seem passable. Most sentences got skipped, because they contained unknown words,
but the ones that did parse seem to not be outrageous. Notice the intersection of the
test-corpus vocabulary and the dictionary size is small – about 1/3rd of the dictionary
size, or less. That is a small vocabulary; so 2/3rds of the dictionary contains words that
are not in the test-corpus!
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micro-fuzz
Dataset Sents Skip Parsed Diff Words Vocab Links P R F1

CDS 1832 69% 562 90% 2738 176 2369 0.705 0.473 0.566
basic 579 86% 82 99% 666 209 647 0.627 0.371 0.466
fixes 4236 82% 774 97% 4888 589 3770 0.534 0.399 0.457
gold 229 90% 24 92% 169 95 132 0.577 0.485 0.527
silver 2513 85% 377 100% 3323 527 2852 0.545 0.407 0.466

Not all link-types are created equal. Correct links to the subject and object should
be considered to be more important, than ambient links to punctuation. Thus, con-
sider placing the LG link-types into four categories: important, less important, and the
others. The categories that seemed about right were these:

• Primary – the S O MV SI CV link types – these point out the subject, object,
important modifiers and dependent clauses.

• Secondary – the A A AN B C D E EA G J M MX R link types – these
connect to various modifiers, determiners, relative phrases.

• Punctuation – the X link type. The LG dictionary has rational rules for how to
treat punctuation, but there is no particular reason to think that counting statistics
will adhere to this.

• Other – all other link types. Yes, they are important, but one might expect that
counting statistics might not adhere to the LG dictionary decisions.

Glancing at this table, there is no obvious indication that the important (primary) links
are gotten correct more than the other links. Perhaps the MV link does not belong in the
primary category?

micro-fuzz
Dataset Primary N Secondary N Punct N Other N

CDS 0.506 1019 0.465 617 - 0 0.434 733
basic 0.387 243 0.317 158 0.2 5 0.394 241
fixes 0.424 1317 0.388 880 0.237 207 0.406 1366
gold 0.483 58 0.447 47 - 0 0.600 25
silver 0.385 1071 0.402 731 0.434 76 0.434 974

Results for micro-discrim below. The gram classes are looser (the cutoff is lower -
0.5 instead of 0.65 as above), and casual inspection (i.e. just reading the list of words
in each) suggests that they are lower quality (from eyeballing, it’s clear that many
dissimilar words are being classed together). This behaves in a not-too-surprising way:
precision drops (more junk links produced), while recall improves (the junk links just
happen to go to the right places). Overall F1 score is better, which is surprising. Same
base vocab of 1600 words. The values in the Sents, Skip, Parsed, Words, Vocab, Links
columns are unchanged, since both this and above are built on the en_micro_marg
dataset.
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micro-discrim
Dataset Sents Skip Parsed Diff Words Vocab Links P R F1

CDS 1832 69% 562 88% 2738 176 2369 0.679 0.542 0.603
basic 579 86% 82 99% 666 209 646 0.595 0.412 0.487
fixes 4236 82% 774 97% 4888 589 3770 0.529 0.476 0.501
gold 229 90% 24 92% 169 95 131 0.565 0.534 0.549
silver 2513 85% 377 99% 3323 527 2844 0.546 0.490 0.522

As before, there is no particularly obvious trend visible in the recall of the link-
types.

micro-discrim
Dataset Primary N Secondary N Punct N Other N

CDS 0.562 1018 0.594 618 - 0 0.469 733
basic 0.388 240 0.357 157 0.2 5 0.475 244
fixes 0.489 1313 0.480 880 0.382 207 0.477 1370
gold 0.448 58 0.511 47 1 1 0.760 25
silver 0.457 1074 0.507 726 0.521 73 0.538 971

Results below for mini-fuzz. This dictionary has a much larger vocabulary: 7385
words instead of 1600 as above. Several large differences are apparent: considerably
fewer sentences get skipped due to unknown vocabulary (but still more than half!) The
mini dictionaries contain 7385 words, and at most 1/5th of them appear in the test
corpora. This lack of overlap is remarkable! The precision increases dramatically,
except for CDS where it is maybe maxed out, and basic. Recall drops sharply lower,
so that the resulting F1 is mostly lower.

mini-fuzz
Dataset Sents Skip Parsed Diff Words Vocab Links P R F1

CDS 1832 54% 850 91% 4222 238 3649 0.710 0.480 0.573
basic 579 59% 232 100% 1944 465 1864 0.580 0.376 0.456
fixes 4236 57% 1767 97% 12122 1425 9748 0.540 0.399 0.459
gold 229 72% 64 100% 449 228 343 0.504 0.362 0.421
silver 2513 62% 943 99% 9859 1308 8793 0.531 0.392 0.451

Recall of link-types:

mini-fuzz
Dataset Primary N Secondary N Punct N Other N

CDS 0.503 1524 0.480 1022 - 0 0.450 1103
basic 0.320 640 0.364 544 0.344 32 0.443 648
fixes 0.398 3373 0.419 2570 0.432 463 0.379 3342
gold 0.314 140 0.384 125 0.6 5 0.397 37
silver 0.357 3111 0.393 2514 0.494 328 0.418 2840
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Below for mini-discrim. Working on it ...

mini-discrim
Dataset Sents Skip Parsed Diff Words Vocab Links P R F1

CDS 1832
basic 579
fixes 4236
gold 229
silver 2513

Unknown word guessing
Having tiny vocabularies is disastrous for understanding text. Can one automate the
guessing of unknown words? Of course one can! The default LG parser has an
“UNKNOWN-WORD” mechanism, whereby any word that does not appear in the
dictionary is defaulted to a collection of UNKNOWN-WORD entries, each carrying a
set of associated disjuncts. Multiple UNKNOWN-WORD entries are allowed, in order
to simplify disjunct management; however, when they are used, they are all used, and
no preference is given for one over another.

The tactic obvious tactic to use in the current situation is to insert one UNKNOWN-
WORD marker for each grammatical class. The effect will be that, during parsing, each
unknown word will be tried out with each gram-class. When a parse is found, the tag
on the UNKNOWN-WORD entry will indicate which class was used. When multi-
ple parses are found, they are ranked according to the total word-disjunct MI for the
sentence. The dictionaries evaluated in this section are the same ones as those above,
except that one UNKNOWN-WORD entry was added for each gram class containing
two or more members; singleton-classes were ignored.

The use of the UNKNOWN-WORD mechanism can (and does) lead to a combi-
natoric explosion during parsing. Naively, one might expect a runtime of O

(
Nk

)
for k

unknown words in the sentence; here N is presumably the total of all disjuncts in all
candidate classes, as each is tried against the next as a possible match. For these dictio-
naries, N varies from 1K to 100K, and so it seems that sentences with 3,4,5 unknown
words might take hours to parse. Hours is really bad. We are patient, here, but clearly,
something needs to be done to avoid the bog-down. In practice, the actual slow-down is
highly variable from dictionary to dictionary, as a preparse-pruning stage can decimate
N down to a reasonable number quite effectively ... most of the time. However, some
dictionaries choke on some sentences.

We expect 100% of the sentences to be covered, so this is a big change from before.
Two columns from earlier tables are omitted, since all of the test-corpus is parsed and
compared. Since LG will run on every sentence in each test-corpus, the total number of
observed words, and the total known-vocabulary will be the same for all of the different
dictionaries-under-test. These are reported just once, below.
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Dataset Sents Words Vocab Links
CDS 1832 9274 300 7950
basic 579 4862 1117 4701
fixes 4236 28528 4082 23213
gold 229 1895 782 1539
silver 2513 30079 3657 27297

Here are the results for micro-fuzz, with unknown-word-guessing enabled. Recall,
the parameters were (gram-classify-greedy-fuzz 0.65 0.3 4). Com-
pared to the same dataset without guessing, the resulting precision and recall changes
erratically, sometime moving up, or down, depending on the test corpus. The over-
all F1 is unchanged or improved. Conclusion: adding unknown-word guessing vastly
improves coverage, and also helps F1.

micro-fuzz-unk (fuzz 0.65 0.3)
Dataset Sents Diff P R F1

CDS 1832 76% 0.660 0.541 0.595
basic 579 98% 0.555 0.440 0.491
fixes 4236 96% 0.502 0.459 0.479
gold 229 99% 0.484 0.468 0.476
silver 2513 100% 0.492 0.445 0.467

For micro-fuzzier-unk: almost no difference at all from the above. Note that both
have almost exactly the same number of grammatical classes (135 vs. 136) and so
unknown-word guessing seems to be unaffected.

micro-fuzzier-unk (fuzz 0.65 0.6)
Dataset Sents Diff P R F1

CDS 1832 88% 0.657 0.538 0.592
basic 579 97% 0.557 0.441 0.493
fixes 4236 97% 0.501 0.458 0.478
gold 229 99% 0.479 0.461 0.470
silver 2513 100% 0.490 0.443 0.465

Below is micro-fizz-unk, which uses a cosine-cutoff of 0.75. Comparing to micro-
fizz-unk with a cutoff of 0.65, it seems that precision is mostly unchanged. Recall is
sharply down, and so, for the most part, the F1 scores are down.

There are two possible explanations for this difference:

1. The tighter discriminator results in narrower gram classes, which have trouble
hooking up into a good parse. Here, “narrower” means that each gram class has
fewer disjuncts in it.

2. The micro-fizz-unk dictionary has fewer grammatical classes (115 vs 135), which,
in addition to each class being narrower, causes unknown word guessing to strug-
gle.
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Disentangling these effects is not obvious.

micro-fizz-unk (fuzz 0.75 0.3)
Dataset Sents Diff P R F1

CDS 1832 90% 0.665 0.486 0.562
basic 579 98% 0.555 0.403 0.467
fixes 4236 97% 0.495 0.419 0.454
gold 229 98% 0.471 0.428 0.449
silver 2513 100% 0.483 0.402 0.439

Here is for micro-discrim-unk; it should be compared to micro-discrim, which uses
the same algo and parameters, but doesn’t have word-guessing built in.

Prelim, incomplete data: word-guessing helps ...

micro-discrim-unk (discrim 0.5)
Dataset Sents Diff P R F1

CDS 1832 83% 0.651 0.580 0.614
basic 579
fixes 4236
gold 229 99% 0.475 0.497 0.485
silver 2513

Here is micro-diss-unk. It should be compared to two different dictionaries: micro-
discrim-unk, immediately above, which uses the same clustering algo, but a weaker
cutoff, also to micro-fuzz-unk, which uses a different clustering algo, but the same
cutoff. Note that when the cutoff is the same, both produce the same number of gram-
matical classes (135, either way). The looser cutoff produces fewer classes (124);
presumably each class is larger. This does not resolve the question of whether it is the
sharpness of the classes that matter, or their raw number. Perhaps these effects cannot
be disentangled...

Based on prelim incomplete numbers: the algo don’t matter very much, the discrim
does.

micro-diss-unk (discrim 0.65)
Dataset Sents Diff P R F1

CDS 1832 88% 0.654 0.537 0.590
basic 579 98% 0.560 0.440 0.493
fixes 4236 100% 0.503 0.459 0.480
gold 229 99% 0.482 0.466 0.474
silver 2513 100% 0.493 0.443 0.467

Here’s micro-dissier-unk: it can be compared to the above, which uses a weaker
cutoff, or to micro-fizz-unk, which uses the same cutoff. The sharper cutoff is having
little effect on precision. It is forcing down recall, and thus F1.
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micro-dissier-unk (discrim 0.75)
Dataset Sents Diff P R F1

CDS 1832 92% 0.660 0.481 0.556
basic 579 98% 0.559 0.406 0.471
fixes 4236 97% 0.493 0.417 0.451
gold 229 99% 0.464 0.421 0.442
silver 2513 100% 0.487 0.405 0.442

Here’s micro-dissiest-unk, with a sharp cutoff still. Precision drops, recall drops,
F1 drops. Conclusion: it is quite possible to make the classes too narrow.

micro-dissiest-unk (discrim 0.85)
Dataset Sents Diff P R F1

CDS 1832 93% 0.666 0.441 0.531
basic 579 98% 0.536 0.343 0.418
fixes 4236 97% 0.487 0.365 0.417
gold 229 99% 0.430 0.357 0.390
silver 2513 100% 0.462 0.339 0.391

Below is mini-fuzz-unk. It is to be compared to micro-fuzz-unk, which uses the
same parameters, but has a smaller vocabulary.

it appears that ... mixed results ...

mini-fuzz-unk (fuzz 0.65 0.3)
Dataset Sents Diff P R F1

CDS 1832 87% 0.677 0.529 0.594
basic 579
fixes 4236 97%
gold 229 99% 0.451 0.387 0.416
silver 2513 100%

mini-discrim-unk (discrim 0.5)
Dataset Sents Diff P R F1

CDS 1832
basic 579
fixes 4236
gold 229 99% 0.460 0.444 0.452
silver 2513
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Graphs
Reading the above tables is hard. It is easier to see what is going on with graphs. Here.
The first figure shows precision as a function of dataset MI for three of the corpora
(there is some missing data, still coming in.)
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The one below shows recall as a function of dataset MI.
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Finally, the reciprocal mean of the two, aka the F1-score. Judging from the slope,
its now clear that the loss in recall dominates the gain in precision.
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ULL Dictionary Measurements
Same procedures as above, applied to the ULL dictionaries. These are provided by
Anton Kolonin and his crew, and are generated using completely different software
pipeline, described elsewhere.

Results presented below; this uses the same measuring techniques as above. Each
grammar is measured twice: once, by looking at all sentences; and a second time,
skipping sentences that contained words not in the dictionary.

These measurements indicate that two major breakthroughs have been made in the
ULL project. These are:

• Results from the ull-lgeng dataset indicates that the ULL pipeline is a high-
fidelity transducer of grammars. The grammar that is pushed in is the effec-
tively the same as the grammar that falls out. If this can be reproduced for other
grammars, e.g. Stanford, McParseface or some HPSG grammar, then one has
a reliable way of tuning the pipeline. After it is tuned to maximize fidelity on
known grammars, then, when applied to unknown grammars, it can be assumed
to be working correctly, so that whatever comes out must in fact be correct.

• The relative lack of differences between the ull-dnn-mi and the ull-sequential
datasets suggests that the accuracy of the so-called “MST parse” is relatively
unimportant. Any parse, giving any results with better-than-random outputs can
be used to feed the pipeline. What matters is that a lot of observation counts need
to be accumulated so that junky parses cancel each-other out, on average, while
good ones add up and occur with high frequency. That is, if you want a good
signal, then integrate long enough that the noise cancels out.

A third item should be mentioned:

• It appears that the Project Gutenberg training corpus does not appear to be a
good sample of the English language. When the learned dictionaries are applied
to other corpora, the scores are disastrously bad!

These are strong claims. Lets look at the results justifying them.
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ULL Results
The ULL team provided three dictionaries. These are analyzed below.

ull-lgeng Based on LG-English parses: obtained from http://langlearn.singularitynet.io/data/aglushchenko_parses/GCB-
FULL-ALE-dILEd-2019-04-10/context:2_db-row:1_f1-col:11_pa-col:6_word-space:discrete/

I believe that this dictionary was generated by replacing the MST step with a parse
where linkages are obtained from LG; these are then busted up back into disjuncts.
This is an interesting test, because it validates the fidelity of the overall pipeline. It
answers the question: “If I pump LG into the pipeline, do I get LG back out?” and the
answer seems to be “yes, it does!” This is good news, since it implies that the overall
learning process does keep grammars invariant. That is, whatever grammar goes in,
that is the grammar that comes out!

This is important, because it demonstrates that the apparatus is actually working as
designed, and is, in fact, capable of discovering grammar in data! This suggests several
ideas:

• First, verify that this really is the case, with a broader class of systems. For ex-
ample, start with the Stanford Parser, pump it through the system. Then compare
the output not to LG, but to Stanford parser. Are the resulting linkages (the F1
scores) at 80% or better? Is the pipeline preserving the Stanford Grammar? I’m
guessing it does...

• The same, but with Parsey McParseface.

• The same, but with some known-high-quality HPSG system.

If the above two bullet points hold out, then this is a major breakthrough, in that it
solves a major problem. The problem is that of evaluating the quality of the grammars
generated by the system. To what should they be compared? If we input MST parses,
there is no particular reason to believe that they should correspond to LG grammars.
One might hope that they would, based, perhaps, on some a-priori hand-waving about
how most linguists agree about what the subject and object of a sentences is. One
might in fact find that this does hold up to some fair degree, but that is all. Validating
grammars is difficult, and seems ad hoc.

This result offers an alternative: don’t validate the grammar; validate the pipeline
itself. If the pipeline is found to be structure-preserving, then it is a good pipeline. If we
want to improve or strengthen the pipeline, we know have a reliable way of measuring,
free of quibbles and argumentation: if it can transfer an input grammar to an output
grammar with high-fidelity, with low loss and low noise, then it is a quality pipeline.
It instructs one how to tune a pipeline for quality: work with these known grammars
(LG/Stanford/McParse/HPSG) and fiddle with the pipeline, attempting to maximize
the scores. Built the highest-fidelity, lowest-noise pipeline possible.

This allows one to move forward. If one believes that probability and statistics are
the correct way of discerning reality, then that’s it: if one has a high-fidelity corpus-to-
grammar transducer, then whatever grammar falls out is necessarily, a priori a correct
grammar. Statistics doesn’t lie. This is an important breakthrough for the project.
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Lets now look at the actual data. First, the results when all sentences are parsed, in-
cluding those with unknown words. Since the ULL dictionaries take no special steps to
treat unknown words, the results are not terribly inspiring. The precision for gold/silver
is quite high: recall that gold/silver are based on a selection of Gutenberg texts, the
same class as the training set, and so high precision is commendable. Recall suffers a
bit, but F1 is passable. When tested against corpora that are quite different from the
training set, its a bit of a disaster: recall drops through the floor. It would seem that the
basic/fixes corpora contain sentences that are very different than the Gutenberg texts.
This is unfortunate; it suggests that the Gutenberg texts do not provide an adequate
sample of the English language.

ull-lgeng
Dataset Sents Diff P R F1

CDS 1832 93% 0.828 0.293 0.433
basic 579 100% 0.718 0.134 0.226
fixes 4236 98% 0.770 0.147 0.246
gold 229 100% 0.960 0.699 0.809
silver 2513 100% 0.904 0.599 0.720

The table above shows results when all sentences are tested; the table below when
sentences with unknown words are skipped. Here, the picture brightens considerably!
For gold/silver, the accuracy goes up, almost maxing out for gold. The recall shoots
way up as well, with the F1 scores on gold/silver being just fantastic! It is based on
these two lines that the above claims of a breakthrough are founded. If this can be
reproduces for Stanford/McParse/etc. we’re well on the way!

The table also emphasizes the incompleteness of the Gutenberg training set. The
recall scores for basic/fixes are a complete disaster. Whatever is in that grammar, its
not covering perfectly common 20th-century English.

ull-lgeng
Dataset Sents Skip Parsed Diff Words Vocab Links P R F1

CDS 1832 14% 1579 92% 7882 289 6757 0.832 0.310 0.452
basic 579 96% 25 100% 119 39 98 0.833 0.051 0.096
fixes 4236 93% 305 97% 1805 498 1552 0.749 0.146 0.245
gold 229 51% 113 12% 931 418 761 0.983 0.957 0.969
silver 2513 55% 1138 43% 12986 2146 11675 0.937 0.833 0.882

ull-sequential Based on "sequential" parses: obtained from http://langlearn.singularitynet.io/data/aglushchenko_parses/GCB-
FULL-SEQ-dILEd-2019-05-16-94/GL_context:2_db-row:1_f1-col:11_pa-col:6_word-
space:discrete/

I believe that this dictionary was generated by replacing the MST step with a parse
where there are links between neighboring words, and then extracting disjuncts that
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way. This is an interesting test, as it leverages the fact that most links really are between
neighboring words. The sharp drawback is that it forces each word to have an arity of
exactly two, which is clearly incorrect.

ull-sequential
Dataset Sents Diff P R F1

CDS 1832 99% 0.651 0.058 0.107
basic 579 100% 0.542 0.026 0.050
fixes 4236 99% 0.473 0.128 0.202
gold 229 100% 0.585 0.518 0.549
silver 2513 100% 0.595 0.497 0.542

The table above shows results when all sentences are tested; the table below when
sentences with unknown words are skipped.

ull-sequential
Dataset Sents Skip Parsed Diff Words Vocab Links P R F1

CDS 1832 14% 1579 99% 7882 289 6757 0.658 0.062 0.114
basic 579 96% 25 100% 119 39 98 1.000 0.031 0.059
fixes 4236 92% 308 99% 1821 503 1564 0.480 0.075 0.130
gold 229 51% 113 100% 931 418 761 0.610 0.656 0.632
silver 2513 55% 1138 100% 12986 2146 11675 0.615 0.623 0.619

ull-dnn-mi Based on "DNN-MI-lked MST-Parses": obtained from http://langlearn.singularitynet.io/data/aglushchenko_parses/GCB-
GUCH-SUMABS-dILEd-2019-05-21-94/GL_context:2_db-row:1_f1-col:11_pa-col:6_word-
space:discrete/

I believe that this dictionary was generated by replacing the MST step with a parse
where some sort of neural net is used to obtain the parse.

ull-dnn-mi
Dataset Sents Diff P R F1

CDS 1832 97% 0.662 0.325 0.436
basic 579 100% 0.563 0.184 0.277
fixes 4236 98% 0.445 0.180 0.256
gold 229 100% 0.533 0.459 0.493
silver 2513 100% 0.524 0.421 0.467

The table above shows results when all sentences are tested; the table below when
sentences with unknown words are skipped. It appears that precision is higher or
sharply higher, depending on the corpus (sharply higher for basic/fixes, which are dis-
similar from the training set, but only a little higher for silver/gold, which are similar
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to the training set...) The effect on recall is the opposite: recall is mixed for basic/fixes
but sharply higher for silver/gold. Conclude that testing with sets similar to the training
sets does little for precision, but a lot for recall. Dis-similar test corpora flip the other
way. Overall, F1 is mostly higher.

ull-dnn-mi
Dataset Sents Skip Parsed Diff Words Vocab Links P R F1

CDS 1832 14% 1579 96% 7882 289 6757 0.668 0.340 0.451
basic 579 96% 25 100% 119 39 98 0.790 0.153 0.256
fixes 4236 92% 301 98% 1784 494 1531 0.550 0.218 0.312
gold 229 51% 113 99% 931 418 761 0.550 0.573 0.561
silver 2513 55% 1137 100% 12966 2142 11655 0.539 0.541 0.540

Comparing either of these to the ull-sequential dictionary indicates that precision
is worse, recall is worse, and F1 is worse. This vindicates some statements I had made
earlier: the quality of the results at the MST-like step of the process matters relatively
little for the final outcome. Almost anything that generates disjuncts with slightly-
better-than-random will do. The key to learning is to accumulate many disjuncts: just
as in radio signal processing, or any kind of frequentist statistics, to integrate over a
large sample, hoping that the noise will cancel out, while the invariant signal is repeat-
edly observed and boosted.

Conclusions
The most important results come from the ULL datasets. These suggest a method for
how to tune the language learning pipeline: it should be tuned to maximize the fidelity
of its action on known grammars. That way, when applied to new, unknown grammars,
it can be trusted to produce good results. A second conclusion is that the results are
only weakly dependent on the so-called “MST parse”. Anything that gives reasonably
decent results at this stage is good enough to fish out a grammar. A third conclusion
was that the Project Gutenberg corpora do not provide an adequate sample of modern
English.

There are a separate set of conclusions for the Linas variant of the pipeline. These
are minor compared to the above, but important for their own sake.

• Taken as a proof-of-concept, the Linas variant of the pipeline seems to work, and
provide a stable foundation for further research.

• The Linas pipeline seems to be producing dictionaries with better coverage than
the ULL dictionaries. This is almost certainly due to only three factors: a training
set that is broader than just Gutenberg; a much larger training set, with probably
an order of magnitude (or two) more samples in it; the use of the unknown-word
mechanism.
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• Tighter clustering only marginally improves precision, but sharply damages re-
call. Given a choice, looser clustering improves the overall coverage of the dic-
tionary. In effect, the dictionary understand more, even if it doesn’t understand
it quite as well.

• Unknown-word guessing by the parser appears to be an effective strategy for
broadening the coverage of the dictionary.

• The Linas pipeline should be tuned in the fashion that the tuning breakthrough
suggests. Without this, one is working blind.

The End
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