
Open62541-1.3.pdf Setup Journal
I am trying to follow the Open62541 documentation to do a basic setup of an Open62541
server.

2.1 Building The Library

2.1.1 Building with CMake on Ubuntu or Debian
Skipped this section because I am using Windows.

2.1.2 Building with CMake on Windows

● I confirmed Python is installed (3.10.0)
● I confirmed Cmake is installed (3.26.0)
● I confirmed Visual Studio is installed (2019 16.11.24)

https://www.open62541.org/doc/open62541-1.3.pdf

I downloaded the sources from here using this link:

Extracted to C:\open62541-1.3\open62541-1.3 on my Windows 10 computer:

https://www.open62541.org/download/

I ran the above commands with the following output:

It looks like it was overall successful, but I noted a few warnings.
● CMake Warning at tools/cmake/SetGitBasedVersion.cmake:23 (message):

○ Failed to determine the version from git information. Using defaults.
○ Call Stack (most recent call first):
○ CMakeLists.txt:51 (set_open62541_version)

● fatal: not a git repository (or any of the parent directories): .git
● -- Could NOT find Sphinx (missing: SPHINX_EXECUTABLE)
● -- Could NOT find LATEX (missing: LATEX_COMPILER)

2.1.3 - 2.1.6 Building on OS X, OpenBSD, Docker
Skipped these sections because I am using Windows.

2.2 Build Options

I left all the options at the default and hit “Configure”, and then “Generate”:

As you can see it outputs the same warnings as noted above. Then I clicked Generate and it
output the following:

2.2.1 - 2.1.7 Build Options
I skipped these sections since I am just sticking with the default options for now just to get it
working.

2.3 Building the Examples

The way this is worded leaves me feeling unclear.

The phrase “easier way” sounds to me like you’re about to propose an easier way to “build the
shared library as explained in the previous steps”. In which case I would respond, “cool, but I
already built the shared library in the previous steps, so I don’t need an easier way to do that.”

Did you mean to say this?:
“Now that you’ve built the library in the previous steps, you need to link it into your c project
using gcc. The hard way is to link it manually using compiler options. The easy way is to install
open62541 in your operating system, so that the compiler will automatically find the includes
and the shared library. Once you have installed open62541 in your operating system, you can
easily build the tutorial_server_firststeps example using the following commands:”

It sounds like I need to jump forward to 3.1, “install open62541 in [my] operating system” and
then jump back to 2.3 and try building the example.

3.1 Manual Installation

I am new to make install, let’s give it a try.

I’m just going to stick with the defaults to increase my chance of getting this working.

I don’t know where these commands are supposed to be run. Should this be run in the root
directory of the open62541 source code?

Why does it say to make a build directory if we already made one in 2.1.2?

I’ll try running it in the root directory:

As expected, the git command does nothing, since I downloaded a .zip of the project. 2.1.2 says
I could download the source code as .zip, so I’m assuming that git cloning is not required.

As expected, mkdir build fails because we already made a build directory in 2.1.2. I did it
anyway just to show that I am trying to follow the documentation as exactly as possible.

Now to try the cmake command:

Looks like it failed, and it needs to be run in a directory that contains CMakeLists.txt. Now I am
even more confused why the previous two commands said to make a build folder and run
cmake there, since a newly created folder is obviously to be empty, and cmake will therefore fail
since there is no CMakeLists.txt file in an empty folder.

Looks like the root folder of the source code has the CMakeLists.txt that cmake is looking for,
lets try running cmake there:

It looks like the command failed with these warnings and errors:
● CMake Warning:

○ No source or binary directory provided. Both will be assumed to be the same as
the current working directory, but note that this warning will become a fatal error
in future CMake releases.

● fatal: not a git repository (or any of the parent directories): .git
○ Call Stack (most recent call first): CMakeLists.txt:51 (set_open62541_version)

● CMake Error at CMakeLists.txt:1170 (message):
○ File
○

C:/open62541-1.3/open62541-1.3/deps/ua-nodeset/Schema/Opc.Ua.NodeSet2.x
ml

○ not found. You probably need to initialize the git submodule for
○ deps/ua-nodeset or set open62541_NODESET_DIR.

Based on these warnings, it sounds like git clone is necessary after all, and downloading a .zip
will not work. So I will try again starting with git clone instead of downloading a zip.

Cloned repo to fresh clean directory:

Switched to latest stable release branch 1.3:

Re-ran the commands from 2.1.2 to run cmake:

It looks like the git and version related warnings from earlier are gone. Remaining warnings:
● -- Could NOT find Sphinx (missing: SPHINX_EXECUTABLE)
● -- Could NOT find LATEX (missing: LATEX_COMPILER)

I figured I ought to dig into these other two warnings. Some Googling, I found there is a python
library called Sphinx (No idea if this happens to be the sphinx that the cmake warning is
referring to). I ran “pip install sphinx” and that fixed the warning:

https://www.sphinx-doc.org/en/master/usage/installation.html#install-pypi
https://www.sphinx-doc.org/en/master/usage/installation.html#install-pypi

Ok great, let’s try fissing the missing LATEX_COMPILER. There is a Python library called
LaTeXCompiler.

However installing it did not resolve the warning:

I also tried installing python libraries PyLatex and Latex, those did not resolve the warning. So I
am at a dead end with that warning and will move on to the next step.

Ran Cmake GUI with default options:

https://pypi.org/project/LaTeXCompiler/#installation
https://pypi.org/project/LaTeXCompiler/#installation

OK now we’re back to 3.1, now with a cloned git repo and the Sphinx library. Let’s see if
anything works better.

First try the git command:

It looks like it successfully set up some submodule repos this time around.

Now the mkdir build command makes sense, because the git initialization cleared the build
directory we made in step 2.1.2.

Great, the mkdir and cd commands worked. Let’s try the next command cmake:

OK the cmake line worked this time!

Lets try the next command “make”:

It fails.

Looks like the documentation forgot to navigate us to the location of the makefile. Let’s run a
Windows Explorer search and see if we can find it ourselves:

Ok, looks like the only one is for a dependency, and its not in the build subfolder. That seems
strange. Well lets try running make there:

It failed.

Well that is seeming like a dead end. So let’s try the next command “make install” back in the
build directory. I dropped the “sudo” because I’m on Windows:

OK that failed too.

I see some files in the build directory that look relevant, like cmake_install.cmake and
INSTALL.vcxproj. Since we are trying to “install” the libraries on our operating system, those
seem like relevant files. But I’m not sure what to do with them.

Conclusion

I think this project is at a dead end for now. I can’t proceed with 2.3 “Building the examples”
until I “install open62541 in [my] operating system.”

