World Models

Draft Version 0.02 - 14 Sept 2016

Abstract

A description of how OpenCog currently implements self-awareness and world-
awareness, together with a sketch of how this could be improved and expanded.
The short-term goal is to create a robot (embodied chatbot) that can hear and see,
and carry on conversations about perceived objects, as well as to carry out con-
versations about the self. These conversations can be verbal, and can also have
physical-body performance components: body and face expressive movements,
such as smiling or waving a hand.

Introduction

The paper proceeds in several steps. The first step is to review the overall concept of
an “internal model”, and how one can, in principle, interface with it. This is followed
by a section reviewing the current prototype. After this, difficulties with language are
discussed.

Internal Models

The basic premise that will be elaborated here is that interacting with the world requires
the creation of an internal model of the world: in systems theory, this is sometimes
called “the good regulator theorem.” An internal model provides the system software
with a natural API, a natural representation, that various different software components
can agree on, and use, and manipulate, and reason with.

AtomSpace

To achieve a unification of speech, behavior and perception, one must have a software
infrastructure that allows these to be represented in a unified way: that is, the data and
algorithms must reside in some unified location. From here on out, it is assumed that
this unified location is the OpenCog AtomSpace. This is stated explicitly, because,
in the course of discussion, various other technology platforms have been nominated.
Although one could debate the merits of alternative technologies, this will not be done
here.

https://en.wikipedia.org/wiki/Internal_model_(motor_control)
https://en.wikipedia.org/wiki/Good_regulator
http://wiki.opencog.org/w/AtomSpace

Self Model

The self-model, and together with it, the controversial term “self-awareness”, is here
defined to simply be an internal model of the robot itself: both of low-level physical
variables, such as motor angles, as well as higher-order concepts such as “I smiled just
a few seconds ago”, or “I just said this-and-such”. A basic assumption taken in the
following is that the engineering and design of the self-model is not any different than
the engineering and design of the world-model: the data types and access methods are
the same for both. Thus, ideas like “I know that my arm is raised” are represented in
much the same way as “I know that there is a box in the corner of the room.” Thus,
in what follows, the expression “internal model” or “model” will refer to both the
self-model and the world model, there being no particular difference.

World Model

Although the above argues that both the self-model and the world-model are special
cases of the internal model, this is worth more discussion. The world model describes
not only inanimate objects, such as boxes seen in the corner of the room, but includes
models of other people. In the current software base, this is quite shallow: it is just a
list of the human faces currently visible to the video camera, and their 3D coordinates.
The model could include a lot more information: names to be associated with the faces,
memories of past conversations with those faces, a personality profile associated with
each face. This can be expanded to a general model of “other”, including stereotypes
of profession, gender, cultural and geographical background, and so on.

For most of this document, the distinction between models of self, other, and the
rest of the world does not matter: rather, the discussion centers on how to interface
such models to perceptions and to actions. An vitally important side topic is how to
automatically learn and update the model: this is discussed briefly, later, but is not a
primary topic.

State

The model is meant to implemented as “program state”. In the context of OpenCog,
this means that state is represented as set of Atoms in the AtomSpace: the AtomSpace
is, by definition, a container designed specifically for the purpose of holding and storing
Atoms. Much of this state is to be represented with the StateLink, and much of the rest
with EvaluationLinks and PredicateNodes. The precise details follow what is currently
the standard best-practices in OpenCog. That is, there is no particular proposal here to
change how things are already handled and coded in OpenCog, although a goal here is
to clarify numerous issues.

It is critically important that state be represented as Atoms, as, otherwise, there is
no other practical way of providing access to that state by all of the various subsystems
that need to examine and manipulate that state. This is an absolutely key insight that
often seems to be lost: if the state data is placed in some C++ or Python or Scheme
or Haskel class, it is essentially “invisible” to the very system that needs to work with
it. This applies to any kind of state: it could be chat state (words and sentences) or

https://en.wikipedia.org/wiki/State_(computer_science)
http://wiki.opencog.org/w/Atom
http://wiki.opencog.org/w/StateLink
http://wiki.opencog.org/w/EvaluationLink
http://wiki.opencog.org/w/PredicateNode

visual state (pixels, 3D coordinate locations): if it is not represented as Atoms, then the
myriad learning and reasoning algorithms cannot effectively act on this state. This is
an absolutely key point, and is one reason why non-AtomSpace infrastructures are not
being considered: they lack the representational uniformity and infrastructure needed
for implementing learning and reasoning.

However, the AtomSpace does have certain peculiar performance characteristics
and limitations that make it not suitable for all data: for example, one would never
want to put raw video or audio into it. Yet, one does need access to such data, and so
specific subsystems can be created to efficiently handle special-purpose data. A pri-
mary example of this is the SpaceTime subsystem, which represents the 3D locations
of objects in an OctTree format, as well as offering a time component. Although the
SpaceTime subsystem can store data in a compact internal format, it is not, however,
exempt from having to work with Atoms: data must be accessible as Atoms, and suit-
able query APT’s must be provided. In this example: it is possible to query for nearby
time-like events, or to answer questions about whether one object is nearer or farther,
or maybe bigger or smaller, than another.

Model and Control

It is not sufficient to create an internal model of the world, and represent it as state: a
control API or control language to manipulate that state must also be provided. The
control is the active snippet of code that performs the actions needed to update the inter-
nal model. It can be thought of as the “control” aspect of the “model-view-controller”
(MVC) paradigm from GUI programming. There are both engineering and philosophi-
cal reasons for having a control API. The engineering reasons include things like code-
reuse, error-checking, encapsulation and ease-of-use. The philosophical reason is that
a control API provides a shim between the world of static data, and the world of action
and movement. That is, as events occur in time, and as the world is in flux, so must
also be the internal model.

It is useful to think of the control API as a collections of “actions” or “verbs” that
can be applied to “objects” (see 1). In object-oriented programming, these “actions”
are usually called “methods” or “messages”. In what follows, these will often be called
“verbs”, or possibly “meta-verbs” (XXX TODO: we need a good name for this). There
is an important reason for this choice of terminology. First, due to the nature of how
data is represented in the AtomSpace, it is the case that some given action can be ap-
plied to a large swath of the data. That is, most actions are NOT tightly coupled to the
data they are manipulating, but are quite general. This means that the object-oriented
paradigm does not work well with our concept of “internal model”: its not like there are
many different kinds of objects, and they all need to have methods. More accurately,
there are only a few kinds, and many (most?) actions are in principle (de facto?) capa-
ble of manipulating many (most?) kinds of state. The OO paradigm does not provide a
good way of thinking about what goes on in the atomspace.

Another handy reason for why these “actions” can be called “verbs” is that they
are really “potential actions”: nothing happens until they are performed. However,
they can still be talked about, and reasoned about, and even learned: that is, the actions
themselves can also be represented with Atoms, thus allowing the reasoning subsystem

http://wiki.opencog.org/w/SpaceServer
https://en.wikipedia.org/wiki/Octree
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Figure 1: Model and Control

Control —> Model

Verb ——) State

The control API alters the model. It does so by applying “verbs” or “actions” to the
model state.

to make inferences such as “if I do X, then Y will happen” e.g. “if I stick out my tongue,
people will laugh, or maybe they will get offended”.

In the same way that it was argued that model state must be represented in terms
of OpenCog Atoms, or “atomese”, so too must be the verbs. That is, the “control
API” is not some C++ code (or python or scheme or Haskel...) but rather, it is also a
collection of Atoms. Again, the reason for this is to allow the system to automatically
generate new verbs, by means of learning, as well as to reason about the results of
actions. Another key idea is that this allows actions to be combined and composed, in
sequential or parallel order, with different timing. That is, the actions are primitives
that can be composed into performances, that play out over time. Representing these
as atomese how such composition and performance-scripting can be achieved.

Control language

Following the idea of needing to script actions to control behaviors leads one naturally
to the need for concepts such as modifiers, which come in various forms, including
“adjectives” and “adverbs”. So for example, if “arm” corresponds to the atomese de-
scribing a robot arm, and “raise” is an action that can be applied to “arm” (that is,
the atomese for performing that action), then it is plausible to want to say “raise the
left arm quickly”. Here, “quickly” is the atomese needed for modulating the rate at
which the motors controlling the arm are run. Likewise, “left” is the atomese specifier
indicating which collection of motors are to be controlled.

Thus, the concept of a “control language” arises naturally within the system. The
control language is NOT English! Although it does have a grammar, the grammar is
NOT that of English.

The need for a control language seems to be unavoidable: it is important to be able
to specify motor speeds, etc. Now, if one had an object-oriented system, then one would
have a “motor” object (or an “arm” object composed of “motor” objects), which had a
“slot” (or “method” or “message”) called “speed”, and to control the arm, one would
send the “fast” message to the “speed” slot (or “speed” method) on the “arm” instance.
There’s nothing particularly wrong with this view, except for the following points. If

Figure 2: Control Language
Control Language Plant and Model

@ Physical motors

Self-model

0 Physical motors

The control language can have a non-trivial grammar associated with it; for example,
one can “turn to the left”, but one cannot “turn to the eye-blink” — they eye-blink an-
imation not being valid with the turn directive. The language can control different
systems: the physical body or “plant”, the internal model (or self-model, in this case),
as well as models representing hypothetical future behavior, or even models that rep-
resent memories of the past. This is possible because the plant and models all use the
same representation scheme, and thus, the language can act on each equally well.

Self-model

the OO language was C++, then the classes and methods must be known at compile
time: new classes, methods and messages cannot be dynamically created, at run-time.
If the OO language was JavaScript, then many of these issues go away: JavaScript does
allow new methods to be added, at run-time, to pre-existing objects. Indeed, in many
ways, OpenCog Atomese resembles JavaScript. In particular, the JavaScript members
are very similar to OpenCog Atoms, in that, at run-time, new members and methods
can be added to objects. One could also say that OpenCog Atomese is a lot like JSON,
in that one can specify arbitrary state structures in JSON.

There are also some important ways in which atomese differs from JavaScript or
JSON: atomese allows introspection, i.e. it allows for some atoms to control and op-
erate on other atoms, which is not possible in JSON. Atomese also provides a query
language, which JSON does not provide (To understand what atomese does, one might
imagine writing a SparQL or SQL wrapper to query the contents of giant blobs of
JSON, or possibly dumping large blobs of JSON into Apache Solr or Lucene or Cas-
sandra). Atomese also has other language features (it is Prolog-like, it is ML-like) that
are lacking in JavaScript.

Anyway, the goal here is not to debate the design of atomese, but rather to indicate
that motor-control directives behave more like a language, than like an API: thus, it
is more correct to think of the system as offering a “control language” rather than a
“control API”.

Internal model vs. physical body

The control language needs to control two distinct things: it needs to control both the
internal model, and also the physical body! That is, a directive such as “raise the left
arm” can be used to update the internal model, and it can also be used to control the
motors on the actual physical body (“the plant”, in control-theory terminology). There
may also be more than one internal model: in control theory, it is not uncommon to
have a “forward model”, which is used to estimate what might happen if an action was
performed, or an “inverse model” as an interface to the physical body. Both of these are
distinct from the internal model, which models the current state, as opposed to some
hypothetical future state.

Other models are possible: this includes memories of past events, where some
remembered actions might be re-enacted: in this case, the remembered actions can
be replayed on a remembered model, to reconstruct what happened (for example, to
answer questions about those events). Another possibility is that of predicting the
future, where a sequence of actions are played out on a model of the hypothetical future,
to see what might happen. In such a case, there might be a model of the audience, as
well as a model of the self: one is interested in predicting how the audience might react
to a particular action.

Rather than inventing a new language for each of these different systems, it is con-
venient to be able to use the same language. The under-the-covers implementation
is different: in one case, motors must be moved; in another case, the model must be
updated. In either case, the verbs, nouns, adjectives and adverbs should be the same.
(In control theory, this is termed the “efference copy”). This is possible as long as the
different systems use the same underlying design scheme: as long as the underlying

https://en.wikipedia.org/wiki/Internal_model_(motor_control)#Forward_models

hyper-graphs have the same structure, they can be manipulated the same way, never
mind that one might represent the physical body, and another the self-model.

English language interfaces

Given the above description of the concept of “model” and “control language”, one
can now imagine that controlling the robot using the English language might not be too
hard: just translate English to the internal control language, and one is done! Thus, for
example, it is easy to imagine that simple English sentences, such as “look left!” and
“pretend you’re happy!”, can be converted to the control language.

There are several ways to accomplish this. There is a simple, brute-force approach:
create templates such as “Look ____ " or “Pretend you’re ____” and implement a fill-
in-the-blanks algorithm. Simple string matching will suffice, and (for example) AIML
excels at this kind of string-search and string-matching. This approach is sufficient to
tell the robot to look in different directions, and to make different facial expressions.

A core premise of what follows is that brute-force string-matching or string-templating
is NOT sufficient for more complex, more abstract conversations. For that, a syntactic
analysis of the sentence is needed. Thus, although there is plenty of room and utility for
string-matching in the natural-language subsystem, this will NOT be the primary focus
of this document (nor is it used in the prototype). Complex conversational abilities are
anticipated, and so are planned for, from the start.

The prototype does perform syntactic analysis using the Link Grammar parser. It
could have used RelEx or Relex2Logic, but does not, for reasons explained later.

If one has a syntactic analyzer, then translation can be performed by extracting
the syntax of a given English-language sentence, and re-writing it into an equiva-
lent control-language structure. Along the way, specific English-language words and
phrases are remapped to equivalent control-language atoms.

Link Grammar

The syntax of the English-language sentence is extracted by parsing the input sentence
with the Link Grammar parser (wikipedia). There are certainly many other natural-
language parsers out there, including famously the Stanford parser, Google’s Parsey-
McParseface, and any number of phrase-structure parsers. Link Grammar is used be-
cause it fits particularly well with the theory of Atomese, and because it has particularly
high accuracy and very broad coverage.

The Link Grammar parser discovers relationships between the words in a sentence,
and marks up those relationships with links connecting pairs of words. These links
have a type or kind, indicating the relationship between the words — typically, subject,
object, adjectival-modifier, adverbial-modifier, prepositional-object and so on. This is
illustrated in figure 3. The relationships, taken together, can be understood to form a
directed graph, often a tree. Most links have an implicit directionality in them. The
graph does sometimes have cycles: these constrain the parse choices.

The graph fully encodes the syntactic structure of the parsed sentence, as well as
a fair amount of the semantic structure, encoded in the so-called “disjuncts”. The dis-
juncts are the graph-duals to the linkages. Thus, in the figure 3, it can be seen that the

http://www.abisource.com/projects/link-grammar/
https://en.wikipedia.org/wiki/Link_grammar

Figure 3: Example Link Grammar Parse

Wi MVp Jsss%
% 7
LEFT-WALL look.v to.r the left.n

+—Js —+

+——Wi——+—MVp—+ +Ds*xc+

| [| [|
LEFT-WALL look.v to.r the left.n

The above illustrates a parse of the sentence “Look to the left” (as post-script and
ASClII-graphics). It consists of a collection of typed links or edges connecting pairs
of words. The Wi link points at the main verb of the sentence, and indicates that it is
an imperative. The MVp link attaches the verb to a verb-modifier, in this case, to the
preposition “to”. The Js link connects the preposition to it’s object, in this case, the
noun “left” (prepositions always have objects). The Ds«*c link joins the noun to the
determiner “the”. Both Js and Ds indicate that the nouns is singular, and the *xc
indicates that it begins with a consonant (that is, phonetic analysis is also provided).

word “look” has a link Wi to the left, and a link MVp to the right: these two form a
disjunct Wi— & MVp+, with the plus and minus signs indicating linkage to the right
and left. Given only this disjunct, and nothing else - not even the word itself, one can
already deduce that the word must be a verb, and that it must be an imperative, and that
it will take a preposition, and thus, a prepositional object. Thus, the disjunct Wi- &
MVp+ acts as a fine-grained part-of-speech, and this carries semantic information. That
is, the meaning of a word is correlated with the part-of-speech: this is obvious simply
by observing that dictionaries organize word-meanings by parts-of-speech. The dis-
junct offers a particularly fine-grained distinction, and thus is more strongly correlated
with meaning.

Note that there are “costs” or weights associated with different disjuncts. These can
be interpreted as log-probabilities, and so the parse system, as a whole, has probabilistic
or Markovian aspects associated with it. This play a minor role, at this stage.

Graph rewriting

The translation process proceeds by taking the syntactic-parse graph, such as 3, and
converting it into an equivalent control-language graph, such as in figure 2. The con-
version of one graph into another is accomplished via graph-rewriting. The OpenCog
AtomSpace has a powerful and sophisticated graph-rewriting engine built into it, called
the “pattern matcher”; it can easily convert graphs of one shape into another, even when
the graphs contain variables in them (that is, use variables to represent subgraphs).
The graph rewriting is specified by writing down “rules” that indicate the shape of

https://en.wikipedia.org/wiki/Graph_rewriting
http://wiki.opencog.org/w/Pattern_matching

the expected input graph, and the kind of output graph that should be generated, when
a match is found. These rules are usually specified in the form of a BindLink, which
can be thought of as an if-statement: “if graph p is recognized, then generate graph
q”. Alternately, they can be thought of as an implication p — ¢, or, with variables,
p(x) = ().

To provide a worked example: to rewrite figure 3 into figure 2, one creates a rule
“IF word x has disjunct Wi— & MVp+ and word x is "turn’ and word y has disjunct
Dsxxc— & Js—, THEN create control-language graph "turn(y)””’. The prototype con-
tains a rule of roughly this form.

Next steps

There are additional important concepts that are required to correctly implement a fully
working system. Before discussing these, it is worth reviewing the current prototype, as
it illustrates the above concepts in a specific, concrete manner. The issues encountered
during prototyping also serve as an introduction to problems that must be solved in the
full system.

Prototype Review

The prototype of the above-described system is located in github, in the nlp/chatbot-eva
directory. It naturally splits into three pieces. These are:

e An implementation of the self-model and the control language.
e An English-to-control-language translation layer.
e A rule engine, to drive the system.

These are each reviewed, below. There are assorted design issues in each of these
subsystems; these issues serve to anchor the next stage of the design discussion. Thus,
it is important to understand how the current prototype works, as it makes clear both
the how and the why of a more sophisticated design.

Control language prototype

The control language is implemented in knowledge.scm. All of the previous discussion
is made concrete in this file, and a review of this file is strongly recommended. This is
where the “rubber meets the road”, where things actually happen.

Lines 80 thru 120 illustrate how spatial directions are grounded in specific x,y,z
coordinates. Lines 127 thru 132 associate specific English-language words to these
directions. Lines 135-139 group the control-language direction names into a single
kind (in this case, into the class “schema-direction”). This will be used later, to make
sure that the “look” and “turn” verbs can only take the direction-kind, as opposed to the
facial-expression-kind. This forms the foundation of a crude grammar for the control
language: it will not be legal to say “turn your head to face in the happy direction”.

http://wiki.opencog.org/w/SatisfactionLink_and_BindLink
https://github.com/opencog/opencog
https://github.com/opencog/opencog/blob/21ad879d85d31013e59870b895bb0a0aef97242c/opencog/nlp/chatbot-eva
https://github.com/opencog/opencog/blob/21ad879d85d31013e59870b895bb0a0aef97242c/opencog/nlp/chatbot-eva/knowledge.scm

Lines 145-149 give the two kinds to looking-turning control verbs. Lines 166-170
define the control-language grammar: the only valid way to move the robot head is
to specify either the “turn” or the “look™ verb, followed by a direction-kind. (In the
current Blender animation subsystem, “turn” rotates the entire head (turning the neck)
while “look” only moves the eyes.)

Lines 173-213 duplicate the earlier portion of the file, and implement the control
language for the internal model (here called the “self-model”, because it is modeling
the robot itself).

Lines 216-306 define the control-adverbs, in one-to-one correspondence to the
Blender animation names for facial expressions. There is exactly *one* control-adverb
for each animation: it is not desirable to have synonyms in this layer. Line 316 de-
fines the one and only control-verb for facial expressions: this is the “perform a facial
animation” verb.

Lines 321-336 associate fifteen different English-language words with this one
control-verb. This is because, in English, synonyms are common and pervasive: it
is quite natural to say “Look happy!” “Act happy!” “Be happy!”, “Emote happiness!”,
“Portray happiness!” and mean the same thing. Thus, all of these different English-
language words are mapped to the same control-verb.

Lines 338-511 associate more than one hundred(!) different English-language
words with the fifteen-or-so different Blender animation names. For example, “per-
plexity”, “puzzlement” and “confusion” are all valid synonyms for the “confused” an-
imation.

Lines 520-531 group together the different Blender facial-expression animations
into a single animation-kind.

Lines 534-538 define the control-grammar for performing a facial animation: it
must necessarily consist of the single perform-facial-animation control-verb, and one
of the fifteen Blender facial-animation adverbs. No other combination is possible: thus
one cannot make the control-language statement “emote leftness”.

These control-grammar rules not only define what it is possible to do with the
robot, but they also disambiguate certain English-language expressions. Very specifi-
cally, one can say, in English, “Look left!” and “Look happy!”. The English-language
verb “look™ is associated with both the control-language turn-verb (line 199) and also
the control-language express-verb (line 335). Which of these two meanings for the
English-language word “look” is intended becomes clear only after the English has
been translated into control-language. The control grammar allows only one, or the
other meaning, depending on how it is combined with the other control-words. In par-
ticular, this means that (in this prototype), the control-words are always and necessarily
unique and unambiguous in their “meaning”. The control words provide “grounding”
for meaning.

Lines 540-560 duplicate the above, but are used for controlling the self-model,
instead of controlling Blender.

Lines 570-680 (end of file) repeat the previous structures, but are used to control
the Blender gesture-animations (blinking, nodding, shaking, yawning). The very same
concepts apply.

10

https://en.wikipedia.org/wiki/Symbol_grounding_problem

Translation prototype

The translation consists of a set of hand-crafted rules that can recognize specific kinds
of English-language sentences, and convert these into the internal-language forms.
These are implemented in the file imperative-rules.scm. For example, the English sen-
tence “look left” is recognized by the 1ook—rule-1 pattern, lines 176-189. The
sentence “look to the left” is recognized by the 1ook—-rule-2 pattern, lines 191-208.
Both of these patterns specify several synonyms for the English verb. The pattern of the
English sentences is recognized in lines 186-188 and lines 205-206. The lg-links Mva,
MVp, Js, Ju come from the Link Grammar parse of the sentence; these are already
illustrated in figure 3. There is a fair amount of monkey-business being done to make
these rules relatively easy to write. One issue is that the atomese representation of the
Link Grammar parses is fairly turgid (the RelEx Atomese format); complexities arise
due to the need to represent multiple distinct sentences, as well as to distinguish the
use of the same word in two different places in a sentence: these are “word instances”.
Thus, an imperative-sentence utility is provided in lines 130-172; if that utility is not
used, then the two look-rules are more verbose, and are shown in lines 48-90 and
92-128. It is useful to compare these, to get the “big picture” of the rule format.

Lines 221-249 implement a utility for handling single-word imperative sentences,
and lines 251-268 handle the various single-word imperatives.

Lines 272-286 implement a rule for sentences of the form “look happy”, while lines
290-308 implement a rule for sentences of the form “show happiness”. The difference
here is that “happy” is an adjective, while “happiness” is a noun. The sentences, al-
though short, are syntactically different: in English, one cannot correctly say “look
happiness” or “show happy”.

Translation, normalized form

The above section was a bit glib: currently, translation proceeds in two steps. First,
the English form is converted into an intermediate, “normalized” form, and then the
intermediate form is converted into the final control language. This second conversion
is done in the file semantics.scm. The reason for such a dual-stage conversion is dis-
cussed in greater detail below. In brief, though: Link Grammar itself remains rather
close to the surface syntax of the input text, whereas the actual semantic content can be
abstracted away a little bit. The abstraction done here is a bit more abstract than what
RelEx provides, and yet is different from Relex2Logic. It seemed to be the easiest,
most natural step for the prototype.

So, given the intermediate, normalized form, conversion to the final control lan-
guage is done with several more rules: a generic rule template is constructed in lines
55-92, and then three specific rules are built: one to communicate with the action or-
chestrator (which issues Blender animations) and two more to update the self-model:
see lines 94-133. The overall structure of the code is similar to that reviewed earlier: it
consists of a set of rules, each implemented in a BindLink.

11

https://github.com/opencog/opencog/blob/21ad879d85d31013e59870b895bb0a0aef97242c/opencog/nlp/chatbot-eva/imperative-rules.scm
http://wiki.opencog.org/w/RelEx_OpenCog_format
https://github.com/opencog/opencog/blob/21ad879d85d31013e59870b895bb0a0aef97242c/opencog/nlp/chatbot-eva/semantics.scm

Rule engine

The file imperative.scm implements an ad hoc mini-rule-engine. It very simply cycles
through all of the rules described above, applying each in turn. It is invoked whenever
the language subsystem detects that an imperative sentence has been uttered.

It is intended that this ad-ho arrangement of rules be replaced by the OpenPsi rule
system. OpenPsi is described in greater detail further on in this document, at which
point the reason for it’s superiority as a rule-engine management system will become
apparent.

Glue code

Assorted ad hoc scaffolding is required to integrate the above systems into the generic
chat framework. it has no particular significance, other than that it is needed to make
things work. See, for example, bot-api.scm for this scaffolding.

The chatbot-eva.scm file defines a loadable scheme module that encapsulates all of
this code.

Self-model, World-model

The self-model is not in the OpenCog repo, but in the ros-behavior-scripting repo. The
file self-model.scm simply redirects there. The reason for this is that the self-model
is directly hooked up to the sensory and motor systems, and all of those are in the
ros-behavior-scripting repo; only the language-processing parts are in the OpenCog
repo. The self-model, together with the world-model, are central to the robot’s current
behavior subsystem. The combined self+world models encode only a small amount
of internal state: the visibility of faces in the video feed, and knowledge of the robots
current emotional state.

The file faces.scm contains several predicates, used to check if the the “room is
empty” or not. At this time, “the room” consists only of that part of the world that is
immediately visible to the video camera, and extends no further than that. It is intended
that this model is to be replaced by a more significant one.

The file self-model.scm contains the self-model, as well as a significant portion of
the room model. Notable portions include the following:

e Lines 57-60 indicating if the robot is asleep, awake or bored — the “some state”.
The actual state is stored in line 63. Lines 65-76 are predicates that return true
or false, in answer to questions: “is the robot sleeping?” “is the robot bored?” In
principle, one could say that these predicates are part of the control language for
the soma state. In practice, they are not very language-like: they are indivisible,
rather than having any grammatical structure to them.

e Lines 77-87 deal with the “current emotional state”, but, more accurately, should
be called “current facial expression.”

e Lines 88-122 deal with eye-contact state.

e Lines 124-176 deal with the chatbot state: is it talking, or listening?

12

https://github.com/opencog/opencog/blob/21ad879d85d31013e59870b895bb0a0aef97242c/opencog/nlp/chatbot-eva/imperative.scm
https://github.com/opencog/opencog/blob/21ad879d85d31013e59870b895bb0a0aef97242c/opencog/nlp/chatbot-eva/bot-api.scm
https://github.com/opencog/opencog/blob/21ad879d85d31013e59870b895bb0a0aef97242c/opencog/nlp/chatbot-eva/chatbot-eva.scm
https://github.com/opencog/ros-behavior-scripting
tps://github.com/opencog/opencog/blob/21ad879d85d31013e59870b895bb0a0aef97242c/opencog/nlp/chatbot-eva/self-model.scm
https://github.com/opencog/ros-behavior-scripting/blob/a00847af2ef07dfbc7769970fa6ca7a5cd192b69/src/faces.scm
https://github.com/opencog/ros-behavior-scripting/blob/a00847af2ef07dfbc7769970fa6ca7a5cd192b69/src/self-model.scm

e Lines 177-200 deal with the chatbot affect: was the last thing that the chatbot
heard friendly and positive, or is it negative?

e Lines 201-242 deal with whether anything has been heard. Currently, the robot
can only hear speech, and not other arbitrary noises in the room.

e Lines 244-294 deal with the setting of timestamps on the internal state. One
needs to know when, or, more importantly, how recently something happened.
The are candidates for being moved into the TimeServer, which offers greater
time-related capabilities.

e Lines 305-763 deal with the interaction with visible faces in the room. The
names of the various predicates are more-or-less self-explanatory. So,

line 324: "Did someone recognizable arrive?"

line 388: "Did someone leave?"

line 421: "was room empty?"

line 506: "Select random glance target"

— line 555: "Is interacting with someone?"

.. and so on.

One major issue with the current design of these predicates is that they do not really
follow the conception of the control system being a “control language”: each of these
predicates is an indivisible whole, rather than a control-word that can be combined with
other control-words to achieve a desired effect. That’s OK for now, but is a potential
stumbling block for the future, as a true language would be more compact, and more
flexible, than some arbitrary grab-back hard-coded predicates.

Design Issues

DRAFT VERSION 0.02

This is a draft. Everything above is in some mostly-finished state. Everything below is
in outline format.

Translation issues

There are several technical issues that crop up, at this point. These are central to later
development, and so are discussed in detail here.

issue: learning vs. hand-crafting, obtaining synonymous phrases, not just synony-
mous words.

issue: its LG not R2L

issue: dual-stage conversion. Normal form looks more like relex or MTT.

issue: using openpsi to discover and apply rules. This is like using openpsi in
general, to pick through non-verbal stimulus.

13

issue: fuzzy matching, partial matching

issue: picking out sentences attached to an anchor, vs other processing pipeline
designs.

todo — the verb synonyms should not be needed!? as they can be gotten from the
synonym lists for the control-action language...

OpenPsi

OpenPsi as a flexible rule-selection system

Self-model issues

The various predicates: e.g. (DefinedPredicate "Is sleeping?") do not really fit the
“control language” concept described above. Ditto for lines 305-547 of self-model.scm

Question-answering

Answering questions about self and the world. Also has been prototyped. Its like
the “view” part of MVC — the internal state has to be “viewed” easily, in order to be
queried. Thus, there are a set of “standardized state queries”, analogous to the control
language. Running these queries returns yes/no answers (truth queries) or multi-valued
data (e.g. look-at direction) or more complex structures (sequences of actions that had
been performed in the past)

There are two translation layers that are needed here: first, to convert English to
the internal query language, second, to convert the response back to English. If the
response is of the right form, then SuReal can be used to perform the final conversion.
Right now, the query language is not generating SuReal-compatible results.

‘World model

Right now, there is only a self-model. A world-model is needed, so we can talk about
that. Well —there is a world model — currently, it consists of the visible faces in the
environment. It needs to get bigger.

Action Orchestration

Carrying out multiple things at once; using the internal model to do this.

Memory

Multiple types of memory are needed. Most important (for demo purposes) is mem-
ory consisting of imperatives: when she is told to do this and say that, she needs to
remember this, and later on, play that back as a performance.

This should be “straight-forward”: one can record the control-language directives.
They need to be marked up with timing information.

Implementing acting-coaching is interesting, and in particular, implementing direc-
tives such as “do that performance again, except this time, make xyz go more slowly”.

14

A second type of memory would be remembering past states of the world.

One technical challenge is that we will need a management layer for the Postgres
DB interfaces, so that memories are not lost during power-off. Those memories need
to be segregated: there are somethings that need to be remembered, others that should
not be.

Learning from sensory input

Creating atomese representations of sensory input processing pipelines, so that specific
sensory inputs can be recognized e.g. if the audio volume suddenly got loud, and the
visual field is suddenly moving, then maybe ... everyone is clapping? booing? getting
up to leave? ...I’'m no longer the center of attention?

Free will

Free will, as defined here, is the over-riding of default behavior (as computed by psi-
rules) by means of a logically, rationally reasoned course of action. For example, the
default of the psi rules might be “lolly-gag about”, while a rational decision would be
“go and do that important thing”. Free will is then the act of picking between these two
alternatives, of balancing them out (at a critical phase-transition point).

Items

e a person walks into room, who she recognizes. Depending on psi, she should do
non-verbal greetings (play one of 3-4 different animations (look at, chin push,
nod)) and verbal greetings (“hello, what’s up, yo dawg”). split up the state and
the psi rule stuff properly. See comments here: https://github.com/opencog/ros-
behavior-scripting/pull/80

e extract keywords/key-topics from sentence, and remember them, then apply fuzzy
matcher to see which of these come up.

Random ideas

e Why did you smile? Output: have her explain recent openpsi decision-making.
e I'm so sorry about that. Output: a small cute pout (blend of frown and 7??)

e Look at me. (verify look-at location or report visibility)

e What are you doing?

e (When last person leaves, she should say goodbye. If did not say goodbye, then
say “hey where did everybody go?”)

e If no one is visible, and no one has been visible for many minutes, she should
say “hey where did everybody go?”

15

e Behavior — she should not get sleepy, as long as someone is visible.

e Behavior — she should complain, if no one is visible, but there is a chat session
going on.

16

