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Abstract

A novel approach to focusing visual attention using imprecise prob-
abilities is described. The method is applicable to any computer vision
approach with a significant probabilistic component which satisfies
certain broad criteria. The potential application to the hybridiza-
tion of the DeSTIN and SIFT computer vision systems is described in
moderate detail.

1 Introduction

One key aspect of vision processing is the ability to preferentially focus at-
tention on certain positions within a perceived visual scene. In the human
visual system this is achieved largely by the eye changing its focus frequently,
looking preferentially at certain positions in the scene. This works because
the center of the eye corresponds to a greater density of neurons than the
periphery.

So for example, consider a computer vision algorithm like SIFT (Scale-
Invariant Feature Extraction), which (as shown in Figure 1) mathematically
isolates certain points in a visual scene as keypoints which are particularly
important for identifying what the scene depicts (e.g. these may be corners,
or easily identifiable curves in edges). The human eye, when looking at a
scene, would probably spend a greater percentage of its time focusing on the
SIFT keypoints than on random points in the image.

The human visual system’s strategy is obviously workable, but its also
somewhat complex, requiring the use of subtle temporal processing to in-
terpret even static scenes. It seems there may be a simpler way to achieve
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the same thing, in the context of vision systems that are substantially prob-
abilistic in nature, via using imprecise probabilities. The crux of the idea
is to represent the most important data, e.g. keypoints, using imprecise
probability values with greater confidence.

2 Outline of the General Approach

Suppose one has a vision system that internally constructs probabilistic val-
ues corresponding to small local regions in an input image (these could be
pixels, or something a little larger), and then (perhaps via a complex process)
assigns probabilities to different interpretations of the image based on com-
binations of these input-level probabilities. Note that multiple probabilistic
values may be assigned to different features depending on each local region.
For this sort of vision system, one may be able to achieve focusing of attention
via appropriately replacing the probabilities with imprecise probabilities.

The idea suggested here could work with multiple forms of imprecise
probabilities, e.g. with

• (probability, confidence) = (s,c) pairs

• Walley-style (L,U) intervals, representing lower and upper bounds on
the means of probabilities in an envelope

• PLN-style indefinite probabilities of the form ( (L,U), b , k), with the
interpretation that after k more observations are made, the odds are
b that the mean of the estimated distribution describing the event in
question will lie in the interval (L,U)

I will speak here in terms of the confidence of an imprecise probability,
but this doesnt embody a commitment regarding representation, since essen-
tially any imprecise probability can be used to generate a confidence value.
In the case of Walley probabilities, one can simply use the negation interval
width, i.e. c = 1 − (U − L), as a confidence value. In the case of indefi-
nite probabilities there is a more complex formula, previously calculated and
tested.

I will also assume here that there is a method for taking any calculation
done using ordinary single-number probabilities as inputs and outputs, and
transforming it into a calculation to be done using imprecise probabilities as
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inputs and outputs. Straightforward methods of this nature exist for both
Walley-style and indefinite probabilities, for example.

I can now state my basic suggestion:

1. Assign higher confidence to the low-level probabilities that the vision
system creates corresponding to the local visual regions that one wants
to focus attention on.

2. Carry out the vision system’s processing using imprecise probabilities
rather than single-number probabilities

3. Wherever the vision system makes a decision based on the most prob-
able choice from a number of possibilities, change the system to make
a decision based on the choice maximizing the product (expectation *
confidence).

2.1 Sketch of Application to DeSTIN

An example of a vision system to which this approach could be applied is
Itamar Arels DeSTIN system. Internally to DeSTIN, probabilities are as-
signed to pixels or other small local regions (according to equations to be
detailed below). If a system such as SIFT were run as a preprocessor to
DeSTIN, then those pixels or small regions corresponding to SIFT keypoints
may be assumed semantically meaningful, and internal DeSTIN probabili-
ties associated with them can be given a high confidence. The probabilistic
calculations inside DeSTIN can be replaced with corresponding calculations
involving imprecise probabilities. Finally, there is a step in DeSTIN where,
among a set of beliefs about the state in each region of an image (on each of
a set of hierarchical levels), the one with the highest probability is selected.
In accordance with the above recipe, this step should be modified to select
the belief with the highest probability*confidence.

3 Conceptual Justification

What is the conceptual justification for taking this approach?
One justification is obtained by assuming that each percept has a cer-

tain probability of being erroneous, and those percepts that appear to more
closely embody the semantic meaning of the visual scene are less likely to be
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erroneous. This follows conceptually from the assumption that the perceived
world tends to be patterned and structured, so that being part of a statisti-
cally significant pattern is (perhaps weak) evidence of being real rather than
artifactual. Under this assumption, the proposed approach will maximize
the accuracy of the systems judgments.

A related justification is obtained by observing that this algorithmic ap-
proach follows from the consideration of the perceived world as mutable.
Consider a vision system that has the capability to modify even the low-level
percepts that it intakes i.e. to use what it thinks and knows, to modify what
it sees. The human brain certainly has this potential. In this case, it will
make sense for the system to place some constraints regarding which of its
percepts it is more likely to modify. Confidence values semantically embody
this a higher confidence being sensibly assigned to percepts that the system
considers should be less likely to be modified based on feedback from its
higher (more cognitive) processing levels. In that case, a higher confidence
should be given to those percepts that seem to more closely embody the
semantic meaning of the visual scene which is exactly what Im suggesting.

4 Details of Application to DeSTIN

4.1 Review of DeSTIN’s Perceptual Hierarchy

DeSTIN 1 is a holistic AGI architecture comprising three crosslinked hierar-
chies, handling perception, action and reinforcement. Here we will be con-
cerned only with the perceptual hierarchy (also called the ”spatiotemporal
inference network”), which is the best-developed of the three to date.

The hierarchical architecture of DeSTIN’s spatiotemporal inference net-
work comprises an arrangement into multiple layers of “nodes” comprising
multiple instantiations of an identical cortical circuit. Each node corresponds
to a particular spatiotemporal region, and uses a statistical learning algo-
rithm to characterize the sequences of patterns that are presented to it by
nodes in the layer beneath it. More specifically,

• At the very lowest layer of the hierarchy nodes receive as input raw

1This section is pasted with minor modifications from the articleWorld Survey of Ar-
tificial Brains: Part II, Biologically Inspired Cognitive Architectures published in Neuro-
computing in December 2010, coauthored by Ben Goertzel and colleagues including Itamar
Arel; this section was largely written by Itamar Arel.
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data (e.g. pixels of an image) and continuously construct a belief state
that attempts to characterize the sequences of patterns viewed.

• The second layer, and all those above it, receive as input the belief
states of nodes at their corresponding lower layers, and attempt to
construct belief states that capture regularities in their inputs.

• each node also receives as input the belief state of the node above it in
the hierarchy (which constitutes “contextual” information)

DeSTIN’s basic belief update rule, which governs the learning process
and is identical for every node in the architecture, is as follows. The belief
state is a probability mass function over the sequences of stimuli that the
nodes learns to represent. Consequently, each node is allocated a predefined
number of state variables each denoting a dynamic pattern, or sequence, that
is autonomously learned. We seek to derive an update rule that maps the
current observation (o), belief state (b), and the belief state of a higher-layer
node (c), to a new (updated) belief state (b′), such that

b′ (s′) = Pr (s′|o, b, c) =
Pr (s′ ∩ o ∩ b ∩ c)

Pr (o ∩ b ∩ c)
, (1)

alternatively expressed as

b′ (s′) =
Pr(o|s′, b, c) Pr (s′|b, c) Pr (b, c)

Pr (o|b, c) Pr (b, c)
. (2)

Under the assumption that observations depend only on true state, or Pr(o|s′, b, c) =
Pr(o|s′), we can further simplify the expression such that

b′ (s′) =
Pr(o|s′) Pr (s′|b, c)

Pr (o|b, c)
, (3)

where Pr (s′|b, c) =
∑
s∈S

Pr (s′|s, c) b (s), yielding the belief update rule

b′ (s′) =

Pr (o|s′)
∑
s∈S

Pr (s′|s, c) b (s)∑
s′′∈S

Pr (o|s′′)
∑
s∈S

Pr (s′′|s, c) b (s)
, (4)

where S denotes the sequence set (i.e. belief dimension) such that the de-
nominator term is a normalization factor. One interpretation of (4) would
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be that the static pattern similarity metric, Pr (o|s′) , is modulated by a con-
struct that reflects the system dynamics, Pr (s′|s, c). As such, the belief state
inherently captures both spatial an temporal information. In our implemen-
tation, the belief state of the parent node, c, is chosen using the selection
rule

c = arg max
s

bp(s), (5)

where bp is the belief distribution of the parent node. A closer look at eq.
(4) reveals that there are two core constructs to be learned, Pr(o|s′) and
Pr(s′|s, c). We show that the former can be learned via online clustering while
the latter is learned based on experience by adjusting of the parameters with
each transition from s to s′ given c. The result is a robust framework that
autonomously (i.e. with no human engineered pre-processing of any type)
learns to represent complex data patterns, such as those found in real-life
robotics applications.

Based on these equations, the DeSTIN perceptual network serves the
critical role of building and maintaining a model of the state of the world. In
a vision processing context, for example, it allows for powerful unsupervised
classification. If shown a variety of real-world scenes, it will automatically
form internal structures corresponding to the various natural categories of
objects shown in the scenes, such as trees, chairs, people, etc.; and also the
various natural categories of events it sees, such as reaching, pointing, falling.

4.2 Enabling Visual Attention Focusing in DeSTIN via
Imprecise Probabilities

Given the above outline of DeSTIN, the application of imprecise probability
based attention focusing to DeSTIN is almost immediate.

The probabilities P (o|s) may be assigned greater or lesser confidence de-
pending on the assessed semantic criticality of the observation o in question.
So for instance, if one is using SIFT as a preprocessor to DeSTIN, then
one may assign probabilities P (o|s) higher confidence if they correspond to
observations o of SIFT keypoints, than if they do not.

These confidence levels may then be propagated throughout DeSTIN’s
probabilistic mathematics. For instance, if one were using Walley’s inter-
val probabilities, then one could carry out the probabilistic equations using
interval arithmetic.

Finally, one wishes to replace Equation 5 above with something like
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c = arg max
s

((bp(s)).strength ∗ (bp(s)).confidence) , (6)

The effect of this is that hypotheses based on high-confidence observations
are more likely to be chosen, which of course has a large impact on the
dynamics of the DeSTIN network.

7



Figure 1: SIFT algorithm finds keypoints in an image, i.e. localized features
that are particularly useful for identifying the objects in an image. The
top row shows images that are matched against the image in the middle
row. The bottom-row image shows some of the keypoints used to perform
the matching (i.e. these keypoints demonstrate the same features in the top-
row images and their transformed middle-row counterparts). SIFT keypoints
are identified via a staged filtering approach. The first stage identifies key
locations in scale space by looking for locations that are maxima or minima
of a difference-of-Gaussian function. Each point is used to generate a feature
vector that describes the local image region sampled relative to its scale-space
co- ordinate frame. The features achieve partial invariance to local variations,
such as affine or 3D projections, by blurring image gradient locations
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Figure 2: Small-scale instantiation of the DeSTIN perceptual hierarchy. Each
box represents a node, which corresponds to a spatiotemporal region (nodes
higher in the hierarchy corresponding to larger regions). O denotes the cur-
rent observation in the region, C is the state of the higher-layer node, and
S and S‘ denote state variables pertaining to two subsequent time steps. In
each node, a statistical learning algorithm is used to predict subsequent states
based on prior states, current observations, and the state of the higher-layer
node.
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