OOPS and CORE JAVA

What is JVM (Java Virtual Machine)?

Ans: -

 A Java Virtual Machine (JVM) is a set of computer software programs and data structures which implements a specific virtual machine model. This model accepts a form of computer intermediate language, commonly referred to as Java bytecode, which conceptually represents the instruction set of a stack-oriented, capability architecture. This code is most often generated by Java language compilers, although the JVM can also be targeted by compilers of other languages. JVMs using the "Java" trademark may be developed by other companies as long as they adhere to the JVM specification published by Sun (and related contractual obligations).

The JVM is a crucial component of the Java Platform. Because JVMs are available for many hardware and software platforms, Java can be both middleware and a platform in its own right — hence the expression "write once, run anywhere." The use of the same bytecode for all platforms allows Java to be described as "compile once, run anywhere", as opposed to "write once, compile anywhere", which describes cross-platform compiled languages. The JVM also enables such unique features as Automated Exception Handling which provides 'root-cause' debugging information for every software error (exception) independent of the source code.

The JVM is distributed along with a set of standard class libraries which implement the Java API (Application Programming Interface). The virtual machine and API have to be consistent with each other and are therefore bundled together as the Java Runtime Environment.

Execution environment

Programs intended to run on a JVM must be compiled into a standardized portable binary format, which typically comes in the form of .class files. A program may consist of many classes in different files. For easier distribution of large programs, multiple class files may be packaged together in a .jar file (short for Java archive).

The JVM runtime executes .class or .jar files, emulating the JVM instruction set by interpreting it, or using a just-in-time compiler (JIT) such as Sun's HotSpot. JIT compiling, not interpreting, is used in most JVMs today to achieve greater speed.

Like most virtual machines, the Java Virtual Machine has a stack-based architecture

Bytecode verifier

A basic philosophy of Java is that it is inherently "safe" from the standpoint that no user program can "crash" the host machine or otherwise interfere inappropriately with other operations on the host machine, and that it is possible to protect certain functions and data structures belonging to "trusted" code from access or corruption by "untrusted" code executing within the same JVM. Furthermore, common programmer errors that often lead to data corruption or unpredictable behavior (accessing off the end of an array, using an uninitialized pointer, etc) are not allowed to occur. Several features of Java combine to provide this safety, including the class model, the garbage-collected heap, and the verifier.

The JVM verifies all bytecode before it is executed. This verification consists primarily of three types of checks:

 * Branches are always to valid locations

 * Data is always initialized and references are always type-safe

 * Access to "private" or "package" data and methods is rigidly controlled.

The first two of these checks take place primarily during the "verification" step which occurs when a class is loaded and made eligible for use. The third is primarily performed dynamically, when data items or methods of a class are first accessed by another class.

The verifier permits only some bytecode sequences in valid programs, e.g. a jump (branch) instruction can only target an instruction within the same function or method. Because of this, the fact that JVM is a stack architecture does not imply a speed penalty for emulation on register-based architectures when using a JIT compiler. In the face of the code-verified JVM architecture, it makes no difference to a JIT compiler whether it gets named imaginary registers or imaginary stack positions that need to be allocated to the target architecture's registers. In fact, code verification makes the JVM different from a classic stack architecture whose efficient emulation with a JIT compiler is more complicated and typically carried out by a slower interpreter.

Code verification also ensures that arbitrary bit patterns cannot get used as an address. Memory protection is achieved without the need for a MMU. Thus, JVM is an efficient way of getting memory protection on simple architectures that lack a MMU. This is analogous to managed code in Microsoft's .NET CLR, and conceptually similar to capability architectures such as the Plessey 250, and IBM System/38.

Bytecode instructions

The JVM has instructions for the following groups of tasks:

 * Load and store

 * Arithmetic

 * Type conversion

 * Object creation and manipulation

 * Operand stack management (push / pop)

 * Control transfer (branching)

 * Method invocation and return

 * Throwing exceptions

 * Monitor-based concurrency

The aim is binary compatibility. Each particular host operating system needs its own implementation of the JVM and runtime. These JVMs interpret the byte code semantically the same way, but the actual implementation may be different. More complicated than just the emulation of bytecode is compatible and efficient implementation of the Java core API which has to be mapped to each host operating system.

Secure execution of remote code

A virtual machine architecture allows very fine-grained control over the actions that code within the machine is permitted to take. This is designed to allow safe execution of untrusted code from remote sources, a model used by Java applets. Applets run within a VM incorporated into a user's browser, executing code downloaded from a remote HTTP server. The remote code runs in a restricted "sandbox", which is designed to protect the user from misbehaving or malicious code. Publishers can purchase a certificate with which to digitally sign applets as "safe", giving them permission to ask the user to break out of the sandbox and access the local file system and network...

Q:- What is JIT (Just-in-Time) Compilation?
Ans: -
In computing, just-in-time compilation (JIT), also known as dynamic translation, is a technique for improving the runtime performance of a computer program. JIT builds upon two earlier ideas in run-time environments: bytecode compilation and dynamic compilation. It converts code at runtime prior to executing it natively, for example bytecode into native machine code. The performance improvement over interpreters originates from caching the results of translating blocks of code, and not simply reevaluating each line or operand each time it is met (see Interpreted language). It also has advantages over statically compiling the code at development time, as it can recompile the code if this is found to be advantageous, and may be able to enforce security guarantees. Thus JIT can combine some of the advantages of interpretation and static compilation.

Several modern runtime environments, such as Microsoft's .NET Framework and most implementations of Java and most recently Actionscript 3, rely on JIT compilation for high-speed code execution.

In a bytecode-compiled system, source code is translated to an intermediate representation known as bytecode. Bytecode is not the machine code for any particular computer, and may be portable among computer architectures. The bytecode may then be interpreted, or run, on a virtual machine. A just-in-time compiler can be used as a way to speed up execution of bytecode. At the time the bytecode is run, the just-in-time compiler will compile some or all of it to native machine code for better performance. This can be done per-file, per-function or even on any arbitrary code fragment; the code can be compiled when it is about to be executed (hence the name "just-in-time").

In contrast, a traditional interpreted virtual machine will simply interpret the bytecode, generally with much lower performance. Some interpreters even interpret source code, without the step of first compiling to bytecode, with even worse performance. Statically compiled code or native code is compiled prior to deployment. A dynamic compilation environment is one in which the compiler can be used during execution. For instance, most Common Lisp systems have a compile function which can compile new functions created during the run. This provides many of the advantages of JIT, but the programmer, rather than the runtime, is in control of what parts of the code are compiled. This can also compile dynamically generated code, which can, in many scenarios, provide substantial performance advantages over statically compiled code, as well as over most JIT systems.

A common goal of using JIT techniques is to reach or surpass the performance of static compilation, while maintaining the advantages of bytecode interpretation: Much of the "heavy lifting" of parsing the original source code and performing basic optimization is often handled at compile time, prior to deployment: compilation from bytecode to machine code is much faster than compiling from source. The deployed bytecode is portable, unlike native code. Since the runtime has control over the compilation, like interpreted bytecode, it can run in a secure sandbox. Compilers from bytecode to machine code are easier to write, because the portable bytecode compiler has already done much of the work.

JIT code generally offers far better performance than interpreters. In addition, it can in some or many cases offer better performance than static compilation, as many optimizations are only feasible at run-time:

 1. The compilation can be optimized to the targeted CPU and the operating system model where the application runs. For example JIT can choose SSE2 CPU instructions when it detects that the CPU supports them.

 2. The system is able to collect statistics about how the program is actually running in the environment it is in, and it can rearrange and recompile for optimum performance.

 3. The system can do global code optimizations (e.g. in-lining of library functions) that are impossible with static compilers and linkers without losing the advantages of dynamic linking, since a static linker cannot rely on the functions in a library being identical on the deployed system.

 4. Although this is possible with statically compiled garbage collected languages, a bytecode system can more easily rearrange memory for better cache utilization.

However, JIT typically causes a slight delay in initial execution of an application, due to the time taken to compile the bytecode. Sometimes this delay is called "startup time delay". In general, the more optimization JIT performs, the better code it will generate. However, users will experience a longer delay. A JIT compiler therefore has to make a trade-off between the compilation time and the quality of the code it hopes to generate.

For example, Sun's Java Virtual Machine has two major modes -- client and server. In client mode, minimal compilation and optimization is performed, to reduce startup time. In server mode, extensive compilation and optimization is performed, to maximize performance once the application is running by sacrificing startup time.

Various technologies exist for reducing the startup delay. "Native Image Generator" (Ngen.exe) by Microsoft is one of the examples. Ngen pre-compiles (or pre-jits) bytecode in a Common Intermediate Language image into machine native code. As a result, no runtime compilation is needed. .NET framework 2.0 shipped with Visual Studio 2005 runs Ngen.exe on all of the Microsoft library DLLs right after the installation. Pre-jitting provides a way to improve the startup time. However, the quality of code it generates might not be as good as the one that is jitted, for many of the same reasons why statically compiled code cannot be as good as JIT compiled code.
Q:- What is Object Oriented Programming?
Ans: -
Object-oriented programming (OOP) is a programming paradigm that uses "objects" and their interactions to design applications and computer programs. It is based on several techniques, including encapsulation, modularity, polymorphism, and inheritance. It was not commonly used in mainstream software application development until the early 1990s. Many modern programming languages now support OOP.
Object-oriented programming roots reach all the way back to the 1960s. As hardware and software became increasingly complex, researchers studied how software quality could be maintained. Object-oriented programming was deployed in part as an attempt to address this problem by strongly emphasizing discrete units of programming logic and re-usability in software.

The Simula programming language was the first to introduce the concepts underlying object-oriented programming (objects, classes, subclasses, virtual methods, coroutines, garbage collection, and discrete event simulation) as a superset of Algol. Simula was used for physical modeling, such as models to study and improve the movement of ships and their content through cargo ports. Smalltalk was the first programming language to be called "object-oriented".

Object-oriented programming may be seen as a collection of cooperating objects, as opposed to a traditional view in which a program may be seen as a group of tasks to the computer ("subroutines"). In OOP, each object is capable of receiving messages , processing data, and sending messages to other objects.

Each object can be viewed as an independent little machine with a distinct role or responsibility. The actions or "operators" on the objects are closely associated with the object. For example, in OOP, the data structures tend to carry their own operators around with them (or at least "inherit" them from a similar object or "class"). The traditional approach tends to view and consider data and behavior separately.
Fundamental concepts

A survey by Deborah J. Armstrong [1] of nearly 40 years of computing literature identified a number of ‘quarks’, or fundamental concepts, found in the strong majority of definitions of OOP. They are the following:

Class

 A class defines the abstract characteristics of a thing (object), including the thing's characteristics (its attributes, fields or properties) and the thing's behaviors (the things it can do, or methods, operations or features). For example, the class Dog would consist of traits shared by all dogs, such as breed and fur color (characteristics), and the ability to bark and sit (behaviors). Classes provide modularity and structure in an object-oriented computer program. A class should typically be recognizable to a non-programmer familiar with the problem domain, meaning that the characteristics of the class should make sense in context. Also, the code for a class should be relatively self-contained (generally using encapsulation). Collectively, the properties and methods defined by a class are called members.

Object

 A particular instance of a class. The class of Dog defines all possible dogs by listing the characteristics and behaviors they can have; the object Lassie is one particular dog, with particular versions of the characteristics. A Dog has fur; Lassie has brown-and-white fur. In programmer jargon, the object Lassie is an instance of the Dog class. The set of values of the attributes of a particular object is called its state. The object consists of state and the behaviour that's defined in the object's class.

Method

 An object's abilities. Lassie, being a Dog, has the ability to bark. So bark() is one of Lassie's methods. She may have other methods as well, for example sit() or eat(). Within the program, using a method usually affects only one particular object; all Dogs can bark, but you need only one particular dog to do the barking.

Message passing

 “The process by which an object sends data to another object or asks the other object to invoke a method.”[1] Also known to some programming languages as interfacing. Lassie may give another dog one of her bones.

Inheritance

 ‘Subclasses’ are more specialized versions of a class, which inherit attributes and behaviors from their parent classes, and can introduce their own.

 For example, the class Dog might have sub-classes called Collie, Chihuahua, and GoldenRetriever. In this case, Lassie would be an instance of the Collie subclass. Suppose the Dog class defines a method called bark() and a property called furColor. Each of its sub-classes (Collie, Chihuahua, and GoldenRetriever) will inherit these members, meaning that the programmer only needs to write the code for them once.

 Each subclass can alter its inherited traits. For example, the Collie class might specify that the default furColor for a collie is brown-and-white. The Chihuahua subclass might specify that the bark() method produces a high-pitch by default. Subclasses can also add new members. The Chihuahua subclass could add a method called tremble(). So an individual chihuahua instance would use a high-pitched bark() from the Chihuahua subclass, which in turn inherited the usual bark() from Dog. The chihuahua object would also have the tremble() method, but Lassie would not, because she is a Collie, not a Chihuahua. In fact, inheritance is an ‘is-a’ relationship: Lassie is a Collie. A Collie is a Dog. Thus, Lassie inherits the methods of both Collies and Dogs.

 Multiple inheritance is inheritance from more than one ancestor class, neither of these ancestors being an ancestor of the other. For example, independent classes could define Dogs and Cats, and a Chimera object could be created from these two which inherits all the (multiple) behavior of cats and dogs. This is not always supported, as it can be hard both to implement and to use well.

Encapsulation

 Encapsulation conceals the functional details of a class from objects that send messages to it.

 For example, the Dog class has a bark() method. The code for the bark() method defines exactly how a bark happens (e.g., by inhale() and then exhale(), at a particular pitch and volume). Timmy, Lassie's friend, however, does not need to know exactly how she barks. Encapsulation is achieved by specifying which classes may use the members of an object. The result is that each object exposes to any class a certain interface — those members accessible to that class. The reason for encapsulation is to prevent clients of an interface from depending on those parts of the implementation that are likely to change in future, thereby allowing those changes to be made more easily, that is, without changes to clients. For example, an interface can ensure that puppies can only be added to an object of the class Dog by code in that class. Members are often specified as public, protected or private, determining whether they are available to all classes, sub-classes or only the defining class. Some languages go further: Java uses the default access modifier to restrict access also to classes in the same package, C# and VB.NET reserve some members to classes in the same assembly using keywords internal (C#) or Friend (VB.NET), and Eiffel and C++ allows one to specify which classes may access any member.

Abstraction

 Abstraction is simplifying complex reality by modelling classes appropriate to the problem, and working at the most appropriate level of inheritance for a given aspect of the problem.

 For example, Lassie the Dog may be treated as a Dog much of the time, a Collie when necessary to access Collie-specific attributes or behaviors, and as an Animal (perhaps the parent class of Dog) when counting Timmy's pets.

 Abstraction is also achieved through Composition. For example, a class Car would be made up of an Engine, Gearbox, Steering objects, and many more components. To build the Car class, one does not need to know how the different components work internally, but only how to interface with them, i.e., send messages to them, receive messages from them, and perhaps make the different objects composing the class interact with each other.

Polymorphism

 Polymorphism allows you to treat derived class members just like their parent class's members. More precisely, Polymorphism in object-oriented programming is the ability of objects belonging to different data types to respond to method calls of methods of the same name, each one according to an appropriate type-specific behavior. One method, or an operator such as +, -, or *, can be abstractly applied in many different situations. If a Dog is commanded to speak(), this may elicit a Bark. However, if a Pig is commanded to speak(), this may elicit an oink(). They both inherit speak() from Animal, but their derived class methods override the methods of the parent class; this is Overriding Polymorphism. Overloading Polymorphism is the use of one method signature, or one operator such as ‘+’, to perform several different functions depending on the implementation. The ‘+’ operator, for example, may be used to perform integer addition, float addition, list concatenation, or string concatenation. Any two subclasses of Number, such as Integer and Double, are expected to add together properly in an OOP language. The language must therefore overload the concatenation operator, ‘+’, to work this way. This helps improve code readability. How this is implemented varies from language to language, but most OOP languages support at least some level of overloading polymorphism. Many OOP languages also support Parametric Polymorphism, where code is written without mention of any specific type and thus can be used transparently with any number of new types. Pointers are an example of a simple polymorphic routine that can be used with many different types of objects [2].

Not all of the above concepts are to be found in all object-oriented programming languages, and so object-oriented programming that uses classes is called sometimes class-based programming. In particular, prototype-based programming does not typically use classes. As a result, a significantly different yet analogous terminology is used to define the concepts of object and instance, although there are no objects in these languages.

In recent years, object-oriented programming has become especially popular in scripting programming languages. Python and Ruby are scripting languages built on OOP principles, while Perl and PHP have been adding object oriented features since Perl 5 and PHP 4, and ColdFusion since version 6.

The Document Object Model of HTML, XHTML, and XML documents on the Internet have bindings to the popular JavaScript/ECMAScript language. JavaScript is perhaps the best known prototype-based programming language which employs cloning from prototypes rather than inheriting from a class.

Q: - What's a Class?

Ans: -

What's an Object?

What's the relation between Classes and Objects?

What are different properties provided by Object-oriented systems?

How do you implement inheritance in Java?

How can we implement polymorphism in Java?

What's an interface and how will you go about implementing an

interface?

What is an Abstract class?

What are Abstract methods?

What's the difference between "Abstract" classes and

"Interfaces"?

What's difference between Static and Non-Static fields of a class?

What are inner classes and what's the practical implementation of

inner classes?

What are packages?

What is a constructor in class?

Can constructors be parameterized?

Can you explain transient and volatile modifiers?

What is the use if "instanceof " keyword?

What are Native methods in Java?

Explain in depth Garbage collector?

How does the garbage collector determine that the object has to be

marked for deletion?

Can you explain "finalize()" method?

How can we force the garbage collector to run?

What's the main difference between "Switch" and "If "

comparison?

What's the use of JAVAP tool?

What are applets?

In which package is the applet class located?

What are native interfaces in Java?

what are Class loader's?

what is Bootstrap, Extension and System Class loader?

Can you explain the flow between bootstrap, extension and system class

loader?

Can you explain how can you practically do dynamic loading?

How can you copy one array in to a different array?

Can you explain the core collection interfaces?

Can you explain in brief the collection classes which implement the

collection interfaces?

What's the difference between standard JAVA array and ArrayList

class?

What's the use of "ensureCapacity" in ArrayList class?

How can we obtain an array from an ArrayList class?

What is "LinkedList" class for?

Can you explain HashSet class in collections?

what is LinkedHashSet class?

what is a TreeSet class?

what's the use of Comparator Interface?

How can we access elements of a collection?

What is Map and SortedMap Interface?

Have you used any collection algorithm?

Why do we use collections when we had traditional ways for collection?

Can you name the legacy classes and interface for collections?

What is Enumeration Interface?

what's the main difference between ArrayList / HashMap and Vector /

Hashtable?

Are String object Immutable, Can you explain the concept?

what is a StringBuffer class and how does it differs from String class?

what is the difference between StringBuilder and StringBuffer class?

What is Pass by Value and Pass by reference? How does JAVA handle the

same?

What are access modifiers?

what is Assertion?

Can you explain the fundamentals of deep and shallow Cloning?

How do we implement Shallow cloning?

How do we implement deep cloning?

What's the impact of private constructor?

What are the situations you will need a constructor to be private?

Can you explain final modifier?

What are static Initializers?

If we have multiple static initializer blocks how is the sequence

handled?

Define casting? What are the different types of Casting?

Can you explain Widening conversion and Narrowing conversion?

Can we assign parent object to child objects?

Define exceptions?

Can you explain in short how JAVA exception handling works?

Can you explain different exception types?

Can you explain checked and unchecked exceptions?

Can we create our own exception class?

What are chained exceptions?

What is serialization?

How do we implement serialization actually?

What's the use of Externalizable Interface?

Threading

What's difference between thread and process?

What is thread safety and synchronization?

What is semaphore?

What are monitors?

What's the importance of synchronized blocks?

How do we create threads?

what's the difference in using runnable and extends in threads?

Can you explain Thread.sleep?

How to stop a thread?

What is wait() and notify() ?

Can you explain how Scheduling and Priority works in threads?

Can you explain Yielding in threading?

what are daemon threads?

JDBC

How does JAVA interact with databases?

Can we interact with non-relational sources using JDBC?

Can you explain in depth the different sections in JDBC?

Can you explain in short how you go about using JDBC API in code?

1 1

How do you handle SQL exceptions?

If there is more than one exception in SQLException" class how to go

about displaying

it?

Explain Type1, Type2, Type3 and Type4 drivers in JDBC?

What are the advantages and disadvantages of using JDBC-ODBC bridge

driver?

What are the advantages and disadvantages of using Native-API/

Partially Java Driver?

What are the advantages and disadvantages of using Net-Protocol/

All-Java driver?

What are the advantages and disadvantages of using Native-protocol/

All-Java driver?

Define meta-data?

What is DatabaseMetaData?

Can you explain "ConnectionFactory" class?

I want to display tables of a database how do I do it?

Define "ResultSetMetaData"?

What is the difference between "ResultSet" and "RowSet"?

Can "ResultSet" objects be serialized?

Can you explain "ResultSet", "RowSet", "CachedRowset",

"JdbcRowset" and

"WebRowSet" relation ship?

what are the different types of resultset?

Explain the concept of "PreparedStatement "statement interface?

What's the difference between "Statement" and

"PreparedStatement"?

How can we call stored procedure using JDBC?

Can you explain "CallableStatement" interface in detail?

How do you get a resultset object from stored procedure?

How can we do batch updates using "CallableStatement" Interface?

Define transactions?

what is ACID in transaction?

what are the four essential properties of a transaction?

Explain concurrency and locking?

What are different types of locks?

What are the different types of levels of resource on which locks can

be placed?

Define lock escalation?

What is Table level and Row level locking?

What are the problems that can occur if you do not implement locking

properly?

What are different transaction levels?

Twist: - what are different types of locks?

What is difference between optimistic and pessimistic locking?

What are deadlocks?

How can we set transaction level through JDBC API?

Can you explain transaction control in JDBC?

What are Savepoints in a transaction?

Servlets and JSP

What are Servlets?

What are advantages of servlets over CGI?

Can you explain Servlet life cycle?

What are the two important API's in for Servlets?

Can you explain in detail "javax.servlet" package?

What's the use of ServletContext?

How do we define an application level scope for servlet?

What's the difference between GenericServlet and HttpServlet?

Can you explain in detail javax.servlet.http package?

What's the architecture of a Servlet package?

Why is HTTP protocol called as a stateless protocol?

What are the different ways we can maintain state between requests?

What is URL rewriting?

What are cookies?

What are sessions in Servlets?

What's the difference between getSession(true) and getSession(false)

?

What's the difference between "doPost" and "doGet" methods?

Which are the different ways you can communicate between servlets?

What is functionality of "RequestDispatcher" object?

How do we share data using "getServletContext ()"?

Explain the concept of SSI?

What are filters in JAVA?

Can you explain in short how do you go about implementing filters using

Apache Tomcat?

Twist: - Explain step by step of how to implement filters?

what's the difference between Authentication and authorization?

Explain in brief the directory structure of a web application?

Can you explain JSP page life cycle?

What is EL?

how does EL search for an attribute?

What are the implicit EL objects in JSP?

How can we disable EL?

what is JSTL?

Can you explain in short what the different types of JSTL tags are?

How can we use beans in JSP?

What is <jsp:forward> tag for ?

What are JSP directives?

what are Page directives?

what are include directives?

Can you explain taglib directives?

How does JSP engines instantiate tag handler classes instances?

what's the difference between JavaBeans and taglib directives?

what are the different scopes an object can have in a JSP page?

what are different implicit objects of JSP?

what are different Authentication Options available in servlets?

Can you explain how do we practically implement security on a resource?

How do we practically implement form based authentication?

How do we authenticate using JDBC?

Can you explain JDBCRealm?

Can you explain how do you configure JNDIRealm?

How did you implement caching in JSP?

EJB

What is EJB?

what are the different kind of EJB's?

you are designing architecture for a project how do you decide whether

you should use

session, entity or message driven bean?

Can you explain "EJBHome" and "EJBObject" in EJB?

Can client directly create object of session or entity beans?

Can you explain the concept of local interfaces?

What are the limitations of using Local object?

Which application server have you used for EJB ?

Can you explain step by step practically developing and deploying EJB

component?

what is Passivation and Activation in EJB?

Can beans who are involved in transaction have "Passivation"

process?

How does the server decide which beans to passivate and activate?

In what format is the conversational data written to the disk?

Can you explain in brief Life cycle for Stateless and Stateful beans?

Struts

What's MVC pattern?

Define struts?

Can you explain the directory structure for a struts folder in brief ?

Can you give an overview of how a struts application flows?

Twist: - What are action and action form classes in Struts?

XML and WebServices

What is XML?

What is the version information in XML?

What is ROOT element in XML?

If XML does not have closing tag will it work?

Is XML case sensitive?

What is the difference between XML and HTML?

Is XML meant to replace HTML?

Can you explain why your project needed XML?

What is DTD (Document Type definition)?

What is well formed XML?

What is a valid XML?

What is CDATA section in XML?

What is CSS?

What is XSL?

What is element and attributes in XML?

What are the standard ways of parsing XML document?

In What scenarios will you use a DOM parser and SAX parser?

What is XSLT?

Define XPATH?

What is the concept of XPOINTER?

What is a Web Service ?

What is DISCO ?

What is SOAP ?

What is WSDL ?

Can you explain UDDI ?

Can you explain JAXP ?

What is a XML registry?

What is JAXR?

What is JAXM?

Can you explain how JAXM messaging model works?

Can you explain JAX-RPC?

Internationalization

Can you explain i18n and l10n?

Can you explain internationalization and localization?

What is Locale?

How do we display numbers, currency and Dates according to proper

Locale format?

what are resource bundles?

How do we load a resource bundle file?

How can we do inheritance in resource bundles?

JNI

What is Native Interface in JAVA?

Can you say in brief steps required to implement Native interfaces in

Java?

Can JNI be used for VB6, C# or VB.NET directly?

What are JNI functions and pointers?

How does the garbage collector know JNI objects are no more used?

Twist: - What are the different types of references JNI supports?

Twist: - How to do you delete global objects?

how does the native language C or C++ understand data types in JAVA?

Can you explain exception handling in JNI?

What are limitations for "JNIEnv" pointer in multi-threading

scenarios?

What are the advantages and disadvantages of using "JNI"?

Architecture

What are design patterns ?

What is the difference between Factory and Abstract Factory Patterns?

What is MVC pattern?

Twist: - How can you implement MVC pattern in Servlets and JSP?

How can we implement singleton pattern in JAVA?

How do you implement prototype pattern in JAVA?

Twist: - How to implement cloning in JAVA? What is shallow copy and

deep copy ?

Can you give a practical implementation of FAÇADE patterns?

How can we implement observer pattern in JAVA?

What is three tier architecture?

What is Service Oriented architecture?

What is aspect oriented programming?

Project Management

What is project management?

Is spending in IT projects constant through out the project?

Who is a stakeholder ?

Can you explain project life cycle ?

Twist :- How many phases are there in software project ?

Are risk constant through out the project ?

Can you explain different software development life cycles ?

What is triple constraint triangle in project management ?

What is a project baselines ?

What is effort variance?

How is normally a project management plan document organized ?

How do you estimate a project?

What is CAR (Causal Analysis and Resolution)?

What is DAR (Decision Analysis and Resolution) ?

What is a fish bone diagram ?

Twist:- What is Ishikawa diagram ?

What is pareto principle ?

Twist :- What is 80/20 principle ?

How do you handle change request?

What is internal change request?

What is difference between SITP and UTP in testing ?

What is the software you have used for project management?

What are the metrics followed in project management?

Twist: - What metrics will you look at in order to see the project is

moving successfully?

You have people in your team who do not meet there deadlines or do not

perform what

are the actions you will take ?

Twist :- Two of your resources have conflicts between them how would

you sort it out ?

What is black box testing and White box testing?

What's the difference between Unit testing, Assembly testing and

Regression testing?

What is V model in testing?

How do you start a project?

How did you do resource allocations?

How will you do code reviews ?

What is CMMI?

What are the five levels in CMMI?

What is continuous and staged representation?

Can you explain the process areas?

What is SIX sigma?

What is DMAIC and DMADV ?

What are the various roles in Six Sigma implementation?

What are function points?

Twist: - Define Elementary process in FPA?

What are the different types of elementary process in FPA?

What are the different elements in Functions points?

Can you explain in GSC and VAF in function points?

What are unadjusted function points and how is it calculated?

Can you explain steps in function points?

What is the FP per day in your current company?

Twist :- What is your company's productivity factor ?

Do you know Use Case points?

What is COCOMO I, COCOMOII and COCOMOIII?

What is SMC approach of estimation?

How do you estimate maintenance project and change requests?

UML

What is UML?

How many types of diagrams are there in UML ?

Twist :- Explain in short all types of diagrams in UML ?

What are advantages of using UML?

Twist: - What is Modeling and why UML ?

What is the sequence of UML diagrams in project?

Twist: - How did you implement UML in your project?

Just a small Twist: - Do I need all UML diagrams in a project?

Give a small brief explanation of all Elements in activity diagrams?

Explain Different elements of a collaboration diagram ?

Explain Component diagrams ?

Explain all parts of a deployment diagram?

Describe the various components in sequence diagrams?

What are the element in State Chart diagrams ?

Describe different elements in Static Chart diagrams ?

Explain the different elements of a Use Case ?

What is JIT (Just-in-Time) Compilation?

What is Object Oriented Programming?

What's a Class?

What's an Object?

What's the relation between Classes and Objects?

What are different properties provided by Object-oriented systems?

How do you implement inheritance in Java?

How can we implement polymorphism in Java?

What's an interface and how will you go about implementing an

interface?

What is an Abstract class?

What are Abstract methods?

What's the difference between "Abstract" classes and

"Interfaces"?

What's difference between Static and Non-Static fields of a class?

What are inner classes and what's the practical implementation of

inner classes?

What are packages?

What is a constructor in class?

Can constructors be parameterized?

Can you explain transient and volatile modifiers?

What is the use if "instanceof " keyword?

What are Native methods in Java?

Explain in depth Garbage collector?

How does the garbage collector determine that the object has to be

marked for deletion?

Can you explain "finalize()" method?

How can we force the garbage collector to run?

What's the main difference between "Switch" and "If "

comparison?

What's the use of JAVAP tool?

What are applets?

In which package is the applet class located?

What are native interfaces in Java?

what are Class loader's?

what is Bootstrap, Extension and System Class loader?

Can you explain the flow between bootstrap, extension and system class

loader?

Can you explain how can you practically do dynamic loading?

How can you copy one array in to a different array?

Can you explain the core collection interfaces?

Can you explain in brief the collection classes which implement the

collection interfaces?

What's the difference between standard JAVA array and ArrayList

class?

What's the use of "ensureCapacity" in ArrayList class?

How can we obtain an array from an ArrayList class?

What is "LinkedList" class for?

Can you explain HashSet class in collections?

what is LinkedHashSet class?

what is a TreeSet class?

what's the use of Comparator Interface?

How can we access elements of a collection?

What is Map and SortedMap Interface?

Have you used any collection algorithm?

Why do we use collections when we had traditional ways for collection?

Can you name the legacy classes and interface for collections?

What is Enumeration Interface?

what's the main difference between ArrayList / HashMap and Vector /

Hashtable?

Are String object Immutable, Can you explain the concept?

what is a StringBuffer class and how does it differs from String class?

what is the difference between StringBuilder and StringBuffer class?

What is Pass by Value and Pass by reference? How does JAVA handle the

same?

What are access modifiers?

what is Assertion?

Can you explain the fundamentals of deep and shallow Cloning?

How do we implement Shallow cloning?

How do we implement deep cloning?

What's the impact of private constructor?

What are the situations you will need a constructor to be private?

Can you explain final modifier?

What are static Initializers?

If we have multiple static initializer blocks how is the sequence

handled?

Define casting? What are the different types of Casting?

Can you explain Widening conversion and Narrowing conversion?

Can we assign parent object to child objects?

Define exceptions?

Can you explain in short how JAVA exception handling works?

Can you explain different exception types?

Can you explain checked and unchecked exceptions?

Can we create our own exception class?

What are chained exceptions?

What is serialization?

How do we implement serialization actually?

What's the use of Externalizable Interface?

Threading

What's difference between thread and process?

What is thread safety and synchronization?

What is semaphore?

What are monitors?

What's the importance of synchronized blocks?

How do we create threads?

what's the difference in using runnable and extends in threads?

Can you explain Thread.sleep?

How to stop a thread?

What is wait() and notify() ?

Can you explain how Scheduling and Priority works in threads?

Can you explain Yielding in threading?

what are daemon threads?

JDBC

How does JAVA interact with databases?

Can we interact with non-relational sources using JDBC?

Can you explain in depth the different sections in JDBC?

Can you explain in short how you go about using JDBC API in code?

1 1

How do you handle SQL exceptions?

If there is more than one exception in SQLException" class how to go

about displaying

it?

Explain Type1, Type2, Type3 and Type4 drivers in JDBC?

What are the advantages and disadvantages of using JDBC-ODBC bridge

driver?

What are the advantages and disadvantages of using Native-API/

Partially Java Driver?

What are the advantages and disadvantages of using Net-Protocol/

All-Java driver?

What are the advantages and disadvantages of using Native-protocol/

All-Java driver?

Define meta-data?

What is DatabaseMetaData?

Can you explain "ConnectionFactory" class?

I want to display tables of a database how do I do it?

Define "ResultSetMetaData"?

What is the difference between "ResultSet" and "RowSet"?

Can "ResultSet" objects be serialized?

Can you explain "ResultSet", "RowSet", "CachedRowset",

"JdbcRowset" and

"WebRowSet" relation ship?

what are the different types of resultset?

Explain the concept of "PreparedStatement "statement interface?

What's the difference between "Statement" and

"PreparedStatement"?

How can we call stored procedure using JDBC?

Can you explain "CallableStatement" interface in detail?

How do you get a resultset object from stored procedure?

How can we do batch updates using "CallableStatement" Interface?

Define transactions?

what is ACID in transaction?

what are the four essential properties of a transaction?

Explain concurrency and locking?

What are different types of locks?

What are the different types of levels of resource on which locks can

be placed?

Define lock escalation?

What is Table level and Row level locking?

What are the problems that can occur if you do not implement locking

properly?

What are different transaction levels?

Twist: - what are different types of locks?

What is difference between optimistic and pessimistic locking?

What are deadlocks?

How can we set transaction level through JDBC API?

Can you explain transaction control in JDBC?

What are Savepoints in a transaction?

Servlets and JSP

What are Servlets?

What are advantages of servlets over CGI?

Can you explain Servlet life cycle?

What are the two important API's in for Servlets?

Can you explain in detail "javax.servlet" package?

What's the use of ServletContext?

How do we define an application level scope for servlet?

What's the difference between GenericServlet and HttpServlet?

Can you explain in detail javax.servlet.http package?

What's the architecture of a Servlet package?

Why is HTTP protocol called as a stateless protocol?

What are the different ways we can maintain state between requests?

What is URL rewriting?

What are cookies?

What are sessions in Servlets?

What's the difference between getSession(true) and getSession(false)

?

What's the difference between "doPost" and "doGet" methods?

Which are the different ways you can communicate between servlets?

What is functionality of "RequestDispatcher" object?

How do we share data using "getServletContext ()"?

Explain the concept of SSI?

What are filters in JAVA?

Can you explain in short how do you go about implementing filters using

Apache Tomcat?

Twist: - Explain step by step of how to implement filters?

what's the difference between Authentication and authorization?

Explain in brief the directory structure of a web application?

Can you explain JSP page life cycle?

What is EL?

how does EL search for an attribute?

What are the implicit EL objects in JSP?

How can we disable EL?

what is JSTL?

Can you explain in short what the different types of JSTL tags are?

How can we use beans in JSP?

What is <jsp:forward> tag for ?

What are JSP directives?

what are Page directives?

what are include directives?

Can you explain taglib directives?

How does JSP engines instantiate tag handler classes instances?

what's the difference between JavaBeans and taglib directives?

what are the different scopes an object can have in a JSP page?

what are different implicit objects of JSP?

what are different Authentication Options available in servlets?

Can you explain how do we practically implement security on a resource?

How do we practically implement form based authentication?

How do we authenticate using JDBC?

Can you explain JDBCRealm?

Can you explain how do you configure JNDIRealm?

How did you implement caching in JSP?

EJB

What is EJB?

what are the different kind of EJB's?

you are designing architecture for a project how do you decide whether

you should use

session, entity or message driven bean?

Can you explain "EJBHome" and "EJBObject" in EJB?

Can client directly create object of session or entity beans?

Can you explain the concept of local interfaces?

What are the limitations of using Local object?

Which application server have you used for EJB ?

Can you explain step by step practically developing and deploying EJB

component?

what is Passivation and Activation in EJB?

Can beans who are involved in transaction have "Passivation"

process?

How does the server decide which beans to passivate and activate?

In what format is the conversational data written to the disk?

Can you explain in brief Life cycle for Stateless and Stateful beans?

Struts

What's MVC pattern?

Define struts?

Can you explain the directory structure for a struts folder in brief ?

Can you give an overview of how a struts application flows?

Twist: - What are action and action form classes in Struts?

XML and WebServices

What is XML?

What is the version information in XML?

What is ROOT element in XML?

If XML does not have closing tag will it work?

Is XML case sensitive?

What is the difference between XML and HTML?

Is XML meant to replace HTML?

Can you explain why your project needed XML?

What is DTD (Document Type definition)?

What is well formed XML?

What is a valid XML?

What is CDATA section in XML?

What is CSS?

What is XSL?

What is element and attributes in XML?

What are the standard ways of parsing XML document?

In What scenarios will you use a DOM parser and SAX parser?

What is XSLT?

Define XPATH?

What is the concept of XPOINTER?

What is a Web Service ?

What is DISCO ?

What is SOAP ?

What is WSDL ?

Can you explain UDDI ?

Can you explain JAXP ?

What is a XML registry?

What is JAXR?

What is JAXM?

Can you explain how JAXM messaging model works?

Can you explain JAX-RPC?

Internationalization

Can you explain i18n and l10n?

Can you explain internationalization and localization?

What is Locale?

How do we display numbers, currency and Dates according to proper

Locale format?

what are resource bundles?

How do we load a resource bundle file?

How can we do inheritance in resource bundles?

JNI

What is Native Interface in JAVA?

Can you say in brief steps required to implement Native interfaces in

Java?

Can JNI be used for VB6, C# or VB.NET directly?

What are JNI functions and pointers?

How does the garbage collector know JNI objects are no more used?

Twist: - What are the different types of references JNI supports?

Twist: - How to do you delete global objects?

how does the native language C or C++ understand data types in JAVA?

Can you explain exception handling in JNI?

What are limitations for "JNIEnv" pointer in multi-threading

scenarios?

What are the advantages and disadvantages of using "JNI"?

Architecture

What are design patterns ?

What is the difference between Factory and Abstract Factory Patterns?

What is MVC pattern?

Twist: - How can you implement MVC pattern in Servlets and JSP?

How can we implement singleton pattern in JAVA?

How do you implement prototype pattern in JAVA?

Twist: - How to implement cloning in JAVA? What is shallow copy and

deep copy ?

Can you give a practical implementation of FAÇADE patterns?

How can we implement observer pattern in JAVA?

What is three tier architecture?

What is Service Oriented architecture?

What is aspect oriented programming?

Project Management

What is project management?

Is spending in IT projects constant through out the project?

Who is a stakeholder ?

Can you explain project life cycle ?

Twist :- How many phases are there in software project ?

Are risk constant through out the project ?

Can you explain different software development life cycles ?

What is triple constraint triangle in project management ?

What is a project baselines ?

What is effort variance?

How is normally a project management plan document organized ?

How do you estimate a project?

What is CAR (Causal Analysis and Resolution)?

What is DAR (Decision Analysis and Resolution) ?

What is a fish bone diagram ?

Twist:- What is Ishikawa diagram ?

What is pareto principle ?

Twist :- What is 80/20 principle ?

How do you handle change request?

What is internal change request?

What is difference between SITP and UTP in testing ?

What is the software you have used for project management?

What are the metrics followed in project management?

Twist: - What metrics will you look at in order to see the project is

moving successfully?

You have people in your team who do not meet there deadlines or do not

perform what

are the actions you will take ?

Twist :- Two of your resources have conflicts between them how would

you sort it out ?

What is black box testing and White box testing?

What's the difference between Unit testing, Assembly testing and

Regression testing?

What is V model in testing?

How do you start a project?

How did you do resource allocations?

How will you do code reviews ?

What is CMMI?

What are the five levels in CMMI?

What is continuous and staged representation?

Can you explain the process areas?

What is SIX sigma?

What is DMAIC and DMADV ?

What are the various roles in Six Sigma implementation?

What are function points?

Twist: - Define Elementary process in FPA?

What are the different types of elementary process in FPA?

What are the different elements in Functions points?

Can you explain in GSC and VAF in function points?

What are unadjusted function points and how is it calculated?

Can you explain steps in function points?

What is the FP per day in your current company?

Twist :- What is your company's productivity factor ?

Do you know Use Case points?

What is COCOMO I, COCOMOII and COCOMOIII?

What is SMC approach of estimation?

How do you estimate maintenance project and change requests?

UML

What is UML?

How many types of diagrams are there in UML ?

Twist :- Explain in short all types of diagrams in UML ?

What are advantages of using UML?

Twist: - What is Modeling and why UML ?

What is the sequence of UML diagrams in project?

Twist: - How did you implement UML in your project?

Just a small Twist: - Do I need all UML diagrams in a project?

Give a small brief explanation of all Elements in activity diagrams?

Explain Different elements of a collaboration diagram ?

Explain Component diagrams ?

Explain all parts of a deployment diagram?

Describe the various components in sequence diagrams?

What are the element in State Chart diagrams ?

Describe different elements in Static Chart diagrams ?

Explain the different elements of a Use Case ?
