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Chapter 1

Introduction

1.1 What Is OMNeT++?

OMNeT++ is an object-oriented modular discrete event network simulation framework. It has
a generic architecture, so it can be (and has been) used in various problem domains:

• modeling of wired and wireless communication networks

• protocol modeling

• modeling of queueing networks

• modeling of multiprocessors and other distributed hardware systems

• validating of hardware architectures

• evaluating performance aspects of complex software systems

• in general, modeling and simulation of any system where the discrete event approach
is suitable, and can be conveniently mapped into entities communicating by exchanging
messages.

OMNeT++ itself is not a simulator of anything concrete, but rather provides infrastructure
and tools for writing simulations. One of the fundamental ingredients of this infrastructure
is a component architecture for simulation models. Models are assembled from reusable
components termed modules. Well-written modules are truly reusable, and can be combined
in various ways like LEGO blocks.

Modules can be connected with each other via gates (other systems would call them ports), and
combined to form compound modules. The depth of module nesting is not limited. Modules
communicate through message passing, where messages may carry arbitrary data structures.
Modules can pass messages along predefined paths via gates and connections, or directly to
their destination; the latter is useful for wireless simulations, for example. Modules may
have parameters that can be used to customize module behavior and/or to parameterize
the model’s topology. Modules at the lowest level of the module hierarchy are called simple
modules, and they encapsulate model behavior. Simple modules are programmed in C++, and
make use of the simulation library.

OMNeT++ simulations can be run under various user interfaces. Graphical, animating user
interfaces are highly useful for demonstration and debugging purposes, and command-line
user interfaces are best for batch execution.
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The simulator as well as user interfaces and tools are highly portable. They are tested on the
most common operating systems (Linux, Mac OS/X, Windows), and they can be compiled out
of the box or after trivial modifications on most Unix-like operating systems.

OMNeT++ also supports parallel distributed simulation. OMNeT++ can use several mecha-
nisms for communication between partitions of a parallel distributed simulation, for example
MPI or named pipes. The parallel simulation algorithm can easily be extended, or new ones
can be plugged in. Models do not need any special instrumentation to be run in parallel –
it is just a matter of configuration. OMNeT++ can even be used for classroom presentation
of parallel simulation algorithms, because simulations can be run in parallel even under the
GUI that provides detailed feedback on what is going on.

OMNEST is the commercially supported version of OMNeT++. OMNeT++ is free only for aca-
demic and non-profit use; for commercial purposes, one needs to obtain OMNEST licenses
from Simulcraft Inc.

1.2 Organization of This Manual

The manual is organized as follows:

• The Chapters 1 and 2 contain introductory material

• The second group of chapters, 3, 4 and 7 are the programming guide. They present the
NED language, describe the simulation concepts and their implementation in OMNeT++,
explain how to write simple modules, and describe the class library.

• The chapters 8 and 14 explain how to customize the network graphics and how to write
NED source code comments from which documentation can be generated.

• Chapters 9, 10, 11 and 12 deal with practical issues like building and running simula-
tions and analyzing results, and describe the tools OMNeT++ provides to support these
tasks.

• Chapter 15 is devoted to the support of distributed execution.

• Chapters 16 and 17 explain the architecture and internals of OMNeT++, as well as ways
to extend it and embed it into larger applications.

• The appendices provide a reference on the NED language, configuration options, file
formats, and other details.
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Chapter 2

Overview

2.1 Modeling Concepts

An OMNeT++ model consists of modules that communicate with message passing. The active
modules are termed simple modules; they are written in C++, using the simulation class
library. Simple modules can be grouped into compound modules and so forth; the number
of hierarchy levels is unlimited. The whole model, called network in OMNeT++, is itself a
compound module. Messages can be sent either via connections that span modules or directly
to other modules. The concept of simple and compound modules is similar to DEVS atomic
and coupled models.

In Fig. 2.1, boxes represent simple modules (gray background) and compound modules.
Arrows connecting small boxes represent connections and gates.

Network

Compound module

Simple modules

Figure 2.1: Simple and compound modules

Modules communicate with messages that may contain arbitrary data, in addition to usual
attributes such as a timestamp. Simple modules typically send messages via gates, but it
is also possible to send them directly to their destination modules. Gates are the input and
output interfaces of modules: messages are sent through output gates and arrive through
input gates. An input gate and output gate can be linked by a connection. Connections are
created within a single level of module hierarchy; within a compound module, corresponding
gates of two submodules, or a gate of one submodule and a gate of the compound module
can be connected. Connections spanning hierarchy levels are not permitted, as they would
hinder model reuse. Because of the hierarchical structure of the model, messages typically
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travel through a chain of connections, starting and arriving in simple modules. Compound
modules act like "cardboard boxes" in the model, transparently relaying messages between
their inner realm and the outside world. Parameters such as propagation delay, data rate
and bit error rate, can be assigned to connections. One can also define connection types
with specific properties (termed channels) and reuse them in several places. Modules can
have parameters. Parameters are used mainly to pass configuration data to simple modules,
and to help define model topology. Parameters can take string, numeric, or boolean values.
Because parameters are represented as objects in the program, parameters – in addition to
holding constants – may transparently act as sources of random numbers, with the actual
distributions provided with the model configuration. They may interactively prompt the user
for the value, and they might also hold expressions referencing other parameters. Compound
modules may pass parameters or expressions of parameters to their submodules.

OMNeT++ provides efficient tools for the user to describe the structure of the actual system.
Some of the main features are the following:

• hierarchically nested modules

• modules are instances of module types

• modules communicate with messages through channels

• flexible module parameters

• topology description language

2.1.1 Hierarchical Modules

An OMNeT++ model consists of hierarchically nested modules that communicate by passing
messages to each other. OMNeT++ models are often referred to as networks. The top level
module is the system module. The system module contains submodules that can also contain
submodules themselves (Fig. 2.1). The depth of module nesting is unlimited, allowing the
user to reflect the logical structure of the actual system in the model structure.

Model structure is described in OMNeT++’s NED language.

Modules that contain submodules are termed compound modules, as opposed to simple mod-
ules at the lowest level of the module hierarchy. Simple modules contain the algorithms of
the model. The user implements the simple modules in C++, using the OMNeT++ simulation
class library.

2.1.2 Module Types

Both simple and compound modules are instances of module types. In describing the model,
the user defines module types; instances of these module types serve as components for
more complex module types. Finally, the user creates the system module as an instance of a
previously defined module type; all modules of the network are instantiated as submodules
and sub-submodules of the system module.

When a module type is used as a building block, it makes no difference whether it is a simple
or compound module. This allows the user to split a simple module into several simple
modules embedded into a compound module, or vice versa, to aggregate the functionality of a
compound module into a single simple module, without affecting existing users of the module
type.
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Module types can be stored in files separately from the place of their actual usage. This means
that the user can group existing module types and create component libraries. This feature
will be discussed later, in chapter 11.

2.1.3 Messages, Gates, Links

Modules communicate by exchanging messages. In an actual simulation, messages can rep-
resent frames or packets in a computer network, jobs or customers in a queuing network
or other types of mobile entities. Messages can contain arbitrarily complex data structures.
Simple modules can send messages either directly to their destination or along a predefined
path, through gates and connections.

The “local simulation time” of a module advances when the module receives a message. The
message can arrive from another module or from the same module (self-messages are used to
implement timers).

Gates are the input and output interfaces of modules; messages are sent out through output
gates and arrive through input gates.

Each connection (also called link) is created within a single level of the module hierarchy:
within a compound module, one can connect the corresponding gates of two submodules, or
a gate of one submodule and a gate of the compound module (Fig. 2.1).

Because of the hierarchical structure of the model, messages typically travel through a series
of connections, starting and arriving in simple modules. Compound modules act like “card-
board boxes” in the model, transparently relaying messages between their inner realm and
the outside world.

2.1.4 Modeling of Packet Transmissions

To facilitate the modeling of communication networks, connections can be used to model
physical links. Connections support the following parameters: data rate, propagation delay,
bit error rate and packet error rate, and may be disabled. These parameters and the underlying
algorithms are encapsulated into channel objects. The user can parameterize the channel
types provided by OMNeT++, and also create new ones.

When data rates are in use, a packet object is by default delivered to the target module at the
simulation time that corresponds to the end of the packet reception. Since this behavior is
not suitable for the modeling of some protocols (e.g. half-duplex Ethernet), OMNeT++ provides
the possibility for the target module to specify that it wants the packet object to be delivered
to it when the packet reception starts.

2.1.5 Parameters

Modules can have parameters. Parameters can be assigned in either the NED files or the
configuration file omnetpp.ini.

Parameters can be used to customize simple module behavior, and to parameterize the model
topology.

Parameters can take string, numeric or boolean values, or can contain XML data trees. Nu-
meric values include expressions using other parameters and calling C functions, random
variables from different distributions, and values input interactively by the user.
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Numeric-valued parameters can be used to construct topologies in a flexible way. Within a
compound module, parameters can define the number of submodules, number of gates, and
the way the internal connections are made.

2.1.6 Topology Description Method

The user defines the structure of the model in NED language descriptions (Network Descrip-
tion). The NED language will be discussed in detail in chapter 3.

2.2 Programming the Algorithms

The simple modules of a model contain algorithms as C++ functions. The full flexibility and
power of the programming language can be used, supported by the OMNeT++ simulation
class library. The simulation programmer can choose between event-driven and process-
style description, and freely use object-oriented concepts (inheritance, polymorphism etc) and
design patterns to extend the functionality of the simulator.

Simulation objects (messages, modules, queues etc.) are represented by C++ classes. They
have been designed to work together efficiently, creating a powerful simulation programming
framework. The following classes are part of the simulation class library:

• module, gate, parameter, channel

• message, packet

• container classes (e.g. queue, array)

• data collection classes

• statistic and distribution estimation classes (histograms, P 2 algorithm for calculating
quantiles etc.)

• transient detection and result accuracy detection classes

The classes are also specially instrumented, allowing one to traverse objects of a running
simulation and display information about them such as name, class name, state variables or
contents. This feature makes it possible to create a simulation GUI where all internals of the
simulation are visible.

2.3 Using OMNeT++

2.3.1 Building and Running Simulations

This section provides insights into working with OMNeT++ in practice. Issues such as model
files and compiling and running simulations are discussed.

An OMNeT++ model consists of the following parts:

• NED language topology description(s) (.ned files) that describe the module structure with
parameters, gates, etc. NED files can be written using any text editor, but the OMNeT++
IDE provides excellent support for two-way graphical and text editing.
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• Message definitions (.msg files). You can define various message types and add data
fields to them. OMNeT++ will translate message definitions into full-fledged C++ classes.

• Simple module sources. They are C++ files, with .h/.cc suffix.

The simulation system provides the following components:

• Simulation kernel. This contains the code that manages the simulation and the simula-
tion class library. It is written in C++, compiled into a shared or static library.

• User interfaces. OMNeT++ user interfaces are used in simulation execution, to facilitate
debugging, demonstration, or batch execution of simulations. They are written in C++,
compiled into libraries.

Simulation programs are built from the above components. First, .msg files are translated into
C++ code using the opp_msgc. program. Then all C++ sources are compiled and linked with
the simulation kernel and a user interface library to form a simulation executable or shared
library. NED files are loaded dynamically in their original text forms when the simulation
program starts.

Running the Simulation and Analyzing the Results

The simulation may be compiled as a standalone program executable; thus it can be run on
other machines without OMNeT++ being present, or it can be created as a shared library. In
this case the OMNeT++ shared libraries must be present on that system. When the program
is started, it first reads all NED files containing your model topology, then it reads a con-
figuration file (usually called omnetpp.ini). This file contains settings that control how the
simulation is executed, values for model parameters, etc. The configuration file can also pre-
scribe several simulation runs; in the simplest case, they will be executed by the simulation
program one after another.

The output of the simulation is written into result files: output vector files, output scalar
files, and possibly the user’s own output files. OMNeT++ contains an Integrated Development
Environment (IDE) that provides rich environment for analyzing these files. Output files are
line-oriented text files which makes it possible to process them with a variety of tools and
programming languages as well, including Matlab, GNU R, Perl, Python, and spreadsheet
programs.

User Interfaces

The primary purpose of user interfaces is to make the internals of the model visible to the
user, to control simulation execution, and possibly allow the user to intervene by changing
variables/objects inside the model. This is very important in the development/debugging
phase of the simulation project. Equally important, a hands-on experience allows the user to
get a feel of the model’s behavior. The graphical user interface can also be used to demonstrate
a model’s operation.

The same simulation model can be executed with various user interfaces, with no change in
the model files themselves. The user would typically test and debug the simulation with a
powerful graphical user interface, and finally run it with a simple, fast user interface that
supports batch execution.

7



OMNeT++ Manual – Overview

Component Libraries

Module types can be stored in files separate from the place of their actual use, enabling the
user to group existing module types and create component libraries.

Universal Standalone Simulation Programs

A simulation executable can store several independent models that use the same set of simple
modules. The user can specify in the configuration file which model is to be run. This allows
one to build one large executable that contains several simulation models, and distribute it as
a standalone simulation tool. The flexibility of the topology description language also supports
this approach.

2.3.2 What Is in the Distribution

If you installed the source distribution, the OMNeT++ directory on your system should con-
tain the following subdirectories. (If you installed a precompiled distribution, some of the
directories may be missing, or there might be additional directories, e.g. containing software
bundled with OMNeT++.)

The simulation system itself:

omnetpp/ OMNeT++ root directory
bin/ OMNeT++ executables
include/ header files for simulation models
lib/ library files
images/ icons and backgrounds for network graphics
doc/ manuals, readme files, license, APIs, etc.

ide-customization-guide/ how to write new wizards for the IDE
ide-developersguide/ writing extensions for the IDE
manual/ manual in HTML
migration/ how to migrate your models from 3.x to 4.0 version
ned2/ DTD definition of the XML syntax for NED files
tictoc-tutorial/ introduction into using OMNeT++
api/ API reference in HTML
nedxml-api/ API reference for the NEDXML library
parsim-api/ API reference for the parallel simulation library

migrate/ tools to help model migration from 3.x to 4.0 version
src/ OMNeT++ sources

sim/ simulation kernel
parsim/ files for distributed execution
netbuilder/files for dynamically reading NED files

envir/ common code for user interfaces
cmdenv/ command-line user interface
tkenv/ Tcl/Tk-based user interface
nedxml/ NEDXML library, nedtool, opp_msgc
scave/ result analysis library
eventlog/ eventlog processing library
layout/ graph layouter for network graphics
common/ common library
utils/ opp_makemake, opp_test, etc.
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test/ regression test suite
core/ tests for the simulation library
anim/ tests for graphics and animation
dist/ tests for the built-in distributions
makemake/ tests for opp_makemake
...

The Eclipse-based Simulation IDE is in the ide directory.

ide/ Simulation IDE
features/ Eclipse feature definitions
plugins/ IDE plugins (extensions to the IDE can be dropped here)
...

The Windows version of OMNeT++ contains a redistribution of the MinGW gcc compiler, to-
gether with a copy of MSYS that provides Unix tools commonly used in Makefiles. The MSYS
directory also contains various 3rd party open-source libraries needed to compile and run
OMNeT++.

mingw/ MinGW gcc port
msys/ MSYS plus libraries

Sample simulations are in the samples directory.

samples/ directories for sample simulations
aloha/ models the Aloha protocol
cqn/ Closed Queueing Network
...

The contrib directory contains material from the OMNeT++ community.

contrib/ directory for contributed material
akaroa/ Patch to compile akaroa on newer gcc systems
jsimplemodule/ Write simple modules in Java
topologyexport/ Export the topology of a model in runtime
...
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Chapter 3

The NED Language

3.1 NED Overview

The user describes the structure of a simulation model in the NED language. NED stands for
Network Description. NED lets the user declare simple modules, and connect and assemble
them into compound modules. The user can label some compound modules as networks; that
is, self-contained simulation models. Channels are another component type, whose instances
can also be used in compound modules.

The NED language has several features which let it scale well to large projects:

Hierarchical. The traditional way to deal with complexity is by introducing hierarchies. In
OMNeT++, any module which would be too complex as a single entity can be broken
down into smaller modules, and used as a compound module.

Component-Based. Simple modules and compound modules are inherently reusable, which
not only reduces code copying, but more importantly, allows component libraries (like
the INET Framework, MiXiM, Castalia, etc.) to exist.

Interfaces. Module and channel interfaces can be used as a placeholder where normally
a module or channel type would be used, and the concrete module or channel type
is determined at network setup time by a parameter. Concrete module types have to
“implement” the interface they can substitute. For example, given a compound module
type named MobileHost contains a mobility submodule of the type IMobility (where
IMobility is a module interface), the actual type of mobility may be chosen from the
module types that implemented IMobility (RandomWalkMobility, TurtleMobility,
etc.)

Inheritance. Modules and channels can be subclassed. Derived modules and channels may
add new parameters, gates, and (in the case of compound modules) new submodules and
connections. They may set existing parameters to a specific value, and also set the gate
size of a gate vector. This makes it possible, for example, to take a GenericTCPClientApp
module and derive an FTPClientApp from it by setting certain parameters to a fixed
value; or to derive a WebClientHost compound module from a BaseHost compound
module by adding a WebClientApp submodule and connecting it to the inherited TCP
submodule.

Packages. The NED language features a Java-like package structure, to reduce the risk of
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name clashes between different models. NEDPATH (similar to Java’s CLASSPATH) has also
been introduced to make it easier to specify dependencies among simulation models.

Inner types. Channel types and module types used locally by a compound module can be
defined within the compound module, in order to reduce namespace pollution.

Metadata annotations. It is possible to annotate module or channel types, parameters, gates
and submodules by adding properties. Metadata are not used by the simulation kernel
directly, but they can carry extra information for various tools, the runtime environment,
or even for other modules in the model. For example, a module’s graphical representation
(icon, etc) or the prompt string and measurement unit (milliwatt, etc) of a parameter are
already specified as metadata annotations.

NOTE: The NED language has changed significantly in the 4.0 version. Inheritance,
interfaces, packages, inner types, metadata annotations, inout gates were all added in
the 4.0 release, together with many other features. Since the basic syntax has changed as
well, old NED files need to be converted to the new syntax. There are automated tools for
this purpose, so manual editing is only needed to take advantage of new NED features.

The NED language has an equivalent tree representation which can be serialized to XML; that
is, NED files can be converted to XML and back without loss of data, including comments.
This lowers the barrier for programmatic manipulation of NED files; for example extracting
information, refactoring and transforming NED, generating NED from information stored in
other systems like SQL databases, and so on.

NOTE: This chapter is going to explain the NED language gradually, via examples. If you
are looking for a more formal and concise treatment, see Appendix B.

3.2 NED Quickstart

In this section we introduce the NED language via a complete and reasonably real-life example:
a communication network.

Our hypothetical network consists of nodes. On each node there is an application running
which generates packets at random intervals. The nodes are routers themselves as well. We
assume that the application uses datagram-based communication, so that we can leave out
the transport layer from the model.

3.2.1 The Network

First we’ll define the network, then in the next sections we’ll continue to define the network
nodes.

Let the network topology be as in Figure 3.1.

The corresponding NED description would look like this:

//
// A network
//
network Network
{

12
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Figure 3.1: The network

submodules:
node1: Node;
node2: Node;
node3: Node;
...

connections:
node1.port++ <--> {datarate=100Mbps;} <--> node2.port++;
node2.port++ <--> {datarate=100Mbps;} <--> node4.port++;
node4.port++ <--> {datarate=100Mbps;} <--> node6.port++;
...

}

The above code defines a network type named Network. Note that the NED language uses the
familiar curly brace syntax, and “//” to denote comments.

NOTE: Comments in NED not only make the source code more readable, but in the
OMNeT++ IDE they also are displayed at various places (tooltips, content assist, etc), and
become part of the documentation extracted from the NED files. The NED documentation
system, not unlike JavaDoc or Doxygen, will be described in Chapter 14.

The network contains several nodes, named node1, node2, etc. from the NED module type
Node. We’ll define Node in the next sections.

The second half of the declaration defines how the nodes are to be connected. The double
arrow means bidirectional connection. The connection points of modules are called gates,
and the port++ notation adds a new gate to the port[] gate vector. Gates and connections
will be covered in more detail in sections 3.7 and 3.9. Nodes are connected with a channel
that has a data rate of 100Mbps.

NOTE: In many other systems, the equivalent of OMNeT++ gates are called ports. We
have retained the term gate to reduce collisions with other uses of the otherwise over-
loaded word port: router port, TCP port, I/O port, etc.

13
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The above code would be placed into a file named Net6.ned. It is a convention to put every
NED definition into its own file and to name the file accordingly, but it is not mandatory to do
so.

One can define any number of networks in the NED files, and for every simulation the user
has to specify which network to set up. The usual way of specifying the network is to put the
network option into the configuration (by default the omnetpp.ini file):

[General]
network = Network

3.2.2 Introducing a Channel

It is cumbersome to have to repeat the data rate for every connection. Luckily, NED provides
a convenient solution: one can create a new channel type that encapsulates the data rate
setting, and this channel type can be defined inside the network so that it does not litter the
global namespace.

The improved network will look like this:

//
// A Network
//
network Network
{

types:
channel C extends ned.DatarateChannel {

datarate = 100Mbps;
}

submodules:
node1: Node;
node2: Node;
node3: Node;
...

connections:
node1.port++ <--> C <--> node2.port++;
node2.port++ <--> C <--> node4.port++;
node4.port++ <--> C <--> node6.port++;
...

}

Later sections will cover the concepts used (inner types, channels, the DatarateChannel
built-in type, inheritance) in detail.

3.2.3 The App, Routing, and Queue Simple Modules

Simple modules are the basic building blocks for other (compound) modules, denoted by
the simple keyword. All active behavior in the model is encapsulated in simple modules.
Behavior is defined with a C++ class; NED files only declare the externally visible interface of
the module (gates, parameters).

In our example, we could define Node as a simple module. However, its functionality is quite
complex (traffic generation, routing, etc), so it is better to implement it with several smaller
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simple module types which we are going to assemble into a compound module. We’ll have one
simple module for traffic generation (App), one for routing (Routing), and one for queueing up
packets to be sent out (Queue). For brevity, we omit the bodies of the latter two in the code
below.

simple App
{

parameters:
int destAddress;
...
@display("i=block/browser");

gates:
input in;
output out;

}

simple Routing
{

...
}

simple Queue
{

...
}

By convention, the above simple module declarations go into the App.ned, Routing.ned and
Queue.ned files.

NOTE: Note that module type names (App, Routing, Queue) begin with a capital letter,
and parameter and gate names begin with lowercase – this is the recommended naming
convention. Capitalization matters because the language is case sensitive.

Let us look at the first simple module type declaration. App has a parameter called destAd-
dress (others have been omitted for now), and two gates named out and in for sending and
receiving application packets.

The argument of @display() is called a display string, and it defines the rendering of the
module in graphical environments; "i=..." defines the default icon.

Generally, @-words like @display are called properties in NED, and they are used to annotate
various objects with metadata. Properties can be attached to files, modules, parameters,
gates, connections, and other objects, and parameter values have a very flexible syntax.

3.2.4 The Node Compound Module

Now we can assemble App, Routing and Queue into the compound module Node. A compound
module can be thought of as a “cardboard box” that groups other modules into a larger unit,
which can further be used as a building block for other modules; networks are also a kind of
compound module.

module Node
{
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Figure 3.2: The Node compound module

parameters:
int address;
@display("i=misc/node_vs,gold");

gates:
inout port[];

submodules:
app: App;
routing: Routing;
queue[sizeof(port)]: Queue;

connections:
routing.localOut --> app.in;
routing.localIn <-- app.out;
for i=0..sizeof(port)-1 {

routing.out[i] --> queue[i].in;
routing.in[i] <-- queue[i].out;
queue[i].line <--> port[i];

}
}

Compound modules, like simple modules, may have parameters and gates. Our Node module
contains an address parameter, plus a gate vector of unspecified size, named port. The ac-
tual gate vector size will be determined implicitly by the number of neighbours when we create
a network from nodes of this type. The type of port[] is inout, which allows bidirectional
connections.

The modules that make up the compound module are listed under submodules. Our Node
compound module type has an app and a routing submodule, plus a queue[] submodule
vector that contains one Queue module for each port, as specified by [sizeof(port)]. (It
is legal to refer to [sizeof(port)] because the network is built in top-down order, and the
node is already created and connected at network level when its submodule structure is built
out.)

In the connections section, the submodules are connected to each other and to the parent
module. Single arrows are used to connect input and output gates, and double arrows connect
inout gates, and a for loop is utilized to connect the routing module to each queue module,
and to connect the outgoing/incoming link (line gate) of each queue to the corresponding
port of the enclosing module.
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3.2.5 Putting It Together

We have created the NED definitions for this example, but how are they used by OMNeT++?
When the simulation program is started, it loads the NED files. The program should already
contain the C++ classes that implement the needed simple modules, App, Routing and Queue;
their C++ code is either part of the executable or is loaded from a shared library. The simu-
lation program also loads the configuration (omnetpp.ini), and determines from it that the
simulation model to be run is the Network network. Then the network is instantiated for
simulation.

The simulation model is built in a top-down preorder fashion. This means that starting from
an empty system module, all submodules are created, their parameters and gate vector sizes
are assigned, and they are fully connected before the submodule internals are built.

* * *

In the following sections we’ll go through the elements of the NED language and look at them
in more detail.

3.3 Simple Modules

Simple modules are the active components in the model. Simple modules are defined with the
simple keyword.

An example simple module:

simple Queue
{

parameters:
int capacity;
@display("i=block/queue");

gates:
input in;
output out;

}

Both the parameters and gates sections are optional, that is, they can be left out if there is
no parameter or gate. In addition, the parameters keyword itself is optional too; it can be left
out even if there are parameters or properties.

Note that the NED definition doesn’t contain any code to define the operation of the module:
that part is expressed in C++. By default, OMNeT++ looks for C++ classes of the same name
as the NED type (so here, Queue).

One can explicitly specify the C++ class with the @class property. Classes with namespace
qualifiers are also accepted, as shown in the following example that uses the mylib::Queue
class:

simple Queue
{

parameters:
int capacity;
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@class(mylib::Queue);
@display("i=block/queue");

gates:
input in;
output out;

}

If you have several modules that are all in a common namespace, then a better alterna-
tive to @class is the @namespace property. The C++ namespace given with @namespace will
be prepended to the normal class name. In the following example, the C++ classes will be
mylib::App, mylib::Router and mylib::Queue:

@namespace(mylib);

simple App {
...

}

simple Router {
...

}

simple Queue {
...

}

As you’ve seen, @namespace can be specified at the file level. Moreover, when placed in a
file called package.ned, the namespace will apply to all files in the same directory and all
directories below.

The implementation C++ classes need to be subclassed from the cSimpleModule library class;
chapter 4 of this manual describes in detail how to write them.

Simple modules can be extended (or specialized) via subclassing. The motivation for subclass-
ing can be to set some open parameters or gate sizes to a fixed value (see 3.6 and 3.7), or to
replace the C++ class with a different one. Now, by default, the derived NED module type will
inherit the C++ class from its base, so it is important to remember that you need to write out
@class if you want it to use the new class.

The following example shows how to specialize a module by setting a parameter to a fixed
value (and leaving the C++ class unchanged):

simple Queue
{

int capacity;
...

}

simple BoundedQueue extends Queue
{

capacity = 10;
}

In the next example, the author wrote a PriorityQueue C++ class, and wants to have a
corresponding NED type, derived from Queue. However, it does not work as expected:
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simple PriorityQueue extends Queue // wrong! still uses the Queue C++ class
{
}

The correct solution is to add a @class property to override the inherited C++ class:

simple PriorityQueue extends Queue
{

@class(PriorityQueue);
}

Inheritance in general will be discussed in section 3.13.

3.4 Compound Modules

A compound module groups other modules into a larger unit. A compound module may have
gates and parameters like a simple module, but no active behavior is associated with it.1

NOTE: When there is a temptation to add code to a compound module, then encapsulate
the code into a simple module, and add it as a submodule.

A compound module declaration may contain several sections, all of them optional:

module Host
{

types:
...

parameters:
...

gates:
...

submodules:
...

connections:
...

}

Modules contained in a compound module are called submodules, and they are listed in the
submodules section. One can create arrays of submodules (i.e. submodule vectors), and the
submodule type may come from a parameter.

Connections are listed under the connections section of the declaration. One can create
connections using simple programming constructs (loop, conditional). Connection behaviour
can be defined by associating a channel with the connection; the channel type may also come
from a parameter.

Module and channel types only used locally can be defined in the types section as inner
types, so that they do not pollute the namespace.

Compound modules may be extended via subclassing. Inheritance may add new submod-
ules and new connections as well, not only parameters and gates. Also, one may refer to

1Although the C++ class for a compound module can be overridden with the @class property, this is a feature that
should probably never be used. Encapsulate the code into a simple module, and add it as a submodule.
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inherited submodules, to inherited types etc. What is not possible is to "de-inherit" or modify
submodules or connections.

In the following example, we show how to assemble common protocols into a "stub" for wireless
hosts, and add user agents via subclassing.2

module WirelessHostBase
{

gates:
input radioIn;

submodules:
tcp: TCP;
ip: IP;
wlan: Ieee80211;

connections:
tcp.ipOut --> ip.tcpIn;
tcp.ipIn <-- ip.tcpOut;
ip.nicOut++ --> wlan.ipIn;
ip.nicIn++ <-- wlan.ipOut;
wlan.radioIn <-- radioIn;

}

module WirelessHost extends WirelessHostBase
{

submodules:
webAgent: WebAgent;

connections:
webAgent.tcpOut --> tcp.appIn++;
webAgent.tcpIn <-- tcp.appOut++;

}

The WirelessHost compound module can further be extended, for example with an Ethernet
port:

module DesktopHost extends WirelessHost
{

gates:
inout ethg;

submodules:
eth: EthernetNic;

connections:
ip.nicOut++ --> eth.ipIn;
ip.nicIn++ <-- eth.ipOut;
eth.phy <--> ethg;

}

3.5 Channels

Channels encapsulate parameters and behaviour associated with connections. Channels are
like simple modules, in the sense that there are C++ classes behind them. The rules for

2Module types, gate names, etc. used in the example are fictional, not based on an actual OMNeT++-based model
framework
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finding the C++ class for a NED channel type is the same as with simple modules: the default
class name is the NED type name unless there is a @class property (@namespace is also
recognized), and the C++ class is inherited when the channel is subclassed.

Thus, the following channel type would expect a CustomChannel C++ class to be present:

channel CustomChannel // requires a CustomChannel C++ class
{
}

The practical difference compared to modules is that you rarely need to write you own channel
C++ class because there are predefined channel types that you can subclass from, inherit-
ing their C++ code. The predefined types are: ned.IdealChannel, ned.DelayChannel and
ned.DatarateChannel. (“ned” is the package name; you can get rid of it if you import the
types with the import ned.* or similar directive. Packages and imports are described in
section 3.14.)

IdealChannel has no parameters, and lets through all messages without delay or any side
effect. A connection without a channel object and a connection with an IdealChannel behave
in the same way. Still, IdealChannel has its uses, for example when a channel object is
required so that it can carry a new property or parameter that is going to be read by other
parts of the simulation model.

DelayChannel has two parameters:

• delay is a double parameter which represents the propagation delay of the message.
Values need to be specified together with a time unit (s, ms, us, etc.)

• disabled is a boolean parameter that defaults to false; when set to true, the channel
object will drop all messages.

DatarateChannel has a few additional parameters compared to DelayChannel:

• datarate is a double parameter that represents the data rate of the channel. Values
need to be specified in bits per second or its multiples as unit (bps, kbps, Mbps, Gbps,
etc.) Zero is treated specially and results in zero transmission duration, i.e. it stands
for infinite bandwidth. Zero is also the default. Data rate is used for calculating the
transmission duration of packets.

• ber and per stand for Bit Error Rate and Packet Error Rate, and allow basic error
modelling. They expect a double in the [0, 1] range. When the channel decides (based
on random numbers) that an error occurred during transmission of a packet, it sets an
error flag in the packet object. The receiver module is expected to check the flag, and
discard the packet as corrupted if it is set. The default ber and per are zero.

NOTE: There is no channel parameter that specifies whether the channel delivers the
message object to the destination module at the end or at the start of the reception; that is
decided by the C++ code of the target simple module. See the setDeliverOnReception-
Start() method of cGate.

The following example shows how to create a new channel type by specializing Datarate-
Channel:

channel Ethernet100 extends ned.DatarateChannel
{
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datarate = 100Mbps;
delay = 100us;
ber = 1e-10;

}

NOTE: The three built-in channel types are also used for connections where the channel
type is not explicitly specified.

You may add parameters and properties to channels via subclassing, and may modify existing
ones. In the following example, we introduce distance-based calculation of the propagation
delay:

channel DatarateChannel2 extends ned.DatarateChannel
{

double distance @unit(m);
delay = this.distance / 200000km * 1s;

}

Parameters are primarily useful as input to the underlying C++ class, but even if you reuse
the underlying C++ class of built-in channel types, they may be read and used by other parts
of the model. For example, adding a cost parameter (or @cost property) may be observed by
the routing algorithm and used for routing decisions. The following example shows a cost
parameter, and annotation using a property (@backbone).

channel Backbone extends ned.DatarateChannel
{

@backbone;
double cost = default(1);

}

3.6 Parameters

Parameters are variables that belong to a module. Parameters can be used in building the
topology (number of nodes, etc), and to supply input to C++ code that implements simple
modules and channels.

Parameters can be of type double, int, bool, string and xml; they can also be declared
volatile. For the numeric types, a unit of measurement can also be specified (@unit prop-
erty), to increase type safety.

Parameters can get their value from NED files or from the configuration (omnetpp.ini). A
default value can also be given (default(...)), which is used if the parameter is not assigned
otherwise.

The following example shows a simple module that has five parameters, three of which have
default values:

simple App
{

parameters:
string protocol; // protocol to use: "UDP" / "IP" / "ICMP" / ...
int destAddress; // destination address
volatile double sendInterval @unit(s) = default(exponential(1s));
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// time between generating packets
volatile int packetLength @unit(byte) = default(100B);

// length of one packet
volatile int timeToLive = default(32);

// maximum number of network hops to survive
gates:

input in;
output out;

}

Assigning a Value

Parameters may get their values in several ways: from NED code, from the configuration
(omnetpp.ini), or even, interactively from the user. NED lets you assign parameters at several
places: in subclasses via inheritance; in submodule and connection definitions where the
NED type is instantiated; and in networks and compound modules that directly or indirectly
contain the corresponding submodule or connection.

For instance, one could specialize the above App module type via inheritance with the following
definition:

simple PingApp extends App
{

parameters:
protocol = "ICMP/ECHO"
sendInterval = default(1s);
packetLength = default(64byte);

}

This definition sets the protocol parameter to a fixed value ("ICMP/ECHO"), and changes
the default values of the sendInterval and packetLength parameters. protocol is now
locked down in PingApp, its value cannot be modified via further subclassing or other ways.
sendInterval and packetLength are still unassigned here, only their default values have
been overwritten.

Now, let us see the definition of a Host compound module that uses PingApp as submodule:

module Host
{

submodules:
ping : PingApp {

packetLength = 128B; // always ping with 128-byte packets
}
...

}

This definition sets the packetLength parameter to a fixed value. It is now hardcoded that
Hosts send 128-byte ping packets; this setting cannot be changed from NED or the configu-
ration.

It is not only possible to set a parameter from the compound module that contains the sub-
module, but also from modules higher up in the module tree. If you had a network that
employed several Host modules, it could be defined like this:

network Network
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{
submodules:

host[100]: Host {
ping.timeToLive = default(3);
ping.destAddress = default(0);

}
...

}

Parameter assignment can also be placed into the parameters block of the parent compound
module, which provides additional flexibility. The following definition sets up the hosts so
that half of them pings host #50, and the other half pings host #0:

network Network
{

parameters:
host[*].ping.timeToLive = default(3);
host[0..49].ping.destAddress = default(50);
host[50..].ping.destAddress = default(0);

submodules:
host[100]: Host;
...

}

Note the use of asterisk to match any index, and ‘..’ to match index ranges.

If you had a number of individual hosts instead of a submodule vector, the network definition
could look like this:

network Network
{

parameters:
host*.ping.timeToLive = default(3);
host{0..49}.ping.destAddress = default(50);
host{50..}.ping.destAddress = default(0);

submodules:
host0: Host;
host1: Host;
host2: Host;
...
host99: Host;

}

An asterisk matches any substring not containing a dot, and a ‘..’ within a pair of curly
braces matches a natural number embedded in a string.

In most assigments we have seen above, the left hand side of the equal sign contained a dot
and often a wildcard as well (asterisk or numeric range); we call these assignments pattern
assignments or deep assignments.

There is one more wildcard that can be used in pattern assignments, and this is the double
asterisk; it matches any sequence of characters including dots, so it can match multiple path
elements. An example:
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network Network
{

parameters:
**.timeToLive = default(3);
**.destAddress = default(0);

submodules:
host0: Host;
host1: Host;
...

}

Note that some assignments in the above examples changed default values, while others set
parameters to fixed values. Parameters that received no fixed value in the NED files can be
assigned from the configuration (omnetpp.ini).

IMPORTANT: A non-default value assigned from NED cannot be overwritten later in NED
or from ini files; it becomes “hardcoded” as far as ini files and NED usage are concerned.
In contrast, default values are possible to overwrite.

A parameter can be assigned in the configuration using a similar syntax as NED pattern
assignments (actually, it would be more historically accurate to say it the other way round,
that NED pattern assignments use a similar syntax to ini files):

Network.host[*].ping.sendInterval = 500ms # for the host[100] example
Network.host*.ping.sendInterval = 500ms # for the host0,host1,... example

**.sendInterval = 500ms

One often uses the double asterisk to save typing. You can write

**.ping.sendInterval = 500ms

Or if you are sure that you don’t accidentally assign some other sendInterval parameter,
you can just write

**.sendInterval = 500ms

Parameter assignments in the configuration are described in section 10.3.

One can also write expressions, including stochastic expressions, in NED files and in ini files
as well. For example, here’s how you can add jitter to the sending of ping packets:

**.sendInterval = 1s + normal(0s, 0.001s) # or just: normal(1s, 0.001s)

If there is no assignment for a parameter in NED or in the ini file, the default value (given
with =default(...) in NED) will be applied implicitly. If there is no default value, the user
will be asked, provided the simulation program is allowed to do that; otherwise there will be
an error. (Interactive mode is typically disabled for batch executions where it would do more
harm than good.)

It is also possible to explicitly apply the default (this can sometimes be useful):

**.sendInterval = default

Finally, one can explicitly ask the simulator to prompt the user interactively for the value
(again, provided that interactivity is enabled; otherwise this will result in an error):

**.sendInterval = ask
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NOTE: How do you decide whether to assign a parameter from NED or from an ini
file? The advantage of ini files is that they allow a cleaner separation of the model and
experiments. NED files (together with C++ code) are considered to be part of the model,
and to be more or less constant. Ini files, on the other hand, are for experimenting with
the model by running it several times with different parameters. Thus, parameters that
are expected to change (or make sense to be changed) during experimentation should be
put into ini files.

Expressions

Parameter values may be given with expressions. NED language expressions have a C-like
syntax, with some variations on operator names: binary and logical XOR are # and ##, while
ˆ has been reassigned to power-of instead. The + operator does string concatenation as
well as numeric addition. Expressions can use various numeric, string, stochastic and other
functions (fabs(), toUpper(), uniform(), erlang_k(), etc.).

NOTE: The list of NED functions can be found in Appendix D. The user can also extend
NED with new functions.

Expressions may refer to module parameters, gate vector and module vector sizes (using the
sizeof operator) and the index of the current module in a submodule vector (index).

Expressions may refer to parameters of the compound module being defined, of the current
module (with the this. prefix), and to parameters of already defined submodules, with the
syntax submodule.parametername (or submodule[index].parametername).

volatile

The volatile modifier causes the parameter’s value expression to be evaluated every time
the parameter is read. This has significance if the expression is not constant, for example it
involves numbers drawn from a random number generator. In contrast, non-volatile param-
eters are evaluated only once. (This practically means that they are evaluated and replaced
with the resulting constant at the start of the simulation.)

To better understand volatile, let’s suppose we have a Queue simple module that has a
volatile double parameter named serviceTime.

simple Queue
{

parameters:
volatile double serviceTime;

}

Because of the volatile modifier, the queue module’s C++ implementation is expected to re-
read the serviceTime parameter whenever a value is needed; that is, for every job serviced.
Thus, if serviceTime is assigned an expression like uniform(0.5s, 1.5s), every job will
have a different, random service time. To highlight this effect, here’s how you can have a
time-varying parameter by exploiting the simTime() NED function that returns the current
simulation time:

**.serviceTime = simTime()<1000s ? 1s : 2s # queue that slows down after 1000s

In practice, a volatile parameters are typically used as a configurable source of random num-
bers for modules.
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NOTE: This does not mean that a non-volatile parameter could not be assigned a random
value like uniform(0.5s, 1.5s). It can, but that would have a totally different effect:
the simulation would use a constant service time, say 1.2975367s, chosen randomly at
the beginning of the simulation.

Units

One can declare a parameter to have an associated unit of measurement, by adding the @unit
property. An example:

simple App
{

parameters:
volatile double sendInterval @unit(s) = default(exponential(350ms));
volatile int packetLength @unit(byte) = default(4KiB);

...
}

The @unit(s) and @unit(byte) declarations specify the measurement unit for the param-
eter. Values assigned to parameters must have the same or compatible unit, i.e. @unit(s)
accepts milliseconds, nanoseconds, minutes, hours, etc., and @unit(byte) accepts kilobytes,
megabytes, etc. as well.

NOTE: The list of units accepted by OMNeT++ is listed in the Appendix, see A.5.6.
Unknown units (bogomips, etc.) can also be used, but there are no conversions for them,
i.e. decimal prefixes will not be recognized.

The OMNeT++ runtime does a full and rigorous unit check on parameters to ensure “unit
safety” of models. Constants should always include the measurement unit.

The @unit property of a parameter cannot be added or overridden in subclasses or in sub-
module declarations.

XML Parameters

Sometimes modules need complex data structures as input, which is something that cannot
be done well with module parameters. One solution is to place the input data into a custom
configuration file, pass the file name to the module in a string parameter, and let the module
read and parse the file.

It is somewhat easier if the configuration uses XML syntax, because OMNeT++ contains built-
in support for XML files. Using an XML parser (LibXML2 or Expat), OMNeT++ reads and
DTD-validates the file (if the XML document contains a DOCTYPE), caches the file (so that
references to it from several modules will result in the file being loaded only once), allows
selection of parts of the document using an XPath-subset notation, and presents the contents
in a DOM-like object tree.

This capability can be accessed via the NED parameter type xml, and the xmldoc() function.
You can point xml-type module parameters to a specific XML file (or to an element inside an
XML file) via the xmldoc() function. You can assign xml parameters both from NED and from
omnetpp.ini.

The following example declares an xml parameter, and assigns an XML file to it. The file name
is understood as being relative to the working directory.
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simple TrafGen {
parameters:

xml profile;
gates:

output out;
}

module Node {
submodules:

trafGen1 : TrafGen {
profile = xmldoc("data.xml");

}
...

}

It is also possible to assign an XML element within a file to the parameter, which is useful
if you want to group the input of several modules into a single XML file. For example, the
following XML file contains two profiles with the IDs gen1 and gen2:

<?xml>
<root>

<profile id="gen1">
<param>3</param>
<param>5</param>

</profile>
<profile id="gen2">

<param>9</param>
</profile>

</root>

And you can assign each profile to a corresponding submodule using an XPath-like expres-
sion:

module Node {
submodules:

trafGen1 : TrafGen {
profile = xmldoc("all.xml", "/root/profile[@id=’gen1’]");

}
trafGen2 : TrafGen {

profile = xmldoc("all.xml", "/root/profile[@id=’gen2’]");
}

}

It is also possible to create an XML document from a string constant, using the xml() func-
tion. This is especially useful for creating a default value for xml parameters. An example:

simple TrafGen {
parameters:

xml profile = xml("<root/>"); // empty document as default
...

}

The xml() function, like xmldoc(), also supports an optional second XPath parameter for
selecting a subtree.
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3.7 Gates

Gates are the connection points of modules. OMNeT++ has three types of gates: input, output
and inout, the latter being essentially an input and an output gate glued together.

A gate, whether input or output, can only be connected to one other gate. (For compound
module gates, this means one connection “outside” and one “inside”.) It is possible, though
generally not recommended, to connect the input and output sides of an inout gate separately
(see section 3.9).

One can create single gates and gate vectors. The size of a gate vector can be given inside
square brackets in the declaration, but it is also possible to leave it open by just writing a pair
of empty brackets (“[]”).

When the gate vector size is left open, one can still specify it later, when subclassing the
module, or when using the module for a submodule in a compound module. However, it does
not need to be specified because one can create connections with the gate++ operator that
automatically expands the gate vector.

The gate size can be queried from various NED expressions with the sizeof() operator.

NED normally requires that all gates be connected. To relax this requirement, you can anno-
tate selected gates with the @loose property, which turns off the connectivity check for that
gate. Also, input gates that solely exist so that the module can receive messages via send-
Direct() (see 4.7.5) should be annotated with @directIn. It is also possible to turn off the
connectivity check for all gates within a compound module by specifying the allowuncon-
nected keyword in the module’s connections section.

Let us see some examples.

In the following example, the Classifier module has one input for receiving jobs, which it
will send to one of the outputs. The number of outputs is determined by a module parameter:

simple Classifier {
parameters:

int numCategories;
gates:

input in;
output out[numCategories];

}

The following Sink module also has its in[] gate defined as a vector, so that it can be con-
nected to several modules:

simple Sink {
gates:

input in[];
}

The following lines define a node for building a square grid. Gates around the edges of the
grid are expected to remain unconnected, hence the @loose annotation:

simple GridNode {
gates:

inout neighbour[4] @loose;
}

WirelessNode below is expected to receive messages (radio transmissions) via direct sending,
so its radioIn gate is marked with @directIn.
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simple WirelessNode {
gates:

input radioIn @directIn;
}

In the following example, we define TreeNode as having gates to connect any number of
children, then subclass it to get a BinaryTreeNode to set the gate size to two:

simple TreeNode {
gates:

inout parent;
inout children[];

}

simple BinaryTreeNode extends TreeNode {
gates:

children[2];
}

An example for setting the gate vector size in a submodule, using the same TreeNode module
type as above:

module BinaryTree {
submodules:

nodes[31]: TreeNode {
gates:

children[2];
}

connections:
...

}

3.8 Submodules

Modules that a compound module is composed of are called its submodules. A submodule
has a name, and it is an instance of a compound or simple module type. In the NED definition
of a submodule, this module type is usually given statically, but it is also possible to specify
the type with a string expression. (The latter feature, parametric submodule types, will be
discussed in section 3.11.1.)

NED supports submodule arrays (vectors) and conditional submodules as well. Submodule
vector size, unlike gate vector size, must always be specified and cannot be left open as with
gates.

It is possible to add new submodules to an existing compound module via subclassing; this
has been described in the section 3.4.

The basic syntax of submodules is shown below:

module Node
{

submodules:
routing: Routing; // a submodule
queue[sizeof(port)]: Queue; // submodule vector
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...
}

As already seen in previous code examples, a submodule may also have a curly brace block as
body, where one can assign parameters, set the size of gate vectors, and add/modify properties
like the display string (@display). It is not possible to add new parameters and gates.

Display strings specified here will be merged with the display string from the type to get the
effective display string. The merge algorithm is described in chapter 8.

module Node
{

gates:
inout port[];

submodules:
routing: Routing {

parameters: // this keyword is optional
routingTable = "routingtable.txt"; // assign parameter

gates:
in[sizeof(port)]; // set gate vector size
out[sizeof(port)];

}
queue[sizeof(port)]: Queue {

@display("t=queue id $id"); // modify display string
id = 1000+index; // use submodule index to generate different IDs

}
connections:

...
}

An empty body may be omitted, that is,

queue: Queue;

is the same as

queue: Queue {
}

A submodule or submodule vector can be conditional. The if keyword and the condition itself
goes after the submodule type, like in the example below:

module Host
{

parameters:
bool withTCP = default(true);

submodules:
tcp : TCP if withTCP;
...

}

The condition is less useful with submodule vectors, as one could also use a zero vector size.
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3.9 Connections

Connections are defined in the connections section of compound modules. Connections
cannot span across hierarchy levels; one can connect two submodule gates, a submodule
gate and the "inside" of the parent (compound) module’s gates, or two gates of the parent
module (though this is rarely useful), but it is not possible to connect to any gate outside the
parent module, or inside compound submodules.

Input and output gates are connected with a normal arrow, and inout gates with a double-
headed arrow “<-->”. To connect the two gates with a channel, use two arrows and put
the channel specification in between. The same syntax is used to add properties such as
@display to the connection.

Some examples have already been shown in the NED Quickstart section (3.2); let’s see some
more.

It has been mentioned that an inout gate is basically an input and an output gate glued
together. These sub-gates can also be addressed (and connected) individually if needed, as
port$i and port$o (or for vector gates, as port$i[k] and port$o[k]).

Gates are specified as modulespec.gatespec (to connect a submodule), or as gatespec (to con-
nect the compound module). modulespec is either a submodule name (for scalar submodules),
or a submodule name plus an index in square brackets (for submodule vectors). For scalar
gates, gatespec is the gate name; for gate vectors it is either the gate name plus an index in
square brackets, or gatename++.

The gatename++ notation causes the first unconnected gate index to be used. If all gates of
the given gate vector are connected, the behavior is different for submodules and for the en-
closing compound module. For submodules, the gate vector expands by one. For a compound
module, after the last gate is connected, ++ will stop with an error.

NOTE: Why is it not possible to expand a gate vector of the compound module? The
model structure is built in top-down order, so new gates would be left unconnected on
the outside, as there is no way in NED to "go back" and connect them afterwards.

When the ++ operator is used with $i or $o (e.g. g$i++ or g$o++, see later), it will actually
add a gate pair (input+output) to maintain equal gate sizes for the two directions.

Channel Specification

Channel specifications (-->channelspec--> inside a connection) are similar to submodules in
many respect. Let’s see some examples!

The following connections use two user-defined channel types, Ethernet100 and Backbone.
The code shows the syntax for assigning parameters (cost and length) and specifying a
display string (and NED properties in general):

a.g++ <--> Ethernet100 <--> b.g++;
a.g++ <--> Backbone {cost=100; length=52km; ber=1e-8;} <--> b.g++;
a.g++ <--> Backbone {@display("ls=green,2");} <--> b.g++;

When using built-in channel types, the type name can be omitted; it will be inferred from the
parameters you assign.

a.g++ <--> {delay=10ms;} <--> b.g++;
a.g++ <--> {delay=10ms; ber=1e-8;} <--> b.g++;
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a.g++ <--> {@display("ls=red");} <--> b.g++;

If datarate, ber or per is assigned, ned.DatarateChannel will be chosen. Otherwise, if de-
lay or disabled is present, it will be ned.DelayChannel; otherwise it is ned.IdealChannel.
Naturally, if other parameter names are assigned in a connection without an explicit channel
type, it will be an error (with “ned.DelayChannel has no such parameter” or similar message).

Connection parameters, similarly to submodule parameters, can also be assigned using pat-
tern assignments, albeit the channel names to be matched with patterns are a little more
complicated and less convenient to use. A channel can be identified with the name of its
source gate plus the channel name; the channel name is currently always channel. It is
illustrated by the following example:

module Queueing
{

parameters:
source.out.channel.delay = 10ms;
queue.out.channel.delay = 20ms;

submodules:
source: Source;
queue: Queue;
sink: Sink;

connections:
source.out --> ned.DelayChannel --> queue.in;
queue.out --> ned.DelayChannel <--> sink.in;

Using bidirectional connections is a bit trickier, because both directions must be covered
separately:

network Network
{

parameters:
hostA.g$o[0].channel.datarate = 100Mbps; // the A -> B connection
hostB.g$o[0].channel.datarate = 100Mbps; // the B -> A connection
hostA.g$o[1].channel.datarate = 1Gbps; // the A -> C connection
hostC.g$o[0].channel.datarate = 1Gbps; // the C -> A connection

submodules:
hostA: Host;
hostB: Host;
hostC: Host;

connections:
hostA.g++ <--> ned.DatarateChannel <--> hostB.g++;
hostA.g++ <--> ned.DatarateChannel <--> hostC.g++;

Also, it is not always easy to figure out which gate indices map to the connections you want to
configure. If connection objects could be given names to override the default name “channel”,
that would make it easier to identify connections in patterns. This feature is planned for
future OMNeT++ releases.

Channel Names

The default name given to channel objects is "channel". Since OMNeT++ 4.3 it is possible
to specify the name explicitly, and also to override the default name per channel type. The
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purpose of custom channel names is to make addressing easier when channel parameters are
assigned from ini files.

The syntax for naming a channel in a connection is similar to submodule syntax: name: type.
Since both name and type are optional, the colon must be there after name even if type is
missing, in order to remove the ambiguity.

Examples:

r1.pppg++ <--> eth1: EthernetChannel <--> r2.pppg++;
a.out --> foo: {delay=1ms;} --> b.in;
a.out --> bar: --> b.in;

In the absence of an explicit name, the channel name comes from the @defaultname property
of the channel type if that exists.

channel Eth10G extends ned.DatarateChannel like IEth {
@defaultname(eth10G);

}

There’s a catch with @defaultname though: if the channel type is specified with a **.channel-
name.liketype= line in an ini file, then the channel type’s @defaultname cannot be used as
channelname in that configuration line, because the channel type would only be known as
a result of using that very configuration line. To illustrate the problem, consider the above
Eth10G channel, and a compound module containing the following connection:

r1.pppg++ <--> <> like IEth <--> r2.pppg++;

Then consider the following inifile:

**.eth10G.typename = "Eth10G" # Won’t match! The eth10G name would come from
# the Eth10G type - catch-22!

**.channel.typename = "Eth10G" # OK, as lookup assumes the name "channel"

**.eth10G.datarate = 10.01Gbps # OK, channel already exists with name "eth10G"

The anomaly can be avoided by using an explicit channel name in the connection, not using
@defaultname, or by specifying the type via a module parameter (e.g. writing <param> like
... instead of <> like ...).

3.10 Multiple Connections

Simple programming constructs (loop, conditional) allow creating multiple connections easily.

This will be shown in the following examples.

Chain

One can create a chain of modules like this:

module Chain
parameters:

int count;
submodules:

node[count] : Node {
gates:
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port[2];
}

connections allowunconnected:
for i = 0..count-2 {

node[i].port[1] <--> node[i+1].port[0];
}

}

Binary Tree

One can build a binary tree in the following way:

simple BinaryTreeNode {
gates:

inout left;
inout right;
inout parent;

}

module BinaryTree {
parameters:

int height;
submodules:

node[2^height-1]: BinaryTreeNode;
connections allowunconnected:

for i=0..2^(height-1)-2 {
node[i].left <--> node[2*i+1].parent;
node[i].right <--> node[2*i+2].parent;

}
}

Note that not every gate of the modules will be connected. By default, an unconnected gate
produces a run-time error message when the simulation is started, but this error message is
turned off here with the allowunconnected modifier. Consequently, it is the simple modules’
responsibility not to send on an unconnected gate.

Random Graph

Conditional connections can be used to generate random topologies, for example. The follow-
ing code generates a random subgraph of a full graph:

module RandomGraph {
parameters:

int count;
double connectedness; // 0.0<x<1.0

submodules:
node[count]: Node {

gates:
in[count];
out[count];

}
connections allowunconnected:
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for i=0..count-1, for j=0..count-1 {
node[i].out[j] --> node[j].in[i]

if i!=j && uniform(0,1)<connectedness;
}

}

Note the use of the allowunconnected modifier here too, to turn off error messages produced
by the network setup code for unconnected gates.

3.10.1 Connection Patterns

Several approaches can be used when you want to create complex topologies which have a
regular structure; three of them are described below.

“Subgraph of a Full Graph”

This pattern takes a subset of the connections of a full graph. A condition is used to “carve
out” the necessary interconnection from the full graph:

for i=0..N-1, for j=0..N-1 {
node[i].out[...] --> node[j].in[...] if condition(i,j);

}

The RandomGraph compound module (presented earlier) is an example of this pattern, but
the pattern can generate any graph where an appropriate condition(i, j) can be formulated.
For example, when generating a tree structure, the condition would return whether node j is
a child of node i or vice versa.

Though this pattern is very general, its usage can be prohibitive if the number of nodes N
is high and the graph is sparse (it has much less than N2 connections). The following two
patterns do not suffer from this drawback.

“Connections of Each Node”

The pattern loops through all nodes and creates the necessary connections for each one. It
can be generalized like this:

for i=0..Nnodes, for j=0..Nconns(i)-1 {
node[i].out[j] --> node[rightNodeIndex(i,j)].in[j];

}

The Hypercube compound module (to be presented later) is a clear example of this approach.
BinaryTree can also be regarded as an example of this pattern where the inner j loop is
unrolled.

The applicability of this pattern depends on how easily the rightNodeIndex(i, j) function can
be formulated.

“Enumerate All Connections”

A third pattern is to list all connections within a loop:
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for i=0..Nconnections-1 {
node[leftNodeIndex(i)].out[...] --> node[rightNodeIndex(i)].in[...];

}

This pattern can be used if leftNodeIndex(i) and rightNodeIndex(i) mapping functions can be
sufficiently formulated.

The Chain module is an example of this approach where the mapping functions are extremely
simple: leftNodeIndex(i) = i and rightNodeIndex(i) = i + 1. The pattern can also be used to
create a random subset of a full graph with a fixed number of connections.

In the case of irregular structures where none of the above patterns can be employed, you can
resort to listing all connections, like you would do it in most existing simulators.

3.11 Parametric Submodule and Connection Types

3.11.1 Parametric Submodule Types

A submodule type may be specified with a module parameter of the type string, or in general,
with any string-typed expression. The syntax uses the like keyword.

Let us begin with an example:

network Net6
{

parameters:
string nodeType;

submodules:
node[6]: <nodeType> like INode {

address = index;
}

connections:
...

}

It creates a submodule vector whose module type will come from the nodeType parameter. For
example, if nodeType is set to "SensorNode", then the module vector will consist of sensor
nodes, provided such module type exists and it qualifies. What this means is that the INode
must be an existing module interface, which the SensorNode module type must implement
(more about this later).

As already mentioned, one can write an expression between the angle brackets. The expres-
sion may use the parameters of the parent module and of previously defined submodules, and
has to yield a string value. For example, the following code is also valid:

network Net6
{

parameters:
string nodeTypePrefix;
int variant;

submodules:
node[6]: <nodeTypePrefix + "Node" + string(variant)> like INode {

...
}
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The corresponding NED declarations:

moduleinterface INode
{

parameters:
int address;

gates:
inout port[];

}

module SensorNode like INode
{

parameters:
int address;
...

gates:
inout port[];
...

}

The “<nodeType> like INode” syntax has an issue when used with submodule vectors: does
not allow you to specify different types for different indices. The following syntax is better
suited for submodule vectors:

The expression between the angle brackets may be left out altogether, leaving you with a pair
of empty angle brackets, <>:

module Node
{

submodules:
nic: <> like INic; // type name expression left unspecified
...

}

Now the submodule type name is expected to be defined via typename pattern assignments.
Typename pattern assignments look like pattern assignments for the submodule’s param-
eters, only the parameter name is replaced by the typename keyword. Typename pattern
assignments may also be written in the configuration file. In a network that uses the above
Node NED type, typename pattern assignments would look like this:

network Network
{

parameters:
node[*].nic.typename = "Ieee80211g";

submodules:
node: Node[100];

}

A default value may also be specified between the angle brackets; it will be used if there is no
typename assignment for the module:

module Node
{

submodules:
nic: <default("Ieee80211b")> like INic;
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...
}

3.11.2 Parametric Connection Types

Parametric connection types work similarly to parametric submodule types, and the syntax is
similar as well. A basic example that uses a parameter of the parent module:

a.g++ <--> <channelType> like IMyChannel <--> b.g++;
a.g++ <--> <channelType> like IMyChannel {@display("ls=red");} <--> b.g++;

The expression may use loop variables, parameters of the parent module and also parameters
of submodules (e.g. host[2].channelType).

The type expression may also be absent, and then the type is expected to be specified using
typename pattern assignments:

a.g++ <--> <> like IMyChannel <--> b.g++;
a.g++ <--> <> like IMyChannel {@display("ls=red");} <--> b.g++;

A default value may also be given:

a.g++ <--> <default("Ethernet100")> like IMyChannel <--> b.g++;
a.g++ <--> <default(channelType)> like IMyChannel <--> b.g++;

The corresponding type pattern assignments:

a.g$o[0].channel.typename = "Ethernet1000"; // A -> B channel
b.g$o[0].channel.typename = "Ethernet1000"; // B -> A channel

3.12 Metadata Annotations (Properties)

NED properties are metadata annotations that can be added to modules, parameters, gates,
connections, NED files, packages, and virtually anything in NED. @display, @class, @names-
pace, @unit, @prompt, @loose, @directIn are all properties that have been mentioned in
previous sections, but those examples only scratch the surface of what properties are used
for.

Using properties, one can attach extra information to NED elements. Some properties are
interpreted by NED, by the simulation kernel; other properties may be read and used from
within the simulation model, or provide hints for NED editing tools.

Properties are attached to the type, so you cannot have different properties defined per-
instance. All instances of modules, connections, parameters, etc. created from any particular
location in the NED files have identical properties.

The following example shows the syntax for annotating various NED elements:

@namespace(foo); // file property

module Example
{

parameters:
@node; // module property
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@display("i=device/pc"); // module property
int a @unit(s) = default(1); // parameter property

gates:
output out @loose @labels(pk); // gate properties

submodules:
src: Source {

parameters:
@display("p=150,100"); // submodule property
count @prompt("Enter count:"); // adding a property to a parameter

gates:
out[] @loose; // adding a property to a gate

}
...

connections:
src.out++ --> { @display("ls=green,2"); } --> sink1.in; // connection prop.
src.out++ --> Channel { @display("ls=green,2"); } --> sink2.in;

}

Property Indices

Sometimes it is useful to have multiple properties with the same name, for example for declar-
ing multiple statistics produced by a simple module. Property indices make this possible.

A property index is an identifier or a number in square brackets after the property name, such
as eed and jitter in the following example:

simple App {
@statistic[eed](title="end-to-end delay of received packets";unit=s);
@statistic[jitter](title="jitter of received packets");

}

This example declares two statistics as @statistic properties, @statistic[eed] and @statis-
tic[jitter]. Property values within the parentheses are used to supply additional info, like
a more descriptive name (title="..." or a unit (unit=s). Property indices can be conve-
niently accessed from the C++ API as well; for example it is possible to ask what indices exist
for the "statistic" property, and it will return a list containing "eed" and "jitter").

In the @statistic example the index was textual and meaningful, but neither is actually
required. The following dummy example shows the use of numeric indices which may be
ignored altogether by the code that interprets the properties:

simple Dummy {
@foo[1](what="apples";amount=2);
@foo[2](what="oranges";amount=5);

}

Note that without the index, the lines would actually define the same @foo property, and
would overwrite each other’s values.

Indices also make it possible to override entries via inheritance:

simple DummyExt extends Dummy {
@foo[2](what="grapefruits"); // 5 grapefruits instead of 5 oranges

}
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Data Model

Properties may contain data, given in parentheses; the data model is quite flexible. To begin
with, properties may contain no value or a single value:

@node;
@node(); // same as @node
@class(FtpApp2);

Properties may contain lists:

@foo(Sneezy,Sleepy,Dopey,Doc,Happy,Bashful,Grumpy);

They may contain key-value pairs, separated by semicolons:

@foo(x=10.31; y=30.2; unit=km);

In key-value pairs, each value can be a (comma-separated) list:

@foo(coords=47.549,19.034;labels=vehicle,router,critical);

The above examples are special cases of the general data model. According to the data model,
properties contain key-valuelist pairs, separated by semicolons. Items in valuelist are sepa-
rated by commas. Wherever key is missing, values go on the valuelist of the default key, the
empty string.

Value items may contain words, numbers, string constants and some other characters, but
not arbitrary strings. Whenever the syntax does not permit some value, it should be enclosed
in quotes. This quoting does not affect the value because the parser automatically drops one
layer of quotes; thus, @class(TCP) and @class("TCP") are exactly the same. If you want the
quotes to be part of the value, use escaped quotes: @foo("\"some string\"").

There are also some conventions. One can use properties to tag NED elements; for example,
a @host property could be used to mark all module types that represent various hosts. This
property could be recognized e.g. by editing tools, by topology discovery code inside the
simulation model, etc.

The convention for such a “marker” property is that any extra data in it (i.e. within parens)
is ignored, except a single word false, which has the special meaning of “turning off” the
property. Thus, any simulation model or tool that interprets properties should handle all
the following forms as equivalent to @host: @host(), @host(true), @host(anything-but-
false), @host(a=1;b=2); and @host(false) should be interpreted as the lack of the @host
tag.

Overriding and Extending Property Values

When you subclass a NED type, use a module type as submodule or use a channel type for a
connection, you may add new properties to the module or channel, or to its parameters and
gates, and you can also modify existing properties.

When modifying a property, the new property is merged with the old one, with a few simple
rules. New keys simply get added. If a key already exists in the old property, items in its
valuelist overwrite items on the same position in the old property. A single hyphen (−) as
valuelist item serves as “antivalue”, it removes the item at the corresponding position.

Some examples:
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base @prop
new @prop(a)
result @prop(a)

base @prop(a,b,c)
new @prop(,-)
result @prop(a,,c)

base @prop(foo=a,b)
new @prop(foo=A,,c;bar=1,2)
result @prop(foo=A,b,c;bar=1,2)

NOTE: The above merge rules are part of NED, but the code that interprets properties
may have special rules for certain properties. For example, the @unit property of pa-
rameters is not allowed to be overridden, and @display is merged with special although
similar rules (see Chapter 8).

3.13 Inheritance

Inheritance support in the NED language is only described briefly here, because several details
and examples have been already presented in previous sections.

In NED, a type may only extend (extends keyword) an element of the same component type:
a simple module may only extend a simple module, compound module may only extend a
compound module, and so on. Single inheritance is supported for modules and channels, and
multiple inheritance is supported for module interfaces and channel interfaces. A network is
a shorthand for a compound module with the @isNetwork property set, so the same rules
apply to it as to compound modules.

However, a simple or compound module type may implement (like keyword) several module
interfaces; likewise, a channel type may implement several channel interfaces.

IMPORTANT: When you extend a simple module type both in NED and in C++, you
must use the @class property to tell NED to use the new C++ class – otherwise your new
module type inherits the C++ class of the base!

Inheritance may:

• add new properties, parameters, gates, inner types, submodules, connections, as long
as names do not conflict with inherited names

• modify inherited properties, and properties of inherited parameters and gates

• it may not modify inherited submodules, connections and inner types

For details and examples, see the corresponding sections of this chapter (simple modules 3.3,
compound modules 3.4, channels 3.5, parameters 3.6, gates 3.7, submodules 3.8, connec-
tions 3.9, module interfaces and channel interfaces 3.11.1).

3.14 Packages

Having all NED files in a single directory is fine for small simulation projects. When a project
grows, however, it sooner or later becomes necessary to introduce a directory structure, and
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sort the NED files into them. NED natively supports directory trees with NED files, and calls
directories packages. Packages are also useful for reducing name conflicts, because names
can be qualified with the package name.

NOTE: NED packages are based on the Java package concept, with minor enhance-
ments. If you are familiar with Java, you’ll find little surprise in this section.

Overview

When a simulation is run, you must tell the simulation kernel the directory which is the root
of your package tree; let’s call it NED source folder. The simulation kernel will traverse the
whole directory tree, and load all NED files from every directory. You can have several NED
directory trees, and their roots (the NED source folders) should be given to the simulation ker-
nel in the NEDPATH variable. NEDPATH can be specified in several ways: as an environment
variable (NEDPATH), as a configuration option (ned-path), or as a command-line option to the
simulation runtime (-n). NEDPATH is described in detail in chapter 11.

Directories in a NED source tree correspond to packages. If you have NED files in a <root>/a/b/c
directory (where <root> gets listed in NEDPATH), then the package name is a.b.c. The pack-
age name has to be explicitly declared at the top of the NED files as well, like this:

package a.b.c;

The package name that follows from the directory name and the declared package must
match; it is an error if they don’t. (The only exception is the root package.ned file, as de-
scribed below.)

By convention, package names are all lowercase, and begin with either the project name
(myproject), or the reversed domain name plus the project name (org.example.myproject).
The latter convention would cause the directory tree to begin with a few levels of empty direc-
tories, but this can be eliminated with a toplevel package.ned.

NED files called package.ned have a special role, as they are meant to represent the whole
package. For example, comments in package.ned are treated as documentation of the pack-
age. Also, a @namespace property in a package.ned file affects all NED files in that directory
and all directories below.

The toplevel package.ned file can be used to designate the root package, which is useful
for eliminating a few levels of empty directories resulting from the package naming conven-
tion. For example, if you have a project where you want to have all NED types under the
org.example.myproject package but don’t want to have the directories named org, exam-
ple and myproject in the source tree, then you can put a package.ned file in the source root
directory with the package declaration org.example.myproject. This will cause a directory
foo under the root to be interpreted as package org.example.myproject.foo, and NED files
in them must contain that as package declaration. Only the root package.ned can define the
package, package.ned files in subdirectories must follow it.

Let’s look at the INET Framework as example, which contains hundreds of NED files in several
dozen packages. The directory structure looks like this:

INET/
src/

base/
transport/

tcp/
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udp/
...

networklayer/
linklayer/
...

examples/
adhoc/
ethernet/
...

The src and examples subdirectories are denoted as NED source folders, so NEDPATH is the
following (provided INET was unpacked in /home/joe):

/home/joe/INET/src;/home/joe/INET/examples

Both src and examples contain package.ned files to define the root package:

// INET/src/package.ned:
package inet;

// INET/examples/package.ned:
package inet.examples;

And other NED files follow the package defined in package.ned:

// INET/src/transport/tcp/TCP.ned:
package inet.transport.tcp;

Name Resolution, Imports

We already mentioned that packages can be used to distinguish similarly named NED types.
The name that includes the package name (a.b.c.Queue for a Queue module in the a.b.c
package) is called fully qualified name; without the package name (Queue) it is called simple
name.

Simple names alone are not enough to unambiguously identify a type. Here is how you can
refer to an existing type:

1. By fully qualified name. This is often cumbersome though, as names tend to be too long;

2. Import the type, then the simple name will be enough;

3. If the type is in the same package, then it doesn’t need to be imported; it can be referred
to by simple name

Types can be imported with the import keyword by either fully qualified name, or by a wild-
card pattern. In wildcard patterns, one asterisk ("*") stands for "any character sequence not
containing period", and two asterisks ("**") mean "any character sequence which may contain
period".

So, any of the following lines can be used to import a type called inet.protocols.net-
worklayer.ip.RoutingTable:
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import inet.protocols.networklayer.ip.RoutingTable;
import inet.protocols.networklayer.ip.*;
import inet.protocols.networklayer.ip.Ro*Ta*;
import inet.protocols.*.ip.*;
import inet.**.RoutingTable;

If an import explicitly names a type with its exact fully qualified name, then that type must
exist, otherwise it is an error. Imports containing wildcards are more permissive, it is allowed
for them not to match any existing NED type (although that might generate a warning.)

Inner types may not be referred to outside their enclosing types, so they cannot be imported
either.

Name Resolution With "like"

The situation is a little different for submodule and connection channel specifications using
the like keyword, when the type name comes from a string-valued expression (see section
3.11.1 about submodule and channel types as parameters). Imports are not much use here:
at the time of writing the NED file it is not yet known what NED types will be suitable for being
"plugged in" there, so they cannot be imported in advance.

There is no problem with fully qualified names, but simple names need to be resolved differ-
ently. What NED does is this: it determines which interface the module or channel type must
implement (i.e. ... like INode), and then collects the types that have the given simple
name AND implement the given interface. There must be exactly one such type, which is then
used. If there is none or there are more than one, it will be reported as an error.

Let us see the following example:

module MobileHost
{

parameters:
string mobilityType;

submodules:
mobility: <mobilityType> like IMobility;
...

}

and suppose that the following modules implement the IMobility module interface: inet.mo-
bility.RandomWalk, inet.adhoc.RandomWalk, inet.mobility.MassMobility. Also sup-
pose that there is a type called inet.examples.adhoc.MassMobility but it does not imple-
ment the interface.

So if mobilityType="MassMobility", then inet.mobility.MassMobility will be selected;
the other MassMobility doesn’t interfere. However, if mobilityType="RandomWalk", then it
is an error because there are two matching RandomWalk types. Both RandomWalk’s can still be
used, but one must explicitly choose one of them by providing a package name: mobility-
Type="inet.adhoc.RandomWalk".

The Default Package

It is not mandatory to make use of packages: if all NED files are in a single directory listed on
the NEDPATH, then package declarations (and imports) can be omitted. Those files are said
to be in the default package.
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Chapter 4

Simple Modules

Simple modules are the active components in the model. Simple modules are programmed in
C++, using the OMNeT++ class library. The following sections contain a short introduction to
discrete event simulation in general, explain how its concepts are implemented in OMNeT++,
and give an overview and practical advice on how to design and code simple modules.

4.1 Simulation Concepts

This section contains a very brief introduction into how discrete event simulation (DES) works,
in order to introduce terms we’ll use when explaining OMNeT++ concepts and implementation.

4.1.1 Discrete Event Simulation

A discrete event system is a system where state changes (events) happen at discrete instances
in time, and events take zero time to happen. It is assumed that nothing (i.e. nothing inter-
esting) happens between two consecutive events, that is, no state change takes place in the
system between the events. This is in contrast to continuous systems where state changes
are continuous. Systems that can be viewed as discrete event systems can be modeled using
discrete event simulation, DES.

For example, computer networks are usually viewed as discrete event systems. Some of the
events are:

• start of a packet transmission

• end of a packet transmission

• expiry of a retransmission timeout

This implies that between two events such as start of a packet transmission and end of a
packet transmission, nothing interesting happens. That is, the packet’s state remains being
transmitted. Note that the definition of “interesting” events and states always depends on the
intent and purposes of the modeler. If we were interested in the transmission of individual bits,
we would have included something like start of bit transmission and end of bit transmission
among our events.
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The time when events occur is often called event timestamp; with OMNeT++ we use the term
arrival time (because in the class library, the word “timestamp” is reserved for a user-settable
attribute in the event class). Time within the model is often called simulation time, model time
or virtual time as opposed to real time or CPU time which refer to how long the simulation
program has been running and how much CPU time it has consumed.

4.1.2 The Event Loop

Discrete event simulation maintains the set of future events in a data structure often called
FES (Future Event Set) or FEL (Future Event List). Such simulators usually work according
to the following pseudocode:

initialize -- this includes building the model and
inserting initial events to FES

while (FES not empty and simulation not yet complete)
{

retrieve first event from FES
t:= timestamp of this event
process event
(processing may insert new events in FES or delete existing ones)

}
finish simulation (write statistical results, etc.)

The initialization step usually builds the data structures representing the simulation model,
calls any user-defined initialization code, and inserts initial events into the FES to ensure that
the simulation can start. Initialization strategies can differ considerably from one simulator
to another.

The subsequent loop consumes events from the FES and processes them. Events are pro-
cessed in strict timestamp order to maintain causality, that is, to ensure that no current
event may have an effect on earlier events.

Processing an event involves calls to user-supplied code. For example, using the computer
network simulation example, processing a “timeout expired” event may consist of re-sending
a copy of the network packet, updating the retry count, scheduling another “timeout” event,
and so on. The user code may also remove events from the FES, for example when canceling
timeouts.

The simulation stops when there are no events left (this rarely happens in practice), or when
it isn’t necessary for the simulation to run further because the model time or the CPU time
has reached a given limit, or because the statistics have reached the desired accuracy. At
this time, before the program exits, the user will typically want to record statistics into output
files.

4.1.3 Events and Event Execution Order in OMNeT++

OMNeT++ uses messages to represent events. Each event is represented by an instance of
the cMessage class or one its subclasses; there is no separate event class. Messages are sent
from one module to another – this means that the place where the “event will occur” is the
message’s destination module, and the model time when the event occurs is the arrival time of
the message. Events like “timeout expired” are implemented by the module sending a message
to itself.
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Events are consumed from the FES in arrival time order, to maintain causality. More precisely,
given two messages, the following rules apply:

1. the message with the earlier arrival time is executed first. If arrival times are equal,

2. the one with the smaller scheduling priority value is executed first. If priorities are the
same,

3. the one scheduled or sent earlier is executed first.

Scheduling priority is a user-assigned integer attribute of messages.

4.1.4 Simulation Time

The current simulation time can be obtained with the simTime() function.

Simulation time in OMNeT++ is represented by the C++ type simtime_t, which is by default a
typedef to the SimTime class. SimTime class stores simulation time in a 64-bit integer, using
decimal fixed-point representation. The resolution is controlled by the scale exponent global
configuration variable; that is, SimTime instances have the same resolution. The exponent
can be between chosen between -18 (attosecond resolution) and 0 (seconds). Some exponents
with the ranges they provide are shown in the following table.

Exponent Resolution Approx. Range
-18 10−18s (1as) ±9.22s
-15 10−15s (1fs) ±153.72 minutes
-12 10−12s (1ps) ±106.75 days
-9 10−9s (1ns) ±292.27 years
-6 10−6s (1us) ±292271 years
-3 10−3s (1ms) ±2.9227e8 years
0 1s ±2.9227e11 years

Note that although simulation time cannot be negative, it is still useful to be able to represent
negative numbers, because they often arise during the evaluation of arithmetic expressions.

The SimTime class performs additions and substractions as 64-bit integer operations. Integer
overflows are checked, and will cause the simulation to stop with an error message. Other
operations (multiplication, division, etc) are performed in double, then converted back to
integer.

There is no implicit conversion from SimTime to double, mostly because it would conflict with
overloaded arithmetic operations of SimTime; use the dbl() method of Simtime to convert.
To reduce the need for dbl(), several functions and methods have overloaded variants that
directly accept SimTime, for example fabs(), fmod(), ceil(), floor(), uniform(), expo-
nential(), and normal().

NOTE: Converting a SimTime to double may lose precision, because double only has a
52-bit mantissa.

Other useful methods of SimTime include str(), which returns the value as a string; parse(),
which converts a string to SimTime; raw(), which returns the underlying int64 value; getScale-
Exp(), which returns the global scale exponent; and getMaxTime, which returns the maxi-
mum simulation time that can be represented at the current scale exponent.
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Compatibility

Earlier versions of OMNeT++ used double for simulation time. To facilitate porting existing
models to OMNeT++ 4.0 or later, OMNeT++ can be compiled to use double for simtime_t.
To enable this mode, define the USE_DOUBLE_SIMTIME preprocessor macro during compiling
OMNeT++ and the simulation models.

There are several macros that can be used in simulation models to make them compile with
both double and SimTime simulation time: SIMTIME_STR() converts simulation time to a
const char * (can be used in printf argument lists); SIMTIME_DBL(t) converts simulation
time to double; SIMTIME_RAW(t) returns the underlying int64 or double; STR_SIMTIME(s)
converts string to simulation time; and SIMTIME_TTOA(buf,t) converts simulation time to
string, and places the result into the given buffer. MAXTIME is also defined correctly for both
simtime_t types.

NOTE: Why did OMNeT++ switch to int64-based simulation time? double’s mantissa
is only 52 bits long, and this caused problems in long simulations that relied on fine-
grained timing, for example MAC protocols. Other problems were the accumulation of
rounding errors, and non-associativity (often (x+ y) + z 6= x+ (y + z), see [Gol91]) which
meant that two double simulation times could not be reliably compared for equality.

4.1.5 FES Implementation

The implementation of the FES is a crucial factor in the performance of a discrete event
simulator. In OMNeT++, the FES is implemented with binary heap, the most widely used data
structure for this purpose. Heap is generally considered the best algorithm, although exotic
data structures like skiplist may perform better than heap in some cases. In case you are
interested, the FES implementation is in the cMessageHeap class, but knowledge of the FES
implementation is not necessary for the typical simulation programmer.

4.2 Components, Simple Modules, Channels

OMNeT++ simulation models are composed of modules and connections. Modules may be
simple (atomic) modules or compound modules; simple modules are the active components
in a model, and their behaviour is defined by the user as C++ code. Connections may have
associated channel objects. Channel objects encapsulate channel behavior: propagation and
transmission time modeling, error modeling, and possibly others. Channels are also pro-
grammable in C++ by the user.

Modules and channels are called components. Components are represented with the C++ class
cComponent. The abstract module class cModule and the abstract channel class cChannel
both subclass from cComponent.

cModule has two subclasses: cSimpleModule and cCompoundModule. The user defines sim-
ple module types by subclassing cSimpleModule.

The cChannel’s subclasses include the three built-in channel types: cIdealChannel, cDe-
layChannel and cDatarateChannel. The user can create new channel types by subclassing
cChannel or any other channel class.

The following inheritance diagram illustrates the relationship of the classes mentioned above.

Simple modules and channels can be programmed by redefining certain member functions,
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cObject

cComponent

...

cModule cChannel

cSimpleModule cCompoundModule cIdealChannel cDelayChannel cDatarateChannel

Figure 4.1: Inheritance of component, module and channel classes

and providing your own code in them. Some of those member functions are declared on
cComponent, the common base class of channels and modules.

cComponent has the following member functions meant for redefining in subclasses:

• initialize(). This method is invoked after OMNeT++ has set up the network (i.e.
created modules and connected them according to the definitions), and provides a place
for initialization code;

• finish() is called when the simulation has terminated successfully, and its recom-
mended use is the recording of summary statistics.

initialize() and finish(), together with initialize()’s variants for multi-stage initial-
ization, will be covered in detail in section 4.3.3.

In OMNeT++, events occur inside simple modules. Simple modules encapsulate C++ code that
generates events and reacts to events, in other words, implements the behaviour of the model.

To define the dynamic behavior of a simple module, you need to redefine one of the following
member functions:

• handleMessage(cMessage *msg). It is invoked with the message as parameter when-
ever the module receives a message. handleMessage() is expected to process the mes-
sage, and then return. Simulation time never elapses inside handleMessage() calls,
only between them.

• activity() is started as a coroutine1 at the beginning of the simulation, and it runs
until the end of simulation (or until the function returns or otherwise terminates). Mes-
sages are obtained with receive() calls. Simulation time elapses inside receive()
calls.

Modules written with activity() and handleMessage() can be freely mixed within a simu-
lation model. Generally, handleMessage() should be preferred to activity(), due to scal-
ability and other practical reasons. The two functions will be described in detail in sections
4.4.1 and 4.4.2, including their advantages and disadvantages.

1Cooperatively scheduled thread, explained later.
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The behavior of channels can also be modified by redefining member functions. However, the
channel API is slightly more complicated than that of simple modules, so we’ll describe it in a
later section (4.8).

4.3 Defining Simple Module Types

4.3.1 Overview

As mentioned before, a simple module is nothing more than a C++ class which has to be
subclassed from cSimpleModule, with one or more virtual member functions redefined to
define its behavior.

The class has to be registered with OMNeT++ via the Define_Module() macro. The De-
fine_Module() line should always be put into .cc or .cpp files and not header file (.h),
because the compiler generates code from it.

The following HelloModule is about the simplest simple module one could write. (We could
have left out the initialize() method as well to make it even smaller, but how would it say
Hello then?) Note cSimpleModule as base class, and the Define_Module() line.

// file: HelloModule.cc
#include <omnetpp.h>

class HelloModule : public cSimpleModule
{

protected:
virtual void initialize();
virtual void handleMessage(cMessage *msg);

};

// register module class with OMNeT++
Define_Module(HelloModule);

void HelloModule::initialize()
{

ev << "Hello World!\n";
}

void HelloModule::handleMessage(cMessage *msg)
{

delete msg; // just discard everything we receive
}

In order to be able to refer to this simple module type in NED files, we also need an associated
NED declaration which might look like this:

// file: HelloModule.ned
simple HelloModule
{

gates:
input in;

}
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4.3.2 Constructor

Simple modules are never instantiated by the user directly, but rather by the simulation
kernel. This implies that one cannot write arbitrary constructors: the signature must be what
is expected by the simulation kernel. Luckily, this contract is very simple: the constructor
must be public, and must take no arguments:

public:
HelloModule(); // constructor takes no arguments

cSimpleModule itself has two constructors:

1. cSimpleModule() – one without arguments

2. cSimpleModule(size_t stacksize) – one that accepts the coroutine stack size

The first version should be used with handleMessage() simple modules, and the second one
with activity() modules. (With the latter, the activity() method of the module class runs
as a coroutine which needs a separate CPU stack, usually of 16..32K. This will be discussed in
detail later.) Passing zero stack size to the latter constructor also selects handleMessage().

Thus, the following constructor definitions are all OK, and select handleMessage() to be used
with the module:

HelloModule::HelloModule() {...}
HelloModule::HelloModule() : cSimpleModule() {...}

It is also OK to omit the constructor altogether, because the compiler-generated one is suitable
too.

The following constructor definition selects activity() to be used with the module, with 16K
of coroutine stack:

HelloModule::HelloModule() : cSimpleModule(16384) {...}

NOTE: The Module_Class_Members() macro, already deprecated in OMNeT++ 3.2, has
been removed in the 4.0 version. When porting older simulation models, occurrences of
this macro can simply be removed from the source code.

4.3.3 Initialization and Finalization

Basic Usage

The initialize() and finish() methods are declared as part of cComponent, and provide
the user the opportunity of running code at the beginning and at successful termination of
the simulation.

The reason initialize() exists is that usually you cannot put simulation-related code into
the simple module constructor, because the simulation model is still being setup when the
constructor runs, and many required objects are not yet available. In contrast, initialize()
is called just before the simulation starts executing, when everything else has been set up
already.

finish() is for recording statistics, and it only gets called when the simulation has termi-
nated normally. It does not get called when the simulations stops with an error message. The
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destructor always gets called at the end, no matter how the simulation stopped, but at that
time it is fair to assume that the simulation model has been halfway demolished already.

Based on the above considerations, the following usage conventions exist for these four meth-
ods:

Constructor:

Set pointer members of the module class to NULL; postpone all other initialization tasks
to initialize().

initialize():

Perform all initialization tasks: read module parameters, initialize class variables, allo-
cate dynamic data structures with new; also allocate and initialize self-messages (timers)
if needed.

finish():

Record statistics. Do not delete anything or cancel timers – all cleanup must be done
in the destructor.

Destructor:

Delete everything which was allocated by new and is still held by the module class.
With self-messages (timers), use the cancelAndDelete(msg) function! It is almost al-
ways wrong to just delete a self-message from the destructor, because it might be in the
scheduled events list. The cancelAndDelete(msg) function checks for that first, and
cancels the message before deletion if necessary.

OMNeT++ prints the list of unreleased objects at the end of the simulation. When a simulation
model dumps "undisposed object ..." messages, this indicates that the corresponding module
destructors should be fixed. As a temporary measure, these messages may be hidden by
setting print-undisposed=false in the configuration.

NOTE: The perform-gc configuration option has been removed in OMNeT++ 4.0. Au-
tomatic garbage collection cannot be implemented reliably, due to the limitations of the
C++ language.

Invocation Order

The initialize() functions of the modules are invoked before the first event is processed,
but after the initial events (starter messages) have been placed into the FES by the simulation
kernel.

Both simple and compound modules have initialize() functions. A compound module’s
initialize() function runs before that of its submodules.

The finish() functions are called when the event loop has terminated, and only if it termi-
nated normally.

NOTE: finish() is not called if the simulation has terminated with a runtime error.

The calling order for finish() is the reverse of the order of initialize(): first submodules,
then the encompassing compound module. 2

2The way you can provide an initialize() function for a compound module is to subclass cCompoundMod-
ule, and tell OMNeT++ to use the new class for the compound module. The latter is done by adding the
@class(<classname>) property into the NED declaration.
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This is summarized in the following pseudocode:

perform simulation run:
build network

(i.e. the system module and its submodules recursively)
insert starter messages for all submodules using activity()
do callInitialize() on system module

enter event loop // (described earlier)
if (event loop terminated normally) // i.e. no errors

do callFinish() on system module
clean up

callInitialize()
{

call to user-defined initialize() function
if (module is compound)

for (each submodule)
do callInitialize() on submodule

}

callFinish()
{

if (module is compound)
for (each submodule)

do callFinish() on submodule
call to user-defined finish() function

}

Keep in mind that finish() is not always called, so it isn’t a good place for cleanup code
which should run every time the module is deleted. finish() is only a good place for writing
statistics, result post-processing and other operations which are supposed to run only on
successful completion. Cleanup code should go into the destructor.

Multi-Stage Initialization

In simulation models where one-stage initialization provided by initialize() is not suf-
ficient, one can use multi-stage initialization. Modules have two functions which can be
redefined by the user:

void initialize(int stage);
int numInitStages() const;

At the beginning of the simulation, initialize(0) is called for all modules, then initial-
ize(1), initialize(2), etc. You can think of it like initialization takes place in several
“waves”. For each module, numInitStages() must be redefined to return the number of init
stages required, e.g. for a two-stage init, numInitStages() should return 2, and initial-
ize(int stage) must be implemented to handle the stage=0 and stage=1 cases. 3

The callInitialize() function performs the full multi-stage initialization for that module
and all its submodules.

3Note const in the numInitStages() declaration. If you forget it, by C++ rules you create a different function
instead of redefining the existing one in the base class, thus the existing one will remain in effect and return 1.
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If you do not redefine the multi-stage initialization functions, the default behavior is single-
stage initialization: the default numInitStages() returns 1, and the default initialize(int
stage) simply calls initialize().

“End-of-Simulation” Event

The task of finish() is implemented in several other simulators by introducing a special
end-of-simulation event. This is not a very good practice because the simulation programmer
has to code the models (often represented as FSMs) so that they can always properly respond
to end-of-simulation events, in whichever state they are. This often makes program code
unnecessarily complicated. For this reason OMNeT++ does not use the end of simulation
event.

This can also be witnessed in the design of the PARSEC simulation language (UCLA). Its pre-
decessor Maisie used end-of-simulation events, but – as documented in the PARSEC manual –
this has led to awkward programming in many cases, so for PARSEC end-of-simulation events
were dropped in favour of finish() (called finalize() in PARSEC).

4.4 Adding Functionality to cSimpleModule

This section discusses cSimpleModule’s four previously mentioned member functions, in-
tended to be redefined by the user: initialize(), handleMessage(), activity() and fin-
ish(). A fifth, less frequently used method, handleParameterChange, is described in section
4.5.5.

4.4.1 handleMessage()

Function Called for Each Event

The idea is that at each event (message arrival) we simply call a user-defined function. This
function, handleMessage(cMessage *msg) is a virtual member function of cSimpleModule
which does nothing by default – the user has to redefine it in subclasses and add the message
processing code.

The handleMessage() function will be called for every message that arrives at the module.
The function should process the message and return immediately after that. The simula-
tion time is potentially different in each call. No simulation time elapses within a call to
handleMessage().

The event loop inside the simulator handles both activity() and handleMessage() simple
modules, and it corresponds to the following pseudocode:

while (FES not empty and simulation not yet complete)
{

retrieve first event from FES
t:= timestamp of this event
m:= module containing this event
if (m works with handleMessage())

m->handleMessage( event )
else // m works with activity()
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transferTo( m )
}

Modules with handleMessage() are NOT started automatically: the simulation kernel creates
starter messages only for modules with activity(). This means that you have to schedule
self-messages from the initialize() function if you want a handleMessage() simple mod-
ule to start working “by itself”, without first receiving a message from other modules.

Programming with handleMessage()

To use the handleMessage() mechanism in a simple module, you must specify zero stack
size for the module. This is important, because this tells OMNeT++ that you want to use
handleMessage() and not activity().

Message/event related functions you can use in handleMessage():

• send() family of functions – to send messages to other modules

• scheduleAt() – to schedule an event (the module “sends a message to itself”)

• cancelEvent() – to delete an event scheduled with scheduleAt()

You cannot use the receive() and wait() functions in handleMessage(), because they are
coroutine-based by nature, as explained in the section about activity().

You have to add data members to the module class for every piece of information you want to
preserve. This information cannot be stored in local variables of handleMessage() because
they are destroyed when the function returns. Also, they cannot be stored in static variables
in the function (or the class), because they would be shared between all instances of the class.

Data members to be added to the module class will typically include things like:

• state (e.g. IDLE/BUSY, CONN_DOWN/CONN_ALIVE/...)

• other variables which belong to the state of the module: retry counts, packet queues,
etc.

• values retrieved/computed once and then stored: values of module parameters, gate
indices, routing information, etc.

• pointers of message objects created once and then reused for timers, timeouts, etc.

• variables/objects for statistics collection

You can initialize these variables from the initialize() function. The constructor is not
a very good place for this purpose, because it is called in the network setup phase when
the model is still under construction, so a lot of information you may want to use is not yet
available.

Another task you have to do in initialize() is to schedule initial event(s) which trigger
the first call(s) to handleMessage(). After the first call, handleMessage() must take care to
schedule further events for itself so that the “chain” is not broken. Scheduling events is not
necessary if your module only has to react to messages coming from other modules.

finish() is normally used to record statistics information accumulated in data members of
the class at the end of the simulation.
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Application Area

handleMessage() is in most cases a better choice than activity():

1. When you expect the module to be used in large simulations, involving several thou-
sand modules. In such cases, the module stacks required by activity() would simply
consume too much memory.

2. For modules which maintain little or no state information, such as packet sinks, han-
dleMessage() is more convenient to program.

3. Other good candidates are modules with a large state space and many arbitrary state
transition possibilities (i.e. where there are many possible subsequent states for any
state). Such algorithms are difficult to program with activity(), and better suited for
handleMessage() (see rule of thumb below). This is the case for most communication
protocols.

Example 1: Protocol Models

Models of protocol layers in a communication network tend to have a common structure on a
high level because fundamentally they all have to react to three types of events: to messages
arriving from higher layer protocols (or apps), to messages arriving from lower layer protocols
(from the network), and to various timers and timeouts (that is, self-messages).

This usually results in the following source code pattern:

class FooProtocol : public cSimpleModule
{

protected:
// state variables
// ...

virtual void processMsgFromHigherLayer(cMessage *packet);
virtual void processMsgFromLowerLayer(FooPacket *packet);
virtual void processTimer(cMessage *timer);

virtual void initialize();
virtual void handleMessage(cMessage *msg);

};

// ...

void FooProtocol::handleMessage(cMessage *msg)
{

if (msg->isSelfMessage())
processTimer(msg);

else if (msg->arrivedOn("fromNetw"))
processMsgFromLowerLayer(check_and_cast<FooPacket *>(msg));

else
processMsgFromHigherLayer(msg);

}
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The functions processMsgFromHigherLayer(), processMsgFromLowerLayer() and pro-
cessTimer() are then usually split further: there are separate methods to process separate
packet types and separate timers.

Example 2: Simple Traffic Generators and Sinks

The code for simple packet generators and sinks programmed with handleMessage() might
be as simple as the following pseudocode:

PacketGenerator::handleMessage(msg)
{

create and send out a new packet;
schedule msg again to trigger next call to handleMessage;

}

PacketSink::handleMessage(msg)
{

delete msg;
}

Note that PacketGenerator will need to redefine initialize() to create m and schedule the
first event.

The following simple module generates packets with exponential inter-arrival time. (Some
details in the source haven’t been discussed yet, but the code is probably understandable
nevertheless.)

class Generator : public cSimpleModule
{

public:
Generator() : cSimpleModule() {}

protected:
virtual void initialize();
virtual void handleMessage(cMessage *msg);

};

Define_Module(Generator);

void Generator::initialize()
{

// schedule first sending
scheduleAt(simTime(), new cMessage);

}

void Generator::handleMessage(cMessage *msg)
{

// generate & send packet
cMessage *pkt = new cMessage;
send(pkt, "out");
// schedule next call
scheduleAt(simTime()+exponential(1.0), msg);

}
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Example 3: Bursty Traffic Generator

A bit more realistic example is to rewrite our Generator to create packet bursts, each consist-
ing of burstLength packets.

We add some data members to the class:

• burstLength will store the parameter that specifies how many packets a burst must
contain,

• burstCounter will count in how many packets are left to be sent in the current burst.

The code:

class BurstyGenerator : public cSimpleModule
{

protected:
int burstLength;
int burstCounter;

virtual void initialize();
virtual void handleMessage(cMessage *msg);

};

Define_Module(BurstyGenerator);

void BurstyGenerator::initialize()
{

// init parameters and state variables
burstLength = par("burstLength");
burstCounter = burstLength;
// schedule first packet of first burst
scheduleAt(simTime(), new cMessage);

}

void BurstyGenerator::handleMessage(cMessage *msg)
{

// generate & send packet
cMessage *pkt = new cMessage;
send(pkt, "out");
// if this was the last packet of the burst
if (--burstCounter == 0)
{

// schedule next burst
burstCounter = burstLength;
scheduleAt(simTime()+exponential(5.0), msg);

}
else
{

// schedule next sending within burst
scheduleAt(simTime()+exponential(1.0), msg);

}
}
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Pros and Cons of Using handleMessage()

Pros:

• consumes less memory: no separate stack needed for simple modules

• fast: function call is faster than switching between coroutines

Cons:

• local variables cannot be used to store state information

• need to redefine initialize()

Usually, handleMessage() should be preferred over activity().

Other Simulators

Many simulation packages use a similar approach, often topped with something like a state
machine (FSM) which hides the underlying function calls. Such systems are:

• OPNETTM which uses FSM’s designed using a graphical editor;

• NetSim++ clones OPNET’s approach;

• SMURPH (University of Alberta) defines a (somewhat eclectic) language to describe FSMs,
and uses a precompiler to turn it into C++ code;

• Ptolemy (UC Berkeley) uses a similar method.

OMNeT++’s FSM support is described in the next section.

4.4.2 activity()

Process-Style Description

With activity(), you can code the simple module much like you would code an operating
system process or a thread. You can wait for an incoming message (event) at any point of the
code, you can suspend the execution for some time (model time!), etc. When the activity()
function exits, the module is terminated. (The simulation can continue if there are other
modules which can run.)

The most important functions you can use in activity() are (they will be discussed in detail
later):

• receive() – to receive messages (events)

• wait() – to suspend execution for some time (model time)

• send() family of functions – to send messages to other modules

• scheduleAt() – to schedule an event (the module “sends a message to itself”)

• cancelEvent() – to delete an event scheduled with scheduleAt()

• end() – to finish execution of this module (same as exiting the activity() function)

The activity() function normally contains an infinite loop, with at least a wait() or re-
ceive() call in its body.
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Application Area

Generally you should prefer handleMessage() to activity(). The main problem with ac-
tivity() is that it doesn’t scale because every module needs a separate coroutine stack. It
has also been observed that activity() does not encourage a good programming style.

There is one scenario where activity()’s process-style description is convenient: when the
process has many states but transitions are very limited, ie. from any state the process can
only go to one or two other states. For example, this is the case when programming a network
application, which uses a single network connection. The pseudocode of the application which
talks to a transport layer protocol might look like this:

activity()
{

while(true)
{

open connection by sending OPEN command to transport layer
receive reply from transport layer
if (open not successful)
{

wait(some time)
continue // loop back to while()

}

while (there is more to do)
{

send data on network connection
if (connection broken)
{

continue outer loop // loop back to outer while()
}
wait(some time)
receive data on network connection
if (connection broken)
{

continue outer loop // loop back to outer while()
}
wait(some time)

}
close connection by sending CLOSE command to transport layer
if (close not successful)
{

// handle error
}
wait(some time)

}
}

If you have to handle several connections simultaneously, you may dynamically create them
as instances of the simple module above. Dynamic module creation will be discussed later.

There are situations when you certainly do not want to use activity(). If your activity()
function contains no wait() and it has only one receive() call at the top of an infinite loop,
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there is no point in using activity() and the code should be written with handleMessage().
The body of the infinite loop would then become the body to handleMessage(), state variables
inside activity() would become data members in the module class, and you’d initialize them
in initialize().

Example:

void Sink::activity()
{

while(true)
{

msg = receive();
delete msg;

}
}

should rather be programmed as:

void Sink::handleMessage(cMessage *msg)
{

delete msg;
}

Activity() Is Run as a Coroutine

activity() is run in a coroutine. Coroutines are similar to threads, but are scheduled
non-preemptively (this is also called cooperative multitasking). From one coroutine you can
switch to another coroutine by a transferTo(otherCoroutine) call. Then this corou-
tine is suspended and otherCoroutine will run. Later, when otherCoroutine does a trans-
ferTo(firstCoroutine) call, execution of the first coroutine will resume from the point of
the transferTo(otherCoroutine) call. The full state of the coroutine, including local vari-
ables are preserved while the thread of execution is in other coroutines. This implies that
each coroutine must have its own processor stack, and transferTo() involves a switch from
one processor stack to another.

Coroutines are at the heart of OMNeT++, and the simulation programmer doesn’t ever need to
call transferTo() or other functions in the coroutine library, nor does he need to care about
the coroutine library implementation. It is important to understand, however, how the event
loop found in discrete event simulators works with coroutines.

When using coroutines, the event loop looks like this (simplified):

while (FES not empty and simulation not yet complete)
{

retrieve first event from FES
t:= timestamp of this event
transferTo(module containing the event)

}

That is, when a module has an event, the simulation kernel transfers the control to the mod-
ule’s coroutine. It is expected that when the module “decides it has finished the processing of
the event”, it will transfer the control back to the simulation kernel by a transferTo(main)
call. Initially, simple modules using activity() are “booted” by events (”starter messages”)
inserted into the FES by the simulation kernel before the start of the simulation.
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How does the coroutine know it has “finished processing the event”? The answer: when
it requests another event. The functions which request events from the simulation kernel
are the receive() and wait(), so their implementations contain a transferTo(main) call
somewhere.

Their pseudocode, as implemented in OMNeT++:

receive()
{

transferTo(main)
retrieve current event
return the event // remember: events = messages

}

wait()
{

create event e
schedule it at (current sim. time + wait interval)
transferTo(main)
retrieve current event
if (current event is not e) {

error
}
delete e // note: actual impl. reuses events
return

}

Thus, the receive() and wait() calls are special points in the activity() function, because
they are where

• simulation time elapses in the module, and

• other modules get a chance to execute.

Starter Messages

Modules written with activity() need starter messages to “boot”. These starter messages
are inserted into the FES automatically by OMNeT++ at the beginning of the simulation, even
before the initialize() functions are called.

Coroutine Stack Size

The simulation programmer needs to define the processor stack size for coroutines. This
cannot be automated.

16 or 32 kbytes is usually a good choice, but you may need more if the module uses recursive
functions or has local variables, which occupy a lot of stack space. OMNeT++ has a built-in
mechanism that will usually detect if the module stack is too small and overflows. OMNeT++
can also tell you how much stack space a module actually uses, so you can find out if you
overestimated the stack needs.
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initialize() and finish() with activity()

Because local variables of activity() are preserved across events, you can store everything
(state information, packet buffers, etc.) in them. Local variables can be initialized at the top
of the activity() function, so there isn’t much need to use initialize().

You do need finish(), however, if you want to write statistics at the end of the simulation.
Because finish() cannot access the local variables of activity(), you have to put the
variables and objects containing the statistics into the module class. You still don’t need
initialize() because class members can also be initialized at the top of activity().

Thus, a typical setup looks like this in pseudocode:

class MySimpleModule...
{

...
variables for statistics collection
activity();
finish();

};

MySimpleModule::activity()
{

declare local vars and initialize them
initialize statistics collection variables

while(true)
{

...
}

}

MySimpleModule::finish()
{

record statistics into file
}

Pros and Cons of Using activity()

Pros:

• initialize() not needed, state can be stored in local variables of activity()

• process-style description is a natural programming model in some cases

Cons:

• limited scalability: coroutine stacks can unacceptably increase the memory require-
ments of the simulation program if you have several thousands or ten thousands of
simple modules;

• run-time overhead: switching between coroutines is somewhat slower than a simple
function call
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• does not enforce a good programming style: using activity() tends to lead to unreli-
able, spaghetti code

In most cases, cons outweigh pros and it is a better idea to use handleMessage() instead.

Other Simulators

Coroutines are used by a number of other simulation packages:

• All simulation software which inherits from SIMULA (e.g. C++SIM) is based on corou-
tines, although all in all the programming model is quite different.

• The simulation/parallel programming language Maisie and its successor PARSEC (from
UCLA) also use coroutines (although implemented with “normal” preemptive threads).
The philosophy is quite similar to OMNeT++. PARSEC, being “just” a programming lan-
guage, it has a more elegant syntax but far fewer features than OMNeT++.

• Many Java-based simulation libraries are based on Java threads.

4.4.3 How to Avoid Global Variables

If possible, avoid using global variables, including static class members. They are prone
to cause several problems. First, they are not reset to their initial values (to zero) when
you rebuild the simulation in Tkenv, or start another run in Cmdenv. This may produce
surprising results. Second, they prevent you from running your simulation in parallel. When
using parallel simulation, each partition of your model (may) run in a separate process, having
its own copy of the global variables. This is usually not what you want.

The solution is to encapsulate the variables into simple modules as private or protected data
members, and expose them via public methods. Other modules can then call these public
methods to get or set the values. Calling methods of other modules will be discussed in
section 4.12. Examples of such modules are the Blackboard in the Mobility Framework, and
InterfaceTable and RoutingTable in the INET Framework.

4.4.4 Reusing Module Code via Subclassing

The code of simple modules can be reused via subclassing, and redefining virtual member
functions. An example:

class TransportProtocolExt : public TransportProtocol
{

protected:
virtual void recalculateTimeout();

};

Define_Module(TransportProtocolExt);

void TransportProtocolExt::recalculateTimeout()
{

//...
}
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The corresponding NED declaration:

simple TransportProtocolExt extends TransportProtocol
{

@class(TransportProtocolExt); // Important!
}

NOTE: Note the @class() property, which tells OMNeT++ to use the TransportPro-
tocolExt C++ class for the module type! It is needed because NED inheritance is NED
inheritance only, so without @class() the TransportProtocolExt NED type would in-
herit the C++ class from its base NED type.

4.5 Accessing Module Parameters

Module parameters declared in NED files are represented with the cPar class at runtime, and
be accessed by calling the par() member function of cModule:

cPar& delayPar = par("delay");

cPar’s value can be read with methods that correspond to the parameter’s NED type: boolValue(),
longValue(), doubleValue(), stringValue(), stdstringValue(), xmlValue(). There are
also overloaded type cast operators for the corresponding types (bool; integer types including
int, long, etc; double; const char *; cXMLElement *).

long numJobs = par("numJobs").longValue();
double processingDelay = par("processingDelay"); // using operator double()

Note that cPar has two methods for returning a string value: stringValue(), which returns
const char *, and stdstringValue(), which returns std::string. For volatile parame-
ters, only stdstringValue() may be used, but otherwise the two are interchangeable.

If you use the par("foo") parameter in expressions (such as 4*par("foo")+2), the C++
compiler may be unable to decide between overloaded operators and report ambiguity. In
that case you have to clarify by adding either an explicit cast ((double)par("foo") or
(long)par("foo")) or use the doubleValue() or longValue() methods.

4.5.1 Volatile and Non-Volatile Parameters

A parameter can be declared volatile in the NED file. The volatile modifier indicates that
a parameter is re-read every time a value is needed during simulation. Volatile parameters
typically are used for things like random packet generation interval, and are assigned values
like exponential(1.0) (numbers drawn from the exponential distribution with mean 1.0).

In contrast, non-volatile NED parameters are constants, and reading their values multiple
times is guaranteed to yield the same value. When a non-volatile parameter is assigned a
random value like exponential(1.0), it is evaluated once at the beginning of the simulation
and replaced with the result, so all reads will get same (randomly generated) value.

The typical usage for non-volatile parameters is to read them in the initialize() method of
the module class, and store the values in class variables for easy access later:

class Source : public cSimpleModule
{
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protected:
long numJobs;
virtual void initialize();
...

};

void Source::initialize()
{

numJobs = par("numJobs");
...

}

volatile parameters need to be re-read every time the value is needed. For example, a
parameter that represents a random packet generation interval may be used like this:

void Source::handleMessage(cMessage *msg)
{

...
scheduleAt(simTime() + par("interval").doubleValue(), timerMsg);
...

}

This code looks up the the parameter by name every time. This lookup can be avoided by
storing the parameter object’s pointer in a class variable, resulting in the following code:

class Source : public cSimpleModule
{

protected:
cPar *intervalp;
virtual void initialize();
virtual void handleMessage(cMessage *msg);
...

};

void Source::initialize()
{

intervalp = &par("interval");
...

}

void Source::handleMessage(cMessage *msg)
{

...
scheduleAt(simTime() + intervalp->doubleValue(), timerMsg);
...

}

4.5.2 Changing a Parameter’s Value

Parameter values can be changed from the program, during execution. This is rarely needed,
but may be useful for some scenarios.
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NOTE: The parameter’s type cannot be changed at runtime – it must remain the type
declared in the NED file. It is also not possible to add or remove module parameters at
runtime.

The methods to set the parameter value are setBoolValue(), setLongValue(), setString-
Value(), setDoubleValue(), setXMLValue(). There are also overloaded assignment opera-
tors for various types including bool, int, long, double, const char *, and cXMLElement

*.

To allow a module to be notified about parameter changes, override its handleParameter-
Change() method, see 4.5.5.

4.5.3 Further cPar Methods

The parameter’s name and type are returned by the getName() and getType() methods. The
latter returns a value from an enum, which can be converted to a readable string with the
getTypeName() static method. The enum values are BOOL, DOUBLE, LONG, STRING and XML;
and since the enum is an inner type, they usually have to be qualified with cPar::.

isVolatile() returns whether the parameter was declared volatile in the NED file. isNu-
meric() returns true if the parameter type is double or long.

The str() method returns the parameter’s value in a string form. If the parameter contains
an expression, then the string representation of the expression is returned.

An example usage of the above methods:

int n = getNumParams();
for (int i=0; i<n; i++)
{

cPar& p = par(i);
ev << "parameter: " << p.getName() << "\n";
ev << " type:" << cPar::getTypeName(p.getType()) << "\n";
ev << " contains:" << p.str() << "\n";

}

The NED properties of a parameter can be accessed with the getProperties() method
that returns a pointer to the cProperties object that stores the properties of this param-
eter. Specifically, getUnit() returns the unit of measurement associated with the parameter
(@unit property in NED).

Further cPar methods and related classes like cExpression and cDynamicExpression are
used by the NED infrastructure to set up and assign parameters. They are documented in the
API Reference, but they are normally of little interest to users.

4.5.4 Emulating Parameter Arrays

As of version 4.2, OMNeT++ does not support parameter arrays, but in practice they can be
emulated using string parameters. One can assign the parameter a string which contains all
values in a textual form (for example, "0 1.234 3.95 5.467"), then parse this string in the
simple module.

The cStringTokenizer class can be quite useful for this purpose. The constructor accepts
a string, which it regards as a sequence of tokens (words) separated by delimiter characters
(by default, spaces). Then you can either enumerate the tokens and process them one by
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one (hasMoreTokens(), nextToken()), or use one of the cStringTokenizer convenience
methods to convert them into a vector of strings (asVector()), integers (asIntVector()), or
doubles (asDoubleVector()).

The latter methods can be used like this:

const char *vstr = par("v").stringValue(); // e.g. "aa bb cc";
std::vector<std::string> v = cStringTokenizer(vstr).asVector();

and

const char *str = "34 42 13 46 72 41";
std::vector<int> v = cStringTokenizer().asIntVector();

const char *str = "0.4311 0.7402 0.7134";
std::vector<double> v = cStringTokenizer().asDoubleVector();

The following example processes the string by enumerating the tokens:

const char *str = "3.25 1.83 34 X 19.8"; // input

std::vector<double> result;
cStringTokenizer tokenizer(str);
while (tokenizer.hasMoreTokens())
{

const char *token = tokenizer.nextToken();
if (strcmp(token, "X")==0)

result.push_back(DEFAULT_VALUE);
else

result.push_back(atof(token));
}

4.5.5 handleParameterChange()

It is possible for modules to be notified when the value of a parameter changes at runtime,
possibly due to another module dynamically changing it. A typical use is to re-read the
changed parameter, and update the module’s state if needed.

To enable notification, redefine the handleParameterChange() method of the module class.
This method will be called back by the simulation kernel when a module parameter changes,
except during initialization of the given module.

NOTE: Notifications are disabled during the initialization of the component, because
they would make it very difficult to write components that work reliably under all condi-
tions. handleParameterChange() is usually triggered from another module (it does not
make much sense for a module to change its own parameters), so the relative order of
initialize() and handleParameterChange() would be effectively determined by the
initialization order of modules, which generally cannot be relied upon. After the last stage
of the initialization of the component is finished, handleParameterChange() is called by
the simulation kernel with NULL as a parameter name. This allows the component to
react to parameter changes that occurred during the initialization phase.

The method signature is the following:
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void handleParameterChange(const char *parameterName);

The following example shows a module that re-reads its serviceTime parameter when its
value changes:

void Queue::handleParameterChange(const char *parname)
{

if (strcmp(parname, "serviceTime")==0)
serviceTime = par("serviceTime"); // refresh data member

}

If your code heavily depends on notifications and you would like to receive notifications during
initialization or finalization as well, one workaround is to explicitly call handleParameter-
Change() from the initialize() or finish() function:

for (int i=0; i<getNumParams(); i++)
handleParameterChange(par(i).getName());

NOTE: Be extremely careful when changing parameters from inside handleParameter-
Change(), because it is easy to accidentally create an infinite notification loop.

4.6 Accessing Gates and Connections

4.6.1 Gate Objects

Module gates are represented by cGate objects. Gate objects know to which other gates they
are connected, and what are the channel objects associated with the links.

Accessing Gates by Name

The cModule class has a number of member functions that deal with gates. You can look up
a gate by name using the gate() method:

cGate *outGate = gate("out");

This works for input and output gates. However, when a gate was declared inout in NED, it
is actually represented by the simulation kernel with two gates, so the above call would result
in a gate not found error. The gate() method needs to be told whether the input or the output
half of the gate you need. This can be done by appending the "$i" or "$o" to the gate name.
The following example retrieves the two gates for the inout gate "g":

cGate *gIn = gate("g$i");
cGate *gOut = gate("g$o");

Another way is to use the gateHalf() function, which takes the inout gate’s name plus either
cGate::INPUT or cGate::OUTPUT:

cGate *gIn = gateHalf("g", cGate::INPUT);
cGate *gOut = gateHalf("g", cGate::OUTPUT);

These methods throw an error if the gate does not exist, so they cannot be used to determine
whether the module has a particular gate. For that purpose there is a hasGate() method. An
example:
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if (hasGate("optOut"))
send(new cMessage(), "optOut");

A gate can also be identified and looked up by a numeric gate ID. You can get the ID from the
gate itself (getId() method), or from the module by gate name (findGate() method). The
gate() method also has an overloaded variant which returns the gate from the gate ID.

int gateId = gate("in")->getId(); // or:
int gateId = findGate("in");

As gate IDs are more useful with gate vectors, we’ll cover them in detail in a later section.

Gate Vectors

Gate vectors possess one cGate object per element. To access individual gates in the vector,
you need to call the gate() function with an additional index parameter. The index should be
between zero and size-1. The size of the gate vector can be read with the gateSize() method.
The following example iterates through all elements in the gate vector:

for (int i=0; i<gateSize("out"); i++) {
cGate *gate = gate("out", i);
//...

}

A gate vector cannot have “holes” in it; that is, gate() never returns NULL or throws an error
if the gate vector exists and the index is within bounds.

For inout gates, gateSize() may be called with or without the "$i"/"$o" suffix, and returns
the same number.

The hasGate() method may be used both with and without an index, and they mean two
different things: without an index it tells the existence of a gate vector with the given name,
regardless of its size (it returns true for an existing vector even if its size is currently zero!);
with an index it also examines whether the index is within the bounds.

Gate IDs

A gate can also be accessed by its ID. A very important property of gate IDs is that they are
contiguous within a gate vector, that is, the ID of a gate g[k] can be calculated as the ID of
g[0] plus k. This allows you to efficiently access any gate in a gate vector, because retrieving a
gate by ID is more efficient than by name and index. The index of the first gate can be obtained
with gate("out",0)->getId(), but it is better to use a dedicated method, gateBaseId(),
because it also works when the gate vector size is zero.

Two further important properties of gate IDs: they are stable and unique (within the module).
By stable we mean that the ID of a gate never changes; and by unique we not only mean that
at any given time no two gates have the same IDs, but also that IDs of deleted gates do not
get reused later, so gate IDs are unique in the lifetime of a simulation run.

NOTE: OMNeT++ version earlier than 4.0 did not have these guarantees – resizing a gate
vector could cause its ID range to be relocated, if it would have overlapped with the ID
range of other gate vectors. OMNeT++ 4.x solves the same problem by interpreting the
gate ID as a bitfield, basically containing bits that identify the gate name, and other bits
that hold the index. This also means that the theoretical upper limit for a gate size is now
smaller, albeit it is still big enough so that it can be safely ignored for practical purposes.
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The following example iterates through a gate vector, using IDs:

int baseId = gateBaseId("out");
int size = gateSize("out");
for (int i=0; i<size; i++) {

cGate *gate = gate(baseId + i);
//...

}

Enumerating All Gates

If you need to go through all gates of a module, there are two possibilities. One is invoking
the getGateNames() method that returns the names of all gates and gate vectors the module
has; then you can call isGateVector(name) to determine whether individual names iden-
tify a scalar gate or a gate vector; then gate vectors can be enumerated by index. Also, for
inout gates getGateNames() returns the base name without the "$i"/"$o" suffix, so the
two directions need to be handled separately. The gateType(name) method can be used to
test whether a gate is inout, input or output (it returns cGate::INOUT, cGate::INPUT, or
cGate::OUTPUT).

Clearly, the above solution can be quite difficult. An alternative is to use the GateIterator
class provided by cModule. It goes like this:

for (cModule::GateIterator i(this); !i.end(); i++) {
cGate *gate = i();
...

}

Where this denotes the module whose gates are being enumerated (it can be replaced by any
cModule * variable).

NOTE: In earlier OMNeT++ versions, gate IDs used to be small integers, so it made sense
to iterate over all gates of a module by enumerating all IDs from zero to a maximum,
skipping the holes (NULLs). This is no longer the case with OMNeT++ 4.0 and later ver-
sions. Moreover, the gate() method now throws an error when called with an invalid ID,
and not just returns NULL.

Adding and Deleting Gates

Although rarely needed, it is possible to add and remove gates during simulation. You can
add scalar gates and gate vectors, change the size of gate vectors, and remove scalar gates and
whole gate vectors. It is not possible to remove individual random gates from a gate vector, to
remove one half of an inout gate (e.g. "gate$o"), or to set different gate vector sizes on the
two halves of an inout gate vector.

The cModule methods for adding and removing gates are addGate(name,type,isvector=false)
and deleteGate(name). Gate vector size can be changed by using setGateSize(name,size).
None of these methods accept "$i" / "$o" suffix in gate names.

NOTE: When memory efficiency is of concern, it is useful to know that in OMNeT++ 4.0
and later, a gate vector will consume significantly less memory than the same number of
individual scalar gates.
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cGate Methods

The getName() method of cGate returns the name of the gate or gate vector without the index.
If you need a string that contains the gate index as well, getFullName() is what you want. If
you also want to include the hierarchical name of the owner module, call getFullPath().

The getType() method of cGate returns the gate type, either cGate::INPUT or cGate::OUTPUT.
(It cannot return cGate::INOUT, because an inout gate is represented by a pair of cGates.)

If you have a gate that represents half of an inout gate (that is, getName() returns something
like "g$i" or "g$o"), you can split the name with the getBaseName() and getNameSuffix()
methods. getBaseName() method returns the name without the $i/$o suffix; and getName-
Suffix() returns just the suffix (including the dollar sign). For normal gates, getBaseName()
is the same as getName(), and getNameSuffix() returns the empty string.

The isVector(), getIndex(), getVectorSize() speak for themselves; size() is an alias
to getVectorSize(). For non-vector gates, getIndex() returns 0 and getVectorSize()
returns 1.

The getId() method returns the gate ID (not to be confused with the gate index).

The getOwnerModule() method returns the module the gate object belongs to.

To illustrate these methods, we expand the gate iterator example to print some information
about each gate:

for (cModule::GateIterator i(this); !i.end(); i++) {
cGate *gate = i();
ev << gate->getFullName() << ": ";
ev << "id=" << gate->getId() << ", ";
if (!gate->isVector())

ev << "scalar gate, ";
else

ev << "gate " << gate->getIndex()
<< " in vector " << gate->getName()
<< " of size " << gate->getVectorSize() << ", ";

ev << "type:" << cGate::getTypeName(gate->getType());
ev << "\n";

}

There are further cGate methods to access and manipulate the connection(s) attached to the
gate; they will be covered in the following sections.

4.6.2 Connections

Simple module gates have normally one connection attached. Compound module gates, how-
ever, need to be connected both inside and outside of the module to be useful. A series of
connections (joined with compound module gates) is called a connection path or just path. A
path is directed, and it normally starts at an output gate of a simple module, ends at an input
gate of a simple module, and passes through several compound module gates.

Every cGate object contains pointers to the previous gate and the next gate in the path (re-
turned by the getPreviousGate() and getNextGate() methods), so a path can be thought
of as a double-linked list.

The use of the previous gate and next gate pointers with various gate types is illustrated on
figure 4.2.
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"next" "next""prev"

"prev""prev" "next"
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(d)(c)

Figure 4.2: (a) simple module output gate, (b) compound module output gate, (c) simple
module input gate, (d) compound module input gate

The start and end gates of the path can be found with the getPathStartGate() and getPa-
thEndGate() methods, which simply follow the previous gate and next gate pointers, respec-
tively, until they are NULL.

The isConnectedOutside() and isConnectedInside() methods return whether a gate is
connected on the outside or on the inside. They examine either the previous or the next
pointer, depending on the gate type (input or output). For example, an output gate is connected
outside if the next pointer is non-NULL; the same function for an input gate checks the previous
pointer. Again, see figure 4.2 for an illustration.

The isConnected() method is a bit different: it returns true if the gate is fully connected,
that is, for a compound module gate both inside and outside, and for a simple module gate,
outside.

The following code prints the name of the gate a simple module gate is connected to:

cGate *gate = gate("somegate");
cGate *otherGate = gate->getType()==cGate::OUTPUT ? gate->getNextGate() :

gate->getPreviousGate();
if (otherGate)

ev << "gate is connected to: " << otherGate->getFullPath() << endl;
else

ev << "gate not connected" << endl;

4.6.3 The Connection’s Channel

The channel object associated with a connection is accessible by a pointer stored at the source
gate of the connection. The pointer is returned by the getChannel() method of the gate:

cChannel *channel = gate->getChannel();

The result may be NULL, that is, a connection may not have an associated channel object.

If you have a channel pointer, you can get back its source gate with the getSourceGate()
method:

cGate *gate = channel->getSourceGate();

cChannel is just an abstract base class for channels, so to access details of the channel you
might need to cast the resulting pointer into a specific channel class, for example cDelay-
Channel or cDatarateChannel.
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Another specific channel type is cIdealChannel, which basically does nothing: it acts as if
there was no channel object assigned to the connection. OMNeT++ sometimes transparently
inserts a cIdealChannel into a channel-less connection, for example to hold the display
string associated with the connection.

Often you are not really interested in a specific connection’s channel, but rather in the trans-
mission channel (see 4.7.6) of the connection path that starts at a specific output gate. The
transmission channel can be found by following the connection path until you find a chan-
nel whose isTransmissionChannel() method returns true, but cGate has a convenience
method for this, named getTransmissionChannel(). An example usage:

cChannel *txChan = gate("ppp$o")->getTransmissionChannel();

A complementer method to getTransmissionChannel() is getIncomingTransmissionChan-
nel(); it is usually invoked on input gates, and searches the connection path in reverse
direction.

cChannel *incomingTxChan = gate("ppp$i")->getIncomingTransmissionChannel();

Both methods throw an error if no transmission channel is found. If this is not suitable,
use the similar findTransmissionChannel() and findIncomingTransmissionChannel()
methods that simply return NULL in that case.

Channels are covered in more detail in section 4.8.

4.7 Sending and Receiving Messages

On an abstract level, an OMNeT++ simulation model is a set of simple modules that communi-
cate with each other via message passing. The essence of simple modules is that they create,
send, receive, store, modify, schedule and destroy messages – the rest of OMNeT++ exists to
facilitate this task, and collect statistics about what was going on.

Messages in OMNeT++ are instances of the cMessage class or one of its subclasses. Network
packets are represented with cPacket, which is also subclassed from cMessage. Message
objects are created using the C++ new operator, and destroyed using the delete operator
when they are no longer needed.

Messages are described in detail in chapter 5. At this point, all we need to know about them
is that they are referred to as cMessage * pointers. In the examples below, messages will
be created with new cMessage("foo") where "foo" is a descriptive message name, used for
visualization and debugging purposes.

4.7.1 Self-Messages

Nearly all simulation models need to schedule future events in order to implement timers,
timeouts, delays, etc. Some typical examples:

• A source module that periodically creates and sends messages needs to schedule the
next send after every send operation;

• A server which processes jobs from a queue needs to start a timer every time it begins
processing a job. When the timer expires, the finished job can be sent out, and a new
job may start processing;
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• When a packet is sent by a communications protocol that employs retransmission, it
needs to schedule a timeout so that the packet can be retransmitted if no acknowledge
arrives within a certain amount of time.

In OMNeT++, you solve such tasks by letting the simple module send a message to itself; the
message would be delivered to the simple module at a later point of time. Messages used this
way are called self-messages, and the module class has special methods for them that allow
for implementing self-messages without gates and connections.

Scheduling an Event

The module can send a message to itself using the scheduleAt() function. scheduleAt()
accepts an absolute simulation time, usually calculated as simTime()+delta:

scheduleAt(absoluteTime, msg);
scheduleAt(simTime()+delta, msg);

Self-messages are delivered to the module in the same way as other messages (via the usual
receive calls or handleMessage()); the module may call the isSelfMessage() member of
any received message to determine if it is a self-message.

You can determine whether a message is currently in the FES by calling its isScheduled()
member function.

Cancelling an Event

Scheduled self-messages can be cancelled (i.e. removed from the FES). This feature facilitates
implementing timeouts.

cancelEvent(msg);

The cancelEvent() function takes a pointer to the message to be cancelled, and also returns
the same pointer. After having it cancelled, you may delete the message or reuse it in subse-
quent scheduleAt() calls. cancelEvent() has no effect if the message is not scheduled at
that time.

There is also a convenience method called cancelAndDelete() implemented as if (msg!=NULL)
delete cancelEvent(msg); this method is primarily useful for writing destructors.

The following example shows how to implement a timeout in a simple imaginary stop-and-wait
protocol. The code utilizes a timeoutEvent module class data member that stores the pointer
of the cMessage used as self-message, and compares it to the pointer of the received message
to identify whether a timeout has occurred.

void Protocol::handleMessage(cMessage *msg)
{

if (msg == timeoutEvent) {
// timeout expired, re-send packet and restart timer
send(currentPacket->dup(), "out");
scheduleAt(simTime() + timeout, timeoutEvent);

}
else if (...) { // if acknowledgement received

// cancel timeout, prepare to send next packet, etc.
cancelEvent(timeoutEvent);
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...
}
else {

...
}

}

Re-scheduling an Event

If you want to reschedule an event which is currently scheduled to a different simulation time,
first you have to cancel it using cancelEvent(). This is shown in the following example code:

if (msg->isScheduled())
cancelEvent(msg);

scheduleAt(simTime() + delay, msg);

4.7.2 Sending Messages

Once created, a message object can be sent through an output gate using one of the following
functions:

send(cMessage *msg, const char *gateName, int index=0);
send(cMessage *msg, int gateId);
send(cMessage *msg, cGate *gate);

In the first function, the argument gateName is the name of the gate the message has to be
sent through. If this gate is a vector gate, index determines though which particular output
gate this has to be done; otherwise, the index argument is not needed.

The second and third functions use the gate ID and the pointer to the gate object. They are
faster than the first one because they don’t have to search for the gate by name.

Examples:

send(msg, "out");
send(msg, "outv", i); // send via a gate in a gate vector

To send via an inout gate, remember that an inout gate is an input and an output gate glued
together, and the two halves can be identified with the $i and $o name suffixes. Thus, for
sending you need to specify the gate name with the $o suffix:

send(msg, "g$o");
send(msg, "g$o", i); // if "g[]" is a gate vector

4.7.3 Broadcasts and Retransmissions

When you implement broadcasts or retransmissions, two frequently occurring tasks in pro-
tocol simulation, you might feel tempted to use the same message in multiple send() oper-
ations. Do not do it – you cannot send the same message object multiple times. Instead,
duplicate the message object.

Why? A message is like any real world object – it cannot be at two places at the same time.
Once you’ve sent it, the message object no longer belongs to the module: it is taken over
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by the simulation kernel, and will eventually be delivered to the destination module. The
sender module should not even refer to its pointer any more. Once the message arrived in the
destination module, that module will have full authority over it – it can send it on, destroy it
immediately, or store it for further handling. The same applies to messages that have been
scheduled – they belong to the simulation kernel until they are delivered back to the module.

To enforce the rules above, all message sending functions check that you actually own the
message you are about to send. If the message is in another module, currently scheduled or
in a queue, etc., you’ll get a runtime error: not owner of message. 4

Broadcasting Messages

In your model, you may need to broadcast a message to several destinations. Broadcast can
be implemented in a simple module by sending out copies of the same message, for example
on every gate of a gate vector. As described above, you cannot use the same message pointer
for in all send() calls – what you have to do instead is create copies (duplicates) of the message
object and send them.

Example:

for (int i=0; i<n; i++)
{

cMessage *copy = msg->dup();
send(copy, "out", i);

}
delete msg;

You might have noticed that copying the message for the last gate is redundant: we can just
send out the original message there. Also, we can utilize gate IDs to avoid looking up the gate
by name for each send operation. We can exploit the fact that the ID of gate k in a gate vector
can be produced as baseID + k. The optimized version of the code looks like this:

int outGateBaseId = gateBaseId("out");
for (int i=0; i<n; i++)

send(i==n-1 ? msg : msg->dup(), outGateBaseId+i);

Retransmissions

Many communication protocols involve retransmissions of packets (frames). When imple-
menting retransmissions, you cannot just hold a pointer to the same message object and
send it again and again – you’d get the not owner of message error on the first resend.

Instead, for (re)transmission, you should create and send copies of the message, and retain
the original. When you are sure there will not be any more retransmission, you can delete the
original message.

Creating and sending a copy:

// (re)transmit packet:
cMessage *copy = packet->dup();
send(copy, "out");

and finally (when no more retransmissions will occur):
4The feature does not increase runtime overhead significantly, because it uses the object ownership management

(described in Section 7.13); it merely checks that the owner of the message is the module that wants to send it.
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delete packet;

4.7.4 Delayed Sending

Sometimes it is necessary for module to hold a message for some time interval, and then
send it. This can be achieved with self-messages, but there is a more straightforward method:
delayed sending. The following methods are provided for delayed sending:

sendDelayed(cMessage *msg, double delay, const char *gateName, int index);
sendDelayed(cMessage *msg, double delay, int gateId);
sendDelayed(cMessage *msg, double delay, cGate *gate);

The arguments are the same as for send(), except for the extra delay parameter. The delay
value must be non-negative. The effect of the function is similar to as if the module had kept
the message for the delay interval and sent it afterwards; even the sending time timestamp of
the message will be set to the current simulation time plus delay.

A example call:

sendDelayed(msg, 0.005, "out");

The sendDelayed() function does not internally perform a scheduleAt() followed by a
send(), but rather it computes everything about the message sending up front, including
the arrival time and the target module. This has two consequences. First, sendDelayed()
is more efficient than a scheduleAt() followed by a send() because it eliminates one event.
The second, less pleasant consequence is that changes in the connection path during the
delay will not be taken into account (because everything is calculated in advance, before the
changes take place).

NOTE: The fact that sendDelayed() computes the message arrival information up front
does not make a difference if the model is static, but may lead to surprising results if the
model changes in time. For example, if a connection in the path gets deleted, disabled, or
reconnected to another module during the delay period, the message will still be delivered
to the original module as if nothing happened.
Therefore, despite its performance advantage, you should think twice before using send-
Delayed() in a simulation model. It may have its place in a one-shot simulation model
that you know is static, but it certainly should be avoided in reusable modules that need
to work correctly in a wide variety of simulation models.

4.7.5 Direct Message Sending

At times it is covenient to be able to send a message directly to an input gate of another
module. The sendDirect() function is provided for this purpose.

This function has several flavors. The first set of sendDirect() functions accept a message
and a target gate; the latter can be specified in various forms:

sendDirect(cMessage *msg, cModule *mod, int gateId)
sendDirect(cMessage *msg, cModule *mod, const char *gateName, int index=-1)
sendDirect(cMessage *msg, cGate *gate)

An example for direct sending:
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cModule *targetModule = getParentModule()->getSubmodule("node2");
sendDirect(new cMessage("msg"), targetModule, "in");

At the target module, there is no difference between messages received directly and those
received over connections.

The target gate must be an unconnected gate; in other words, modules must have dedicated
gates to be able to receive messages sent via sendDirect(). You cannot have a gate which
receives messages via both connections and sendDirect().

It is recommended to tag gates dedicated for receiving messages via sendDirect() with the
@directIn property in the module’s NED declaration. This will cause OMNeT++ not to com-
plain that the gate is not connected in the network or compound module where the module is
used.

An example:

simple Radio {
gates:

input radioIn @directIn; // for receiving air frames
}

The target module is usually a simple module, but it can also be a compound module. The
message will follow the connections that start at the target gate, and will be delivered to the
module at the end of the path – just as with normal connections. The path must end in a
simple module.

It is even permitted to send to an output gate, which will also cause the message to follow the
connections starting at that gate. This can be useful, for example, when several submodules
are sending to a single output gate of their parent module.

A second set of sendDirect() methods accept a propagation delay and a transmission dura-
tion as parameters as well:

sendDirect(cMessage *msg, simtime_t propagationDelay, simtime_t duration,
cModule *mod, int gateId)

sendDirect(cMessage *msg, simtime_t propagationDelay, simtime_t duration,
cModule *mod, const char *gateName, int index=-1)

sendDirect(cMessage *msg, simtime_t propagationDelay, simtime_t duration,
cGate *gate)

The transmission duration parameter is important when the message is also a packet (in-
stance of cPacket). For messages that are not packets (not subclassed from cPacket), the
duration parameter is ignored.

If the message is a packet, the duration will be written into the packet, and can be read by
the receiver with the getDuration() method of the packet.

The receiver module can choose whether it wants the simulation kernel to deliver the packet
object to it at the start or at the end of the reception. The default is the latter; the module
can change it by calling setDeliverOnReceptionStart() on the final input gate, that is, on
targetGate->getPathEndGate().

4.7.6 Packet Transmissions

When a message is sent out on a gate, it usually travels through a series of connections until
it arrives at the destination module. We call this series of connections a connection path.
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Several connections in the path may have an associated channel, but there can be only one
channel per path that models nonzero transmission duration. This restriction is enforced by
the simulation kernel. This channel is called the transmission channel. 5

NOTE: In practice, this means that there can be only one ned.DatarateChannel
in the path. Note that unnamed channels with a datarate parameter also map to
ned.DatarateChannel.

Transmitting a Packet

Packets may only be sent when the transmission channel is idle. This means that after each
transmission, the sender module needs to wait until the channel has finished transmitting
before it can send another packet.

You can get a pointer to the transmission channel by calling the getTransmissionChannel()
method on the output gate. The channel’s isBusy() and getTransmissionFinishTime()
methods can tell you whether a channel is currently transmitting, and when the transmission
is going to finish. (When the latter is less or equal the current simulation time, the channel
is free.) If the channel is currently busy, sending needs to be postponed: the packet can be
stored in a queue, and a timer (self-message) can be scheduled for the time when the channel
becomes empty.

A code example to illustrate the above process:

cPacket *pkt = ...; // packet to be transmitted
cChannel *txChannel = gate("out")->getTransmissionChannel();
simtime_t txFinishTime = txChannel->getTransmissionFinishTime();
if (txFinishTime <= simTime())
{

// channel free; send out packet immediately
send(pkt, "out");

}
else
{

// store packet and schedule timer; when the timer expires,
// the packet should be removed from the queue and sent out
txQueue.insert(pkt);
scheduleAt(txFinishTime, endTxMsg);

}

NOTE: If there is a channel with a propagation delay in the path before the trans-
mission channel, the delay should be manually substracted from the value returned by
getTransmissionFinishTime()! The same applies to isBusy(): it tells whether the
channel is currently busy, and not whether it will be busy when a packet that you send
gets there. It is therefore advisable that you never use propagation delays in front of a
transmission channel in a path.

The getTransmissionChannel() method searches the connection path each time it is called.
If performance is important, it is recommended that you obtain the transmission channel

5Moreover, if sendDirect() with a nonzero duration was used to send the packet to the start gate of the path,
then the path cannot have a transmission channel at all. The point is that the a transission duration must be
unambiguous.
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pointer once, and cache it. When the network topology changes, the cached channel pointer
needs to be updated; section 4.14.3 describes the mechanism that can be used to get notifi-
cations about topology changes.

Receiving a Packet

As a result of error modeling in the channel, the packet may arrive with the bit error flag set
(hasBitError() method. It is the receiver module’s responsibility to examine this flag and
take appropriate action (i.e. discard the packet).

Normally the packet object gets delivered to the destination module at the simulation time
that corresponds to finishing the reception of the message (ie. the arrival of its last bit).
However, the receiver module may change this by “reprogramming” the receiver gate with the
setDeliverOnReceptionStart() method:

gate("in")->setDeliverOnReceptionStart(true);

This method may only be called on simple module input gates, and it instructs the simulation
kernel to deliver packets arriving through that gate at the simulation time that corresponds
to the beginning of the reception process. getDeliverOnReceptionStart() only needs to be
called once, so it is usually done in the initialize() method of the module.

A D

B C

with deliverOnReceptionStart=true

default

send()

delay=1ms
datarate=1Gbps

t t t tA B C D

Figure 4.3: Packet transmission

When a packet is delivered to the module, the packet’s isReceptionStart() method can
be called to determine whether it corresponds to the start or end of the reception process
(it should be the same as the getDeliverOnReceptionStart() flag of the input gate), and
getDuration() returns the transmission duration.

The following example code prints the start and end times of a packet reception:

simtime_t startTime, endTime;
if (pkt->isReceptionStart())
{

// gate was reprogrammed with setDeliverOnReceptionStart(true)
startTime = pkt->getArrivalTime(); // or: simTime();
endTime = startTime + pkt->getDuration();

}
else
{
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// default case
endTime = pkt->getArrivalTime(); // or: simTime();
startTime = endTime - pkt->getDuration();

}
ev << "interval: " << startTime << ".." << endTime << "\n";

Note that this works with wireless connections (sendDirect()) as well; there, the duration is
an argument to the sendDirect() call.

Aborting Transmissions

Sometimes you want the sender to abort transmission. The support OMNeT++ provides for
this task is the forceTransmissionFinishTime() method of channels. This method forcibly
overwrites the transmissionFinishTime member of the channel with the given value, allowing
the sender to transmit another packet without raising the “channel is currently busy” error.
The receiving party needs to be notified about the aborted transmission by some user-defined
means, for example by sending another packet or an out-of-band message.

Implementation of Message Sending

Message sending is implemented like this: the arrival time and the bit error flag of a message
are calculated right inside the send() call, then the message is inserted into the FES with the
calculated arrival time. The message does not get scheduled individually for each link. This
implementation was chosen because of its run-time efficiency.

NOTE: The consequence of this implementation is that any change in the channel’s
parameters (delay, data rate, bit error rate, etc.) will only affect messages sent after the
change. Messages already underway will not be influenced by the change.
This is not a huge problem in practice, but if it is important to model channels with
changing parameters, the solution is to insert simple modules into the path to ensure
strict scheduling.

4.7.7 Receiving Messages with activity()

Receiving Messages

activity()-based modules receive messages with the receive() method of cSimpleModule.
receive() cannot be used with handleMessage()-based modules.

cMessage *msg = receive();

The receive() function accepts an optional timeout parameter. (This is a delta, not an
absolute simulation time.) If no message arrives within the timeout period, the function
returns a NULL pointer. 6

simtime_t timeout = 3.0;
cMessage *msg = receive(timeout);

if (msg==NULL)

6Putaside-queue and the functions receiveOn(), receiveNew(), and receiveNewOn() were deprecated in OM-
NeT++ 2.3 and removed in OMNeT++ 3.0.
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{
... // handle timeout

}
else
{

... // process message
}

The wait() Function

The wait() function suspends the execution of the module for a given amount of simulation
time (a delta). wait() cannot be used with handleMessage()-based modules.

wait(delay);

In other simulation software, wait() is often called hold. Internally, the wait() function
is implemented by a scheduleAt() followed by a receive(). The wait() function is very
convenient in modules that do not need to be prepared for arriving messages, for example
message generators. An example:

for (;;)
{

// wait for some, potentially random, amount of time, specified
// in the interarrivalTime volatile module parameter
wait(par("interarrivalTime").doubleValue());

// generate and send message
...

}

It is a runtime error if a message arrives during the wait interval. If you expect messages to
arrive during the wait period, you can use the waitAndEnqueue() function. It takes a pointer
to a queue object (of class cQueue, described in chapter 7) in addition to the wait interval.
Messages that arrive during the wait interval will be accumulated in the queue, so you can
process them after the waitAndEnqueue() call returned.

cQueue queue("queue");
...
waitAndEnqueue(waitTime, &queue);
if (!queue.empty())
{

// process messages arrived during wait interval
...

}

4.8 Channels

4.8.1 Overview

Channels encapsulate parameters and behavior associated with connections. Channel types
are like simple modules, in the sense that they are declared in NED, and there are C++ imple-
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mentation classes behind them. Section 3.5 describes NED language support for channels,
and explains how to associate C++ classes with channel types declared in NED.

C++ channel classes must subclass from the abstract base class cChannel. However, when
creating a new channel class, it may be more practical to extend one of the existing C++
channel classes behind the three predefined NED channel types:

• cIdealChannel implements the functionality of ned.IdealChannel

• cDelayChannel implements the functionality of ned.DelayChannel

• cDatarateChannel implements the functionality of ned.DatarateChannel

Channel classes need to be registered with the Define_Channel() macro, just like simple
module classes need Define_Module().

The channel base class cChannel inherits from cComponent, so channels participate in the
initialization and finalization protocol (initialize() and finish()) described in 4.3.3.

The parent module of a channel (as returned by the getParentModule()) is the module that
contains the connection. If a connection connects two modules that are children of the same
compound module, the channel’s parent is the compound module. If the connection connects
a compound module to one of its submodules, the channel’s parent is also the compound
module.

4.8.2 The Channel API

When subclassing Channel, you have to redefine and provide implementations for the follow-
ing pure virtual member functions:

• bool isTransmissionChannel() const

• simtime_t getTransmissionFinishTime() const

• void processMessage(cMessage *msg, simtime_t t, result_t& result)

The first two functions are usually one-liners; the channel behavior is encapsulated in the
third function, processMessage().

Transmission Channels

The first function, isTransmissionChannel(), determines whether the channel is a trans-
mission channel, i.e. one that models transmission duration. A transmission channel sets the
duration field of packets sent through it (see the setDuration() field of cPacket).

The getTransmissionFinishTime() function is only used with transmission channels, and
it should return the simulation time the sender will finish (or has finished) transmitting. This
method is called by modules that send on a transmission channel to find out when the chan-
nel becomes available. The channel’s isBusy() method is implemented simply as return
getTransmissionFinishTime() < simTime(). For non-transmission channels, the get-
TransmissionFinishTime() return value may be any simulation time which is less than or
equal to the current simulation time.
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The processMessage() Function

The third function, processMessage() encapsulates the channel’s functionality. However,
before going into the details of this function we need to understand how OMNeT++ handles
message sending on connections.

Inside the send() call, OMNeT++ follows the connection path denoted by the getNextGate()
functions of gates, until it reaches the target module. At each “hop”, the corresponding con-
nection’s channel (if the connection has one) gets a chance to add to the message’s arrival
time (propagation time modeling), calculate a transmission duration, and to modify the mes-
sage object in various ways, such as set the bit error flag in it (bit error modeling). After
processing all hops that way, OMNeT++ inserts the message object into the Future Events Set
(FES, see section 4.1.2), and the send() call returns. Then OMNeT++ continues to process
events in increasing timestamp order. The message will be delivered to the target module’s
handleMessage() (or receive()) function when it gets to the front of the FES.

A few more details: a channel may instruct OMNeT++ to delete the message instead of in-
serting it into the FES; this can be useful to model disabled channels, or to model that the
message has been lost altogether. The getDeliverOnReceptionStart() flag of the final gate
in the path will determine whether the transmission duration will be added to the arrival time
or not. Packet transmissions have been described in section 4.7.6.

Now, back to the processMessage() method.

The method gets called as part of the above process, when the message is processed at the
given hop. The method’s arguments are the message object, the simulation time the beginning
of the message will reach the channel (i.e. the sum of all previous propagation delays), and a
struct in which the method can return the results.

The result_t struct is an inner type of cChannel, and looks like this:

struct result_t {
simtime_t delay; // propagation delay
simtime_t duration; // transmission duration
bool discard; // whether the channel has lost the message

};

It also has a constructor that initializes all fields to zero; it is left out for brevity.

The method should model the transmission of the given message starting at the given t time,
and store the results (propagation delay, transmission duration, deletion flag) in the result
object. Only the relevant fields in the result object need to be changed, others can be left
untouched.

Transmission duration and bit error modeling only applies to packets (i.e. to instances of
cPacket, where cMessage’s isPacket() returns true); it should be skipped for non-packet
messages. processMessage() does not need to call the setDuration() method on the
packet; this is done by the simulation kernel. However, it should call setBitError(true) on
the packet if error modeling results in bit errors.

If the method sets the discard flag in the result object, that means that the message object
will be deleted by OMNeT++; this facility can be used to model that the message gets lost in
the channel.

The processMessage() method does not need to throw error on overlapping transmissions,
or if the packet’s duration field is already set; these checks are done by the simulation kernel
before processMessage() is called.
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4.8.3 Channel Examples

To illustrate coding channel behavior, we look at how the built-in channel types are imple-
mented.

cIdealChannel lets through messages and packets without any delay or change. Its is-
TransmissionChannel() method returns false, getTransmissionFinishTime() returns
0s, and the body of its processMessage() method is empty:

void cIdealChannel::processMessage(cMessage *msg, simtime_t t, result_t& result)
{
}

cDelayChannel implements propagation delay, and it can be disabled; in its disabled state,
messages sent though it will be discarded. This class still models zero transmission duration,
so its isTransmissionChannel() and getTransmissionFinishTime() methods still return
false and 0s. The processMessage() method sets the appropriate fields in the result_t
struct:

void cDelayChannel::processMessage(cMessage *msg, simtime_t t, result_t& result)
{

// if channel is disabled, signal that message should be deleted
result.discard = isDisabled;

// propagation delay modeling
result.delay = delay;

}

The handleParameterChange() method is also redefined, so that the channel can update
its internal delay and isDisabled data members if the corresponding channel parameters
change during simulation. 7

cDatarateChannel is different. It performs model packet duration (duration is calculated
from the data rate and the length of the packet), so isTransmissionChannel() returns true.
getTransmissionFinishTime() returns the value of a txfinishtime data member, which
gets updated after every packet.

simtime_t cDatarateChannel::getTransmissionFinishTime() const
{

return txfinishtime;
}

cDatarateChannel’s processMessage() method makes use of the isDisabled, datarate,
ber and per data members, which are also kept up to date with the help of handleParame-
terChange().

void cDatarateChannel::processMessage(cMessage *msg, simtime_t t, result_t& result)
{

// if channel is disabled, signal that message should be deleted
if (isDisabled) {

result.discard = true;
return;

}

7This code is a little simplified; the actual code uses a bit in a bitfield to store the value of isDisabled.
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// datarate modeling
if (datarate!=0 && msg->isPacket()) {

simtime_t duration = ((cPacket *)msg)->getBitLength() / datarate;
result.duration = duration;
txfinishtime = t + duration;

}
else {

txfinishtime = t;
}

// propagation delay modeling
result.delay = delay;

// bit error modeling
if ((ber!=0 || per!=0) && msg->isPacket())
{

cPacket *pkt = (cPacket *)msg;
if (ber!=0 && dblrand() < 1.0 - pow(1.0-ber, (double)pkt->getBitLength())

pkt->setBitError(true);
if (per!=0 && dblrand() < per)

pkt->setBitError(true);
}

}

4.9 Stopping the Simulation

4.9.1 Normal Termination

You can finish the simulation with the endSimulation() function:

endSimulation();

endSimulation() is rarely needed in practice because you can specify simulation time and
CPU time limits in the ini file (see later).

4.9.2 Raising Errors

If your simulation encounters an error condition, you can throw a cRuntimeError excep-
tion to terminate the simulation with an error message (and in case of Cmdenv, a nonzero
exit code). The cRuntimeError class has a constructor whose argument list is similar to
printf():

if (windowSize <= 0)
throw cRuntimeError("Invalid window size %d; must be >=1", windowSize);

Do not include newline (\n), period or exclamation mark in the error text; it will be added by
OMNeT++.

You can achieve the same effect by calling the error() method of cModule

if (windowSize <= 0)
error("Invalid window size %d; must be >=1", windowSize);
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Of course, the error() method can only be used when a module pointer is available.

4.10 Finite State Machines

Overview

Finite State Machines (FSMs) can make life with handleMessage() easier. OMNeT++ provides
a class and a set of macros to build FSMs.

The key points are:

• There are two kinds of states: transient and steady. On each event (that is, at each call
to handleMessage()), the FSM transitions out of the current (steady) state, undergoes
a series of state changes (runs through a number of transient states), and finally arrives
at another steady state. Thus between two events, the system is always in one of the
steady states. Transient states are therefore not really a must – they exist only to group
actions to be taken during a transition in a convenient way.

• You can assign program code to handle entering and leaving a state (known as entry/exit
code). Staying in the same state is handled as leaving and re-entering the state.

• Entry code should not modify the state (this is verified by OMNeT++). State changes
(transitions) must be put into the exit code.

OMNeT++’s FSMs can be nested. This means that any state (or rather, its entry or exit code)
may contain a further full-fledged FSM_Switch() (see below). This allows you to introduce
sub-states and thereby bring some structure into the state space if it becomes too large.

The FSM API

FSM state is stored in an object of type cFSM. The possible states are defined by an enum; the
enum is also a place to define which state is transient and which is steady. In the following
example, SLEEP and ACTIVE are steady states and SEND is transient (the numbers in paren-
theses must be unique within the state type and they are used for constructing the numeric
IDs for the states):

enum {
INIT = 0,
SLEEP = FSM_Steady(1),
ACTIVE = FSM_Steady(2),
SEND = FSM_Transient(1),

};

The actual FSM is embedded in a switch-like statement, FSM_Switch(), where you have cases
for entering and leaving each state:

FSM_Switch(fsm)
{

case FSM_Exit(state1):
//...
break;

case FSM_Enter(state1):

90



OMNeT++ Manual – Simple Modules

//...
break;

case FSM_Exit(state2):
//...
break;

case FSM_Enter(state2):
//...
break;

//...
};

State transitions are done via calls to FSM_Goto(), which simply stores the new state in the
cFSM object:

FSM_Goto(fsm, newState);

The FSM starts from the state with the numeric code 0; this state is conventionally named
INIT.

Debugging FSMs

FSMs can log their state transitions ev, with the output looking like this:

...
FSM GenState: leaving state SLEEP
FSM GenState: entering state ACTIVE
...
FSM GenState: leaving state ACTIVE
FSM GenState: entering state SEND
FSM GenState: leaving state SEND
FSM GenState: entering state ACTIVE
...
FSM GenState: leaving state ACTIVE
FSM GenState: entering state SLEEP
...

To enable the above output, you have to #define FSM_DEBUG before including omnetpp.h.

#define FSM_DEBUG // enables debug output from FSMs
#include <omnetpp.h>

The actual logging is done via the FSM_Print() macro. It is currently defined as follows, but
you can change the output format by undefining FSM_Print() after including omnetpp.ini
and providing a new definition instead.

#define FSM_Print(fsm,exiting)
(ev << "FSM " << (fsm).getName()

<< ((exiting) ? ": leaving state " : ": entering state ")
<< (fsm).getStateName() << endl)

Implementation

The FSM_Switch() is a macro. It expands to a switch() statement embedded in a for()
loop which repeats until the FSM reaches a steady state. (The actual code is rather scary, but
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if you are dying to see it, it is in cfsm.h.)

Infinite loops are avoided by counting state transitions: if an FSM goes through 64 transitions
without reaching a steady state, the simulation will terminate with an error message.

An Example

Let us write another bursty packet generator. It will have two states, SLEEP and ACTIVE. In
the SLEEP state, the module does nothing. In the ACTIVE state, it sends messages with a
given inter-arrival time. The code was taken from the Fifo2 sample simulation.

#define FSM_DEBUG
#include <omnetpp.h>

class BurstyGenerator : public cSimpleModule
{

protected:
// parameters
double sleepTimeMean;
double burstTimeMean;
double sendIATime;
cPar *msgLength;

// FSM and its states
cFSM fsm;
enum {

INIT = 0,
SLEEP = FSM_Steady(1),
ACTIVE = FSM_Steady(2),
SEND = FSM_Transient(1),

};

// variables used
int i;
cMessage *startStopBurst;
cMessage *sendMessage;

// the virtual functions
virtual void initialize();
virtual void handleMessage(cMessage *msg);

};

Define_Module(BurstyGenerator);

void BurstyGenerator::initialize()
{

fsm.setName("fsm");
sleepTimeMean = par("sleepTimeMean");
burstTimeMean = par("burstTimeMean");
sendIATime = par("sendIATime");
msgLength = &par("msgLength");
i = 0;
WATCH(i); // always put watches in initialize()
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startStopBurst = new cMessage("startStopBurst");
sendMessage = new cMessage("sendMessage");
scheduleAt(0.0,startStopBurst);

}

void BurstyGenerator::handleMessage(cMessage *msg)
{

FSM_Switch(fsm)
{

case FSM_Exit(INIT):
// transition to SLEEP state
FSM_Goto(fsm,SLEEP);
break;

case FSM_Enter(SLEEP):
// schedule end of sleep period (start of next burst)
scheduleAt(simTime()+exponential(sleepTimeMean),

startStopBurst);
break;
case FSM_Exit(SLEEP):

// schedule end of this burst
scheduleAt(simTime()+exponential(burstTimeMean),

startStopBurst);
// transition to ACTIVE state:
if (msg!=startStopBurst) {

error("invalid event in state ACTIVE");
}
FSM_Goto(fsm,ACTIVE);
break;

case FSM_Enter(ACTIVE):
// schedule next sending
scheduleAt(simTime()+exponential(sendIATime), sendMessage);

break;
case FSM_Exit(ACTIVE):

// transition to either SEND or SLEEP
if (msg==sendMessage) {

FSM_Goto(fsm,SEND);
} else if (msg==startStopBurst) {

cancelEvent(sendMessage);
FSM_Goto(fsm,SLEEP);

} else {
error("invalid event in state ACTIVE");

}
break;

case FSM_Exit(SEND):
{

// generate and send out job
char msgname[32];
sprintf( msgname, "job-%d", ++i);
ev << "Generating " << msgname << endl;
cMessage *job = new cMessage(msgname);
job->setBitLength( (long) *msgLength );
job->setTimestamp();
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send( job, "out" );
// return to ACTIVE
FSM_Goto(fsm,ACTIVE);
break;

}
}

}

4.11 Navigating the Module Hierarchy

Module Vectors

If a module is part of a module vector, the getIndex() and getVectorSize() member func-
tions can be used to query its index and the vector size:

ev << "This is module [" << module->getIndex() <<
"] in a vector of size [" << module->size() << "].\n";

Module IDs

Each module in the network has a unique ID that is returned by the getId() member func-
tion. The module ID is used internally by the simulation kernel to identify modules.

int myModuleId = getId();

If you know the module ID, you can ask the simulation object (a global variable) to get back
the module pointer:

int id = 100;
cModule *mod = simulation.getModule( id );

Module IDs are guaranteed to be unique for the duration of the whole simulation, even when
modules are created and destroyed dynamically; that is, IDs of deleted modules are not reused
for newly created modules.

Walking Up and Down the Module Hierarchy

The surrounding compound module can be accessed by the getParentModule() member
function:

cModule *parent = getParentModule();

For example, the parameters of the parent module are accessed like this:

double timeout = getParentModule()->par( "timeout" );

cModule’s findSubmodule() and getSubmodule() member functions make it possible to
look up the module’s submodules by name (or name+index if the submodule is in a module
vector). The first one returns the numeric module ID of the submodule, and the latter returns
the module pointer. If the submodule is not found, they return -1 or NULL, respectively.

int submodID = compoundmod->findSubmodule("child",5);
cModule *submod = compoundmod->getSubmodule("child",5);
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The getModuleByRelativePath() member function can be used to find a submodule nested
deeper than one level below. For example,

compoundmod->getModuleByRelativePath("child[5].grandchild");

would give the same result as

compoundmod->getSubmodule("child",5)->getSubmodule("grandchild");

(Provided that child[5] does exist, because otherwise the second version would crash with
an access violation because of the NULL pointer dereference.)

The cSimulation::getModuleByPath() function is similar to cModule’s moduleByRelative-
Path() function, and it starts the search at the top-level module.

Iterating over Submodules

To access all modules within a compound module, use cSubModIterator.

For example:

for (cSubModIterator iter(*getParentModule()); !iter.end(); iter++)
{

ev << iter()->getFullName();
}

(iter() is pointer to the current module the iterator is at.)

The above method can also be used to iterate along a module vector, since the getName()
function returns the same for all modules:

for (cSubModIterator iter(*getParentModule()); !iter.end(); iter++)
{

if (iter()->isName(getName())) // if iter() is in the same
// vector as this module

{
int itsIndex = iter()->getIndex();
// do something to it

}
}

Walking Along Links

To determine the module at the other end of a connection, use cGate’s getPreviousGate(),
getNextGate() and getOwnerModule() functions. For example:

cModule *neighbour = gate("out")->getNextGate()->getOwnerModule();

For input gates, you would use getPreviousGate() instead of getNextGate().

4.12 Direct Method Calls Between Modules

In some simulation models, there might be modules which are too tightly coupled for message-
based communication to be efficient. In such cases, the solution might be calling one simple
module’s public C++ methods from another module.
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Simple modules are C++ classes, so normal C++ method calls will work. Two issues need to
be mentioned, however:

• how to get a pointer to the object representing the module;

• how to let the simulation kernel know that a method call across modules is taking place.

Typically, the called module is in the same compound module as the caller, so the getParent-
Module() and getSubmodule() methods of cModule can be used to get a cModule* pointer
to the called module. (Further ways to obtain the pointer are described in the section 4.11.)
The cModule* pointer then has to be cast to the actual C++ class of the module, so that its
methods become visible.

This makes the following code:

cModule *calleeModule = getParentModule()->getSubmodule("callee");
Callee *callee = check_and_cast<Callee *>(calleeModule);
callee->doSomething();

The check_and_cast<>() template function on the second line is part of OMNeT++. It per-
forms a standard C++ dynamic_cast, and checks the result: if it is NULL, check_and_cast
raises an OMNeT++ error. Using check_and_cast saves you from writing error checking
code: if calleeModule from the first line is NULL because the submodule named "callee"
was not found, or if that module is actually not of type Callee, an error is thrown from
check_and_cast.

The second issue is how to let the simulation kernel know that a method call across modules
is taking place. Why is this necessary in the first place? First, the simulation kernel always
has to know which module’s code is currently executing, in order for ownership handling and
other internal mechanisms to work correctly. Second, the Tkenv simulation GUI can animate
method calls, but to be able to do that, it has to know about them. Third, method calls are
also recorded in the event log.

The solution is to add the Enter_Method() or Enter_Method_Silent() macro at the top of
the methods that may be invoked from other modules. These calls perform context switching,
and, in case of Enter_Method(), notify the simulation GUI so that animation of the method
call can take place. Enter_Method_Silent() does not animate the method call, but otherwise
it is equivalent Enter_Method(). Both macros accept a printf()-like argument list (it is
optional for Enter_Method_Silent()), which should produce a string with the method name
and the actual arguments as much as practical. The string is displayed in the animation
(Enter_Method() only) and recorded into the event log.

void Callee::doSomething()
{

Enter_Method("doSomething()");
...

}

4.13 Dynamic Module Creation

4.13.1 When Do You Need Dynamic Module Creation

In some situations you need to dynamically create and maybe destroy modules. For example,
when simulating a mobile network, you may create a new module whenever a new user enters
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the simulated area, and dispose of them when they leave the area.

As another example, when implementing a server or a transport protocol, it might be conve-
nient to dynamically create modules to serve new connections, and dispose of them when the
connection is closed. (You would write a manager module that receives connection requests
and creates a module for each connection. The Dyna example simulation does something like
this.)

Both simple and compound modules can be created dynamically. If you create a compound
module, all its submodules will be created recursively.

It is often convenient to use direct message sending with dynamically created modules.

Once created and started, dynamic modules aren’t any different from “static” modules; for
example, one could also delete static modules during simulation (though it is rarely useful.)

4.13.2 Overview

To understand how dynamic module creation works, you have to know a bit about how OM-
NeT++ normally instantiates modules. Each module type (class) has a corresponding fac-
tory object of the class cModuleType. This object is created under the hood by the De-
fine_Module() macro, and it has a factory method which can instantiate the module class
(this function basically only consists of a return new <moduleclass>(...) statement).

The cModuleType object can be looked up by its name string (which is the same as the module
class name). Once you have its pointer, it is possible to call its factory method and create an
instance of the corresponding module class – without having to include the C++ header file
containing module’s class declaration into your source file.

The cModuleType object also knows what gates and parameters the given module type has to
have. (This info comes from NED files.)

Simple modules can be created in one step. For a compound module, the situation is more
complicated, because its internal structure (submodules, connections) may depend on pa-
rameter values and gate vector sizes. Thus, for compound modules it is generally required
to first create the module itself, second, set parameter values and gate vector sizes, and then
call the method that creates its submodules and internal connections.

As you know already, simple modules with activity() need a starter message. For statically
created modules, this message is created automatically by OMNeT++, but for dynamically
created modules, you have to do this explicitly by calling the appropriate functions.

Calling initialize() has to take place after insertion of the starter messages, because the
initializing code may insert new messages into the FES, and these messages should be pro-
cessed after the starter message.

4.13.3 Creating Modules

The first step is to find the factory object. The cModuleType::get() function expects a fully
qualified NED type name, and returns the factory object:

cModuleType *moduleType = cModuleType::get("foo.nodes.WirelessNode");

The return value does not need to be checked for NULL, because the function raises an error
if the requested NED type was not found. (If this behavior is not what you need, you can use
the similar cModuleType::find() function, which returns NULL if the type was not found.)
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The All-in-One Method

cModuleType has a createScheduleInit(const char *name, cModule *parentmod) con-
venience function to get a module up and running in one step.

cModule *mod = moduleType->createScheduleInit("node", this);

createScheduleInit() performs the following steps: create(), finalizeParameters(),
buildInside(), scheduleStart(now) and callInitialize().

This method can be used for both simple and compound modules. Its applicability is some-
what limited, however: because it does everything in one step, you do not have the chance
to set parameters or gate sizes, and to connect gates before initialize() is called. (ini-
tialize() expects all parameters and gates to be in place and the network fully built when
it is called.) Because of the above limitation, this function is mainly useful for creating basic
simple modules.

The Detailed Procedure

If the createScheduleInit() all-in-one method is not applicable, one needs to use the full
procedure. It consists of five steps:

1. Find the factory object;

2. Create the module;

3. Set up its parameters and gate sizes as needed;

4. Tell the (possibly compound) module to recursively create its internal submodules and
connections;

5. Schedule activation message(s) for the new simple module(s).

Each step (except for Step 3.) can be done with one line of code.

See the following example, where Step 3 is omitted:

// find factory object
cModuleType *moduleType = cModuleType::get("foo.nodes.WirelessNode");

// create (possibly compound) module and build its submodules (if any)
cModule *module = moduleType->create("node", this);
module->finalizeParameters();
module->buildInside();

// create activation message
module->scheduleStart(simTime());

If you want to set up parameter values or gate vector sizes (Step 3.), the code goes between
the create() and buildInside() calls:

// create
cModuleType *moduleType = cModuleType::get("foo.nodes.WirelessNode");
cModule *module = moduleType->create("node", this);

// set up parameters and gate sizes before we set up its submodules
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module->par("address") = ++lastAddress;
module->finalizeParameters();

module->setGateSize("in", 3);
module->setGateSize("out", 3);

// create internals, and schedule it
module->buildInside();
module->scheduleStart(simTime());

4.13.4 Deleting Modules

To delete a module dynamically, use cModule’s deleteModule() member function:

module->deleteModule();

If the module was a compound module, this involves recursively deleting all its submodules.
A simple module can also delete itself; in this case, the deleteModule() call does not return
to the caller.

Currently, you cannot safely delete a compound module from a simple module in it; you must
delegate the job to a module outside the compound module.

4.13.5 Module Deletion and finish()

finish() is called for all modules at the end of the simulation, no matter how the modules
were created. If a module is dynamically deleted before that, finish() will not be invoked
(deleteModule() does not do it). However, you can still manually invoke it before delete-
Module().

You can use the callFinish() function to invoke finish() (It is not a good idea to invoke
finish() directly). If you are deleting a compound module, callFinish() will recursively
invoke finish() for all submodules, and if you are deleting a simple module from another
module, callFinish() will do the context switch for the duration of the call. 8

Example:

mod->callFinish();
mod->deleteModule();

4.13.6 Creating Connections

Connections can be created using cGate’s connectTo() method. 9 connectTo() should be
invoked on the source gate of the connection, and expects the destination gate pointer as an
argument:

srcGate->connectTo(destGate);

8The finish() function has even been made protected in cSimpleModule, in order to discourage its invocation
from other modules.

9The earlier connect() global functions that accepted two gates have been deprecated, and may be removed from
further OMNeT++ releases.
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The source and destination words correspond to the direction of the arrow in NED files.

As an example, we create two modules and connect them in both directions:

cModuleType *moduleType = cModuleType::get("TicToc");
cModule *a = modtype->createScheduleInit("a", this);
cModule *b = modtype->createScheduleInit("b", this);

a->gate("out")->connectTo(b->gate("in"));
b->gate("out")->connectTo(a->gate("in"));

connectTo() also accepts a channel object (cChannel*) as an additional, optional argument.
Similarly to modules, channels can be created using their factory object of the type cChan-
nelType:

cGate *outg=..., *ing=...;

// find factory object and create a channel
cChannelType *channelType = cChannelType::get("foo.util.Channel");
cChannel *channel = channelType->create("channel");

// create connecting
outg->connectTo(ing, channel);

The channel object will be owned by the source gate of the connection, and you cannot reuse
the same channel object with several connections.

If you need one of the built-in channel types (cIdealChannel, cDelayChannel or cDatarat-
eChannel), the step to find the factory object can be spared, as those classes have static
create() functions to create a channel instance.

cDatarateChannel also has member functions to set up its parameters: setDelay(), set-
BitErrorRate(), setPacketErrorRate() and setDatarate().

An example that sets up a channel with a delay:

cDatarateChannel *channel = cDatarateChannel::create("channel");
channel->setDelay(0.001);

a->gate("out")->connectTo(b->gate("in"), channel); // a, b are modules

4.13.7 Removing Connections

The disconnect() method of cGate can be used to remove connections. This method has to
be invoked on the source side of the connection. It also destroys the channel object associated
with the connection, if one has been set.

srcGate->disconnect();

4.14 Signals

This section describes simulation signals, or signals for short. Signals are a versatile concept
that first appeared in OMNeT++ 4.1.

Simulation signals can be used for:
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• exposing statistical properties of the model, without specifying whether and how to
record them

• receiving notifications about simulation model changes at runtime, and acting upon
them

• implementing a publish-subscribe style communication among modules; this is advan-
tageous when the producer and consumer of the information do not know about each
other, and possibly there is many-to-one or many-to-many relationship among them

• emitting information for other purposes, for example as input for custom animation
effects

Signals are emitted by components (modules and channels). Signals propagate on the module
hierarchy up to the root. At any level, one can register listeners (callback objects); these
listeners will be notified (called back) whenever a signal value is emitted. The result of upwards
propagation is that listeners registered at a compound module can receive signals from all
components in that submodule tree. A listener registered at the system module can receive
signals from the whole simulation.

NOTE: A channel’s parent is the (compound) module that contains the connection, not
the owner of either gate the channel is connected to.

Signals are identified by signal names (i.e. strings), but for efficiency reasons at runtime
we use dynamically assigned numeric identifiers (signal IDs, typedef’d as simsignal_t). The
mapping of signal names to signal IDs is global, so all modules and channels asking to resolve
a particular signal name will get back the same numeric signal ID.

Listeners can subscribe to signal names or IDs, regardless of their source. For example, if
two different and unrelated module types, say Queue and Buffer, both emit a signal named
"length", then a listener that subscribes to "length" at some higher compound module will
get notifications from both Queue and Buffer module instances. The listener can still look at
the source of the signal if it wants to distinguish the two (it is available as a parameter to the
callback function), but the signals framework itself does not have such a feature.

NOTE: Because the component type that emits the signal is not part of the signal’s
identity, it is advised to choose signal names carefully. A good naming scheme facilitates
"merging" of signals that arrive from different sources but mean the same thing, and
reduces the chance of collisions between signals that accidentally have the same name
but represent different things.

When a signal is emitted, it can carry a value with it. This is realized via overloaded emit()
methods in components, and overloaded receiveSignal() methods in listeners. The signal
value can be of selected primitive types, or an object pointer; anything that is not feasible to
emit as a primitive type may be wrapped into an object, and emitted as such.

4.14.1 Design Considerations and Rationale

The implementation of signals is based on the following assumptions:

• subscribe/unsubscribe operations are rare compared to emit() calls, so it is emit()
that needs to be efficient
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• the signals mechanism is present in every module, so per-module memory overhead
must be kept as low as possible

• it is expected that modules and channels will be heavily instrumented with signals,
and only a subset of signals will actually be used (will have listeners) in any particular
simulation; therefore, the CPU and memory overhead of momentarily unused signals
must be as low as possible

These goals have been achieved in the 4.1 version with the following implementation. First,
the data structure that used to store listeners in components is dynamically allocated, so if
there are no listeners, the per-component overhead is only the size of the pointer (which will
be NULL then).

Second, additionally there are two bitfields in every component that store which one of the
first 64 signals (IDs 0..63) have local listeners and listeners in ancestor modules.10 Using
these bitfields, it is possible to determine in constant time for the first 64 signals whether the
signal has listeners, so emit() can return immediately if there are none. For other signals,
emit() needs to examine the listener lists up to the root every time. Even if a simulation
uses more than 64 signals, in performance-critical situations it is possible to arrange that
frequently emitted signals (e.g. "txBegin") get the “fast” signal IDs, while infrequent signals
(like e.g. "routerDown") get the rest.

4.14.2 The Signals Mechanism

Signal-related methods are declared on cComponent, so they are available for both cModule
and cChannel.

Signal IDs

Signals are identified by names, but internally numeric signal IDs are used for efficiency. The
registerSignal() method takes a signal name as parameter, and returns the corresponding
simsignal_t value. The method is static, illustrating the fact that signal names are global.
An example:

simsignal_t lengthSignalId = registerSignal("length");

The getSignalName() method (also static) does the reverse: it accepts a simsignal_t, and
returns the name of the signal as const char * (or NULL for invalid signal handles):

const char *signalName = getSignalName(lengthSignalId); // --> "length"

NOTE: Since OMNeT++ 4.3, the lifetime of signal IDs is the entire program, and it is
possible to call registerSignal() from initializers of global variables, e.g. static class
members. In earlier versions, signal IDs were usually allocated in initialize(), and
were only valid for that simulation run.

Emitting Signals

The emit() family of functions emit a signal from the module or channel. They take two
parameters, the signal ID (simsignal_t) and the value:

10It is assumed that there will be typically less than 64 frequently used signals used at a time in a simulation.
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emit(lengthSignalId, queue.length());

The value can be of type long, double, simtime_t, const char *, or cObject *. Other
types can be cast into one of these types, or wrapped into an object subclassed from cObject.

When there are no listeners, the runtime cost of emit() is usually minimal. However, if
producing a value has a significant runtime cost, then the mayHaveListeners() or hasLis-
teners() method can be used to check beforehand whether the given signal has any listeners
at all – if not, emitting the signal can be skipped. For some signals (in OMNeT++ 4.3, the first
64 signals used), the information whether it has listeners is cached per component, and can
be produced in constant time.

Example usage:

if (mayHaveListeners(distanceToTargetSignal))
{

double d = sqrt((x-targetX)*(x-targetX) + (y-targetY)*(y-targetY));
emit(distanceToTargetSignal, d);

}

The mayHaveListeners() method is very efficient (a constant-time operation) because it only
uses this cached information; if the state is not cached for the signal, it just returns true. In
contrast, hasListeners() will search up to the top of the module tree if the answer is not
cached, so it is generally slower. We recommend that you take into account the cost of pro-
ducing notification information when deciding between mayHaveListeners() and hasLis-
teners().

Signal Data Objects

When emitting a signal with a cObject* pointer, you can pass as data an object that you
already have in the model, provided you have a suitable object at hand. However, it is often
necessary to declare a custom class to hold all the details, and fill in an instance just for the
purpose of emitting the signal.

The custom notification class must be derived from cObject. We recommend that you also
add noncopyable as a base class, because then you don’t need to write a copy constructor,
assignment operator, and dup() function, sparing some work. When emitting the signal, you
can create a temporary object, and pass its pointer to the emit() function.

An example of custom notification classes is the firing of model change notifications (see
4.14.3). The data class that accompanies a signal that announces that a gate or gate vector
is about to be created looks like this:

class cPreGateAddNotification : public cObject, noncopyable
{

public:
cModule *module;
const char *gateName;
cGate::Type gateType;
bool isVector;

};

And the code that emits the signal:

if (hasListeners(PRE_MODEL_CHANGE))
{
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cPreGateAddNotification tmp;
tmp.module = this;
tmp.gateName = gatename;
tmp.gateType = type;
tmp.isVector = isVector;
emit(PRE_MODEL_CHANGE, &tmp);

}

Subscribing to Signals

The subscribe() method registers a listener for a signal. Listeners are objects that extend
the cIListener class. The same listener object can be subscribed to multiple signals. sub-
scribe() has two arguments: the signal and a pointer to the listener object:

cIListener *listener = ...;
simsignal_t lengthSignalId = registerSignal("length");
subscribe(lengthSignalId, listener);

For convenience, the subscribe() method has a variant that takes the signal name directly,
so the registerSignal() call can be omitted:

cIListener *listener = ...;
subscribe("length", listener);

One can also subscribe at other modules, not only the local one. For example, in order to get
signals from all parts of the model, one can subscribe at the system module level:

cIListener *listener = ...;
simulation.getSystemModule()->subscribe("length", listener);

The unsubscribe() method has the same parameter list as subscribe(), and unregisters
the given listener from the signal:

unsubscribe(lengthSignalId, listener);

or

unsubscribe("length", listener);

It is an error to subscribe the same listener to the same signal twice.

NOTE: When a listener is deleted, it must already be unsubscribed from all components
it has subscribed to. This is explained in 4.14.2.

It is possible to test whether a listener is subscribed to a signal, using the isSubscribed()
method which also takes the same parameter list.

if (isSubscribed(lengthSignalId, listener))
{

...
}

For completeness, there are methods for getting the list of signals that the component has sub-
scribed to (getLocalListenedSignals()), and the list of listeners for a given signal (getLo-
calSignalListeners()). The former returns std::vector<simsignal_t>; the latter takes
a signal ID (simsignal_t) and returns std::vector<cIListener*>.
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The following example prints the number of listeners for each signal:

EV << "Signal listeners:\n";
std::vector<simsignal_t> signals = getLocalListenedSignals();
for (unsigned int i = 0; i < signals.size(); i++) {

simsignal_t signalID = signals[i];
std::vector<cIListener*> listeners = getLocalSignalListeners(signalID);
EV << getSignalName(signalID) << ": " << listeners.size() << " signals\n";

}

Listeners

Listeners are objects that subclass from the cIListener class, which declares the following
methods:

class cIListener
{

public:
virtual ~cIListener() {}
virtual void receiveSignal(cComponent *src, simsignal_t id, long l) = 0;
virtual void receiveSignal(cComponent *src, simsignal_t id, double d) = 0;
virtual void receiveSignal(cComponent *src, simsignal_t id, simtime_t t) = 0;
virtual void receiveSignal(cComponent *src, simsignal_t id, const char *s) = 0;
virtual void receiveSignal(cComponent *src, simsignal_t id, cObject *obj) = 0;
virtual void finish(cComponent *component, simsignal_t id) {}
virtual void subscribedTo(cComponent *component, simsignal_t id) {}
virtual void unsubscribedFrom(cComponent *component, simsignal_t id) {}

};

This class has a number of virtual methods:

• Several overloaded receiveSignal() methods, one for each data type. Whenever a
signal is emitted (via emit()), the matching receiveSignal() methods of subscribed
listeners are invoked.

• finish() is called by a component on its local listeners after the component’s finish()
method was called. If the listener is subscribed to multiple signals or at multiple compo-
nents, the method will be called multiple times. Note that finish() methods in general
are not invoked if the simulation terminates with an error, so this method is not a place
for doing cleanup.

• subscribedTo(), unsubscribedFrom() are called when this listener object is sub-
scribed/unsubscribed to (from) a signal. These methods give the opportunity for lis-
teners to track whether and where they are subscribed. It is also OK for a listener to
delete itself in the last statement of the unsubscribedFrom() method, but you must be
sure that there are no other places the same listener is still subscribed.

Since cIListener has a large number of pure virtual methods, it is more convenient to
subclass from cListener, a do-nothing implementation instead. It defines finish(), sub-
scribedTo() and unsubscribedFrom() with an empty body, and the receiveSignal()
methods with a bodies that throw a "Data type not supported" error. You can redefine
the receiveSignal() method(s) whose data type you want to support, and signals emitted
with other (unexpected) data types will result in an error instead of going unnoticed.
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The order in which listeners will be notified is undefined (it is not necessarily the same order
in which listeners were subscribed.)

Listener Life Cycle

When a component (module or channel) is deleted, it automatically unsubscribes (but does
not delete) the listeners it has. When a module is deleted, it first unsubscribes all listeners
from all modules and channels in its submodule tree before starting to recursively delete the
modules and channels themselves.

When a listener is deleted, it must already be unsubscribed from all components at that
point. If it is not unsubscribed, pointers to the dead listener object will be left in the compo-
nents’ listener lists, and the components will crash inside an emit() call, or when they try
to invoke unsubscribedFrom() on the dead listener from their destructors. The cIListener
class contains a subscription count, and prints a warning message when it is not zero in the
destructor.

NOTE: If your module has added listeners to other modules (e.g. the toplevel module),
these listeners must be unsubscribed in the module destructor at latest. Remember to
make sure the modules still exist before you call unsubscribe() on them, unless they
are an ancestor of your module in the module tree.

4.14.3 Listening to Model Changes

In simulation models it is often useful to hold references to other modules, a connecting
channel or other objects, or to cache information derived from the model topology. However,
such pointers or data may become invalid when the model changes at runtime, and need to be
updated or recalculated. The problem is how to get notification that something has changed
in the model.

NOTE: Whenever you see a cModule*, cChannel*, cGate* or similar pointer kept as
state in a simple module, you should think about how it will be kept up-to-date if the
model changes at runtime.

The solution is, of course, signals. OMNeT++ has two built-in signals, PRE_MODEL_CHANGE
and POST_MODEL_CHANGE (these macros are simsignal_t values, not names) that are emitted
before and after each model change.

Pre/post model change notifications are emitted with data objects that carry the details of the
change. The data classes are:

• cPreModuleAddNotification / cPostModuleAddNotification

• cPreModuleDeleteNotification / cPostModuleDeleteNotification

• cPreModuleReparentNotification / cPostModuleReparentNotification

• cPreGateAddNotification / cPostGateAddNotification

• cPreGateDeleteNotification / cPostGateDeleteNotification

• cPreGateVectorResizeNotification / cPostGateVectorResizeNotification

• cPreGateConnectNotification / cPostGateConnectNotification
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• cPreGateDisconnectNotification / cPostGateDisconnectNotification

• cPrePathCreateNotification / cPostPathCreateNotification

• cPrePathCutNotification / cPostPathCutNotification

• cPreParameterChangeNotification / cPostParameterChangeNotification

• cPreDisplayStringChangeNotification / cPostDisplayStringChangeNotification

They all subclass from cModelChangeNotification, which is of course a cObject. Inside
the listener, you can use dynamic_cast<> to figure out what notification arrived.

NOTE: Please look up these classes in the API documentation to see their data fields,
when exactly they get fired, and what one needs to be careful about when using them.

An example listener that prints a message when a module is deleted:

class MyListener : public cListener
{

...
};

void MyListener::receiveSignal(cComponent *src, simsignal_t id, cObject *obj)
{

if (dynamic_cast<cPreModuleDeleteNotification *>(obj))
{

cPreModuleDeleteNotification *data = (cPreModuleDeleteNotification *)obj;
EV << "Module " << data->module->getFullPath() << " is about to be deleted\n";

}
}

If you’d like to get notification about the deletion of any module, you need to install the listener
on the system module:

simulation.getSystemModule()->subscribe(PRE_MODEL_CHANGE, listener);

NOTE: PRE_MODEL_CHANGE and POST_MODEL_CHANGE are fired on the module (or chan-
nel) affected by the change, and not on the module which executes the code that causes
the change. For example, pre-module-deleted is fired on the module to be removed, and
post-module-deleted is fired on its parent (because the original module no longer exists),
and not on the module that contains the deleteModule() call.

NOTE: A listener will not receive pre/post-module-deleted notifications if the whole sub-
module tree that contains the subscription point is deleted. This is because compound
module destructors begin by unsubscribing all modules/channels in the subtree before
starting recursive deletion.

4.15 Signal-Based Statistics Recording

4.15.1 Motivation

One use of signals is to expose variables for result collection without telling where, how, and
whether to record them. With this approach, modules only publish the variables, and the

107



OMNeT++ Manual – Simple Modules

actual result recording takes place in listeners. Listeners may be added by the simulation
framework (based on the configuration), or by other modules (for example by dedicated result
collection modules).

The signals approach allows for several possibilities:

• Provides a controllable level of detail: in some simulation runs you may want to record
all values as a time series, in other runs only record the mean, time average, minimum/-
maximum value, standard deviation etc, and in yet other runs you may want to record
the distribution as a histogram;

• Depending on the purpose of the simulation experiment, you may want to process the
results before recording them, for example record a smoothed or filtered value, record
the percentage of time the value is nonzero or over a threshold, record the sum of the
values, etc.;

• You may want aggregate statistics, e.g. record the total number of packet drops or the
average end-to-end delay for the whole network;

• You may want to record combined statistics, for example a drop percentage (drop coun-
t/total number of packets);

• You may want to ignore results generated during the warm-up period or during other
transients.

With the signals approach the above goals can be fulfilled.

4.15.2 Declaring Statistics

Introduction

In order to record simulation results based on signals, one must add @statistic properties
to the simple module’s (or channel’s) NED definition. A @statistic property defines the
name of the statistic, which signal(s) are used as input, what processing steps are to be
applied to them (e.g. smoothing, filtering, summing, differential quotient), and what properties
are to be recorded (minimum, maximum, average, etc.) and in which form (vector, scalar,
histogram). Record items can be marked optional, which lets you denote a “default” and a
more comprehensive “all” result set to be recorded; the list of record items can be further
tweaked from the configuration. One can also specify a descriptive name (“title”) for the
statistic, and also a measurement unit.

The following example declares a queue module with a queue length statistic:

simple Queue
{

parameters:
@statistic[queueLength](record=max,timeavg,vector?);

gates:
input in;
output out;

}

As you can see, statistics are represented with indexed NED properties (see 3.12). The prop-
erty name is always statistic, and the index (here, queueLength) is the name of the statis-
tic. The property value, that is, everything inside the parentheses, carries hints and extra
information for recording.
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The above @statistic declaration assumes that module’s C++ code emits the queue’s up-
dated length as signal queueLength whenever elements are inserted into the queue or are
removed from it. By default, the maximum and the time average of the queue length will
be recorded as scalars. One can also instruct the simulation (or parts of it) to record “all”
results; this will turn on optional record items, those marked with a question mark, and then
the queue lengths will also be recorded into an output vector.

NOTE: The configuration lets you fine-tune the list of result items even beyond the
default and all settings; see section 12.2.4.

In the above example, the signal to be recorded was taken from the statistic name. When that
is not suitable, the source property key lets you specify a different signal as input for the
statistic. The following example assumes that the C++ code emits a qlen signal, and declares
a queueLength statistic based on that:

simple Queue
{

parameters:
@signal[qlen](type=int); // optional
@statistic[queueLength](source=qlen; record=max,timeavg,vector?);
...

}

Note that beyond the source=qlen property key we have also added a signal declaration
(@signal property) for the qlen signal. Declaring signals is currently optional and in fact
@signal properties are currently ignored by the system, but it is a good practice nevertheless.

It is also possible to apply processing to a signal before recording it. Consider the following
example:

@statistic[dropCount](source="count(drop)"; record=last,vector?);

This records the total number of packet drops as a scalar, and optionally the number of
packets dropped in the function of time as a vector, provided the C++ code emits a drop
signal every time a packet is dropped. The value and even the data type of the drop signal is
indifferent, because only the number of emits will be counted. Here, count() is a result filter.

NOTE: The quotation marks around "count(drop)" are there because the NED lan-
guage parser does not allow parentheses in property values; otherwise they have no
significance.

Another example:

@statistic[droppedBytes](source="sum(packetBytes(pkdrop))"; record=last,
vector?);

This example assumes that the C++ code emits a pkdrop signal with a packet (cPacket*
pointer) as a value. Based on that signal, it records the total number of bytes dropped (as a
scalar, and optionally as a vector too). The packetBytes() filter extracts the number of bytes
from each packet using cPacket’s getByteLength() method, and the sum() filter, well, sums
them up.

Arithmetic expressions can also be used. For example, the following line computes the number
of dropped bytes using the packetBits() filter.
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@statistic[droppedBytes](source="sum(8*packetBits(pkdrop))"; record=last,
vector?);

The source can also combine multiple signals in an arithmetic expression:

@statistic[dropRate](source="count(drop)/count(pk)"; record=last,vector?);

When multiple signals are used, a value arriving on either signal will result in one output
value. The computation will use the last values of the other signals (sample-hold interpola-
tion). One limitation regarding multiple signals is that the same signal cannot occur twice,
because it would cause glitches in the output.

Record items may also be expressions and contain filters. For example, the statistic below is
functionally equivalent to one of the above examples: it also computes and records as scalar
and as vector the total number of bytes dropped, using a cPacket*-valued signal as input;
however, some of the computations have been shifted into the recorder part.

@statistic[droppedBytes](source="packetBits(pkdrop)"; record="last(8*sum)",
"vector(8*sum)?");

Property Keys

The following keys are understood in @statistic properties:

source : Defines the input for the recorders (see record= key). When missing, the statistic
name is taken as the signal name;

record : Contains a list of recording modes, separated by comma. Recording modes define
how to record the source (see source= key).

title : A longer, descriptive name for the statistic signal; result visualization tools may use it
as chart label, e.g. in the legend.

unit : Measurement unit of the values. This may also appear in charts.

interpolationmode : Defines how to interpolate signal values where needed (e.g. for draw-
ing); possible values are none, sample-hold, backward-sample-hold, linear.

enum : Defines symbolic names for various integer signal values. The property value must be
a string, containing name=value pairs separated by comma. Example: "IDLE=1,BUSY=2,DOWN=3".

Available Filters and Recorders

The following table contains the list of predefined result filters. All filters in the table output a
value for each input value.

Filter Description
count Computes and outputs the count of values received so far.
sum Computes and outputs the sum of values received so far.
min Computes and outputs the minimum of values received so

far.
max Computes and outputs the maximum of values received so

far.
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mean Computes and outputs the average (sum / count) of values
received so far.

timeavg Regards the input values and their timestamps as a step
function (sample-hold style), and computes and outputs
its time average (integral divided by duration).

constant0 Outputs a constant 0 for each received value (independent
of the value).

constant1 Outputs a constant 1 for each received value (independent
of the value).

packetBits Expects cPacket pointers as value, and outputs the bit
length for each received one. Non-cPacket values are ig-
nored.

packetBytes Expects cPacket pointers as value, and outputs the byte
length for each received one. Non-cPacket values are ig-
nored.

sumPerDuration For each value, computes the sum of values received so
far, divides it by the duration, and outputs the result.

The list of predefined result recorders:

Recorder Description
last Records the last value into an output scalar.
count Records the count of the input values into an output

scalar; functionally equivalent to last(count)
sum Records the sum of the input values into an output scalar

(or zero if there was none); functionally equivalent to
last(sum)

min Records the minimum of the input values into an output
scalar (or positive infinity if there was none); functionally
equivalent to last(min)

max Records the maximum of the input values into an output
scalar (or negative infinity if there was none); functionally
equivalent to last(max)

mean Records the mean of the input values into an output
scalar (or NaN if there was none); functionally equivalent
to last(mean)

timeavg Regards the input values with their timestamps as a step
function (sample-hold style), and records the time aver-
age of the input values into an output scalar; functionally
equivalent to last(timeavg)

stats Computes basic statistics (count, mean, std.dev, min,
max) from the input values, and records them into the out-
put scalar file as a statistic object.

histogram Computes a histogram and basic statistics (count, mean,
std.dev, min, max) from the input values, and records the
reslut into the output scalar file as a histogram object.

vector Records the input values with their timestamps into an
output vector.
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NOTE: You can have the list of available result filters and result recorders printed
by executing the opp_run -h resultfilters and opp_run -h resultrecorders com-
mands.

Naming and Attributes of Recorded Results

The names of recorded result items will be formed by concatenating the statistic name and
the recording mode with a colon between them: "<statisticName>:<recordingMode>".

Thus, the following statistics

@statistic[dropRate](source="count(drop)/count(pk)"; record=last,vector?);
@statistic[droppedBytes](source="packetBytes(pkdrop)"; record=sum,"vector(sum)?");

will produce the following scalars: dropRate:last, droppedBytes:sum, and the following
vectors: dropRate:vector, droppedBytes:vector(sum).

All property keys (except for record) are recorded as result attributes into the vector file or
scalar file. The title property will be tweaked a little before recording: the recording mode
will be added after a comma, otherwise all result items saved from the same statistic would
have exactly the same name.

Example: "Dropped Bytes, sum", "Dropped Bytes, vector(sum)"

It is allowed to use other property keys as well, but they won’t be interpreted by the OMNeT++
runtime or the result analysis tool.

Source and Record Expressions in Detail

To fully understand source and record, it will be useful to see how result recording is set
up.

When a module or channel is created in the simulation, the OMNeT++ runtime examines the
@statistic properties on its NED declaration, and adds listeners on the signals they mention
as input. There are two kinds of listeners associated with result recording: result filters and
result recorders. Result filters can be chained, and at the end of the chain there is always
a recorder. So, there may be a recorder directly subscribed to a signal, or there may be a
chain of one or more filters plus a recorder. Imagine it as a pipeline, or rather a “pipe tree”,
where the tree roots are signals, the leaves are result recorders, and the intermediate nodes
are result filters.

Result filters typically perform some processing on the values they receive on their inputs (the
previous filter in the chain or directly a signal), and propagate them to their output (chained
filters and recorders). A filter may also swallow (i.e. not propagate) values. Recorders may
write the received values into an output vector, or record output scalar(s) at the end of the
simulation.

Many operations exist both in filter and recorder form. For example, the sum filter propagates
the sum of values received on its input to its output; and the sum recorder only computes the
the sum of received values in order to record it as an output scalar on simulation completion.

The next figure illustrates which filters and recorders are created and how they are connected
for the following statistics:

@statistic[droppedBytes](source="8*packetBits(pkdrop)"; record="sum,vector(sum)");
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pkdrop packetBits f(x) = x*8

sum

sum

vector

Figure 4.4: Result filters and recorders chained

HINT: To see how result filters and recorders have been set up for a particular simula-
tion, run the simulation with the debug-statistics-recording configuration option,
e.g. specify -debug-statistics-recording=true on the command line.

4.15.3 Emitting Signals

Emitting signals for statistical purposes does not differ much from emitting signals for any
other purpose. Statistic signals are primarily expected to contain numeric values, so the
overloaded emit() functions that take long, double and simtime_t are going to be the most
useful ones.

Emitting with timestamp. The emitted values are associated with the current simulation
time. At times it might be desirable to associate them with a different timestamp, in much
the same way as the recordWithTimestamp() method of cOutVector (see 7.9.1) does. For
example, assume that you want to emit a signal at the start of every successful wireless frame
reception. However, whether any given frame reception is going to be successful can only
be known after the reception has completed. Hence, values can only be emitted at reception
completion, and need to be associated with past timestamps.

To emit a value with a different timestamp, an object containing a (timestamp, value) pair
needs to be filled in, and emitted using the emit(simsignal_t, cObject *) method. The
class is called cTimestampedValue, and it simply has two public data members called time
and value, with types simtime_t and double. It also has a convenience constructor taking
these two values.

NOTE: cTimestampedValue is not part of the signal mechanism. Instead, the result
recording listeners provided by OMNeT++ have been written in a way so that they under-
stand cTimestampedValue, and know how to handle it.

An example usage:

simtime_t frameReceptionStartTime = ...;
double receivePower = ...;
cTimestampedValue tmp(frameReceptionStartTime, receivePower);
emit(recvPowerSignal, &tmp);

If performance is critical, the cTimestampedValue object may be made a class member or a
static variable to eliminate object construction/destruction time.11

11It is safe to use a static variable here because the simulation program is single-threaded, but ensure that there
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Timestamps must be monotonically increasing.

Emitting non-numeric values. Sometimes it is practical to have multi-purpose signals, or
to retrofit an existing non-statistical signal so that it can be recorded as a result. For this
reason, signals having non-numeric types (that is, const char * and cObject *) may also
be recorded as results. Wherever such values need to be interpreted as numbers, the following
rules are used by the built-in result recording listeners:

• Strings are recorded as 1.0, except for NULL which is recorded as 0.0;

• Objects that can be cast to cITimestampedValue are recorded using the getSignal-
Time() and getSignalValue() methods of the class;

• Other objects are recorded as 1.0, except for NULL pointers which are recorded as 0.0.

cITimestampedValue is a C++ interface that may be used as an additional base class for any
class. It is declared like this:

class cITimestampedValue {
public:

virtual ~cITimestampedValue() {}
virtual double getSignalValue(simsignal_t signalID) = 0;
virtual simtime_t getSignalTime(simsignal_t signalID);

};

getSignalValue() is pure virtual (it must return some value), but getSignalTime() has a
default implementation that returns the current simulation time. Note the signalID argu-
ment that allows the same class to serve multiple signals (i.e. to return different values for
each).

4.15.4 Writing Result Filters and Recorders

You can define your own result filters and recorders in addition to the built-in ones. Similar
to defining modules and new NED functions, you have to write the implementation in C++,
and then register it with a registration macro to let OMNeT++ know about it. The new result
filter or recorder can then be used in the source= and record= attributes of @statistic
properties just like the built-in ones.

Result filters must be subclassed from cResultFilter or from one of its more specific sub-
classes cNumericResultFilter and cObjectResultFilter. The new result filter class needs
to be registered using the Register_ResultFilter(NAME, CLASSNAME) macro.

Similarly, a result recorder must subclass from the cResultRecorder or the more specific
cNumericResultRecorder class, and be registered using the Register_ResultRecorder(NAME,
CLASSNAME) macro.

An example result filter implementation from the simulation runtime:

/**
* Filter that outputs the sum of signal values divided by the measurement

* interval (simtime minus warmup period).

*/
class SumPerDurationFilter : public cNumericResultFilter
{

isn’t a listener somewhere that would modify the same static variable during firing.
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cIListener

cResultListener

cResultFilter cResultRecorder

cNumericResultFilter cObjectResultFilter
CountFilter,

...
cNumericResultRecorder

CountRecorder,

...

SumFilter,

MinFilter,

MaxFilter,

TimeAverageFilter,

...

PacketBitsFilter,

PacketBytesFilter,

...

VectorRecorder,

LastValueRecorder,

HistogramRecorder,

SumRecorder,

MinRecorder,

MaxRecorder,

TimeAverageRecorder,

...

Figure 4.5: Inheritance of result filter and recorder classes

protected:
double sum;

protected:
virtual bool process(simtime_t& t, double& value);

public:
SumPerDurationFilter() {sum = 0;}

};

Register_ResultFilter("sumPerDuration", SumPerDurationFilter);

bool SumPerDurationFilter::process(simtime_t& t, double& value)
{

sum += value;
value = sum / (simTime() - simulation.getWarmupPeriod());
return true;

}
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Chapter 5

Messages and Packets

5.1 Overview

Messages are a central concept in OMNeT++. In the model, message objects represent events,
packets, commands, jobs, customers or other kinds of entities, depending on the model do-
main.

Messages are represented with the cMessage class and its subclass cPacket. cPacket is
used for network packets (frames, datagrams, transport packets, etc.) in a communication
network, and cMessage is used for everything else. Users are free to subclass both cMessage
and cPacket to create new types and to add data.

cMessage has the following fields; some are used by the simulation kernel, and others are
provided for the convenience of the simulation programmer:

• The name field is a string (const char *), which can be freely used by the simulation
programmer. The message name is displayed at many places in the graphical runtime in-
terface, so it is generally useful to choose a descriptive name. Message name is inherited
from cObject (see section 7.1.1).

• Message kind is an integer field. Some negative values are reserved by the simulation
library, but zero and positive values can be freely used in the model for any purpose.
Message kind is typically used to carry a value that conveys the role, type, category or
identity of the message.

• The scheduling priority field is used by the simulation kernel to determine the delivery
order of messages that have the same arrival time values. This field is rarely used in
practice.

• The send time, arrival time, source module, source gate, destination module, destination
gate fields store information about the message’s last sending or scheduling, and should
not be modified from the model. These fields are primarily used internally by the simu-
lation kernel while the message is in the future events set (FES), but the information is
still in the message object when the message is delivered to a module.

• Time stamp (not to be confused with arrival time) is a utility field, which the programmer
can freely use for any purpose. The time stamp is not examined or changed by the
simulation kernel at all.
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• The parameter list, control info and context pointer fields make some simulation tasks
easier to program, and they will be discussed later.

The cPacket class extends cMessage with fields that are useful for representing network
packets:

• The packet length field represents the length of the packet in bits. It is used by the
simulation kernel to compute the transmission duration when a packet travels through
a connection that has an assigned data rate, and also for error modeling on channels
with a nonzero bit error rate.

• The encapsulated packet field helps modeling protocol layers by supporting the concept
of encapsulation and decapsulation.

• The bit error flag field carries the result of error modelling after the packet is sent through
a channel that has a nonzero packet error rate (PER) or bit error rate (BER). It is up to
the receiver to examine this flag after having received the packet, and to act upon it.

• The duration field carries the transmission duration after the packet was sent through a
channel with a data rate.

• The is-reception-start flag tells whether this packet represents the start or the end of
the reception after the packet travelled through a channel with a data rate. This flag is
controlled by the deliver-on-reception-start flag of the receiving gate.

5.2 The cMessage Class

5.2.1 Basic Usage

The cMessage constructor accepts an object name and a message kind, both optional:

cMessage(const char *name=NULL, short kind=0);

Descriptive message names can be very useful when tracing, debugging or demonstrating the
simulation, so it is recommended to use them. Message kind is usually initialized with a sym-
bolic constant (e.g. an enum value) which signals what the message object represents. Only
positive values and zero can be used – negative values are reserved for use by the simulation
kernel.

The following lines show some examples of message creation:

cMessage *msg1 = new cMessage();
cMessage *msg2 = new cMessage("timeout");
cMessage *msg3 = new cMessage("timeout", KIND_TIMEOUT);

Once a message has been created, its basic data members can be set with the following
methods:

void setName(const char *name);
void setKind(short k);
void setTimestamp();
void setTimestamp(simtime_t t);
void setSchedulingPriority(short p);
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The argument-less setTimeStamp() method is equivalent to setTimeStamp(simTime()).

The corresponding getter methods are:

const char *getName() const;
short getKind() const;
simtime_t getTimestamp() const;
short getSchedulingPriority() const;

The getName()/setName() methods are inherited from a generic base class in the simulation
library, cNamedObject.

Two more interesting methods:

bool isPacket() const;
simtime_t getCreationTime() const;

The isPacket() method returns true if the particular message object is a subclass of cPacket,
and false otherwise. As isPacket() is implemented as a virtual function that just con-
tains a return false or a return true statement, it might be faster than calling dy-
namic_cast<cPacket*>.

The getCreationTime() method returns the creation time of the message. It is worthwhile
to mention that with cloned messages (see dup() later), the creation time of the original
message is returned and not the time of the cloning operation. This is particularly useful when
modeling communication protocols, because many protocols clone the transmitted packages
to be able to do retransmissions and/or segmentation/reassembly.

5.2.2 Duplicating Messages

It is often necessary to duplicate a message or a packet, for example, to send one and keep a
copy. Duplication can be done in the same way as for any other OMNeT++ object:

cMessage *copy = msg->dup();

The resulting message (or packet) will be an exact copy of the original including message
parameters and encapsulated messages, except for the message ID field. The creation time
field is also copied, so for cloned messages getCreationTime() will return the creation time
of the original, not the time of the cloning operation. 1

If you subclass from cMessage or cPacket, you need to reimplement dup(); the recommended
implementation is to delegate to the copy constructor of the new class:

class FooMessage : public cMessage {
public:

FooMessage(const FooMessage& other) {...}
virtual FooMessage *dup() const {return new FooMessage(*this);}
...

};

For generated classes (chapter 6), this is taken care of automatically.

1Note, however, that the simulation library may delay the duplication of the encapsulated message until it is really
needed; see section 5.4.5.
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5.2.3 Message IDs

Every message object has a unique numeric message ID. It is normally used for identifying
the message in a recorded event log file, but may occasionally be useful for other purposes as
well. If you clone a message (msg->dup()), the clone will have a different ID.

There is also another ID called tree ID. A tree ID starts out with the value of the message
ID; however, if you clone a message, the clone will retain the tree ID of the original. Thus,
messages that have the same tree ID have been created by cloning the same original message
or its clones (with one exception, the original message). The size of long is usually enough so
that IDs remain unique during a single simulation run (i.e. the counter does not wrap).

The methods for obtaining message IDs:

long getId() const;
long getTreeId() const;

5.2.4 Control Info

One of the main application areas of OMNeT++ is the simulation of telecommunication net-
works. Here, protocol layers are usually implemented as modules which exchange packets.
Packets themselves are represented by messages subclassed from cPacket.

However, communication between protocol layers requires sending additional information to
be attached to packets. For example, a TCP implementation sending down a TCP packet to
IP will want to specify the destination IP address and possibly other parameters. When IP
passes up a packet to TCP after decapsulation from the IP header, it will want to let TCP know
at least the source IP address.

This additional information is represented by control info objects in OMNeT++. Control info
objects have to be subclassed from cObject (a small footprint base class with no data mem-
bers), and can be attached to any message. cMessage has the following methods for this
purpose:

void setControlInfo(cObject *controlInfo);
cObject *getControlInfo() const;
cObject *removeControlInfo();

When a "command" is associated with the message sending (such as TCP OPEN, SEND,
CLOSE, etc), the message kind field (getKind(), setKind() methods of cMessage) should
carry the command code. When the command doesn’t involve a data packet (e.g. TCP CLOSE
command), a dummy packet (empty cMessage) can be sent.

An object set as control info via setControlInfo() will be owned by the message object.
When the message is deallocated, the control info object is deleted as well.

5.2.5 Information About the Last Arrival

The following methods return the sending and arrival times that correspond to the last sending
of the message.

simtime_t getSendingTime() const;
simtime_t getArrivalTime() const;
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The following methods can be used to determine where the message came from and which
gate it arrived on (or will arrive if it is currently scheduled or under way.) There are two sets
of methods, one returning module/gate Ids, and the other returning pointers.

int getSenderModuleId() const;
int getSenderGateId() const;
int getArrivalModuleId() const;
int getArrivalGateId() const;
cModule *getSenderModule() const;
cGate *getSenderGate() const;
cModule *getArrivalModule() const;
cGate *getArrivalGate() const;

There are further convenience functions to tell whether the message arrived on a specific gate
given with id or with name and index.

bool arrivedOn(int gateId) const;
bool arrivedOn(const char *gatename) const;
bool arrivedOn(const char *gatename, int gateindex) const;

5.2.6 Display String

Display strings affect the message’s visualization on animating user interfaces, e.g. Tkenv.
Message objects do not store a display string by default, but contain a getDisplayString()
method that can be overridden in subclasses to return a desired string. The method:

const char *getDisplayString() const;

See chapter 8 for more information on display strings.

5.3 Self-Messages

5.3.1 Using a Message as Self-Message

Messages are often used to represent events internal to a module, such as a periodically firing
timer to represent expiry of a timeout. A message is termed self-message when it is used in
such a scenario – otherwise self-messages are normal messages of class cMessage or a class
derived from it.

When a message is delivered to a module by the simulation kernel, you can call the is-
SelfMessage() method to determine if it is a self-message; it other words, if it was scheduled
with scheduleAt() or was sent with one of the send...() methods. The isScheduled()
method returns true if the message is currently scheduled. A scheduled message can also be
cancelled (cancelEvent()).

bool isSelfMessage() const;
bool isScheduled() const;

The methods getSendingTime() / getArrivalTime() are also useful with self-messages:
they return the time the message was scheduled and arrived (or will arrive; while the message
is scheduled, arrival time is the time it will be delivered to the module).
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5.3.2 Context Pointer

cMessage contains a context pointer of type void*, which can be accessed by the following
functions:

void setContextPointer(void *p);
void *getContextPointer() const;

The context pointer can be used for any purpose by the simulation programmer. It is not used
by the simulation kernel, and it is treated as a mere pointer (no memory management is done
on it).

Intended purpose: a module which schedules several self-messages (timers) will need to iden-
tify a self-message when it arrives back to the module, ie. the module will have to determine
which timer went off and what to do then. The context pointer can be made to point at a data
structure kept by the module which can carry enough “context” information about the event.

5.4 The cPacket Class

5.4.1 Basic Usage

The cPacket constructor is similar to the cMessage constructor, but it accepts an additional
bit length argument:

cPacket(const char *name=NULL, short kind=0, int64 bitLength=0);

The most important field cPacket has over cMessage is the message length. This field is kept
in bits, but it can also be set/get in bytes. If the bit length is not a multiple of eight, the
getByteLength() method will round it up.

void setBitLength(int64 l);
void setByteLength(int64 l);
void addBitLength(int64 delta);
void addByteLength(int64 delta);
int64 getBitLength() const;
int64 getByteLength() const;

Another extra field is the bit error flag. It can be accessed with the following methods:

void setBitError(bool e);
bool hasBitError() const;

5.4.2 Identifying the Protocol

In OMNeT++ protocol models, the protocol type is usually represented in the message sub-
class. For example, instances of class IPv6Datagram represent IPv6 datagrams and Eth-
ernetFrame represents Ethernet frames. The C++ dynamic_cast operator can be used to
determine if a message object is of a specific protocol.

An example:

cMessage *msg = receive();
if (dynamic_cast<IPv6Datagram *>(msg) != NULL)
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{
IPv6Datagram *datagram = (IPv6Datagram *)msg;
...

}

5.4.3 Information About the Last Transmission

When a packet has been received, some information can be obtained about the transmission,
namely the transmission duration and the is-reception-start flag. They are returned by the
following methods:

simtime_t getDuration() const;
bool isReceptionStart() const;

5.4.4 Encapsulating Packets

It is often necessary to encapsulate a packet into another when you are modeling layered
protocols of computer networks.

The following cPacket methods are associated with encapsulation:

void encapsulate(cPacket *packet);
cPacket *decapsulate();
cPacket *getEncapsulatedPacket() const;

The encapsulate() function encapsulates a packet into another one. The length of the packet
will grow by the length of the encapsulated packet. An exception: when the encapsulating
(outer) packet has zero length, OMNeT++ assumes it is not a real packet but some out-of-
band signal, so its length is left at zero.

A packet can only hold one encapsulated packet at a time; the second encapsulate() call
will result in an error. It is also an error if the packet to be encapsulated is not owned by the
module.

You can get back the encapsulated packet by calling decapsulate(). decapsulate() will
decrease the length of the packet accordingly, except if it was zero. If the length would become
negative, an error occurs.

The getEncapsulatedPacket() function returns a pointer to the encapsulated packet, or
NULL if no packet is encapsulated.

Example usage:

cPacket *data = new cPacket("data");
data->setByteLength(1024);

UDPPacket *udp = new UDPPacket("udp"); // subclassed from cPacket
udp->setByteLength(8);

udp->encapsulate(data);
ev << udp->getByteLength() << endl; // --> 8+1024 = 1032

And the corresponding decapsulation code:

cPacket *payload = udp->decapsulate();
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5.4.5 Reference Counting

Since the 3.2 release, OMNeT++ implements reference counting of encapsulated packets,
meaning that if you dup() a packet that contains an encapsulated packet, then the encap-
sulated packet will not be duplicated, only a reference count incremented. Duplication of the
encapsulated packet is deferred until decapsulate() actually gets called. If the outer packet
is deleted without its decapsulate() method ever being called, then the reference count of
the encapsulated packet is simply decremented. The encapsulated packet is deleted when its
reference count reaches zero.

Reference counting can significantly improve performance, especially in LAN and wireless
scenarios. For example, in the simulation of a broadcast LAN or WLAN, the IP, TCP and
higher layer packets won’t be duplicated (and then discarded without being used) if the MAC
address doesn’t match in the first place.

The reference counting mechanism works transparently. However, there is one implication:
one must not change anything in a packet that is encapsulated into another! That is,
getEncapsulatedPacket() should be viewed as if it returned a pointer to a read-only object
(it returns a const pointer indeed), for quite obvious reasons: the encapsulated packet may
be shared between several packets, and any change would affect those other packets as well.

5.4.6 Encapsulating Several Packets

The cPacket class does not directly support encapsulating more than one packet, but you
can subclass cPacket or cMessage to add the necessary functionality. (It is recommended
that you use the message definition syntax that will be described in chapter 6 – it can spare
you some work.)

You can store the messages in a fixed-size or a dynamically allocated array, or you can use
STL classes like std::vector or std::list. There is one additional “trick” that you might
not expect: your message class has to take ownership of the inserted messages, and release
them when they are removed from the message. These are done via the take() and drop()
methods. Let us see an example which assumes you have added to the class an std::list
member called messages that stores message pointers:

void MultiMessage::insertMessage(cMessage *msg)
{

take(msg); // take ownership
messages.push_back(msg); // store pointer

}

void MultiMessage::removeMessage(cMessage *msg)
{

messages.remove(msg); // remove pointer
drop(msg); // release ownership

}

You will also have to provide an operator=() method to make sure your message objects can
be copied and duplicated properly – this is something often needed in simulations (think of
broadcasts and retransmissions!). Section 7.12 contains more about the things you need to
take care of when deriving new classes.
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5.5 Attaching Parameters and Objects

If you want to add parameters or objects to a message, the preferred way to do that is via
message definitions, described in chapter 6.

5.5.1 Attaching Objects

The cMessage class has an internal cArray object which can carry objects. Only objects that
are derived from cObject (most OMNeT++ classes are so) can be attached. The addObject(),
getObject(), hasObject(), removeObject() methods use the object name as the key to the
array. An example:

cLongHistogram *pklenDistr = new cLongHistogram("pklenDistr");
msg->addObject(pklenDistr);
...
if (msg->hasObject("pklenDistr"))
{

cLongHistogram *pklenDistr =
(cLongHistogram *) msg->getObject("pklenDistr");

...
}

You should take care that names of the attached objects don’t conflict with each other or with
cMsgPar parameter names (see next section). If you do not attach anything to the message
and do not call the getParList() function, the internal cArray object will not be created.
This saves both storage and execution time.

You can attach non-object types (or non-cObject objects) to the message by using cMsgPar’s
void* pointer ’P’) type (see later in the description of cMsgPar). An example:

struct conn_t *conn = new conn_t; // conn_t is a C struct
msg->addPar("conn") = (void *) conn;
msg->par("conn").configPointer(NULL,NULL,sizeof(struct conn_t));

5.5.2 Attaching Parameters

The preferred way of extending messages with new data fields is to use message definitions
(see chapter 6).

The old, deprecated way of adding new fields to messages is via attaching cMsgPar objects.
There are several downsides of this approach, the worst being large memory and execution
time overhead. cMsgPar’s are heavy-weight and fairly complex objects themselves. It has
been reported that using cMsgPar message parameters might account for a large part of
execution time, sometimes as much as 80%. Using cMsgPar is also error-prone because
cMsgPar objects have to be added dynamically and individually to each message object. In
contrast, subclassing benefits from static type checking: if you mistype the name of a field in
the C++ code, the compiler can detect the mistake.

If you still need cMsgPars for some reason, here is a short summary. At the sender side you
can add a new named parameter to the message with the addPar() member function, then set
its value with one of the methods setBoolValue(), setLongValue(), setStringValue(),
setDoubleValue(), setPointerValue(), setObjectValue(), and setXMLValue(). There
are also overloaded assignment operators for the corresponding C/C++ types.

125



OMNeT++ Manual – Messages and Packets

At the receiver side, you can look up the parameter object on the message by name and
obtain a reference to it with the par() member function. hasPar() can be used to check
first whether the message object has a parameter object with the given name. Then the value
can be read with the methods boolValue(), longValue(), stringValue(), doubleValue(),
pointerValue(), objectValue(), xmlValue(), or by using the provided overloaded type
cast operators.

Example usage:

msg->addPar("destAddr");
msg->par("destAddr").setLongValue(168);
...
long destAddr = msg->par("destAddr").longValue();

Or, using overloaded operators:

msg->addPar("destAddr");
msg->par("destAddr") = 168;
...
long destAddr = msg->par("destAddr");
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Chapter 6

Message Definitions

6.1 Introduction

In practice, you will need to add various fields to cMessage or cPacket to make them useful.
For example, if you are modelling packets in communication networks, you need to have a
way to store protocol header fields in packets. Since the simulation library is written in C++,
the natural way of extending cMessage/cPacket is via subclassing them. However, because
for each field you need to write at least three things (a private data member, a getter and a
setter method), and the resulting class has to integrate with the simulation framework, writing
the necessary C++ code can be a tedious and time-consuming task.

OMNeT++ offers a more convenient way called message definitions. Message definitions of-
fer you a compact syntax to describe message contents, and the corresponding C++ code is
automatically generated from the definitions. A common complaint about code generators in
general is lack of flexibility: if you have a different idea how the generated code should look,
there is little you can do about it. OMNeT++, however, allows you to extensively customize
the generated class. Even if you need to heavily customize the generated class, message
definitions still save you a great deal of manual work.

6.1.1 The First Message Class

Let us begin with a simple example. Suppose that you need a packet class that carries source
and destination addresses as well as a hop count. You may then write a MyPacket.msg file
with the following contents:

packet MyPacket
{

int srcAddress;
int destAddress;
int remainingHops = 32;

};

It is the task of the message compiler is to generate C++ classes you can use from your models.
The message compiler is normally invoked automatically for your .msg files during build.

When the message compiler processes MyPacket.msg, it creates the following files: My-
Packet_m.h and MyPacket_m.cc. The generated MyPacket_m.h will contain the following
class declaration:
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class MyPacket : public cPacket {
...
virtual int getSrcAddress() const;
virtual void setSrcAddress(int srcAddress);
...

};

In your C++ files, you can use the MyPacket class by including the generated header file:

#include "MyPacket_m.h"

...
MyPacket *pkt = new MyPacket("pkt");
pkt->setSrcAddress(localAddr);
...

The MyPacket_m.cc file will contain implementation of the generated MyPacket class as well
as “reflection” code that allows you to inspect these data structures in the Tkenv GUI. The
MyPacket_m.cc file should be compiled and linked into your simulation; this is normally
taken care of automatically.

The following sections describe the message syntax and features in detail.

6.2 Messages and Packets

6.2.1 Defining Messages and Packets

Message and packet contents can be defined in a syntax resembling C structs. The keyword
can be message or packet; they cause the generated C++ class to be derived from cMessage
and cPacket, respectively. (Further keywords, class and struct, will be covered later.)

An example packet definition:

packet FooPacket
{

int sourceAddress;
int destAddress;
bool hasPayload;

};

Saving the above code into a FooPacket.msg file and processing it with the message compiler,
opp_msgc, will produce the files FooPacket_m.h and FooPacket_m.cc. The header file will
contain the declaration of the generated C++ class.

The generated class will have a constructor that optionally accepts object name and message
kind, and also a copy constructor. An assignment operator (operator=()) and cloning method
(dup()) will also be generated.

class FooPacket : public cPacket
{

public:
FooPacket(const char *name=NULL, int kind=0);
FooPacket(const FooPacket& other);
FooPacket& operator=(const FooPacket& other);
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virtual FooPacket *dup() const;
...

For each field in the above description, the generated class will have a protected data member,
and a public getter and setter method. The names of the methods will begin with get and
set, followed by the field name with its first letter converted to uppercase. Thus, FooPacket
will contain the following methods:

virtual int getSourceAddress() const;
virtual void setSourceAddress(int sourceAddress);
virtual int getDestAddress() const;
virtual void setDestAddress(int destAddress);
virtual bool getHasPayload() const;
virtual void setHasPayload(bool hasPayload);

Note that the methods are all declared virtual to give you the possibility of overriding them
in subclasses.

String fields can also be declared:

packet HttpRequestMessage
{

string method; // "GET", "POST", etc.
string resource;

};

The generated getter and setter methods will return and accept const char* pointers:

virtual const char *getMethod() const;
virtual void setMethod(const char *method);
virtual const char *getResource() const;
virtual void setResource(const char *resource);

The generated object will have its own copy of the string, so it not only stores the const char*
pointer.

6.2.2 Field Data Types

Data types for fields are not limited to int and bool. You can use several C/C++ and other
data types:

• logical: bool

• integral types: char, short, int, long; and their unsigned versions unsigned char,
unsigned short, unsigned int, unsigned long

• floating-point types: float, double

• C99-style fixed-size integral types: int8_t, int16_t, int32_t, int64_t; and their un-
signed versions uint8_t, uint16_t, uint32_t, uint64_t; 1

• OMNeT++ simulation time: simtime_t

1These type names are accepted without the _t suffix as well, but you are responsible to ensure that the generated
code compiles, i.e. the shortened type names must be defined in a header file you include.
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• string. Getters and setters use the const char* data type; NULL is not allowed. The
object will store a copy of the string, not just the pointer.

• structs and classes, defined in message files or elsewhere (see in later sections 6.2.7 and
6.6)

• typedef’d names declared in C++ and announced to the message compiler )

Numeric fields are initialized to zero, booleans to false, and string fields to empty string.

6.2.3 Initial Values

You can specify initial values for fields. Examples:

packet RequestPacket
{

int version = HTTP_VERSION;
string method = "GET";
string resource = "/";
int maxBytes = 100*1024*1024; // 100MiB
bool keepAlive = true;

};

As you can see, macros and expressions are also accepted as initalizer values. The message
compiler does not check the syntax of the values, it only copies them into the generated C++
file; so if there is an error in them, it will be reported by the C++ compiler.

Field initialization statements will be placed into the constructor of the generated class.

6.2.4 Enums

You can declare that an int (or other integral type) field takes values from an enum. The
message compiler can then generate code that allows Tkenv display the symbolic value of the
field.

Example:

packet FooPacket
{

int payloadType @enum(PayloadType);
};

The enum itself has to be declared separately. An enum is declared with the enum keyword,
using the following syntax:

enum PayloadType
{

NONE = 0;
UDP = 1;
TCP = 2;
SCTP = 3;

};

Enum values need to be unique.
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The message compiler translates an enum into a normal C++ enum, plus creates an object
which stores text representations of the constants. The latter makes it possible to display
symbolic names in Tkenv.

If the enum to be associated with a field comes from a different message file, then the enum
must be announced and its generated header file be included. An example:

cplusplus {{
#include "PayloadType_m.h"
}}

enum PayloadType;

packet FooPacket
{

int payloadType @enum(PayloadType);
};

6.2.5 Fixed-Size Arrays

You can specify fixed size arrays:

packet SourceRoutedPacket
{

int route[4];
};

The generated getter and setter methods will have an extra k argument, the array index:

virtual long getRoute(unsigned k) const;
virtual void setRoute(unsigned k, long route);

If you call the methods with an index that is out of bounds, an exception will be thrown.

6.2.6 Variable-Size Arrays

If the array size is not known in advance, you can declare the field to have a variable size:

packet SourceRoutedPacket
{

int route[];
};

In this case, the generated class will have two extra methods in addition to the getter and
setter methods: one for setting the array size, and another one for returning the current array
size.

virtual long getRoute(unsigned k) const;
virtual void setRoute(unsigned k, long route);
virtual unsigned getRouteArraySize() const;
virtual void setRouteArraySize(unsigned n);

The set...ArraySize() method internally allocates a new array. Existing values in the array
will be preserved (copied over to the new array.)
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The default array size is zero. This means that you need to call set...ArraySize() with a
nonzero argument before you can start filling array elements.

6.2.7 Classes and Structs as Fields

In addition to primitive types, you can also use other types (classes, structs, typedefs, etc.) as
fields. For example, if you have a C++ type called IPAddress, you can write the following:

packet IPPacket
{

int version = 4;
IPAddress src;
IPAddress dest;

};

The IPAddress type must be known to the message compiler, and also at compile time to the
C++ compiler; section 6.6 will describe how to achieve that.

The generated class will contain IPAddress data members (that is, not pointers to IPAddress
objects), and the following getter and setter methods will be generated for them:

virtual IPAddress& getSrc();
virtual const IPAddress& getSrc() const;
virtual void setSrc(const IPAddress& src);

virtual IPAddress& getDest();
virtual const IPAddress& getDest() const;
virtual void setDest(const IPAddress& dest);

6.2.8 Pointer Fields

Pointer fields where the setters and the destructor would delete the previous value are not
supported yet. However, there are workarounds, as described below.

You can create a typedef for the pointer and use the typedef name as field type. Then you’ll get
a plain pointer field where neither the setter nor the destructor deletes the old value (which is
a likely memory leak).

Example (section 6.6 will explain the details):

cplusplus {{ typedef Foo *FooPtr; }} // C++ typedef
class noncobject FooPtr; // announcement for the message compiler

packet Bar
{

FooPtr fooPtr; // leaky pointer field
};

Then you can customize the class via C++ inheritance and reimplement the setter methods
in C++, inserting the missing delete statements. Customization via C++ inheritance will be
described in section 6.7.2.
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6.2.9 Inheritance

By default, messages are subclassed from cMessage or cPacket. However, you can explicitly
specify the base class using the extends keyword (only single inheritance is supported):

packet Ieee80211DataFrame extends Ieee80211Frame
{

...
};

For the example above, the generated C++ code will look like this:

// generated C++
class Ieee80211DataFrame : public Ieee80211Frame {

...
};

6.2.10 Assignment of Inherited Fields

Message definitions allow you to change the initial value of a field defined in an ancestor
type. The syntax is similar to that of a field definition with initial value, only the data type is
missing.

An example:

packet Ieee80211Frame
{

int frameType;
...

};

packet Ieee80211DataFrame extends Ieee80211Frame
{

frameType = DATA_FRAME; // assignment of inherited field
...

};

It may seem like the message compiler would need the definition of the base class to check
the definition of the field being assigned. However, it is not the case. The message compiler
trusts that such field exists; or rather, it leaves the check to the C++ compiler.

What the message compiler actually does is derives a setter method name from the field name,
and generates a call to it into the constructor. Thus, the generated constructor for the above
packet type would be something like this:

Ieee80211DataFrame::Ieee80211DataFrame(const char *name, int kind) :
Ieee80211Frame(name, kind)

{
this->setFrameType(DATA_FRAME);
...

}

This implementation also lets you initialize cMessage / cPacket fields such as message kind
or packet length:
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packet UDPPacket
{

byteLength = 16; // results in ’setByteLength(16);’ being placed into ctor
};

6.3 Classes

Until now we have only seen message and packet descriptions, which generate classes de-
rived from cMessage or cPacket. However, it is also useful to be able to generate classes
and structs, for building blocks for messages, as control info objects (see cMessage’s setCon-
trolInfo() and for other purposes. This section covers classes; structs will be described in
the next section.

The syntax for defining classes is almost the same as defining messages, only the class
keyword is used instead of message / packet. The base class can be specified with the
extends keyword, and defaults to cObject.

NOTE: cObject has no data members. It only defines virtual methods, so the only
overhead would be the vptr; however, the generated class already has a vptr because the
generated methods are also virtual. In other words, cObject adds zero overhead to the
generated class, and there is no reason not to always use it as base class.

Examples:

class TCPCommand // same as "extends cObject"
{

...
};

class TCPOpenCommand extends TCPCommand
{

...
};

The generated code:

// generated C++
class TCPCommand : public cObject
{

...
};

class TCPOpenCommand : public TCPCommand
{

...
};

6.4 Structs

You can define C-style structs to be used as fields in message classes, “C-style” meaning
“containing only data and no methods” (in contrast to C++ where a struct is just a class with
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a different default member visibility.)

The syntax is similar to that of defining messages:

struct Place
{

int type;
string description;
double coords[3];

};

However, the generated code is different. The generated struct has no getter or setter methods,
instead the fields are represented by public data members. The following code is generated
from the above definition:

// generated C++
struct Place
{

int type;
opp_string description; // minimal string class that wraps a const char*
double coords[3];

};

Note that string fields are generated with the opp_string C++ type, which is a minimalistic
string class that wraps const char* and takes care of allocation/deallocation. It was chosen
instead of std::string because of its significantly smaller memory footprint (the sizeof of
opp_string is the same as that of a const char* pointer).

Inheritance is supported for structs:

struct Base
{

...
};

struct Extended extends Base
{

...
};

However, because a struct has no member functions, there are limitations:

• variable-size arrays are not supported;

• customization via inheritance and abstract fields (see later in 6.7.2) cannot be used;

• cannot have classes subclassed from cOwnedObject as fields, because structs cannot be
owners.

6.5 Literal C++ Blocks

It is possible to have C++ code placed directly into the generated code, more precisely, into the
generated header file. This is done with the cplusplus keyword and a double curly braces.
As we’ll see in later sections, cplusplus blocks are customarily used to insert #include
directives, typedefs, #define macros and other elements into the generated header.
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Example:

cplusplus {{
#include <vector>
#include "foo.h"
#define FOO_VERSION 4
typedef std::vector<int> IntVector;
}}

The message compiler does not try to make sense of the text in the body of the cplusplus
block, it just simply copies it into the generated header file.

6.6 Using C++ Types

The message compile only knows about the types defined within the same msg file, and the
built-in types. To be able to use other types, for example for fields or as base class, you need
to do two things:

1. Let the message compiler know about the type by announcing it; and

2. Make sure its C++ declaration will be available at compile time

The next two sections describe how to do each.

6.6.1 Announcing Types to the Message Compiler

If you want to use a C++ type (a class, struct or typedef) not declared with the message syntax
in the same file, you have to announce those types to the message compiler.

Type annoucements have a similar syntax to those in C++:

struct Point;
class PrioQueue; // implies it is derived from cOwnedObject! see below
message TimeoutMessage;
packet TCPSegment;

However, with the class keyword, the message compiler needs to know the whether the class
is derived (directly or indirectly) from cOwnedObject, cNamedObject, cObject or none of
the above, because it affects code generation. The ancestor class can be declared with the
extends keyword, like this:

class IPAddress extends void; // does not extend any "interesting" class
class ModulePtr extends void; // ditto
class IntVector extends void; // ditto
class IPCtlInfo extends cObject;
class FooOption extends cNamedObject;
class PrioQueue extends cOwnedObject;
class IPAddrExt extends IPAddress; // also OK: IPAddress has been announced

An alternative to extends void is the noncobject modifier:

class noncobject IPAddress; // same as "extends void"
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By default, that is, when extends is missing, it is assumed that the class is derived from
cOwnedObject. Thus, the following two announcements are equivalent:

class PrioQueue;
class PrioQueue extends cOwnedObject;

NOTE: Notice that this default is inconsistent with the default base class for generat-
ing classes, which is cObject (see 6.3). The reason why type announcements assume
cOwnedObject is that it is safer: a mistake will surface in the form of a compile error and
will not remain hidden until it causes some obscure runtime error.

6.6.2 Making the C++ Declarations Available

In addition to announcing types to the message compiler, you also have to make sure their
C++ declarations will be available at compile time so that the generated code will actually
compile. This can be achieved with cplusplus blocks that let you inject includes, typedefs,
class/struct declarations, etc. into the generated header file:

cplusplus {{
#include "IPAddress.h"
typedef std::vector<int> IntVector;
}}

You need a cplusplus block even if the desired types are defined in a (different) message file,
to include the generated header file. It is currently not supported to import types from other
message files directly. Example:

cplusplus {{
#include "TCPSegment_m.h" // make types defined in TCPSegment.msg available

// for the C++ compiler
}}

6.6.3 Putting it Together

Suppose you have header files and message files that define various types:

// IPAddress.h
class IPAddress {

...
};

// Location.h
struct Location {

double lon;
double lat;

};

// AppPacket.msg
packet AppPacket {

...
}
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To be able to use the above types in a message definition (and two more, an IntVector and a
module pointer), the message file should contain the following lines:

cplusplus {{
#include <vector>
#include "IPAddress.h"
#include "Location.h"
#include "AppPacket_m.h"
typedef std::vector<int> IntVector;
typedef cModule *ModulePtr;
}};

class noncobject IPAddress;
struct Location;
packet AppPacket;
class noncobject IntVector;
class noncobject ModulePtr;

packet AppPacketExt extends AppPacket {
IPAddress destAddress;
Location senderLocation;
IntVector data;
ModulePtr originatingModule;

}

6.7 Customizing the Generated Class

6.7.1 Customizing Method Names

The names and some other properties of generated methods can be influenced with metadata
annotations (properties).

The names of the getter and setter methods can be changed with the @getter and @setter
properties. For variable-size array fields, the names of array size getter and setter methods
can be changed with @sizeGetter and @sizeSetter.

In addition, the data type for the array size (by default unsigned int) can be changed with
@sizetype property.

Consider the following example:

packet IPPacket {
int ttl @getter(getTTL) @setter(setTTL);
Option options[] @sizeGetter(getNumOptions)

@sizeSetter(setNumOptions)
@sizetype(short);

}

The generated class would have the following methods (note the differences from the de-
fault names getTtl(), setTtl(), getOptions(), setOptions(), getOptionsArraySize(),
getOptionsArraySize(); also note that indices and array sizes are now short):

virtual int getTTL() const;
virtual void setTTL(int ttl);
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virtual const Option& getOption(short k) const;
virtual void setOption(short k, const Option& option);
virtual short getNumOptions() const;
virtual void setNumOptions(short n);

In some older simulation models you may also see the use of the @omitGetVerb class property.
This property tells the message compiler to generate getter methods without the “get” prefix,
e.g. for a sourceAddress field it would generate a sourceAddress() method instead of the
default getSourceAddress(). It is not recommended to use @omitGetVerb in new models,
because it is inconsistent with the accepted naming convention.

6.7.2 Customizing the Class via Inheritance

Sometimes you need the generated code to do something more or do something differently
than the version generated by the message compiler. For example, when setting an integer
field named payloadLength, you might also need to adjust the packet length. That is, the
following default (generated) version of the setPayloadLength() method is not suitable:

void FooPacket::setPayloadLength(int payloadLength)
{

this->payloadLength = payloadLength;
}

Instead, it should look something like this:

void FooPacket::setPayloadLength(int payloadLength)
{

addByteLength(payloadLength - this->payloadLength);
this->payloadLength = payloadLength;

}

According to common belief, the largest drawback of generated code is that it is difficult or
impossible to fulfill such wishes. Hand-editing of the generated files is worthless, because
they will be overwritten and changes will be lost in the code generation cycle.

However, object oriented programming offers a solution. A generated class can simply be
customized by subclassing from it and redefining whichever methods need to be different
from their generated versions. This practice is known as the Generation Gap design pattern.
It is enabled with the @customize property set on the message:

packet FooPacket
{

@customize(true);
int payloadLength;

};

If you process the above code with the message compiler, the generated code will contain a
FooPacket_Base class instead of FooPacket. Then you would subclass FooPacket_Base to
produce FooPacket, while doing your customizations by redefining the necessary methods.

class FooPacket_Base : public cPacket
{

protected:
int src;
// make constructors protected to avoid instantiation
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FooPacket_Base(const char *name=NULL);
FooPacket_Base(const FooPacket_Base& other);

public:
...
virtual int getSrc() const;
virtual void setSrc(int src);

};

There is a minimum amount of code you have to write for FooPacket, because not everything
can be pre-generated as part of FooPacket_Base, e.g. constructors cannot be inherited. This
minimum code is the following (you will find it the generated C++ header too, as a comment):

class FooPacket : public FooPacket_Base
{

public:
FooPacket(const char *name=NULL) : FooPacket_Base(name) {}
FooPacket(const FooPacket& other) : FooPacket_Base(other) {}
FooPacket& operator=(const FooPacket& other)

{FooPacket_Base::operator=(other); return *this;}
virtual FooPacket *dup() const {return new FooPacket(*this);}

};

Register_Class(FooPacket);

Note that it is important that you redefine dup() and provide an assignment operator (oper-
ator=()).

So, returning to our original example about payload length affecting packet length, the code
you’d write is the following:

class FooPacket : public FooPacket_Base
{

// here come the mandatory methods: constructor,
// copy constructor, operator=(), dup()
// ...

virtual void setPayloadLength(int newlength);
}

void FooPacket::setPayloadLength(int newlength)
{

// adjust message length
addByteLength(newlength - getPayloadLength());

// set the new length
FooPacket_Base::setPayloadLength(newlength);

}

6.7.3 Abstract Fields

The purpose of abstract fields is to let you to override the way the value is stored inside the
class, and still benefit from inspectability in Tkenv.
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For example, this is the situation when you want to store a bitfield in a single int or short,
and yet you want to present bits as individual packet fields. It is also useful for implementing
computed fields.

You can declare any field to be abstract with the following syntax:

packet FooPacket
{

@customize(true);
abstract bool urgentBit;

};

For an abstract field, the message compiler generates no data member, and generated get-
ter/setter methods will be pure virtual:

virtual bool getUrgentBit() const = 0;
virtual void setUrgentBit(bool urgentBit) = 0;

Usually you’ll want to use abstract fields together with the Generation Gap pattern, so that
you can immediately redefine the abstract (pure virtual) methods and supply your implemen-
tation.

6.8 Using Standard Container Classes for Fields

One often wants to use standard container classes (STL) as fields, such as std::vector,
std::stack or std::map. The following sections describe two ways this can be done:

1. via a typedef;

2. by defining the field as abstract, and customizing the generated class.

6.8.1 Typedefs

The basic idea is that if we create a typedef for the desired type, we can use it for fields just
as any other type. Example:

cplusplus {{
#include <vector>
typedef std::vector<int> IntVector;
}}

class noncobject IntVector;

packet FooPacket {
IntVector addresses;

};

The generated class will have the following methods:

virtual IntVector& getAddresses();
virtual const IntVector& getAddresses() const;
virtual void setAddresses(const IntVector& addresses);
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Thus, the underlying std::vector<int> is exposed and you can directly manipulate it from
C++ code, for example like this:

FooPacket *pk = new FooPacket();
pk->getAddresses().push_back(1);
pk->getAddresses().push_back(5);
pk->getAddresses().push_back(9);
// or:
IntVector& v = pk->getAddresses();
v.push_back(1);
v.push_back(5);
v.push_back(9);

It is easy. However, there are also some drawbacks:

1. The message compiler won’t know that your field is actually a data structure, so the
generated reflection code won’t be able to look into it;

2. The fact that STL classes are directly exposed may be a mixed blessing; on one hand
this makes it easier to manipulate its contents, but on the other hand it violates the
encapsulation principle. Container classes work best when they are used as “nuts and
bolts” for your C++ program, but they shouldn’t really be used as public API.

6.8.2 Abstract Fields

This approach uses abstract fields. We exploit the fact that std::vector and std::stack
are representations of sequence, which is the same abstraction as fields’ variable-size array.
That is, if you declare the field to be abstract fieldname[], the message compiler will only
generate pure virtual functions and you can implement the underlying data storage using
standard container classes. You can also write additional C++ methods that delegate to the
container object’s push_back(), push(), pop(), etc. methods.

Consider the following message declaration:

packet FooPacket
{

@customize(true);
abstract int foo[]; // will use std::vector<int>
abstract int bar[]; // will use std::stack<int>

}

If you compile the above code, in the generated C++ code you will only find abstract methods
for foo and bar, but no underlying data members or method implementations. You can
implement everything as you like. You can write the following C++ file then to implement foo
and bar with std::vector and std::stack (some details omitted for brevity):

#include <vector>
#include <stack>
#include "FooPacket_m.h"

class FooPacket : public FooPacket_Base
{

protected:
std::vector<int> foo;
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std::stack<int> bar;

// helper method
void unsupported() {throw cRuntimeException("unsupported method called");}

public:
...
// foo methods
virtual int getFoo(unsigned int k) {return foo[k];}
virtual void setFoo(unsigned int k, int x) {foo[k]=x;}
virtual void addFoo(int x) {foo.push_back(x);}
virtual void setFooArraySize(unsigned int size) {foo.resize(size);}
virtual unsigned int getFooArraySize() const {return foo.size();}

// bar methods
virtual int getBar(unsigned int k) {...}
virtual void setBar(unsigned int k, int x) {unsupported();}
virtual void barPush(int x) {bar.push(x);}
virtual void barPop() {bar.pop();}
virtual int barTop() {return bar.top();}
virtual void setBarArraySize(unsigned int size) {unsupported();}
virtual unsigned int getBarArraySize() const {return bar.size();}

};

Register_Class(FooPacket);

Some additional boilerplate code is needed so that the class conforms to conventions, and
duplication and copying works properly:

FooPacket(const char *name=NULL, int kind=0) : FooPacket_Base(name,kind) {
}
FooPacket(const FooPacket& other) : FooPacket_Base(other.getName()) {

operator=(other);
}
FooPacket& operator=(const FooPacket& other) {

if (&other==this) return *this;
FooPacket_Base::operator=(other);
foo = other.foo;
bar = other.bar;
return *this;

}
virtual FooPacket *dup() {

return new FooPacket(*this);
}

Some additional notes:

1. setFooArraySize(), setBarArraySize() are redundant.

2. getBar(int k) cannot be implemented in a straightforward way (std::stack does not
support accessing elements by index). It could still be implemented in a less efficient
way using STL iterators, and efficiency does not seem to be major problem because only
Tkenv is going to invoke this function.
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3. setBar(int k, int x) could not be implemented, but this is not particularly a prob-
lem. The exception will materialize in a Tkenv error dialog when you try to change the
field value.

6.9 Namespaces

It is possible to place the generated classes into a C++ namespace, and also to use types from
other namespaces.

6.9.1 Declaring a Namespace

To place the generated types into a namespace, add a namespace declaration near the top of
the message file:

namespace inet;

If you are fond of hierarchical (nested) namespaces, you can declare one with a straightforward
syntax, using double colons in the namespace declaration. There is no need for multiple
nested namespace declarations as in C++:

namespace org::omnetpp::inet::ieee80211;

The above code will be translated into nested namespaces in the C++ code:

namespace org { namespace omnetpp { namespace inet { namespace ieee80211 {
...
}}}}

Conceptually, the namespace extends from the place of the namespace declaration to the end
of the message file. (A message file may contain only one namespace declaration.) In other
words, it does matter whether you put something above the namespace declaration line or
below it:

1. The contents of cplusplus blocks above the namespace declaration will be placed out-
side (i.e. above) the namespace block in the generated C++ header; blocks below the
namespace declaration will placed inside the C++ namespace block.

2. Type announcements are interpreted differently depending on whether they occur above
or below the namespace declaration (this will be detailed later).

3. Types defined with the message syntax are placed into the namespace of the message
file; thus, definitions must always be after the namespace declaration. Type definitions
above the namespace line will be rejected with an error message.

6.9.2 C++ Blocks and Namespace

As described above, the contents of a cplusplus block will be copied above or into the C++
namespace block in the generated header depending on whether it occurs above or below the
namespace declaration in the message file.

The placement of cplusplus blocks relative to the namespace declaration is important be-
cause you don’t want #include directives to be placed inside the C++ namespace block. That
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would cause the declarations in the header file to be interpreted as being part of the names-
pace, which they are not. Includes should always be put into cplusplus blocks above the
namespace declaration. This is so important that I repeat it:

IMPORTANT: Includes should always be placed into a cplusplus block above the
namespace declaration.

As for typedefs and other C++ code, you need to place them above or below the namespace
declaration based on whether you want them to be in the C++ namespace or not.

6.9.3 Type Announcements and Namespace

The type announcement syntax allows one to specify the namespace of the type as well, so
the following lines are syntactically correct:

packet foo::FooPacket;
packet nes::ted::name::space::BarPacket;
packet ::BazPacket;

Announced type names are interpreted in the following way:

1. If the type name contains a double colon (::), it is interpreted as being fully qualified
with an absolute namespace.

2. If the name is just an identifier (no double colon), the interpretation depends on whether
it is above or below the namespace declaration. If it is above, the name is interpreted as
a global type; otherwise it is interpreted as part of the package file’s namespace.

This also means that if you want to announce a global type, you either have to put the
announcement above the namespace declaration, or prefix the type with “::” to declare that
it is not part of a namespace.

When the announced types are used later (as field type, base class, etc.), they can be referred
to just with their simple names (without namespace); or alternatively with their fully quali-
fied names. When a message compiler encounters type name as field type or base class, it
interprets the type name in the following way:

1. If the type name contains a double colon (::), it is interpreted as being fully qualified
with an absolute namespace.

2. If the name is just an identifier (no double colon), and the message file’s namespace
contains that name, it is chosen; otherwise:

3. It is looked up among all announced types in all namespaces (including the global names-
pace), and there must be exactly one match. That is, if the same name exists in multiple
namespaces, it may only be referenced with fully qualified name.

The following code illustrates the above rules:

cplusplus {{
// includes go above the namespace line
#include <vector>
#include "IPAddress.h"
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}}

// the IPAddress type is in the global namespace
class noncobject IPAddress;

namespace foo; // namespace begins with this line

// we could also have announced IPAddress here as "::IPAddress":
//class noncobject ::IPAddress;

cplusplus {{
// we want IPAddressVector to be part of the namespace
typedef std::vector<IPAddress> IPAddressVector;
}}

// type will be understood as foo::IPAddressVector
class noncobject IPAddressVector;

packet FooPacket {
IPAddress source;
IPAddressVector neighbors;

};

Another example that uses a PacketData class and a NetworkPacket type from a net names-
pace:

// NetworkPacket.msg
namespace net;
class PacketData { }
packet NetworkPacket { }

// FooPacket.msg
cplusplus {{
#include "NetworkPacket_m.h"
}}
class net::PacketData;
packet net::NetworkPacket;

namespace foo;

packet FooPacket extends NetworkPacket
{

PacketData data;
}

6.10 Descriptor Classes

For each generated class and struct, the message compiler generates an associated descriptor
class. The descriptor class carries “reflection” information about the new class, and makes it
possible to inspect message contents in Tkenv.
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The descriptor class encapsulates virtually all information that the original message defini-
tion contains, and exposes it via member functions. It has methods for enumerating fields
(getFieldCount(), getFieldName(), getFieldTypeString(), etc.), for getting and setting
a field’s value in an instance of the class (getFieldAsString(), setFieldAsString()), for
exploring the class hierarchy (getBaseClassDescriptor(), etc.), for accessing class and field
properties, and for similar tasks. When you inspect a message or packet in the simulation,
Tkenv can uses the associated descriptor class to extract and display the field values.

The @descriptor class property can be used to control the generation of the descriptor class.
@descriptor(readonly) instructs the message compiler not to generate field setters for the
descriptor, and @descriptor(false) instructs it not to generate a description class for the
class at all.

It is also possible to use (or abuse) the message compiler for generating a descriptor class
for an existing class. (This can be useful for making your class inspectable in Tkenv.) To do
that, write a message definition for your existing class (for example, if it has int getFoo()
and setFoo(int) methods, add an int foo field to the message definition), and mark it with
@existingClass(true). This will tell the message compiler that it should not generate an
actual class (as it already exists), only a descriptor class.

6.11 Summary

This section summarizes the possibilities offered by message definitions.

Base functionality:

• generation of classes and plain C structs from concise descriptions

• default base classes: cPacket (with the packet keyword), cMessage (with the message
keyword), or cObject (with the class keyword)

The following data types are supported for fields:

• primitive types: bool, char, short, int, long; unsigned char, unsigned short, un-
signed int, unsigned long; int8_t, int16_t, int32_t, int64_t; uint8_t, uint16_t,
uint32_t, uint64_t; float, double; simtime_t

• string, a dynamically allocated string, presented as const char *

• structs and classes, declared with the message syntax or in C++ code

• typedef’d names declared in C++ and announced to the message compiler

• fixed-size arrays of the above types

• variable-size arrays of the above types (stored as a dynamically allocated array plus an
integer for the array size)

Further features:

• fields initialize to zero (except for struct/class fields)

• field initializers can be specified (except for struct/class fields)

• associating fields of integral types with enums
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• inheritance

• namespaces

• customization of generated method names

• customization of the generated class via subclassing (Generation Gap pattern)

• abstract fields (for nonstandard storage and calculated fields)

• generation of descriptor objects that encapsulate reflection information

Generated code (all generated methods are virtual, although this is not written out in the
following table):

Field declaration Generated code
primitive types

double field; double getField();
void setField(double d);

string type

string field; const char *getField();
void setField(const char *);

fixed-size arrays

double field[4]; double getField(unsigned k);
void setField(unsigned k, double d);
unsigned getFieldArraySize();

variable-size arrays

double field[]; void setFieldArraySize(unsigned n);
unsigned getFieldArraySize();
double getField(unsigned k);
void setField(unsigned k, double d);

customized class

class Foo {
@customize(true);

class Foo_Base { ... };

and you have to write:

class Foo : public Foo_Base {
...

};

abstract fields

abstract double field;double getField() = 0;
void setField(double d) = 0;
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Chapter 7

The Simulation Library

OMNeT++ has an extensive C++ class library which you can use when implementing simple
modules. Parts of the class library have already been covered in the previous chapters:

• the message class cMessage (chapter 5)

• sending and receiving messages, scheduling and canceling events, terminating the mod-
ule or the simulation (section 4.7)

• access to module gates and parameters via cModule member functions (sections 4.5 and
4.6)

• accessing other modules in the network (section 4.11)

• dynamic module creation (section 4.13)

This chapter discusses the rest of the simulation library:

• random number generation: normal(), exponential(), etc.

• module parameters: cPar class

• storing data in containers: the cArray and cQueue classes

• routing support and discovery of network topology: cTopology class

• recording statistics into files: cOutVector class

• collecting simple statistics: cStdDev and cWeightedStddev classes

• distribution estimation: cLongHistogram, cDoubleHistogram, cVarHistogram, cP-
Square, cKSplit classes

• making variables inspectable in the graphical user interface (Tkenv): the WATCH() macros

• sending debug output to and prompting for user input in the graphical user interface
(Tkenv): the ev object (cEnvir class)
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7.1 Class Library Conventions

7.1.1 Base Class

Classes in the OMNeT++ simulation library are derived from cObject or its subclass cOwne-
dObject. Functionality and conventions that come from cObject:

• name attribute

• getClassName() member and other member functions giving textual information about
the object

• conventions for assignment, copying, duplicating the object

• ownership control for containers derived from cOwnedObject

• support for traversing the object tree

• support for inspecting the object in graphical user interfaces (Tkenv)

Classes inherit and redefine several cObject member functions; in the following we’ll discuss
some of the practically important ones.

7.1.2 Setting and Getting Attributes

Member functions that set and query object attributes follow a naming convention; the setter
member function begins with set, and the getter begins with get (or in the case of boolean
attributes, with is or has, whichever is more appropriate). For example, the length attribute
of the cPacket class can be set and read like this:

pk->setBitLength(1024);
length = pk->getBitLength();

NOTE: OMNeT++ 3.x and earlier versions did not have the get verb in the name of getter
methods. There are scripts to port old source code to OMNeT++ 4.0; these tools and the
suggested porting produre are described in the Migration Guide.

7.1.3 getClassName()

For each class, the getClassName() member function returns the class name as a string:

const char *className = msg->getClassName(); // returns "cMessage"

7.1.4 Object Names

Gates, parameters and modules all have names in the NED files. At runtime, those names are
stored in the corresponding C++ objects, and are available for the code with the getName()
method. Other objects such as messages, queues, result collection objects, etc. may also
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have names. 1 Object names are generally very useful when you are tracing, debugging or
demonstrating a simulation model.

For example, you can get the name of a message object like this:

const char *name = msg->getName();

The getName() method will never return NULL, the absence of name string is always returned
as the empty string ("").

By convention, the object name is the first argument to the constructor of every class, and it
defaults to the empty string. To create an object with a name, pass the name string (a const
char * pointer) as the first argument of the constructor:

cMessage *timeoutMsg = new cMessage("timeout");

You can also change the name of an existing object:

timeoutMsg->setName("timeout");

Both the constructor and setName() make an internal copy of the string, instead of just
storing the pointer passed to them. 2

For convenience and efficiency reasons, the empty string "" and NULL are treated as inter-
changeable by library objects. That is, "" is stored as NULL but returned as "". If you create
a message object with either NULL or "" as its name string, it will be stored as NULL and
getName() will return a pointer to a static "".

cMessage *msg = new cMessage(NULL, <additional args>);
const char *str = msg->getName(); // --> returns ""

7.1.5 Object Full Name and Full Path

Objects have two additional member functions that return strings based on the object name:
getFullName() and getFullPath(). For gates and modules which are part of gate or module
vectors, getFullName() returns the name with the index in brackets. That is, for a module
node[3] in the submodule vector node[10] getName() returns "node", and getFullName()
returns "node[3]". For other objects, getFullName() is the same as getName().

getFullPath() returns getFullName(), prepended with the parent or owner object’s get-
FullPath() and separated by a dot. That is, if the node[3] module above is in the compound
module "net.subnet1", its getFullPath() method will return "net.subnet1.node[3]".

ev << this->getName(); // --> "node"
ev << this->getFullName(); // --> "node[3]"
ev << this->getFullPath(); // --> "net.subnet1.node[3]"

getClassName(), getFullName() and getFullPath() are extensively used on the graphical
runtime environment Tkenv, and also appear in error messages.

getName() and getFullName() return const char * pointers, and getFullPath() returns
std::string. This makes no difference with ev«, but when getFullPath() is used as a
"%s" argument to sprintf() you have to write getFullPath().c_str().

1Object name is inherited from cObject (which defines getName()), and from its subclass cNamedObject (which
defines setName() and actually stores the name string).

2In a simulation, there are usually many objects with the same name: modules, parameters, gates, etc. To conserve
memory, several classes keep names in a shared, reference-counted name pool instead of making separate copies for
each object. The runtime cost of looking up an existing string in the name pool and incrementing its reference count
also compares favorably to the cost of allocation and copying.
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char buf[100];
sprintf("msg is ’%80s’", msg->getFullPath().c_str()); // note c_str()

7.1.6 Copying and Duplicating Objects

The dup() member function creates an exact copy of the object, duplicating contained objects
also if necessary. This is especially useful in the case of message objects.

cMessage *copy = msg->dup();

dup() delegates to the copy constructor. Classes also declare an assignment operator (opera-
tor=()) which can be used to copy contents of an object into another object of the same type.
dup(), the copy constructor and the assignment operator all perform deep coping: objects
contained in the copied object will also be duplicated if necessary.

operator=() differs from the other two in that it does not copy the object’s name string, i.e.
does not invoke setName(). The rationale is that the name string is often used for identifying
the particular object instance, as opposed to being considered as part of its contents.

NOTE: Since the OMNeT++ 4.0 version, dup() returns a pointer to the same type as the
object itself, and not a cObject*. This is made possible by a relatively new C++ feature
called covariant return types.

7.1.7 Iterators

There are several container classes in the library (cQueue, cArray etc.) For many of them,
there is a corresponding iterator class that you can use to loop through the objects stored in
the container.

For example:

cQueue queue;

//..
for (cQueue::Iterator queueIter(queue); !queueIter.end(); queueIter++)
{

cOwnedObject *containedObject = queueIter();
}

7.1.8 Error Handling

When library objects detect an error condition, they throw a C++ exception. This exception
is then caught by the simulation environment which pops up an error dialog or displays the
error message.

At times it can be useful to be able stop the simulation at the place of the error (just before the
exception is thrown) and use a C++ debugger to look at the stack trace and examine variables.
Enabling the debug-on-errors ini file entry lets you do that – check it in section 10.2 .

If you detect an error condition in your code, you can stop the simulation with an error mes-
sage using the opp_error() function. opp_error()’s argument list works like printf(): the
first argument is a format string which can contain "%s", "%d" etc, filled in using subsequent
arguments.
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An example:

if (msg->getControlInfo()==NULL)
opp_error("message (%s)%s has no control info attached",

msg->getClassName(), msg->getName());

7.2 Logging from Modules

The logging feature will be used extensively in the code examples, so we introduce it here.

The ev object represents the user interface of the simulation. You can send debugging output
to ev with the C++-style output operators:

ev << "packet received, sequence number is " << seqNum << endl;
ev << "queue full, discarding packet\n";

An alternative solution is ev.printf():

ev.printf("packet received, sequence number is %d\n", seqNum);

The exact way messages are displayed to the user depends on the user interface. In the
command-line user interface (Cmdenv), the message is simply dumped to the standard out-
put. (This output can also be disabled from omnetpp.ini so that it doesn’t slow down simu-
lation when it is not needed.) In Tkenv, the runtime GUI, you can open a text output window
for every module. It is not recommended that you use printf() or cout to print messages –
ev output can be controlled more easily from omnetpp.ini and it is more convenient to view,
using Tkenv.

One can save CPU cycles by making logging statements conditional on whether the output is
actually being displayed or recorded anywhere. The ev.isDisabled() call returns true when
ev« output is disabled, such as in Tkenv or Cmdenv “express” mode. Thus, one can write
code like this:

if (!ev.isDisabled())
ev << "Packet " << msg->getName() << " received\n";

A more sophisticated implementation of the same idea is to the EV macro which can be used
in logging statements instead of ev. One would simply write EV« instead of ev«:

EV << "Packet " << msg->getName() << " received\n";

EV’s implementation makes use of the fact that the « operator is bound more loosely than the
conditional operator (?:).

7.3 Simulation Time Conversion

Simulation time is represented by the type simtime_t which is a typedef to a class that stores
simulation time in a 64-bit integer, using decimal ïňĄxed-point representation. OMNeT++
provides utility functions, which convert simtime_t to a printable string ("3s 130ms 230us")
and vica versa.

The simtimeToStr() function converts a simtime_t (passed in the first argument) to textual
form. The result is placed into the char array pointed to by the second argument. If the
second argument is omitted or it is NULL, simtimeToStr() will place the result into a static
buffer which is overwritten with each call. An example:
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char buf[32];
ev.printf("t1=%s, t2=%s\n", simtimeToStr(t1), simTimeToStr(t2,buf));

The simtimeToStrShort() is similar to simtimeToStr(), but its output is more concise.

The strToSimtime() function parses a time specification passed in a string, and returns a
simtime_t. If the string cannot be entirely interpreted, -1 is returned.

simtime_t t = strToSimtime("30s 152ms");

Another variant, strToSimtime0() can be used if the time string is a substring in a larger
string. Instead of taking a char*, it takes a reference to char* (char*&) as the first argument.
The function sets the pointer to the first character that could not be interpreted as part of
the time string, and returns the value. It never returns -1; if nothing at the beginning of the
string looked like simulation time, it returns 0.

const char *s = "30s 152ms and something extra";

simtime_t t = strToSimtime0(s); // now s points to "and something extra"

7.4 Generating Random Numbers

Random numbers in simulation are never random. Rather, they are produced using determin-
istic algorithms. Algorithms take a seed value and perform some deterministic calculations
on them to produce a “random” number and the next seed. Such algorithms and their im-
plementations are called random number generators or RNGs, or sometimes pseudo random
number generators or PRNGs to highlight their deterministic nature. 3

Starting from the same seed, RNGs always produce the same sequence of random numbers.
This is a useful property and of great importance, because it makes simulation runs repeat-
able.

RNGs produce uniformly distributed integers in some range, usually between 0 or 1 and 232

or so. Mathematical transformations are used to produce random variates from them that
correspond to specific distributions.

7.4.1 Random Number Generators

Mersenne Twister

By default, OMNeT++ uses the Mersenne Twister RNG (MT) by M. Matsumoto and T. Nishimura
[MN98]. MT has a period of 219937 − 1, and 623-dimensional equidistribution property is as-
sured. MT is also very fast: as fast or faster than ANSI C’s rand().

The "Minimal Standard" RNG

OMNeT++ releases prior to 3.0 used a linear congruential generator (LCG) with a cycle length
of 231−2, described in [Jai91], pp. 441-444,455. This RNG is still available and can be selected
from omnetpp.ini (Chapter 11). This RNG is only suitable for small-scale simulation studies.
As shown by Karl Entacher et al. in [EHW02], the cycle length of about 231 is too small (on

3There are real random numbers as well, see e.g. http://www.random.org/, http://www.comscire.com, or the
Linux /dev/random device. For non-random numbers, try www.noentropy.net.
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todays fast computers it is easy to exhaust all random numbers), and the structure of the
generated “random” points is too regular. The [Hel98] paper provides a broader overview of
issues associated with RNGs used for simulation, and it is well worth reading. It also contains
useful links and references on the topic.

The Akaroa RNG

When you execute simulations under Akaroa control (see section 11.5), you can also select
Akaroa’s RNG as the RNG underlying for the OMNeT++ random number functions. The Akaroa
RNG also has to be selected from omnetpp.ini (section 10.5).

Other RNGs

OMNeT++ allows plugging in your own RNGs as well. This mechanism, based on the cRNG in-
terface, is described in section 16.1. For example, one candidate to include could be L’Ecuyer’s
CMRG [LSCK02] which has a period of about 2191 and can provide a large number of guaran-
teed independent streams.

7.4.2 Random Number Streams, RNG Mapping

Simulation programs may consume random numbers from several streams, that is, from sev-
eral independent RNG instances. For example, if a network simulation uses random numbers
for generating packets and for simulating bit errors in the transmission, it might be a good
idea to use different random streams for both. Since the seeds for each stream can be con-
figured independently, this arrangement would allow you to perform several simulation runs
with the same traffic but with bit errors occurring in different places. A simulation technique
called variance reduction is also related to the use of different random number streams.

It is also important that different streams and also different simulation runs use non-overlapping
series of random numbers. Overlap in the generated random number sequences can intro-
duce unwanted correlation in your results.

The number of random number streams as well as seeds for the individual streams can be
configured in omnetpp.ini (section 10.5). For the "minimal standard RNG", the seedtool
program can be used for selecting good seeds (section 10.5.5).

In OMNeT++, streams are identified with RNG numbers. The RNG numbers used in simple
modules may be arbitrarily mapped to the actual random number streams (actual RNG in-
stances) from omnetpp.ini (section 10.5). The mapping allows for great flexibility in RNG
usage and random number streams configuration – even for simulation models which were
not written with RNG awareness.

7.4.3 Accessing The RNGs

The intrand(n) function generates random integers in the range [0, n − 1], and dblrand()
generates a random double on [0, 1). These functions simply wrap the underlying RNG objects.
Examples:

int dice = 1 + intrand(6); // result of intrand(6) is in the range 0..5
double p = dblrand(); // dblrand() produces numbers in [0,1)

They also have a counterparts that use generator k:
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int dice = 1 + intrand(k,6); // uses generator k
double prob = dblrand(k); // ""

The underlying RNG objects are subclassed from cRNG, and they can be accessed via cMod-
ule’s getRNG() method. The argument to getRNG() is a local RNG number which will un-
dergo RNG mapping.

cRNG *rng1 = getRNG(1);

cRNG contains the methods implementing the above intrand() and dblrand() functions.
The cRNG interface also allows you to access the “raw” 32-bit random numbers generated by
the RNG and to learn their ranges (intRand(), intRandMax()) as well as to query the number
of random numbers generated (getNumbersDrawn()).

7.4.4 Random Variates

The following functions are based on dblrand() and return random variables of different
distributions:

Random variate functions use one of the random number generators (RNGs) provided by
OMNeT++. By default this is generator 0, but you can specify which one to be used.

OMNeT++ has the following predefined distributions:

Function Description
Continuous distributions

uniform(a, b, rng=0) uniform distribution in the range [a,b)
exponential(mean, rng=0) exponential distribution with the given

mean
normal(mean, stddev, rng=0) normal distribution with the given mean

and standard deviation
truncnormal(mean, stddev,
rng=0)

normal distribution truncated to nonnega-
tive values

gamma_d(alpha, beta, rng=0) gamma distribution with parameters al-
pha>0, beta>0

beta(alpha1, alpha2, rng=0) beta distribution with parameters al-
pha1>0, alpha2>0

erlang_k(k, mean, rng=0) Erlang distribution with k>0 phases and the
given mean

chi_square(k, rng=0) chi-square distribution with k>0 degrees of
freedom

student_t(i, rng=0) student-t distribution with i>0 degrees of
freedom

cauchy(a, b, rng=0) Cauchy distribution with parameters a,b
where b>0

triang(a, b, c, rng=0) triangular distribution with parameters
a<=b<=c, a!=c

lognormal(m, s, rng=0) lognormal distribution with mean m and
variance s>0

weibull(a, b, rng=0) Weibull distribution with parameters a>0,
b>0

pareto_shifted(a, b, c, rng=0) generalized Pareto distribution with param-
eters a, b and shift c
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Discrete distributions
intuniform(a, b, rng=0) uniform integer from a..b
bernoulli(p, rng=0) result of a Bernoulli trial with probability

0<=p<=1 (1 with probability p and 0 with
probability (1-p))

binomial(n, p, rng=0) binomial distribution with parameters n>=0
and 0<=p<=1

geometric(p, rng=0) geometric distribution with parameter
0<=p<=1

negbinomial(n, p, rng=0) negative binomial distribution with param-
eters n>0 and 0<=p<=1

poisson(lambda, rng=0) Poisson distribution with parameter lambda

They are the same functions that can be used in NED files. intuniform() generates integers
including both the lower and upper limit, so for example the outcome of tossing a coin could
be written as intuniform(1,2). truncnormal() is the normal distribution truncated to non-
negative values; its implementation generates a number with normal distribution and if the
result is negative, it keeps generating other numbers until the outcome is nonnegative.

If the above distributions don’t suffice, you can write your own functions. If you register your
functions with the Define_NED_Function() macro, you can use them in NED files and ini
files too.

7.4.5 Random Numbers from Histograms

You can also specify your distribution as a histogram. The cLongHistogram, cDoubleHis-
togram, cVarHistogram, cKSplit or cPSquare classes are there to generate random num-
bers from equidistant-cell or equiprobable-cell histograms. This feature is documented later,
with the statistical classes.

7.5 Container Classes

7.5.1 Queue class: cQueue

Basic Usage

cQueue is a container class that acts as a queue. cQueue can hold objects of type derived
from cObject (almost all classes from the OMNeT++ library), such as cMessage, cPar, etc.
Internally, cQueue uses a double-linked list to store the elements.

A queue object has a head and a tail. Normally, new elements are inserted at its head and
elements are removed at its tail.

The basic cQueue member functions dealing with insertion and removal are insert() and
pop(). They are used like this:

cQueue queue("my-queue");
cMessage *msg;

// insert messages
for (int i=0; i<10; i++)
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Figure 7.1: cQueue: insertion and removal

{
msg = new cMessage;
queue.insert(msg);

}

// remove messages
while(!queue.empty())
{

msg = (cMessage *)queue.pop();
delete msg;

}

The length() member function returns the number of items in the queue, and empty() tells
whether there is anything in the queue.

There are other functions dealing with insertion and removal. The insertBefore() and
insertAfter() functions insert a new item exactly before or after a specified one, regardless
of the ordering function.

The front() and back() functions return pointers to the objects at the front and back of the
queue, without affecting queue contents.

The pop() function can be used to remove items from the tail of the queue, and the remove()
function can be used to remove any item known by its pointer from the queue:

queue.remove(msg);

Priority Queue

By default, cQueue implements a FIFO, but it can also act as a priority queue, that is, it
can keep the inserted objects ordered. If you want to use this feature, you have to provide a
function that takes two cObject pointers, compares the two objects and returns -1, 0 or 1 as
the result (see the reference for details). An example of setting up an ordered cQueue:

cQueue queue("queue", someCompareFunc);

If the queue object is set up as an ordered queue, the insert() function uses the ordering
function: it searches the queue contents from the head until it reaches the position where the
new item needs to be inserted, and inserts it there.
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Iterators

Normally, you can only access the objects at the head or tail of the queue. However, if you
use an iterator class, cQueue::Iterator, you can examine each object in the queue.

The cQueue::Iterator constructor takes two arguments; the first is the queue object and
the second argument specifies the initial position of the iterator: 0=tail, 1=head. Otherwise it
acts as any other OMNeT++ iterator class: you can use the ++ and - operators to advance it,
the () operator to get a pointer to the current item, and the end() member function to examine
if you are at the end (or the beginning) of the queue.

An example:

for( cQueue::Iterator iter(queue,1); !iter.end(), iter++)
{

cMessage *msg = (cMessage *) iter();
//...

}

7.5.2 Expandable Array: cArray

Basic Usage

cArray is a container class that holds objects derived from cObject. cArray stores the
pointers of the objects inserted instead of making copies. cArray works as an array, but it
grows automatically when it becomes full. Internally, cArray is implemented with an array of
pointers; when the array fills up, it is reallocated.

cArray objects are used in OMNeT++ to store parameters attached to messages, and inter-
nally, for storing module parameters and gates.

Creating an array:

cArray array("array");

Adding an object at the first free index:

cPar *p = new cMsgPar("par");
int index = array.add( p );

Adding an object at a given index (if the index is occupied, you will get an error message):

cPar *p = new cMsgPar("par");
int index = array.addAt(5,p);

Finding an object in the array:

int index = array.find(p);

Getting a pointer to an object at a given index:

cPar *p = (cPar *) array[index];

You can also search the array or get a pointer to an object by the object’s name:

int index = array.find("par");
Par *p = (cPar *) array["par"];
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You can remove an object from the array by calling remove() with the object name, the index
position or the object pointer:

array.remove("par");
array.remove(index);
array.remove( p );

The remove() function doesn’t deallocate the object, but it returns the object pointer. If you
also want to deallocate it, you can write:

delete array.remove( index );

Iteration

cArray has no iterator, but it is easy to loop through all the indices with an integer variable.
The size() member function returns the largest index plus one.

for (int i=0; i<array.size(); i++)
{

if (array[i]) // is this position used?
{

cObject *obj = array[i];
ev << obj->getName() << endl;

}
}

7.6 Routing Support: cTopology

7.6.1 Overview

The cTopology class was designed primarily to support routing in telecommunication or
multiprocessor networks.

A cTopology object stores an abstract representation of the network in graph form:

• each cTopology node corresponds to a module (simple or compound), and

• each cTopology edge corresponds to a link or series of connecting links.

You can specify which modules (either simple or compound) you want to include in the graph.
The graph will include all connections among the selected modules. In the graph, all nodes are
at the same level; there is no submodule nesting. Connections which span across compound
module boundaries are also represented as one graph edge. Graph edges are directed, just as
module gates are.

If you are writing a router or switch model, the cTopology graph can help you determine
what nodes are available through which gate and also to find optimal routes. The cTopology
object can calculate shortest paths between nodes for you.

The mapping between the graph (nodes, edges) and network model (modules, gates, connec-
tions) is preserved: you can easily find the corresponding module for a cTopology node and
vica versa.
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7.6.2 Basic Usage

You can extract the network topology into a cTopology object by a single function call. You
have several ways to select which modules you want to include in the topology:

• by module type

• by a parameter’s presence and its value

• with a user-supplied boolean function

First, you can specify which node types you want to include. The following code extracts all
modules of type Router or Host. (Router and Host can be either simple or compound module
types.)

cTopology topo;
topo.extractByModuleType("Router", "Host", NULL);

Any number of module types can be supplied; the list must be terminated by NULL.

A dynamically assembled list of module types can be passed as a NULL-terminated array of
const char* pointers, or in an STL string vector std::vector<std::string>. An example
for the former:

cTopology topo;
const char *typeNames[3];
typeNames[0] = "Router";
typeNames[1] = "Host";
typeNames[2] = NULL;
topo.extractByModuleType(typeNames);

Second, you can extract all modules which have a certain parameter:

topo.extractByParameter( "ipAddress" );

You can also specify that the parameter must have a certain value for the module to be
included in the graph:

cMsgPar yes = "yes";
topo.extractByParameter( "includeInTopo", &yes );

The third form allows you to pass a function which can determine for each module whether
it should or should not be included. You can have cTopology pass supplemental data to the
function through a void* pointer. An example which selects all top-level modules (and does
not use the void* pointer):

int selectFunction(cModule *mod, void *)
{

return mod->getParentModule() == simulation.getSystemModule();
}

topo.extractFromNetwork( selectFunction, NULL );

A cTopology object uses two types: cTopology::Node for nodes and cTopology::Link for
edges. (sTopoLinkIn and cTopology::LinkOut are ‘aliases’ for cTopology::Link; we’ll talk
about them later.)

Once you have the topology extracted, you can start exploring it. Consider the following code
(we’ll explain it shortly):
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for (int i=0; i<topo.getNumNodes(); i++)
{

cTopology::Node *node = topo.getNode(i);
ev << "Node i=" << i << " is " << node->getModule()->getFullPath() << endl;
ev << " It has " << node->getNumOutLinks() << " conns to other nodes\n";
ev << " and " << node->getNumInLinks() << " conns from other nodes\n";

ev << " Connections to other modules are:\n";
for (int j=0; j<node->getNumOutLinks(); j++)
{

cTopology::Node *neighbour = node->getLinkOut(j)->getRemoteNode();
cGate *gate = node->getLinkOut(j)->getLocalGate();
ev << " " << neighbour->getModule()->getFullPath()

<< " through gate " << gate->getFullName() << endl;
}

}

The getNumNodes() member function (1st line) returns the number of nodes in the graph,
and getNode(i) returns a pointer to the ith node, an cTopology::Node structure.

The correspondence between a graph node and a module can be obtained by:

cTopology::Node *node = topo.getNodeFor( module );
cModule *module = node->getModule();

The getNodeFor() member function returns a pointer to the graph node for a given module.
(If the module is not in the graph, it returns NULL). getNodeFor() uses binary search within
the cTopology object so it is relatively fast.

cTopology::Node’s other member functions let you determine the connections of this node:
getNumInLinks(), getNumOutLinks() return the number of connections, in(i) and out(i)
return pointers to graph edge objects.

By calling member functions of the graph edge object, you can determine the modules and
gates involved. The getRemoteNode() function returns the other end of the connection,
and getLocalGate(), getRemoteGate(), getLocalGateId() and getRemoteGateId() re-
turn the gate pointers and ids of the gates involved. (Actually, the implementation is a bit
tricky here: the same graph edge object cTopology::Link is returned either as cTopol-
ogy::LinkIn or as cTopology::LinkOut so that “remote” and “local” can be correctly inter-
preted for edges of both directions.)

7.6.3 Shortest Paths

The real power of cTopology is in finding shortest paths in the network to support optimal
routing. cTopology finds shortest paths from all nodes to a target node. The algorithm is
computationally inexpensive. In the simplest case, all edges are assumed to have the same
weight.

A real-life example assumes we have the target module pointer; finding the shortest path to
the target looks like this:

cModule *targetmodulep =...;
cTopology::Node *targetnode = topo.getNodeFor( targetmodulep );
topo.calculateUnweightedSingleShortestPathsTo( targetnode );
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This performs the Dijkstra algorithm and stores the result in the cTopology object. The result
can then be extracted using cTopology and cTopology::Node methods. Naturally, each call
to calculateUnweightedSingleShortestPathsTo() overwrites the results of the previous
call.

Walking along the path from our module to the target node:

cTopology::Node *node = topo.getNodeFor( this );

if (node == NULL)
{

ev < "We (" << getFullPath() << ") are not included in the topology.\n";
}
else if (node->getNumPaths()==0)
{

ev << "No path to destination.\n";
}
else
{

while (node != topo.getTargetNode())
{

ev << "We are in " << node->getModule()->getFullPath() << endl;
ev << node->getDistanceToTarget() << " hops to go\n";
ev << "There are " << node->getNumPaths()

<< " equally good directions, taking the first one\n";
cTopology::LinkOut *path = node->getPath(0);
ev << "Taking gate " << path->getLocalGate()->getFullName()

<< " we arrive in " << path->getRemoteNode()->getModule()->getFullPath()
<< " on its gate " << path->getRemoteGate()->getFullName() << endl;

node = path->getRemoteNode();
}

}

The purpose of the getDistanceToTarget() member function of a node is self-explanatory.
In the unweighted case, it returns the number of hops. The getNumPaths() member function
returns the number of edges which are part of a shortest path, and path(i) returns the ith
edge of them as cTopology::LinkOut. If the shortest paths were created by the ...Sin-
gleShortestPaths() function, getNumPaths() will always return 1 (or 0 if the target is not
reachable), that is, only one of the several possible shortest paths are found. The ...Mul-
tiShortestPathsTo() functions find all paths, at increased run-time cost. The cTopology’s
getTargetNode() function returns the target node of the last shortest path search.

You can enable/disable nodes or edges in the graph. This is done by calling their enable()
or disable() member functions. Disabled nodes or edges are ignored by the shortest paths
calculation algorithm. The isEnabled() member function returns the state of a node or edge
in the topology graph.

One usage of disable() is when you want to determine in how many hops the target node
can be reached from our node through a particular output gate. To compute this, you compute
the shortest paths to the target from the neighbor node while disabling the current node to
prevent the shortest paths from going through it:

cTopology::Node *thisnode = topo.getNodeFor( this );
thisnode->disable();
topo.calculateUnweightedSingleShortestPathsTo( targetnode );
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thisnode->enable();

for (int j=0; j<thisnode->getNumOutLinks(); j++)
{

cTopology::LinkOut *link = thisnode->getLinkOut(i);
ev << "Through gate " << link->getLocalGate()->getFullName() << " : "

<< 1 + link->getRemoteNode()->getDistanceToTarget() << " hops" << endl;
}

In the future, other shortest path algorithms will also be implemented:

unweightedMultiShortestPathsTo(cTopology::Node *target);
weightedSingleShortestPathsTo(cTopology::Node *target);
weightedMultiShortestPathsTo(cTopology::Node *target);

7.7 Pattern Matching

Since version 4.3, OMNeT++ contains two utility classes for pattern matching, cPattern-
Matcher and cMatchExpression.

cPatternMatcher is a glob-style pattern matching class, adopted to special OMNeT++ re-
quirements. It recognizes wildcards, character ranges and numeric ranges, and supports
options such as case sensitive and whole string matching. cMatchExpression builds on top
of cPatternMatcher and extends it in two ways: first, it lets you combine patterns with AND,
OR, NOT into boolean expressions, and second, it applies the pattern expressions to objects
instead of text. These classes are especially useful for making model-specific configuration
files more concise or more powerful by introducing patterns.

7.7.1 cPatternMatcher

cPatternMatcher holds a pattern string and several option flags, and has a boolean matches()
function that lets you check whether the string passed as argument matches the pattern with
the given flags. The pattern and the flags can be set via the constructor or by calling the
setPattern() member function.

The pattern syntax is a variation on Unix glob-style patterns. The most apparent differences
to globbing rules are the distinction between * and **, and that character ranges should be
written with curly braces instead of square brackets; that is, any-letter is expressed as {a-
zA-Z} and not as [a-zA-Z], because square brackets are reserved for the notation of module
vector indices.

The following option flags are supported:

• dottedpath: controls whether some wildcards (?, *) will match dots

• fullstring: controls whether to do full string or substring match.

• casesensitive: whether matching is case sensitive or case insensitive

Patterns may contain the following elements:

• question mark, ? : matches any character (except dot if dottedpath=true)
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• asterisk, * : matches zero or more characters (except dots if dottedpath=true)

• double asterisk, ** : matches zero or more characters, including dots

• set, e.g. {a-zA-Z} : matches any character that is contained in the set

• negated set, e.g. {^a-z}: matches any character that is NOT contained in the set

• numeric range, e.g. {38..150} : matches any number (i.e. sequence of digits) in the
given range

• numeric index range, e.g. [38..150] : matches any number in square brackets in the
given range

• backslash, \ : takes away the special meaning of the subsequent character

NOTE: The dottedpath option was introduced to make matching OMNeT++ module paths
more powerful. When it is off (dottedpath=false), there is no difference between * and **,
they both match any character sequence. However, when matching OMNeT++ module
paths or other strings where dot is a separator character, it is useful to turn on the
dottedpath mode (dottedpath=true). In that mode, *, not being able to cross a dot, can
match only a single path component (or part of it), and ** can match multiple path
components.

Sets and negated sets can contain several character ranges and also enumeration of charac-
ters, for example {_a-zA-Z0-9} or {xyzc-f}. To include a hyphen in the set, place it at a
position where it cannot be interpreted as character range, for example {a-z-} or {-a-z}.
If you want to include a close brace in the set, it must be the first character: {}a-z}, or for
a negated set: {^}a-z}. A backslash is always taken as literal backslash (and NOT as es-
cape character) within set definitions. When doing case-insensitive match, avoid ranges that
include both alpha and non-alpha characters, because they might cause funny results.

For numeric ranges and numeric index ranges, ranges are inclusive, and both the start
and the end of the range are optional; that is, {10..}, {..99} and {..} are all valid nu-
meric ranges (the last one matches any number). Only nonnegative integers can be matched.
Caveat: {17..19} will match "a17", "117" and also "963217"!

The cPatternMatcher constructor and the setPattern() member function have similar sig-
natures:

cPatternMatcher(const char *pattern, bool dottedpath, bool fullstring,
bool casesensitive);

void setPattern(const char *pattern, bool dottedpath, bool fullstring,
bool casesensitive);

The matcher function:

bool matches(const char *text);

There are also some more utility functions for printing the pattern, determining whether a
pattern contains wildcards, etc.

Example:

cPatternMatcher matcher("**.host[*]", true, true, true);
ev << matcher.matches("Net.host[0]") << endl; // -> true
ev << matcher.matches("Net.area1.host[0]") << endl; // -> true
ev << matcher.matches("Net.host") << endl; // -> false
ev << matcher.matches("Net.host[0].tcp") << endl; // -> false
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7.7.2 cMatchExpression

The cMatchExpression class builds on top of cPatternMatcher, and lets you determine
whether an object matches a given pattern expression.

A pattern expression consists of elements in the fieldname(pattern) syntax; they check whether
the string representation of the given field of the object matches the pattern. For example,
srcAddr(192.168.0.*) will match if the srcAddr field of the object starts with 192.168.0. A
naked pattern (without field name and parens) is also accepted, and it will be matched against
the default field of the object, which will usually be its name.

These elements can be combined with the AND, OR, NOT operators, accepted in both lower-
case and uppercase. AND has higher precedence than OR, but parentheses can be used to
change the evaluation order.

Pattern examples:

• "node*"

• "node* or host*"

• "packet-* and className(PPPFrame)"

• "className(TCPSegment) and byteLength({4096..})"

• "className(TCPSegment) and (SYN or DATA-*) and not kind({0..2})"

The cMatchExpression class has a constructor and setPattern() method similar to those
of cPatternMatcher:

cMatchExpression(const char *pattern, bool dottedpath, bool fullstring,
bool casesensitive);

void setPattern(const char *pattern, bool dottedpath, bool fullstring,
bool casesensitive);

However, the matcher function takes a cMatchExpression::Matchable instead of string:

bool matches(const Matchable *object);

This means that objects to be matched must either be subclassed from cMatchExpres-
sion::Matchable, or be wrapped into some adapter class that does. cMatchExpression::Matchable
is a small abstract class with only a few pure virtual functions:

/**
* Objects to be matched must implement this interface

*/
class SIM_API Matchable
{

public:
/**
* Return the default string to match. The returned pointer will not be

* cached by the caller, so it is OK to return a pointer to a static buffer.

*/
virtual const char *getAsString() const = 0;

/**
* Return the string value of the given attribute, or NULL if the object
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* doesn’t have an attribute with that name. The returned pointer will not

* be cached by the caller, so it is OK to return a pointer to a static buffer.

*/
virtual const char *getAsString(const char *attribute) const = 0;

/**
* Virtual destructor.

*/
virtual ~Matchable() {}

};

To be able to match instances of an existing class that is not already a Matchable, you need
to write an adapter class. An adapter class that we can look at as an example is cMatch-
ableString. cMatchableString makes it possible to match strings with a cMatchExpres-
sion, and is part of OMNeT++:

/**
* Wrapper to make a string matchable with cMatchExpression.

*/
class cMatchableString : public cMatchExpression::Matchable
{

private:
std::string str;

public:
cMatchableString(const char *s) {str = s;}
virtual const char *getAsString() const {return str.c_str();}
virtual const char *getAsString(const char *name) const {return NULL;}

};

An example:

cMatchExpression expr("foo* or bar*", true, true, true);
cMatchableString str1("this is a foo");
cMatchableString str2("something else");
ev << expr.matches(&str1) << endl; // -> true
ev << expr.matches(&str2) << endl; // -> false

Or, by using temporaries:

ev << expr.matches(&cMatchableString("this is a foo")) << endl; // -> true
ev << expr.matches(&cMatchableString("something else")) << endl; // -> false

7.8 Statistics and Distribution Estimation

7.8.1 cStatistic and Descendants

There are several statistic and result collection classes: cStdDev, cWeightedStdDev, Long-
Histogram, cDoubleHistogram, cVarHistogram, cPSquare and cKSplit. They are all de-
rived from the abstract base class cStatistic.

• cStdDev keeps the count, mean, standard deviation, minimum and maximum value etc
of the observations.
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• cWeightedStdDev is similar to cStdDev, but accepts weighted observations. cWeight-
edStdDev can be used for example to calculate time average. It is the only weighted
statistics class.

• cLongHistogram and cDoubleHistogram are descendants of cStdDev and also keep an
approximation of the distribution of the observations using equidistant (equal-sized) cell
histograms.

• cVarHistogram implements a histogram where cells do not need to be the same size.
You can manually add the cell (bin) boundaries, or alternatively, automatically have a
partitioning created where each bin has the same number of observations (or as close to
that as possible).

• cPSquare is a class that uses the P 2 algorithm described in [JC85]. The algorithm calcu-
lates quantiles without storing the observations; one can also think of it as a histogram
with equiprobable cells.

• cKSplit uses a novel, experimental method, based on an adaptive histogram-like algo-
rithm.

Basic Usage

One can insert an observation into a statistic object with the collect() function or the +=
operator (they are equivalent). cStdDev has the following methods for getting statistics from
the object: getCount(), getMin(), getMax(), getMean(), getStddev(), getVariance(),
getSum(), getSqrSum() with the obvious meanings. An example usage for cStdDev:

cStdDev stat("stat");

for (int i=0; i<10; i++)
stat.collect( normal(0,1) );

long numSamples = stat.getCount();
double smallest = stat.getMin(),

largest = stat.getMax();
double mean = stat.getMean(),

standardDeviation = stat.getStddev(),
variance = stat.getVariance();

7.8.2 Distribution Estimation

Initialization and Usage

The distribution estimation classes (cLongHistogram, cDoubleHistogram, cVarHistogram,
cPSquare and cKSplit) are derived from cDensityEstBase. Distribution estimation classes
(except for cPSquare) assume that the observations are within a range. You may specify the
range explicitly (based on some a-priori info about the distribution), or you may let the object
collect the first few observations and determine the range from them.

The following member functions exist for setting up the range and to specify how many ob-
servations should be used for automatically determining the range (these methods are part of
cDensityEstBase):
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setRange(lower,upper);
setRangeAuto(numFirstvals, rangeExtFactor);
setRangeAutoLower(upper, numFirstvals, rangeExtFactor);
setRangeAutoUpper(lower, numFirstvals, rangeExtFactor);

setNumFirstVals(numFirstvals);

The following example creates a histogram with 20 cells and automatic range estimation:

cDoubleHistogram histogram("histogram", 20);
histogram.setRangeAuto(100,1.5);

Here, 20 is the number of cells (not including the underflow/overflow cells, see later), and
100 is the number of observations to be collected before setting up the cells. 1.5 is the range
extension factor. It means that the actual range of the initial observations will be expanded
1.5 times and this expanded range will be used to lay out the cells. This method increases the
chance that further observations fall in one of the cells and not outside the histogram range.

histogram range

range of initial observations

Figure 7.2: Setting up a histogram’s range

The isTransformed() function returns true when the cells have already been set up. You
can force range estimation and setting up the cells by calling the transform() function.

The observations that fall outside the histogram range will be counted as underflows and
overflows. The number of underflows and overflows are returned by the getUnderflowCell()
and getOverflowCell() member functions.

overflowsunderflows cells

Figure 7.3: Histogram structure after setting up the cells

You create a P 2 object by specifying the number of cells:

cPSquare psquare("interarrival-times", 20);

Afterwards, a cPSquare can be used with the same member functions as a histogram.

Getting Histogram Data

There are three member functions to explicitly return cell boundaries and the number of ob-
servations in each cell. getNumCells() returns the number of cells, getBasepoint(int k)
returns the kth base point, getCellValue(int k) returns the number of observations in cell
k, and getCellPDF(int k) returns the PDF value in the cell (i.e. between getBasepoint(k)
and getBasepoint(k+1)). The getCellInfo(k) method returns multiple data (cell bounds,
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counter, relative frequency) packed together in a struct. These functions work for all his-
togram types, plus cPSquare and cKSplit.

base point 0,1,...

cell 0,1,...

Figure 7.4: base points and cells

An example:

long n = histogram.getCount();
for (int i=0; i<histogram.getNumCells(); i++)
{

double cellWidth = histogram.getBasepoint(i+1)-histogram.getBasepoint(i);
int count = histogram.getCellValue(i);
double pdf = histogram.getCellPDF(i);
//...

}

The getPDF(x) and getCDF(x) member functions return the value of the Probability Density
Function and the Cumulated Density Function at a given x, respectively.

Random Number Generation from Distributions

The random() member function generates random numbers from the distribution stored by
the object:

double rnd = histogram.random();

cStdDev assumes normal distribution.

The cPar object stores the pointer to the histogram (or P 2 object), and whenever it is asked
for the value, calls the histogram object’s random() function:

double rnd = (double)rndPar; // random number from the cPSquare

Storing and Loading Distributions

The statistic classes have loadFromFile() member functions that read the histogram data
from a text file. If you need a custom distribution that cannot be written (or it is inefficient) as
a C function, you can describe it in histogram form stored in a text file, and use a histogram
object with loadFromFile().
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You can also use saveToFile()that writes out the distribution collected by the histogram
object:

FILE *f = fopen("histogram.dat","w");
histogram.saveToFile(f); // save the distribution
fclose(f);

cDoubleHistogram hist2("Hist-from-file");
FILE *f2 = fopen("histogram.dat","r");
hist2.loadFromFile(f2); // load stored distribution
fclose(f2);

Histogram with Custom Cells

The cVarHistogram class can be used to create histograms with arbitrary (non-equidistant)
cells. It can operate in two modes:

• manual, where you specify cell boundaries explicitly before starting collecting

• automatic, where transform() will set up the cells after collecting a certain number of
initial observations. The cells will be set up so that as far as possible, an equal number
of observations fall into each cell (equi-probable cells).

Modes are selected with a transform-type parameter:

• HIST_TR_NO_TRANSFORM: no transformation; uses bin boundaries previously defined by
addBinBound()

• HIST_TR_AUTO_EPC_DBL: automatically creates equiprobable cells

• HIST_TR_AUTO_EPC_INT: like the above, but for integers

Creating an object:

cVarHistogram(const char *s=NULL,
int numcells=11,
int transformtype=HIST_TR_AUTO_EPC_DBL);

Manually adding a cell boundary:

void addBinBound(double x);

Rangemin and rangemax is chosen after collecting the numFirstVals initial observations.
One cannot add cell boundaries when the histogram has already been transformed.

7.8.3 The k-split Algorithm

Purpose

The k-split algorithm is an on-line distribution estimation method. It was designed for
on-line result collection in simulation programs. The method was proposed by Varga and
Fakhamzadeh in 1997. The primary advantage of k-split is that without having to store the
observations, it gives a good estimate without requiring a-priori information about the distri-
bution, including the sample size. The k-split algorithm can be extended to multi-dimensional
distributions, but here we deal with the one-dimensional version only.
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The Algorithm

The k-split algorithm is an adaptive histogram-type estimate which maintains a good parti-
tioning by doing cell splits. We start out with a histogram range [xlo, xhi) with k equal-sized
histogram cells with observation counts n1, n2, · · ·nk. Each collected observation increments
the corresponding observation count. When an observation count ni reaches a split threshold,
the cell is split into k smaller, equal-sized cells with observation counts ni,1, ni,2, · · ·ni,k initial-
ized to zero. The ni observation count is remembered and is called the mother observation
count to the newly created cells. Further observations may cause cells to be split further (e.g.
ni,1,1, ...ni,1,k etc.), thus creating a k-order tree of observation counts where leaves contain live
counters that are actually incremented by new observations, and intermediate nodes contain
mother observation counts for their children. If an observation falls outside the histogram
range, the range is extended in a natural manner by inserting new level(s) at the top of the
tree. The fundamental parameter to the algorithm is the split factor k. Experience has shown
that k = 2 works best.
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Figure 7.5: Illustration of the k-split algorithm, k = 2. The numbers in boxes represent the
observation count values

For density estimation, the total number of observations that fell into each cell of the partition
has to be determined. For this purpose, mother observations in each internal node of the tree
must be distributed among its child cells and propagated up to the leaves.

Let n...,i be the (mother) observation count for a cell, s...,i be the total observation count in a
cell n...,i plus the observation counts in all its sub-, sub-sub-, etc. cells), and m...,i the mother
observations propagated to the cell. We are interested in the ñ...,i = n...,i + m...,i estimated
amount of observations in the tree nodes, especially in the leaves. In other words, if we have
ñ...,i estimated observation amount in a cell, how to divide it to obtain m...,i,1,m...,i,2 · · ·m...,i,k

that can be propagated to child cells. Naturally, m...,i,1 +m...,i,2 + · · ·+m...,i,k = ñ...,i.

Two natural distribution methods are even distribution (when m...,i,1 = m...,i,2 = · · · = m...,i,k)
and proportional distribution (when m...,i,1 : m...,i,2 : · · · : m...,i,k = s...,i,1 : s...,i,2 : · · · : s...,i,k). Even
distribution is optimal when the s...,i,j values are very small, and proportional distribution is
good when the s...,i,j values are large compared to m...,i,j. In practice, a linear combination of
them seems appropriate, where λ = 0 means even and λ = 1 means proportional distribution:

m···,i,j = (1− λ)ñ···,i/k + λñ···,is...,i,j/s···,i where λ ∈ [0, 1]

Note that while n...,i are integers, m...,i and thus ñ...,i are typically real numbers. The histogram
estimate calculated from k-split is not exact, because the frequency counts calculated in
the above manner contain a degree of estimation themselves. This introduces a certain cell
division error; the λ parameter should be selected so that it minimizes that error. It has been
shown that the cell division error can be reduced to a more-than-acceptable small value.
Strictly speaking, the k-split algorithm is semi-online, because its needs some observations to
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Figure 7.6: Density estimation from the k-split cell tree. We assume λ = 0, i.e. we distribute
mother observations evenly.

set up the initial histogram range. Because of the range extension and cell split capabilities,
the algorithm is not very sensitive to the choice of the initial range, so very few observations
are sufficient for range estimation (say Npre = 10). Thus we can regard k-split as an on-line
method.

K-split can also be used in semi-online mode, when the algorithm is only used to create an
optimal partition from a larger number of Npre observations. When the partition has been
created, the observation counts are cleared and the Npre observations are fed into k-split once
again. This way all mother (non-leaf) observation counts will be zero and the cell division error
is eliminated. It has been shown that the partition created by k-split can be better than both
the equi-distant and the equal-frequency partition.

OMNeT++ contains an implementation of the k-split algorithm, the cKSplit class.

The cKSplit Class

The cKSplit class is an implementation of the k-split method. Member functions:

void setCritFunc(KSplitCritFunc critfunc, double *critdata);
void setDivFunc(KSplitDivFunc divfunc, double *divdata);
void rangeExtension( bool enabled );

int getTreeDepth();
int getTreeDepth(cKSplit::Grid& grid);

double getRealCellValue(cKSplit::Grid& grid, int cell);
void printGrids();

cKSplit::Grid& getGrid(int k);
cKSplit::Grid& getRootGrid();

struct cKSplit::Grid
{

int parent; // index of parent grid
int reldepth; // depth = (reldepth - rootgrid’s reldepth)
long total; // sum of cells & all subgrids (includes "mother")
int mother; // observations "inherited" from mother cell
int cells[K]; // cell values

};
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7.8.4 Transient Detection and Result Accuracy

In many simulations, only the steady state performance (i.e. the performance after the system
has reached a stable state) is of interest. The initial part of the simulation is called the
transient period. After the model has entered steady state, simulation must proceed until
enough statistical data has been collected to compute a result with the required accuracy.

Detection of the end of the transient period and a certain result accuracy is supported by
OMNeT++. The user can attach transient detection and result accuracy objects to a result
object (cStatistic’s descendants). The transient detection and result accuracy objects will
perform the specific algorithms on the data fed into the result object and determine if the
transient period is over or the result accuracy has been reached.

The base classes for classes implementing specific transient detection and result accuracy
detection algorithms are:

• cTransientDetection: base class for transient detection

• cAccuracyDetection: base class for result accuracy detection

Basic Usage

Attaching detection objects to a cStatistic and getting pointers to the attached objects:

addTransientDetection(cTransientDetection *object);
addAccuracyDetection(cAccuracyDetection *object);
cTransientDetection *getTransientDetectionObject();
cAccuracyDetection *getAccuracyDetectionObject();

Detecting the end of the period:

• polling the detect() function of the object

• installing a post-detect function

Transient Detection

Currently one transient detection algorithm is implemented, i.e. there is one class derived
from cTransientDetection. The cTDExpandingWindows class uses the sliding window ap-
proach with two windows, and checks the difference of the two averages to see if the transient
period is over.

void setParameters(int reps=3,
int minw=4,
double wind=1.3,
double acc=0.3);

Accuracy Detection

Currently one accuracy detection algorithm is implemented, i.e. there is one class derived
from cAccuracyDetection. The algorithm implemented in the cADByStddev class is: divide
the standard deviation by the square of the number of values and check if this is small enough.

void setParameters(double acc=0.1, int reps=3);
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7.9 Recording Simulation Results

7.9.1 Output Vectors: cOutVector

Objects of type cOutVector are responsible for writing time series data (referred to as output
vectors) to a file. The record() method is used to output a value (or a value pair) with a
timestamp. The object name will serve as the name of the output vector.

The vector name can be passed in the constructor,

cOutVector responseTimeVec("response time");

but in the usual arrangement you’d make the cOutVector a member of the module class
and set the name in initialize(). You’d record values from handleMessage() or from a
function called from handleMessage().

The following example is a Sink module which records the lifetime of every message that
arrives to it.

class Sink : public cSimpleModule
{

protected:
cOutVector endToEndDelayVec;

virtual void initialize();
virtual void handleMessage(cMessage *msg);

};

Define_Module(Sink);

void Sink::initialize()
{

endToEndDelayVec.setName("End-to-End Delay");
}

void Sink::handleMessage(cMessage *msg)
{

simtime_t eed = simTime() - msg->getCreationTime();
endToEndDelayVec.record(eed);
delete msg;

}

There is also a recordWithTimestamp() method, to make it possible to record values into
output vectors with a timestamp other than simTime(). Increasing timestamp order is still
enforced though.

All cOutVector objects write to a single output vector file that has a file extension .vec. 4 The
format and processing of output vector files is described in section 12.

You can configure output vectors from omnetpp.ini: you can disable individual vectors, or
limit recording to certain simulation time intervals (section 12.2.5).

If the output vector object is disabled or the simulation time is outside the specified interval,
record() doesn’t write anything to the output file. However, if you have a Tkenv inspector

4A .vci file is also created, but it is just an index for the .vec file and does not contain any new information. The
IDE re-creates the .vci file if it gets lost.

175



OMNeT++ Manual – The Simulation Library

window open for the output vector object, the values will be displayed there, regardless of the
state of the output vector object.

7.9.2 Output Scalars

While output vectors are to record time series data and thus they typically record a large
volume of data during a simulation run, output scalars are supposed to record a single value
per simulation run. You can use output scalars

• to record summary data at the end of the simulation run

• to do several runs with different parameter settings/random seed and determine the
dependence of some measures on the parameter settings. For example, multiple runs
and output scalars are the way to produce Throughput vs. Offered Load plots.

Output scalars are recorded with the record() method of cSimpleModule, and you will usu-
ally want to insert this code into the finish() function. An example:

void Transmitter::finish()
{

double avgThroughput = totalBits / simTime();
recordScalar("Average throughput", avgThroughput);

}

You can record whole statistic objects by calling their record() methods, declared as part of
cStatistic. In the following example we create a Sink module which calculates the mean,
standard deviation, minimum and maximum values of a variable, and records them at the
end of the simulation.

class Sink : public cSimpleModule
{

protected:
cStdDev eedStats;

virtual void initialize();
virtual void handleMessage(cMessage *msg);
virtual void finish();

};

Define_Module(Sink);

void Sink::initialize()
{

eedStats.setName("End-to-End Delay");
}

void Sink::handleMessage(cMessage *msg)
{

simtime_t eed = simTime() - msg->getCreationTime();
eedStats.collect(eed);
delete msg;

}
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void Sink::finish()
{

recordScalar("Simulation duration", simTime());
eedStats.record();

}

The above calls record the data into an output scalar file, a line-oriented text file that has the
file extension .sca. The format and processing of output vector files is described in chapter
12.

7.10 Watches and Snapshots

7.10.1 Basic Watches

Unfortunately, variables of type int, long, double do not show up by default in Tkenv; neither
do STL classes (std::string, std::vector, etc.) or your own structs and classes. This is
because the simulation kernel, being a library, knows nothing about types and variables in
your source code.

OMNeT++ provides WATCH() and a set of other macros to allow variables to be inspectable
in Tkenv and to be output into the snapshot file. WATCH() macros are usually placed into
initialize() (to watch instance variables) or to the top of the activity() function (to
watch its local variables); the point being that they should only be executed once.

long packetsSent;
double idleTime;

WATCH(packetsSent);
WATCH(idleTime);

Of course, members of classes and structs can also be watched:

WATCH(config.maxRetries);

When you open an inspector for the simple module in Tkenv and click the Objects/Watches
tab in it, you will see your watched variables and their values there. Tkenv also lets you
change the value of a watched variable.

The WATCH() macro can be used with any type that has a stream output operator (operator«)
defined. By default, this includes all primitive types and std::string, but since you can
write operator« for your classes/structs and basically any type, WATCH() can be used with
anything. The only limitation is that since the output should more or less fit on single line,
the amount of information that can be conveniently displayed is limited.

An example stream output operator:

std::ostream& operator<<(std::ostream& os, const ClientInfo& cli)
{

os << "addr=" << cli.clientAddr << " port=" << cli.clientPort; // no endl!
return os;

}

And the WATCH() line:

WATCH(currentClientInfo);
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7.10.2 Read-write Watches

Watches for primitive types and std::string allow for changing the value from the GUI as
well, but for other types you need to explicitly add support for that. What you need to do
is define a stream input operator (operator») and use the WATCH_RW() macro instead of
WATCH().

The stream input operator:

std::ostream& operator>>(std::istream& is, ClientInfo& cli)
{

// read a line from "is" and parse its contents into "cli"
return is;

}

And the WATCH_RW() line:

WATCH_RW(currentClientInfo);

7.10.3 Structured Watches

WATCH() and WATCH_RW() are basic watches; they allow one line of (unstructured) text to be
displayed. However, if you have a data structure generated from message definitions (see
Chapter 5), then there is a better approach. The message compiler automatically generates
meta-information describing individual fields of the class or struct, which makes it possible
to display the contents on field level.

The WATCH macros to be used for this purpose are WATCH_OBJ() and WATCH_PTR(). Both
expect the object to be subclassed from cObject; WATCH_OBJ() expects a reference to such
class, and WATCH_PTR() expects a pointer variable.

ExtensionHeader hdr;
ExtensionHeader *hdrPtr;
...
WATCH_OBJ(hdr);
WATCH_PTR(hdrPtr);

CAUTION: With WATCH_PTR(), the pointer variable must point to a valid object or be NULL
at all times, otherwise the GUI may crash while trying to display the object. This practically
means that the pointer should be initialized to NULL even if not used, and should be set to
NULL when the object to which it points is deleted.

delete watchedPtr;
watchedPtr = NULL; // set to NULL when object gets deleted

7.10.4 STL Watches

The standard C++ container classes (vector, map, set, etc) also have structured watches,
available via the following macros:

WATCH_VECTOR(), WATCH_PTRVECTOR(), WATCH_LIST(), WATCH_PTRLIST(), WATCH_SET(), WATCH_PTRSET(),
WATCH_MAP(), WATCH_PTRMAP().

The PTR-less versions expect the data items ("T") to have stream output operators (operator
«), because that is how they will display them. The PTR versions assume that data items are
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pointers to some type which has operator «. WATCH_PTRMAP() assumes that only the value
type (“second”) is a pointer, the key type (“first”) is not. (If you happen to use pointers as key,
then define operator « for the pointer type itself.)

Examples:

std::vector<int> intvec;
WATCH_VECTOR(intvec);

std::map<std::string,Command*> commandMap;
WATCH_PTRMAP(commandMap);

7.10.5 Snapshots

The snapshot() function outputs textual information about all or selected objects of the
simulation (including the objects created in module functions by the user) into the snapshot
file.

bool snapshot(cObject *obj = &simulation, const char *label = NULL);

The function can be called from module functions, like this:

snapshot(); // dump the whole network
snapshot(this); // dump this simple module and all its objects
snapshot(&simulation.msgQueue); // dump future events

This will append snapshot information to the end of the snapshot file. (The snapshot file
name has an extension of .sna, default is omnetpp.sna. The actual file name can be set in
the config file.)

The snapshot file output is detailed enough to be used for debugging the simulation: by
regularly calling snapshot(), one can trace how the values of variables, objects changed over
the simulation. The arguments: label is a string that will appear in the output file; obj is the
object whose inside is of interest. By default, the whole simulation (all modules etc) will be
written out.

If you run the simulation with Tkenv, you can also create a snapshot from the menu.

An example snapshot file (some abbreviations have been applied):

<?xml version="1.0" encoding="ISO-8859-1"?>
<snapshot object="simulation" label="Long queue" simtime="9.038229311343"
network="FifoNet">

<object class="cSimulation" fullpath="simulation">
<info></info>
<object class="cCompoundModule" fullpath="FifoNet">

<info>id=1</info>
<object class="fifo::Source" fullpath="FifoNet.gen">

<info>id=2</info>
<object class="cPar" fullpath="FifoNet.gen.sendIaTime">

<info>exponential(0.01s)</info>
<detailedinfo>double sendIaTime = exponential(0.01s) @unit(s)
</detailedinfo>

</object>
<object class="cGate" fullpath="FifoNet.gen.out">

<info>--&gt; fifo.in</info>
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</object>
</object>
<object class="fifo::Fifo" fullpath="FifoNet.fifo">

<info>id=3</info>
<object class="cPar" fullpath="FifoNet.fifo.serviceTime">

<info>0.01</info>
<detailedinfo>double serviceTime = 0.01@unit(s)</detailedinfo>

</object>
<object class="cGate" fullpath="FifoNet.fifo.in">

<info>&lt;-- gen.out</info>
</object>
<object class="cGate" fullpath="FifoNet.fifo.out">

<info>--&gt; sink.in</info>
</object>
<object class="cQueue" fullpath="FifoNet.fifo.queue">

<info>length=13</info>
<object class="cMessage" fullpath="FifoNet.fifo.queue.job">

<info>src=FifoNet.gen (id=2) dest=FifoNet.fifo (id=3)</info>
</object>
<object class="cMessage" fullpath="FifoNet.fifo.queue.job">

<info>src=FifoNet.gen (id=2) dest=FifoNet.fifo (id=3)</info>
</object>

</object>
<object class="fifo::Sink" fullpath="FifoNet.sink">

<info>id=4</info>
<object class="cGate" fullpath="FifoNet.sink.in">

<info>&lt;-- fifo.out</info>
</object>

</object>
</object>
<object class="cMessageHeap" fullpath="simulation.scheduled-events">

<info>length=3</info>
<object class="cMessage" fullpath="simulation.scheduled-events.job">

<info>src=FifoNet.fifo (id=3) dest=FifoNet.sink (id=4)</info>
</object>
<object class="cMessage" fullpath="...sendMessageEvent">

<info>at T=9.0464.., in dt=0.00817..; selfmsg for FifoNet.gen (id=2)</info>
</object>
<object class="cMessage" fullpath="...end-service">

<info>at T=9.0482.., in dt=0.01; selfmsg for FifoNet.fifo (id=3)</info>
</object>

</object>
</object>

</snapshot>

7.10.6 Getting Coroutine Stack Usage

It is important to choose the correct stack size for modules. If the stack is too large, it
unnecessarily consumes memory; if it is too small, stack violation occurs.
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OMNeT++ contains a mechanism that detects stack overflows. It checks the intactness of a
predefined byte pattern (0xdeadbeef) at the stack boundary, and reports “stack violation” if
it was overwritten. The mechanism usually works fine, but occasionally it can be fooled by
large – and not fully used – local variables (e.g. char buffer[256]): if the byte pattern happens
to fall in the middle of such a local variable, it may be preserved intact and OMNeT++ does
not detect the stack violation.

To be able to make a good guess about stack size, you can use the getStackUsage() call
which tells you how much stack the module actually uses. It is most conveniently called from
finish():

void FooModule::finish()
{

ev << getStackUsage() << " bytes of stack used\n";
}

The value includes the extra stack added by the user interface library (see extraStackforEnvir
in envir/omnetapp.h), which is currently 8K for Cmdenv and at least 16K for Tkenv. 5

getStackUsage() also works by checking the existence of predefined byte patterns in the
stack area, so it is also subject to the above effect with local variables.

7.11 Defining New NED Functions

It is possible to extend the NED language with new functions beyond the built-in ones. New
functions are implemented in C++, and then compiled into the simulation model. When a
simulation program starts up, the new functions are registered in the NED runtime, and
become available for use in NED and ini files.

There are two methods to define NED functions. The Define_NED_Function() macro is the
more flexible, preferred method of the two. Define_NED_Math_Function() is the older one,
and it supports only certain cases. Both macros have several variants. 6

7.11.1 Define_NED_Function()

The Define_NED_Function() macro lets you define new functions that can accept arguments
of various data types (bool, double, string, etc.), supports optional arguments and also
variable argument lists (variadic functions).

The macro has two variants:

Define_NED_Function(FUNCTION,SIGNATURE);
Define_NED_Function2(FUNCTION,SIGNATURE,CATEGORY,DESCRIPTION);

The two variants are basically equivalent; the only difference is that the second one allows you
to specify two more parameters, CATEGORY and DESCRIPTION. These two parameters expect
human-readable strings that are displayed when listing the available NED functions.

The common parameters, FUNCTION and SIGNATURE are the important ones. FUNCTION is the
name of (or pointer to) the C++ function that implements the NED function, and SIGNATURE
is the function signature as a string; it defines the name, argument types and return type of
the NED function.

5The actual value is platform-dependent.
6Before OMNeT++ 4.2, Define_NED_Math_Function() was called Define_Function().
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You can list the available NED functions by running opp_run or any simulation executable
with the -h nedfunctions option. The result will be similar to what you can see in Appendix
D.

$ opp_run -h nedfunctions
OMNeT++ Discrete Event Simulation...
Functions that can be used in NED expressions and in omnetpp.ini:

Category "conversion":
double : double double(any x)
Converts x to double, and returns the result. A boolean argument becomes
0 or 1; a string is interpreted as number; an XML argument causes an error.

...

Seeing the above output, it should now be obvious what the CATEGORY and DESCRIPTION
macro arguments are for. OMNeT++ uses the following category names: "conversion",
"math", "misc", "ned", "random/continuous", "random/discrete", "strings", "units",
"xml". You can use these category names for your own functions as well, when appropriate.

The Signature

The signature string has the following syntax:

returntype functionname(argtype1 argname1, argtype2 argname2, ...)

The functionname part defines the name of the NED function, and it must meet the syntactical
requirements for NED identifiers (start with a letter or underscore, not be a reserved NED
keyword, etc.)

The argument types and return type can be one of the following: bool, int (maps to C/C++
long), double, quantity, string, xml or any; that is, any NED parameter type plus quan-
tity and any. quantity means double with an optional measurement unit (double and int
only accept dimensionless numbers), and any stands for any type. The argument names are
presently ignored.

To make arguments optional, append a question mark to the argument name. Like in C++,
optional arguments may only occur at the end of the argument list, i.e. all arguments after
an optional argument must also be optional. The signature string does not have syntax for
supplying default values for optional arguments; that is, default values have to be built into
the C++ code that implements the NED function. To let the NED function accept any number
of additional arguments of arbitrary types, add an ellipsis (...) to the signature as the last
argument.

Some examples:

"int factorial(int n)"
"bool isprime(int n)"
"double sin(double x)"
"string repeat(string what, int times)"
"quantity uniform(quantity a, quantity b, long rng?)"
"any choose(int index, ...)"

The first three examples define NED functions with the names factorial, isprime and
sin, with the obvious meanings. The fourth example can be the signature for a function
that repeats a string n times, and returns the concatenated result. The fifth example is
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the signature of the existing uniform() NED function; it accepts numbers both with and
without measurement units (of course, when invoked with measurement units, both a and
b must have one, and the two must be compatible – this should be checked by the C++
implementation). uniform() also accepts an optional third argument, an RNG index. The
sixth example can be the signature of a choose() NED function that accepts an integer plus
any number of additional arguments of any type, and returns the indexth one among them.

Implementing the NED Function

The C++ function that implements the NED function must have the following signature, as
defined by the NEDFunction typedef:

cNEDValue function(cComponent *context, cNEDValue argv[], int argc);

As you can see, the function accepts an array of cNEDValue objects, and returns a cNEDValue;
the argc-argv style argument list should be familiar to you from the declaration of the C/C++
main() function. cNEDValue is a class that is used during the evaluation of NED expressions,
and represents a value together with its type. The context argument contains the module
or channel in the context of which the NED expression is being evaluated; it is useful for
implementing NED functions like getParentModuleIndex().

The function implementation does not need to worry too much about checking the number
and types of the incoming arguments, because the NED expression evaluator already does
that: inside the function you can be sure that the number and types of arguments correspond
to the function signature string. Thus, argc is mostly useful only if you have optional argu-
ments or a variable argument list. The NED expression evaluator also checks that the value
you return from the function corresponds to the signature.

cNEDValue can store all the needed data types (bool, double, string, etc.), and is equipped
with the functions necessary to conveniently read and manipulate the stored value. The
value can be read via functions like boolValue(), longValue(), doubleValue(), string-
Value() (returns const char *), stdstringValue() (returns const std::string&) and
xmlValue() (returns cXMLElement*), or by simply casting the object to the desired data type,
making use of the provided typecast operators. Invoking a getter or typecast operator that
does not match the stored data type will result in a runtime error. For setting the stored
value, cNEDValue provides a number of overloaded set() functions, assignment operators
and constructors.

Further cNEDValue member functions provide access to the stored data type; yet other func-
tions are associated with handling quantities, i.e. doubles with measurement units. There
are member functions for getting and setting the number part and the measurement unit part
separately; for setting the two components together; and for performing unit conversion.

Equipped with the above information, we can already write a simple NED function that returns
the length of a string:

static cNEDValue ned_strlen(cComponent *context, cNEDValue argv[], int argc)
{

return (long)argv[0].stdstringValue().size();
}

Define_NED_Function(ned_strlen, "int length(string s)");

Note that since Define_NED_Function() expects the C++ function to be already declared,
we place the function implementation in front of the Define_NED_Function() line. We also
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declare the function to be static, because its name doesn’t need to be visible for the linker.
In the function body, we use std::string’s size() method to obtain the length of the string,
and cast the result to long; the C++ compiler will convert that into a cNEDValue using cNED-
Value’s long constructor. Note that the int keyword in the signature maps to the C++ type
long.

The following example defines a choose() NED function that returns its kth argument that
follows the index (k) argument.

static cNEDValue ned_choose(cComponent *context, cNEDValue argv[], int argc)
{

int index = (int)argv[0];
if (index < 0 || index >= argc-1)

throw cRuntimeError("choose(): index %d is out of range", index);
return argv[index+1];

}

Define_NED_Function(ned_choose, "any choose(int index, ...)");

Here, the value of argv[0] is read using the typecast operator that maps to longValue().
(Note that if the value of the index argument does not fit into an int, the conversion will
result in data loss!) The code also shows how to report errors (by throwing a cRuntimeError.)

The third example shows how the built-in uniform() NED function could be reimplemented
by the user:

static cNEDValue ned_uniform(cComponent *context, cNEDValue argv[], int argc)
{

int rng = argc==3 ? (int)argv[2] : 0;
double argv1converted = argv[1].doubleValueInUnit(argv[0].getUnit());
double result = uniform((double)argv[0], argv1converted, rng);
return cNEDValue(result, argv[0].getUnit());
// or: argv[0].setPreservingUnit(result); return argv[0];

}

Define_NED_Function(ned_uniform, "quantity uniform(quantity a, quantity b, int rng?)");

The first line of the function body shows how to supply default values for optional arguments;
for the rng argument in this case. The next line deals with unit conversion. This is necessary
because the a and b arguments are both quantities and may come in with different measure-
ment units. We use the doubleValueInUnit() function to obtain the numeric value of b in
a’s measurement unit. If the two units are incompatible or only one of the parameters have a
unit, an error will be raised. If neither parameters have a unit, doubleValueInUnit() simply
returns the stored double. Then we call the uniform() C++ function to actually generate a
random number, and return it in a temporary object with a’s measurement unit. Alternatively,
we could have overwritten the numeric part of a with the result using setPreservingUnit(),
and returned just that. If there is no measurement unit, getUnit() will return NULL, which
is understood by both doubleValueInUnit() and the cNEDValue constructor.

NOTE: Note that it is OK to change the elements of the argv[] vector: they will be
discarded (popped off the evaluation stack) by the NED expression evaluator anyway
when your function returns.
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cNEDValue In More Detail

In the previous section we have given an overview and demonstrated the basic use of the
cNEDValue class; here we go into further details.

The stored data type can be obtained with the getType() function. It returns an enum
(cNEDValue::Type) that has the following values: UNDEF, BOOL, DBL, STR, XML. UNDEF is syn-
onymous with unset; the others have the obvious meanings. There is no separate QUANTITY
type: quantities are also represented with the DBL type, which has an optional associated
measurement unit. Note that LONG is also missing; the reason is that the NED expression
evaluator currently (as of OMNeT++ 4.2) stores all numbers as doubles. 7

The getTypeName() static function returns the string equivalent of a cNEDValue::Type. The
utility functions isSet() and isNumeric() check that the type is (not) UNDEF and DBL, re-
spectively.

cNEDValue value = 5.0;
cNEDValue::Type type = value.getType(); // ==> DBL
ev << cNEDValue::getTypeName(type) << endl; // ==> "double"

We have already seen that the DBL type serves both the double and quantity types of the
NED function signature, by storing an optional measurement unit (a string) in addition to the
double variable. A cNEDValue can be set to a quantity by creating it with a two-argument
constructor that accepts a double and a const char * for unit, or by invoking a similar
two-argument set() function. The measurement unit can be read with getUnit(), and over-
written with setUnit(). If you assign a double to a cNEDValue or invoke the one-argument
set(double) method on it, that will clear the measurement unit. If you want to overwrite the
number part but preserve the original unit, you need to use the setPreservingUnit(double)
method.

For unit conversion there are three functions. The doubleValueInUnit() method accepts
a measurement unit, and attempts to return the number in that unit. The convertTo()
method also accepts a measurement unit, and tries to permanantly convert the value to that
unit; that is, if successful, it changes both the number and the measurement unit part of the
object. The convertUnit() static cNEDValue member accepts three arguments: a quantity
as a double and a unit, and a target unit; and returns the number in the target unit. All
three functions raise an error if the conversion is not possible.

For performance reasons, setUnit(), convertTo() and all other functions that accept and
store a measurement unit will only store the const char* pointer, but do not copy the string
itself. Consequently, the passed measurement unit pointers must stay valid for at least the
lifetime of the cNEDValue object, or even longer if the same pointer propagates to other cNED-
Value objects. It is recommended that you only pass pointers that stay valid during the
entire simulation. It is safe to use: (1) string constants from the code; (2) unit strings from
other cNEDValues; and (3) pooled strings e.g. from a cStringPool or from cNEDValue’s static
getPooled() function.

Example code:

// manipulating the number and the measurement unit
cNEDValue value(250,"ms"); // initialize to 250ms
value = 300.0; // ==> 300 (clears the unit!)
value.set(500,"ms"); // ==> 500ms

7The IEEE double’s mantissa is 53 bits, so double can accurately represent 32-bit integers, the usual size of long
on 32-bit architectures. On 64-bit architectures the usual size of long is 64 bits, so precision loss will occur when
converting very large integers to double. Note, however, that simulations that trigger this precision loss would not
be able to run on 32-bit architectures at all!
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value.setUnit("s"); // ==> 500s (overwrites the unit)
value.setPreservingUnit(180); // ==> 180s (overwrites the number)
value.setUnit(NULL); // ==> 180 (clears the unit)

// unit conversion
value.set(500,"ms"); // ==> 500ms
value.convertTo("s"); // ==> 0.5s
double us = value.doubleValueInUnit("us"); // ==> 500000 (value is unchanged)
double bps = cNEDValue::convertUnit(128, "kbps", "bps"); // ==> 128000

// getting persistent measurement unit strings
const char *unit = argv[0].stringValue(); // cannot be trusted to persist
value.setUnit(cNEDValue::getPooled(unit)); // use a persistent copy for setUnit()

7.11.2 Define_NED_Math_Function()

The Define_NED_Math_Function() macro lets you register a C/C++ “mathematical” function
as a NED function. The registered C/C++ function may take up to four double arguments,
and must return a double; the NED signature will be the same. In other words, functions
registered this way cannot accept any NED data type other than double; cannot return any-
thing else than double; cannot accept or return values with measurement units; cannot have
optional arguments or variable argument lists; and are restricted to four arguments at most.
In exchange for these restrictions, the C++ implementation of the functions is a lot simpler.

Accepted function signatures for Define_NED_Math_Function():

double f();
double f(double);
double f(double, double);
double f(double, double, double);
double f(double, double, double, double);

The simulation kernel uses Define_NED_Math_Function() to expose commonly used <math.h>
functions in the NED language. Most <math.h> functions (sin(), cos(), fabs(), fmod(),
etc.) can be directly registered without any need for wrapper code, because their signatures
is already one of the accepted ones listed above.

The macro has the following variants:

Define_NED_Math_Function(NAME,ARGCOUNT);
Define_NED_Math_Function2(NAME,FUNCTION,ARGCOUNT);
Define_NED_Math_Function3(NAME,ARGCOUNT,CATEGORY,DESCRIPTION);
Define_NED_Math_Function4(NAME,FUNCTION,ARGCOUNT,CATEGORY,DESCRIPTION);

All macros accept the NAME and ARGCOUNT parameters; they are the intended name of the
NED function and the number of double arguments the function takes (0..3). NAME should
be provided without quotation marks (they will be added inside the macro.) Two macros also
accept a FUNCTION parameter, which is the name of (or pointer to) the implementation C/C++
function. The macros that don’t have a FUNCTION parameter simply use the NAME parameter
for that as well. The last two macros accept CATEGORY and DESCRIPTION, which have exactly
the same role as with Define_NED_Function().

Examples:

Define_NED_Math_Function3(sin, 1, "math", "Trigonometric function; see <math.h>");
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Define_NED_Math_Function3(cos, 1, "math", "Trigonometric function; see <math.h>");
Define_NED_Math_Function3(pow, 2, "math", "Power-of function; see <math.h>");

7.12 Deriving New Classes

7.12.1 cOwnedObject or Not?

If you plan to implement a completely new class (as opposed to subclassing something already
present in OMNeT++), you have to ask yourself whether you want the new class to be based on
cOwnedObject or not. Note that we are not saying you should always subclass from cOwne-
dObject. Both solutions have advantages and disadvantages, which you have to consider
individually for each class.

cOwnedObject already carries (or provides a framework for) significant functionality that is
either relevant to your particular purpose or not. Subclassing cOwnedObject generally means
you have more code to write (as you have to redefine certain virtual functions and adhere to
conventions) and your class will be a bit more heavy-weight. However, if you need to store
your objects in OMNeT++ objects like cQueue or you want to store OMNeT++ classes in your
object, then you must subclass from cOwnedObject. 8

The most significant features of cOwnedObject are the name string (which has to be stored
somewhere, so it has its overhead) and ownership management (see section 7.13), which also
provides advantages at some cost.

As a general rule, small struct-like classes like IPAddress, MACAddress, RoutingTableEn-
try, TCPConnectionDescriptor, etc. are better not subclassed from cOwnedObject. If your
class has at least one virtual member function, consider subclassing from cObject, which
does not impose any extra cost because it doesn’t have data members at all, only virtual
functions.

7.12.2 cOwnedObject Virtual Methods

Most classes in the simulation class library are descendants of cOwnedObject. If you want
to derive a new class from cOwnedObject or a cOwnedObject descendant, you must redefine
some member functions so that objects of the new type can fully co-operate with other parts of
the simulation system. A more or less complete list of these functions is presented here. You
don’t need to worry about the length of the list: most functions are not absolutely necessary
to implement. For example, you do not need to redefine forEachChild() unless your class is
a container class.

The following methods must be implemented:

• Constructor. At least two constructors should be provided: one that takes the object
name string as const char * (recommended by convention), and another one with no
arguments (must be present). The two are usually implemented as a single method, with
NULL as default name string.

• Copy constructor, which must have the following signature for a class X: X(const X&).

• Destructor.
8For simplicity, in these sections “OMNeT++ object” should be understood as “object of a class subclassed from

cOwnedObject”
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• Duplication function, X *dup() const. It should create and return an exact duplicate of
the object. It is usually a one-line function that delegates to the copy constructor.

• Assignment operator, that is, X& operator=(const X&) for a class X. It should copy the
contents of the other object into this one, except the name string. See later what to do if
the object contains pointers to other objects.

If your class contains other objects subclassed from cOwnedObject, either via pointers or as
a data member, the following function should be implemented:

• Iteration function, void forEachChild(cVisitor *v). The implementation should call
the function passed for each object it contains via pointer or as a data member; see
the API Reference on cOwnedObject on how to implement forEachChild(). forE-
achChild() makes it possible for Tkenv to display the object tree to you, to perform
searches on it, etc. It is also used by snapshot() and some other library functions.

Implementation of the following methods is recommended:

• Object info, std::string info(). The info() function should return a one-line string
describing the object’s contents or state. info() is displayed at several places in Tkenv.

• Detailed object info, std::string detailedInfo(). This method may potentially be im-
plemented in addition to info(); it can return a multi-line description. detailedInfo()
is also displayed by Tkenv in the object’s inspector.

• Serialization, parsimPack() and parsimUnpack() methods. These methods are needed
for parallel simulation, if you want objects of this type to be transmitted across partitions.

It is customary to implement the copy constructor and the assignment operator so that they
delegate to the same function of the base class, and invoke a common private copy() function
to copy the local members.

7.12.3 Class Registration

You should also use the Register_Class() macro to register the new class. It is used by
the createOne() factory function, which can create any object given the class name as a
string. createOne() is used by the Envir library to implement omnetpp.ini options such as
rng-class="..." or scheduler-class="...". (see Chapter 16)

For example, an omnetpp.ini entry such as

rng-class = "cMersenneTwister"

would result in something like the following code to be executed for creating the RNG objects:

cRNG *rng = check_and_cast<cRNG*>(createOne("cMersenneTwister"));

But for that to work, we needed to have the following line somewhere in the code:

Register_Class(cMersenneTwister);

createOne() is also needed by the parallel distributed simulation feature (Chapter 15) to
create blank objects to unmarshal into on the receiving side.
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7.12.4 Details

We’ll go through the details using an example. We create a new class NewClass, redefine all
above mentioned cOwnedObject member functions, and explain the conventions, rules and
tips associated with them. To demonstrate as much as possible, the class will contain an
int data member, dynamically allocated non-cOwnedObject data (an array of doubles), an
OMNeT++ object as data member (a cQueue), and a dynamically allocated OMNeT++ object (a
cMessage).

The class declaration is the following. It contains the declarations of all methods discussed in
the previous section.

//
// file: NewClass.h
//
#include <omnetpp.h>

class NewClass : public cOwnedObject
{

protected:
int size;
double *array;
cQueue queue;
cMessage *msg;
...

private:
void copy(const NewClass& other); // local utility function

public:
NewClass(const char *name=NULL, int d=0);
NewClass(const NewClass& other);
virtual ~NewClass();
virtual NewClass *dup() const;
NewClass& operator=(const NewClass& other);

virtual void forEachChild(cVisitor *v);
virtual std::string info();

};

We’ll discuss the implementation method by method. Here is the top of the .cc file:

//
// file: NewClass.cc
//
#include <stdio.h>
#include <string.h>
#include <iostream.h>
#include "newclass.h"

Register_Class( NewClass );

NewClass::NewClass(const char *name, int sz) : cOwnedObject(name)
{

size = sz;
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array = new double[size];
take(&queue);
msg = NULL;

}

The constructor (above) calls the base class constructor with the name of the object, then
initializes its own data members. You need to call take() for cOwnedObject-based data
members.

NewClass::NewClass(const NewClass& other) : cOwnedObject(other)
{

size = -1; // needed by copy()
array = NULL;
msg = NULL;
take(&queue);
copy(other);

}

The copy constructor relies on the private copy() function. Note that pointer members have
to be initialized (to NULL or to an allocated object/memory) before calling the copy() function.

You need to call take() for cOwnedObject-based data members.

NewClass::~NewClass()
{

delete [] array;
if (msg->getOwner()==this)

delete msg;
}

The destructor should delete all data structures the object allocated. cOwnedObject-based
objects should only be deleted if they are owned by the object – details will be covered in
section 7.13.

NewClass *NewClass::dup() const
{

return new NewClass(*this);
}

The dup() function is usually just one line, like the one above.

NewClass& NewClass::operator=(const NewClass& other)
{

if (&other==this)
return *this;

cOwnedObject::operator=(other);
copy(other);
return *this;

}

The assignment operator (above) first makes sure that will not try to copy the object to itself,
because that can be disastrous. If so (that is, &other==this), the function returns immedi-
ately without doing anything.

The base class part is copied via invoking the assignment operator of the base class. Then the
method copies over the local members using the copy() private utility function.
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void NewClass::copy(const NewClass& other)
{

if (size != other.size) {
size = other.size;
delete array;
array = new double[size];

}
for (int i = 0; i < size; i++)

array[i] = other.array[i];

queue = other.queue;
queue.setName(other.queue.getName());

if (msg && msg->getOwner()==this)
delete msg;

if (other.msg && other.msg->getOwner()==const_cast<cMessage*>(&other))
take(msg = other.msg->dup());

else
msg = other.msg;

}

Complexity associated with copying and duplicating the object is concentrated in the copy()
utility function.

Data members are copied in the normal C++ way. If the class contains pointers, you will most
probably want to make a deep copy of the data where they point, and not just copy the pointer
values.

If the class contains pointers to OMNeT++ objects, you need to take ownership into account.
If the contained object is not owned then we assume it is a pointer to an “external” object,
consequently we only copy the pointer. If it is owned, we duplicate it and become the owner
of the new object. Details of ownership management will be covered in section 7.13.

void NewClass::forEachChild(cVisitor *v)
{

v->visit(queue);
if (msg)

v->visit(msg);
}

The forEachChild() function should call v->visit(obj) for each obj member of the class.
See the API Reference for more information about forEachChild().

std::string NewClass::info()
{

std::stringstream out;
out << "data=" << data << ", array[0]=" << array[0];
return out.str();

}

The info() method should produce a concise, one-line string about the object. You should
try not to exceed 40-80 characters, since the string will be shown in tooltips and listboxes.

See the virtual functions of cObject and cOwnedObject in the class library reference for
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more information. The sources of the Sim library (include/, src/sim/) can serve as further
examples.

7.13 Object Ownership Management

7.13.1 The Ownership Tree

OMNeT++ has a built-in ownership management mechanism which is used for sanity checks,
and as part of the infrastructure supporting Tkenv inspectors.

Container classes like cQueue own the objects inserted into them, but this is not limited to
objects inserted into a container: every cOwnedObject-based object has an owner all the time.
From the user’s point of view, ownership is managed transparently. For example, when you
create a new cMessage, it will be owned by the simple module. When you send it, it will first be
handed over to (i.e. change ownership to) the FES, and, upon arrival, to the destination simple
module. When you encapsulate the message in another one, the encapsulating message
will become the owner. When you decapsulate it again, the currently active simple module
becomes the owner.

The getOwner() method, defined in cOwnedObject, returns the owner of the object:

cOwnedObject *o = msg->getOwner();
ev << "Owner of " << msg->getName() << " is: " <<

<< "(" << o->getClassName() << ") " << o->getFullPath() << endl;

The other direction, enumerating the objects owned can be implemented with the forE-
achChild() method by it looping through all contained objects and checking the owner of
each object.

Why Do We Need This?

The traditional concept of object ownership is associated with the “right to delete” objects. In
addition to that, keeping track of the owner and the list of objects owned also serves other
purposes in OMNeT++:

• enables methods like getFullPath() to be implemented.

• prevents certain types of programming errors, namely, those associated with wrong own-
ership handling.

• enables Tkenv to display the list of simulation objects present within a simple module.
This is extremely useful for finding memory leaks caused by forgetting to delete messages
that are no longer needed.

Some examples of programming errors that can be caught by the ownership facility:

• attempts to send a message while it is still in a queue, encapsulated in another message,
etc.

• attempts to send/schedule a message while it is still owned by the simulation kernel (i.e.
scheduled as a future event)
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• attempts to send the very same message object to multiple destinations at the same time
(ie. to all connected modules)

For example, the send() and scheduleAt() functions check that the message being sen-
t/scheduled is owned by the module. If it is not, then it signals a programming error: the
message is probably owned by another module (already sent earlier?), or currently scheduled,
or inside a queue, a message or some other object – in either case, the module does not have
any authority over it. When you get the error message ("not owner of object"), you need to
carefully examine the error message to determine which object has ownership of the message,
and correct the logic that caused the error.

The above errors are easy to make in the code, and if not detected automatically, they could
cause random crashes which are usually very difficult to track down. Of course, some errors
of the same kind still cannot be detected automatically, like calling member functions of a
message object which has been sent to (and so is currently owned by) another module.

7.13.2 Managing Ownership

Ownership is managed transparently for the user, but this mechanism has to be supported
by the participating classes themselves. It will be useful to look inside cQueue and cArray,
because they might give you a hint what behavior you need to implement when you want to
use non-OMNeT++ container classes to store messages or other cOwnedObject-based objects.

Insertion

cArray and cQueue have internal data structures (array and linked list) to store the objects
which are inserted into them. However, they do not necessarily own all of these objects.
(Whether they own an object or not can be determined from that object’s getOwner() pointer.)

The default behaviour of cQueue and cArray is to take ownership of the objects inserted. This
behavior can be changed via the takeOwnership flag.

Here is what the insert operation of cQueue (or cArray) does:

• insert the object into the internal array/list data structure

• if the takeOwnership flag is true, take ownership of the object, otherwise just leave it
with its original owner

The corresponding source code:

void cQueue::insert(cOwnedObject *obj)
{

// insert into queue data structure
...

// take ownership if needed
if (getTakeOwnership())

take(obj);

}
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Removal

Here is what the remove family of operations in cQueue (or cArray) does:

• remove the object from the internal array/list data structure

• if the object is actually owned by this cQueue/cArray, release ownership of the object,
otherwise just leave it with its current owner

After the object was removed from a cQueue/cArray, you may further use it, or if it is not
needed any more, you can delete it.

The release ownership phrase requires further explanation. When you remove an object from
a queue or array, the ownership is expected to be transferred to the simple module’s local
objects list. This is accomplished by the drop() function, which transfers the ownership to
the object’s default owner. getDefaultOwner() is a virtual method returning cOwnedObject*
defined in cOwnedObject, and its implementation returns the currently executing simple
module’s local object list.

As an example, the remove() method of cQueue is implemented like this: 9

cOwnedObject *cQueue::remove(cOwnedObject *obj)
{

// remove object from queue data structure
...

// release ownership if needed
if (obj->getOwner()==this)

drop(obj);

return obj;
}

Destructor

The concept of ownership is that the owner has the exclusive right and duty to delete the
objects it owns. For example, if you delete a cQueue containing cMessages, all messages it
contains and owns will also be deleted.

The destructor should delete all data structures the object allocated. From the contained
objects, only the owned ones are deleted – that is, where obj->getOwner()==this.

Object Copying

The ownership mechanism also has to be taken into consideration when a cArray or cQueue
object is duplicated (using dup() or the copy constructor.) The duplicate is supposed to
have the same content as the original; however, the question is whether the contained ob-
jects should also be duplicated or only their pointers taken over to the duplicate cArray or
cQueue. A similar question arises when an object is copied using the assignment operator
(operator=()).

9Actual code in src/sim is structured somewhat differently, but the meaning is the same.
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The convention followed by cArray/cQueue is that only owned objects are copied, and the
contained but not owned ones will have their pointers taken over and their original owners
left unchanged.
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Chapter 8

Network Graphics And Animation

8.1 Display Strings

Display strings specify the arrangement and appearance of representations of modules in
graphical user interfaces (currently only Tkenv); they control how the objects (compound
modules, their submodules and connections) are displayed. Display strings are specified in
NED’s @display property.

Display strings can be used in the following contexts:

• submodules – display strings may contain position, arrangement (for module vectors),
icon, icon color, auxiliary icon, status text, communication range (as circle or filled cir-
cle), tooltip, etc.

• compound modules, networks – display strings can specify background color, border
color, border width, background image, scaling, grid, unit of measurement, etc.

• connections – display strings can specify positioning, color, line width, line style, text and
tooltip

• messages – display strings can specify icon, icon color, etc.

8.1.1 Display String Syntax

The display string syntax is a semicolon-separated list of tags. Each tag consists of a key, an
equal sign and a comma-separated list of arguments:

@display("p=100,100;b=60,10,rect,blue,black,2")

Tag arguments may be omitted both at the end and inside the parameter list. If an argument
is omitted, a sensible default value is used.

@display("p=100,100;b=,,rect,blue")

8.1.2 Display String Placement

The following NED sample shows where to place display strings in the code:
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simple Queue
{

parameters:
@display("i=block/queue");

...
}

network SimpleQueue
{

parameters:
@display("bgi=maps/europe");

submodules:
sink: Sink {

@display("p=273,101");
}
...

connections:
source.out --> { @display("ls=red,3"); } --> queue.in++;

}

8.1.3 Display String Inheritance

Every module and channel object has one single display string object, which controls its ap-
pearance in various contexts. The initial value of this display string object comes from merging
the @display properties occurring at various places in NED files. This section describes the
rules for merging @display properties to create the module or channel’s display string.

• Derived NED types inherit their display string from their base NED type.

• Submodules inherit their display string from their type.

• Connections inherit their display string from their channel type.

The base NED type’s display string is merged into the current display string using the following
rules:

• If a tag is present in the base display string, but not in the current one the whole tag
(with all arguments) is added to the current display string. (e.g. base: "i=icon,red"
current: "p=2,4" result: "p=2,4;i=icon,red")

• If a tag is present both in the base and in the current display string only tag arguments
present in the base, but not in the current display string will be copied. (e.g. base:
"b=40,20" current: "b=,30,oval" result: "b=40,30,oval")

• If the current display string contains a tag argument with value "-" (hyphen) that argu-
ment is treated as empty and will not be inherited from other display strings. Requesting
the value of this argument will return its the default value.

• If neither the base display string nor the current one has value for a tag a suitable default
value will be returned and used.

Example of display string inheritance:
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simple Base {
@display("i=block/queue"); // use a queue icon in all instances

}

simple Derived extends Base {
@display("i=,red,60"); // ==> "i=block/queue,red,60"

}

network SimpleQueue {
submodules:

submod: Derived {
@display("i=,yellow,-;p=273,101;r=70");

// ==> "i=block/queue,yellow;p=273,101;r=70"
}
...

}

8.1.4 Display String Tags Used in Submodule Context

The following tags define how a module appears on the Tkenv user interface if it is used as a
submodule:

• b – shapes, colors

• i – icon

• is – icon size

• i2 – alternate (status) icon placed at the upper right corner of the main icon

• p – positioning and layout

• r – range indicator

• q – queue information text

• t – text

• tt – tooltip

Icons

By default, modules are represented by simple icons. Using images for the modules is possible
with the i tag. See the images subfolder of your OMNeT++ installation for possible icons. The
stock images installed with OMNeT++ have several size variants. Most of them have very small
(vs), small (s), large (l) and very large (vl) variants. You can specify which variant you want to
use with the is tag.

@display("i=block/source;is=l"); // a large source icon from the block icons group

Sometimes you want to have similar icons for modules, but would like to make them look a
little different to create groups or to reflect status information about the module. You can
easily change the color of an already existing image. The following example colorizes the
block/source icon, 20% red
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@display("i=block/source,red,20")

If you want to show state information about your module, you can use the i2 tag to add a
small status icon to your main icon. This icon is displayed in the upper right corner of your
main icon. In most cases the i2 tag is specified at runtime using the setDisplayString()
method, so the icon can be changed dynamically based on the module’s internal state.

@display("i=block/queue;i2=status/busy")

Shapes

If you want to have simple, but resizable representation for your module, you can use the b
tag to create geometric shapes. Currently oval and rectangle is supported:

// an oval shape with 70x30 size, red background, black 4 pixel border
@display("b=70,30,oval,red,black,4")

Positioning, Coordinates

To define the position of a module inside an other one use the p tag. If you do not specify a p
tag for your module, the parent module will automatically choose a position based on a layout
algorithm. The following example will place the module at the given position:

@display("p=50,79");

NOTE: The coordinates specified in the p, b or r tags are not necessarily integers and
measured in pixels. You can use the parent module’s bgs=pix2unitratio,unit tag, to set
the scaling parameter and the unit of measurement for your module. You can specify the
ratio between 1 pixel and 1 unit with the bgs tag.
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The p tag allows the automatic arrangement of module vectors. They can be arranged in a
row, a column, a matrix or a ring, or you may specify their positions later at runtime using the
setDisplayString() method. The rest of the arguments in the p tag depend on the layout
type:

• row - p=100,100,r,deltaX (A row of modules with deltaX units between the modules)

• column - p=100,100,c,deltaY (A column of modules with deltaX units between the
modules)

• matrix - p=100,100,m,noOfCols,deltaX,deltaY (A matrix with noOfCols columns. deltaX
and deltaY units between rows and columns)

• ring - p=100,100,ri,rx,ry (A ring (oval) with rx and ry as the horizontal and vertical
radius.)

• exact (default) - p=100,100,x,deltaX,deltaY (Place each module at (100+deltaX, 100+
deltaY ). The coordinates are usually set at runtime.)

A matrix layout for a module vector:

@display("p=,,m,4,50,50");

Figure 8.1: Matrix arrangement using the p tag

Wireless Range

In wireless simulations it is very useful to show some kind of range around your module.
This can be an interference range, transmission range etc. The following example will place
the module at a given position, and draw a circle with a 90-unit radius around it as a range
indicator:
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submodules:
ap: AccessPoint {

@display("p=50,79;r=90");
}

Figure 8.2: Range indicator using the r tag

Additional Decorations

Sometimes you want to annotate your modules with additional information to make your
model more transparent. One special case is when you want to show the length of a queue
(cQueue) embedded somewhere in a module. In the following example the Server simple
module contains a cQueue object, which was named by the queue.setName("procqueue")
method. If we specify q=procqueue in the display string, Tkenv will descend into the module
(several levels deep if needed) and look for a queue object named "procqueue". It will display
the length of the queue object along the module.

@display("q=procqueue");

You can add a text description to any module using the t (displayed along the module) or tt
tag (displayed as a tooltip). The following example displays a short text string along with the
module and adds a tooltip text string that can be seen by hovering over them module with the
mouse.

@display("t=Packets sent: 18;tt=Additional tooltip information");
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NOTE: The t and tt tags, when set at runtime, can be used to display various infor-
mation about the module’s state. The setTagArg() method of cDisplayString can be
used to update the text:

char buf[64];
sprintf(buf, "sent: %d, rcvd: %d", numPkSent, numPkReceived);
getDisplayString().setTagArg("t", 0, buf);

For a detailed descripton of the display string tags, check Appendix F.

8.1.5 Display String Tags Used in Module Background Context

The following tags describe what a module looks like when opened in Tkenv. They mostly deal
with the module background.

• bgi – background image

• bgtt – tooltip above the background

• bgg – background grid

• bgl – child layout

• bgb – background size, color, border

• bgs – scaling of background coordinates

• bgp – background coordinate offset

The bgs tag makes it possible to use a physical unit of measurement, (e.g. kilometers) for
coordinates. bgs arguments include a pixel-per-unit factor (for mapping coordinates to the
screen), and a unit name. When bgs is present, all coordinates (including submodule co-
ordinates) are interpreted in the given unit of measurement. When combined with the bgi
(background image) and bgg (grid) tags, it is possible to display maps.

The following example demonstrates the use the of module background tags. The coordinates
are given in km (SI unit). The bgs=pixelsperunit,unit specifies pixel/unit ratio, i.e. 1km is
0.075 pixel on the screen. The whole area is 6000x4500km (bgb=) and the map of Europe
is used as a background and stretched to fill the module background. A light grey grid
is drawn with a 1000km distance between major ticks, and 2 minor ticks per major tick
(bgg=tickdistance,minorpermajorticks,color). See Figure 8.3.

network EuropePlayground
{

@display("bgb=6000,4500;bgi=maps/europe,s;bgg=1000,2,grey95;bgs=0.075,km");
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Figure 8.3: Background grid, scaling and image

After specifying the above bgs tag, all your submodule coordinates will be treated as if they
were specified in km.

For a detailed descripton of the display string tags, check Appendix F.

8.1.6 Connection Display Strings

Connections may also have display strings. Connections inherit the display string property
from their channel types, in the same way as submodules inherit theirs from module types.
The default display strings are empty.

Connections support the following tags:

• ls – line style and color

• t – text

• tt – tooltip

• m – orientation and positioning

Example of a thick, red connection:

source1.out --> { @display("ls=red,3"); } --> queue1.in++;
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NOTE: If you want to hide a connection, specify zero line width in the display string
("ls=,0").

For a detailed descripton of the display string tags, check Appendix F.

8.1.7 Message Display Strings

Message display strings affect how messages are shown during animation. By default, they
are displayed as a small filled circle, in one of 8 basic colors (the color is determined as
message kind modulo 8), and with the message class and/or name displayed under it. The
latter is configurable in the Tkenv Options dialog, and message kind dependent coloring can
also be turned off there.

Specifying Message Display Strings

Message objects do not store a display string by default, but you can redefine the cMessage’s
getDisplayString() method and make it return one.

Example of using an icon to represent a message:

const char *CustomPacket::getDisplayString() const
{

return "i=msg/packet;is=vs";
}

Alternatively, you can add the field displayString to your message definition (.msg file),
and the message compiler will automatically generate setDisplayString() and getDis-
playString() methods for you:

message Job
{

string displayString = "i=msg/package_s,kind";
...

Message Display String Tags

The following tags can be used in message display strings:

• b – shapes, colors

• i – icon

• is – icon size
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Using a small red box icon to represent the messages:

@display("i=msd/box,red;is=s");

Messages will be represented by a 15x15 rectangle with white background. Their border color
will depend on the messageKind property of the message.

@display("b=15,15,rect,white,kind,5");

NOTE: In message display strings you may use the word kind as a special color. This
virtual color depends on the messageKind field in the message.

8.2 Parameter Substitution

Parameters of the module or channel containing the display string can be substituted into the
display string with the $parameterName notation:

Example:

simple MobileNode
{

parameters:
double xpos;
double ypos;
string fillColor;
// get the values from the module parameters xpos,ypos,fillcolor
@display("p=$xpos,$ypos;b=60,10,rect,$fillColor,black,2");

}

8.3 Colors

8.3.1 Color Names

Any valid Tk color specification is accepted: English color names (blue, lightgrey, wheat) or
#rgb, #rrggbb format (where r,g,b are hex digits).

It is also possible to specify colors in HSB (hue-saturation-brightness) as @hhssbb (with h, s,
b being hex digits). HSB makes it easier to scale colors e.g. from white to bright red.

You can produce a transparent background by specifying a hyphen ("-") as background color.

In message display strings, kind can also be used as a special color name. It will map to a
color depending on the message kind. (See the getKind() method of cMessage.)

8.3.2 Icon Colorization

The "i=" display string tag allows for colorization of icons. It accepts a target color and a
percentage as the degree of colorization. Percentage has no effect if the target color is missing.
Brightness of the icon is also affected – to keep the original brightness, specify a color with
about 50% brightness (e.g. #808080 mid-grey, #008000 mid-green).

Examples:
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• "i=device/server,gold" creates a gold server icon

• "i=misc/globe,#808080,100" makes the icon greyscale

• "i=block/queue,white,100" yields a "burnt-in" black-and-white icon

Colorization works with both submodule and message icons.

8.4 Icons

8.4.1 The Image Path

In the current OMNeT++ version, module icons are PNG or GIF files. The icons shipped with
OMNeT++ are in the images/ subdirectory. Both the graphical NED editor and Tkenv need
the exact location of this directory to load the icons.

Icons are loaded from all directories in the image path, a semicolon-separated list of directo-
ries. The default image path is compiled into Tkenv with the value "omnetpp-dir/images;
./images;./bitmaps" – which will work fine as long as you don’t move the directory, and you
will also be able to load more icons from the images/ subdirectory of the current directory. As
users typically run simulation models from the model’s directory, this practically means that
custom icons placed in the images/ subdirectory of the model’s directory are automatically
loaded.

The compiled-in image path can be overridden with the OMNETPP_IMAGE_PATH environment
variable. The way of setting environment variables is system specific: in Unix, if you are using
the bash shell, adding a line

export OMNETPP_IMAGE_PATH="/home/you/images;./images"

to /̃.bashrc or /̃.bash_profile will do; on Windows, environment variables can be set via
the My Computer –> Properties dialog.

You can extend the image path from omnetpp.ini with the tkenv-image-path option, which
is prepended to the environment variable’s value.

[General]
tkenv-image-path = "/home/you/model-framework/images;/home/you/extra-images"

8.4.2 Categorized Icons

Since OMNeT++ 3.0, icons are organized into several categories, represented by folders. These
categories include:

• block/ - icons for subcomponents (queues, protocols, etc).

• device/ - network devices: servers, hosts, routers, etc.

• abstract/ - symbolic icons for various devices

• misc/ - node, subnet, cloud, building, town, city, etc.

• msg/ - icons that can be used for messages
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Old (pre-3.0) icons are in the old/ folder.

Tkenv and the IDE now load icons from subdirectories of all directories of the image path, and
these icons can be referenced from display strings by naming the subdirectory (subdirectories)
as well: "subdir/icon", "subdir/subdir2/icon", etc.

For compatibility, if the display string contains an icon without a category (i.e. subdirectory)
name, OMNeT++ attempts to load it from "old/icon" as well.

8.4.3 Icon Size

Icons come in various sizes: normal, large, small, very small. Sizes are encoded into the
icon name’s suffix: _vl, _l, _s, _vs. In display strings, one can either use the suffix
("i=device/router_l"), or the "is" (icon size) display string tag ("i=device/router;is=l"),
but not both at the same time (we recommend using the is tag whenever possible).

8.5 Layouting

OMNeT++ implements an automatic layouting feature, using a variation of the SpringEmbed-
der algorithm. Modules which have not been assigned explicit positions via the "p=" tag will
be automatically placed by the algorithm.

SpringEmbedder is a graph layouting algorithm based on a physical model. Graph nodes
(modules) repel each other like electric charges of the same sign, and connections are sort of
springs which try to contract and pull the nodes they’re attached to together. There is also
friction built in, in order to prevent oscillation of the nodes. The layouting algorithm simulates
this physical system until it reaches equilibrium (or times out). The physical rules above have
been slightly tweaked to achieve better results.

The algorithm doesn’t move any module which has fixed coordinates. Predefined row, matrix,
ring or other arrangements (defined via the 3rd and further args of the "p=" tag) will be
preserved – you can think about them as if those modules were attached to a rigid framework
so that they can only move as one unit.

Caveats:

• If the full graph is too big after layouting, it is scaled back so that it fits on the screen,
unless it contains any fixed-position module. (For obvious reasons: if there is a module
with manually specified position, we don’t want to move that one). To prevent rescaling,
you can specify a sufficiently large bounding box in the background display string, e.g.
"b=2000,3000".

• Size is ignored by the present layouter, so longish modules (such as an Ethernet segment)
may produce funny results.

• The algorithm is prone to produce erratic results, especially when the number of sub-
modules is small, or when using predefined (matrix, row, ring, etc) layouts. The "Re-
layout" toobar button can then be very useful. Larger networks usually produce satis-
factory results.

• The algorithm is starting from random positions. To get the best results you may exper-
iment with different seeds by specifying them using the bgl=seed display string tag.
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8.6 Enhancing Animation

8.6.1 Changing Display Strings at Runtime

Often it is useful to manipulate the display string at runtime. Changing colors, icon, or
text may convey status change, and changing a module’s position is useful when simulating
mobile networks.

Display strings are stored in cDisplayString objects inside channels, modules and gates.
cDisplayString also lets you manipulate the string.

To get a pointer to the cDisplayString object, you can call the components’s getDis-
playString() method:

// Setting a module’s position, icon and status icon:
cDisplayString& dispStr = getDisplayString();
dispStr.parse("p=40,20;i=device/cellphone;i2=status/disconnect");

NOTE: The connection display string is stored in the channel object, but it can also be
accessed via the source gate of the connection.

// Setting an outgoing connection’s color to red:
cDisplayString& connDispStr = gate("out")->getDisplayString();
connDispStr.parse("ls=red");

NOTE: In OMNeT++ 3.x, to manipulate the appearance of a compound module you had
to use the backgroundDisplayString() method. This method is no longer supported
in OMNeT++ 4.0, because there is no separate background display string. Use the get-
DisplayString() method instead with the background specific tags, i.e. those starting
with bg.

// Setting module background and grid with background display string tags:
cDisplayString& parentDispStr = getParentModule()->getDisplayString();
parentDispStr.parse("bgi=maps/europe;bgg=100,2");

As far as cDisplayString is concerned, a display string (e.g. "p=100,125;i=cloud") is a
string that consist of several tags separated by semicolons, and each tag has a name and
after an equal sign, zero or more arguments separated by commas.

The class facilitates tasks such as finding out what tags a display string has, adding new tags,
adding arguments to existing tags, removing tags or replacing arguments. The internal storage
method allows very fast operation; it will generally be faster than direct string manipulation.
The class doesn’t try to interpret the display string in any way, nor does it know the meaning
of the different tags; it merely parses the string as data elements separated by semicolons,
equal signs and commas.

An example:

dispStr.parse("a=1,2;p=alpha,,3");
dispStr.insertTag("x");
dispStr.setTagArg("x",0,"joe");
dispStr.setTagArg("x",2,"jim");
dispStr.setTagArg("p",0,"beta");
ev << dispStr.str(); // result: "x=joe,,jim;a=1,2;p=beta,,3"
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8.6.2 Bubbles

Modules can let the user know about important events (such as a node going down or coming
up) by displaying a bubble with a short message ("Going down", "Coming up", etc.) This is
done by the bubble() method of cComponent. The method takes the string to be displayed
as a const char * pointer.

An example:

bubble("Collision! (2 frames)");

If the module contains a lot of code that modifies the display string or displays bubbles, it is
recommended to make these calls conditional on ev.isGUI(). The ev.isGUI() call returns
false when the simulation is run under Cmdenv, so one can make the code skip potentially
expensive display string manipulation.

Better:

if (ev.isGUI())
bubble("Going down!");
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Chapter 9

Building Simulation Programs

9.1 Overview

As has already been mentioned, an OMNeT++ model consists of the following parts:

• NED language topology description(s). These are files with the .ned extension.

• Message definitions, in files with .msg extension.

• Simple module implementations and other C++ code, in .cc files (or .cpp, on Windows)

To build an executable simulation program, you first need to translate the MSG files into C++,
using the message compiler (opp_msgc). After this step, the process is the same as building
any C/C++ program from source: all C++ sources need to be compiled into object files (.o files
(using gcc on Mac, Linux) or mingw on Windows) and all object files need to be linked with
the necessary libraries to get an executable or shared library.

NOTE: Compiling NED files directly to C++ code is no longer supported in OMNeT++ 4.0.
NED files are always dynamically loaded.

File names for libraries differ depending on the platform, whether it is a static or shared
library, and whether it is a debug or release version. Let us suppose you have a library called
common:

• The opp prefix is always prepended to all library names to avoid name clashes with other
programs.

• For all platforms, where the gcc (or mingw) compiler is used the static library filename
has a ".a" extension and the lib prefix is prepended to the name (e.g. liboppfoo[d].a).

• For all platforms, the debug version filename has a "d" inserted at the end of the library
name (e.g. liboppcommond.ext).

• For the Unix/Linux platform, the shared library filename has a ".so" extension (e.g.
liboppcommon[d].so).

• For the Mac OS X platform, the shared library filename has a ".dylib" extension (e.g.
liboppcommon[d].dylib).
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• For the Windows platform, the shared library filename has a ".dll" extension (e.g. li-
boppfoo[d].dll).

In OMNeT++ 4.0 we recommend that you use shared libraries whenever it is possible. You will
need to link with the following libraries:

• The simulation kernel and class library, called oppsim (file liboppsim.[so|dll|dylib]
etc).

• User interfaces. The common part of all user interfaces is the oppenvir library (file li-
boppenvir.[so|dll|dylib], etc), and the specific user interfaces are opptkenv and op-
pcmdenv (libopptkenv.[so|dll|dylib], liboppcmdenv.[so|dll|dylib], etc). You
have to link with oppenvir, plus opptkenv or oppcmdenv or both.

Luckily, you do not have to worry about the above details, because automatic tools like
opp_makemake will take care of the hard part for you.

The following figure gives an overview of the process of building and running simulation pro-
grams.

This chapter discusses how to use the simulation system on the following platforms:

• Unix (Linux/Mac OS X) with gcc

• Windows with the included MinGW compiler

9.2 Using gcc

The following section applies to using OMNeT++ on Linux, Solaris, Mac OS X, FreeBSD and
other Unix derivatives, and also to MinGW on Windows.

NOTE: The doc/ directory of your OMNeT++ installation contains Readme.<platform>
files that provide more detailed platform specific instructions.

9.2.1 The opp_makemake Tool

The opp_makemake tool can automatically generate a Makefile for your simulation program,
based on the source files in the current directory or directory tree. opp_makemake has several
options; opp_makemake -h displays help.

The most important options are:

• -f, --force : Force overwriting existing Makefile

• -o filename : Name of simulation executable or library to be built.

• -O directory, --out directory : Specifies the name of the output directory tree for
out-of-directory build

• --deep : Generates a "deep" Makefile. A deep Makefile will cover the whole source tree
under the make directory, not just files in that directory.

• -r, --recurse : Causes make to recursively descend into all subdirectories; subdirec-
tories are expected to contain makefiles themselves.
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Figure 9.1: Building and running simulation

• -X directory, -Xdirectory, --except directory : With -r and --deep option: ig-
nore the given directory.

• -dsubdir, -d subdir, --subdir subdir : Causes make to recursively descend into
the given directory.

• -n, --nolink : Produce object files but do not create executable or library.

• -s, --make-so : Build shared library (.so, .dll or .dylib).

• -a, --make-lib : Create static library (.a or .lib).

• -Idir : Additional NED and C++ include directory.

• -Ldir : Add a directory to the library path.

• -llibrary : Additional library to link against.
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9.2.2 Basic Use

Once you have the source files (*.ned, *.msg, *.cc, *.h) in a directory, change the working
directory to there and type:

$ opp_makemake

This will create a file named Makefile. If you type make, your simulation program should
build.

If you already had a Makefile in that directory, opp_makemake will refuse to overwrite it. You
can force overwriting the old Makefile with the -f option:

$ opp_makemake -f

The name of the output file will be derived from the name of the project directory (see later).
You can override it with the -o option:

$ opp_makemake -f -o aloha

In addition to the default target that builds the simulation executable, the Makefile also
contains the following targets:

Target Action
all The default target is to build the simulation ex-

ecutable
depend Adds (or refreshes) dependencies in the Make-

file
clean Deletes all files that were produced by the

make process

9.2.3 Debug and Release Builds

opp_makemake generates a makefile that can create both release and debug builds. By default
it creates debug version, but it is easy to override this behavior. Just define the MODE variable
on the make command line.

$ make MODE=release

If you want to create release builds by default you should use the --mode mode option for
opp_makemake when generating your makefiles.

$ opp_makemake --mode release ...

9.2.4 Debugging the Makefile

opp_makemake generates a makefile that prints only minimal information during the build
process (only the name of the compiled file.) If you want to see the full compiler commands
executed by the makefile, specify V=1 as a command line parameter for the make command.

$ make V=1
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9.2.5 Using External C/C++ Libraries

If you are using external libraries you should specify the include path for the header files with
the -I includedir option. You should specify this option if you are using anything outside of
the source directory tree (except the system and OMNeT++ headers which are always included
automatically)

To define an external library to be linked with, use -Ldir to specify the directory of the
external library and -llibrary to specify the name of the external dependency.

9.2.6 Building Directory Trees

It is possible to build a whole source directory tree with a single makefile. A source tree will
generate a single output file (executable or library). A source directory tree will always have a
Makefile in its root, and source files may be placed anywhere in the tree.

To turn on this option, use the opp_makemake --deep option. opp_makemake will collect all
.cc and .msg files from the whole subdirectory tree, and generate a makefile that covers all.
If you need to exclude a specific directory, use the -X exclude/dir/path option. (Multiple
-X options are accepted.)

An example:

$ opp_makemake -f --deep -X experimental -X obsolete

9.2.7 Automatic Include Dirs

If your source tree contains several subdirectories (maybe several levels deep), it can be annoy-
ing to have to specify relative paths for your header files in your .cc files or you should specify
the include path explicitly by the -I includepath option. opp_makemake has a command line
option, which adds all directories in the current source tree to the compiler command line.
This option is turned on by default.

NOTE: You may turn off this mechanism with the --no-deep-includes option.

The only requirement is that your #include statements must unambigously specify the name
of the header file. (i.e. if you have two common.h files, one in subdir1 and the other in subdir2
specify #include "subdir1/common.h" instead of #include "common.h". If you want to
include a directory which is outside of your source directory tree you always must specify it
with the -I external/include/dir option.

9.2.8 Dependency Handling

Dependency information is used by the makefile to minimize the time required to compile and
link your project. If your makefile contains up-to date dependency info – only files changed
since you last compiled your project will be re-compiled or linked.

opp_makemake automatically adds dependencies to the makefile. You can regenerate the de-
pendencies by typing make depend any time. The warnings during the dependency generation
process can be safely ignored.

You may generate and add dependencies to the makefile manually using the opp_makedep
tool. Use opp_makedep --help to display the supported command line options.
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NOTE: The dependency generator does not handle conditional macros and includes.
Conditionally included header files are always added to the file’s dependency list.

9.2.9 Out-of-Directory Build

The build system creates object and executable files in a separate directory, called the output
directory. The structure of the output directory will be the same as your source directory
structure except that it will be placed in the out/configname directory. The configname part
will mirror your compiler toolchain and build mode settings. (i.e. The result of a debug build
with gcc will be placed in out/gcc-debug)

The location of the generated output file is determined by the -O option. (The default value is
’out’, relative to the project root directory):

$ opp_makemake -O ../tmp/obj

NOTE: The project directory is the first ancestor of the current directory which contains
a .project file).

NOTE: Source files (i.e. those created by the opp_msgc compiler) will be generated in the
source folder rather than in the output folder.

9.2.10 Building Shared and Static Libraries

By default the makefile will create an executable file, but it is also possible to build shared or
static libraries. Shared libraries are usually a better choice.

Use --make-so to create shared libraries, and --make-lib to build static libraries. The --
nolink option completely avoids the linking step, which is useful for top-level makefiles that
only invoke other makefiles, or if you want to do the linking manually.

9.2.11 Recursive Builds

The --recurse option enables recursive make; when you build the simulation, make de-
scends into the subdirectories and runs make in them too. By default, --recurse decends
into all subdirectories; the -X directory option can be used to make it ignore certain subdirec-
tories. This option is especially useful for top level makefiles.

The --recurse option automatically discovers subdirectories, but this is sometimes incon-
venient. Your source directory tree may contain parts which need their own hand written
Makefile. This can happen if you include source files from an other non OMNeT++ project.
With the -d dir or --subdir dir option, you can explicitly specify which directories to re-
curse into, and also, the directories need not be direct children of the current directory.

The recursive make options (--recurse, -d, --subdir) imply -X, that is, the directories re-
cursed into will be automatically excluded from deep makefiles.

You can control the order of traversal by adding dependencies into the makefrag file (see
9.2.12)

NOTE: With -d, it is also possible to create infinite recursions. opp_makemake cannot
detect them, it is your responsibility that cycles do not occur.
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Motivation for recursive builds:

• toplevel makefile

• integrating sources that have their own makefile

9.2.12 Customizing the Makefile

It is possible to add rules or otherwise customize the generated makefile by providing a make-
frag file. When you run opp_makemake, it will automatically insert makefrag into the re-
sulting Makefile. With the -i option, you can also name other files to be included into the
Makefile.

makefrag will be inserted after the definitions but before the first rule, so it is possible to
override existing definitions and add new ones, and also to override the default target.

makefrag can be useful if some of your source files are generated from other files (for example,
you use generated NED files), or you need additional targets in your makefile or just simply
want to override the default target in the makefile.

9.2.13 Projects with Multiple Source Trees

In the case of a large project, your source files may be spread across several directories
and your project may generate more than one executable file (i.e. several shared libraries,
examples etc.).

Once you have created your makefiles with opp_makemake in every source directory tree, you
will need a toplevel makefile. The toplevel makefile usually calls only the makefiles recursively
in the source directory trees.

9.2.14 A Multi-Directory Example

For a complex example of using opp_makemake, we will show how to create the makefiles for
the Mobility Framework. First, take a look at the project’s directory structure and find the
directories that should be used as source trees:

mobility-framework
bitmaps
contrib <-- source tree (build libmfcontrib.so from this dir)
core <-- source tree (build libmfcore.so from this dir)
docs
network
template
testSuite <-- source tree (build testSuite executable from this dir)

Additionally, there are dependencies between these output files: mfcontrib requires mfcore
and testSuite requires mfcontrib (and indirectly mfcore).

First, we create the makefile for the core directory. The makefile will build a shared lib from
all .cc files in the core subtree, and will name it mfcore):

$ cd core && opp_makemake -f --deep --make-so -o mfcore -O out
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The contrib directory depends on mfcore so we use the -L and -l options to specify the
library we should link with. Note that we must also add the include directories manually from
the core source tree, because autodiscovery works only in the same source tree:

$ cd contrib && opp_makemake -f --deep --make-so -o mfcontrib -O out \\
-I../core/basicModules -I../core/utils -L../out/$(CONFIGNAME)/core -lmfcore

The testSuite will be created as an executable file which depends on both mfcontrib and
mfcore.

$ cd testSuite && opp_makemake -f --deep -o testSuite -O out
-I../core/utils -I../core/basicModules -I../contrib/utils \\
-I../contrib/applLayer -L../out/$(CONFIGNAME)/contrib -lmfcontrib

Now let us specify the dependencies between the above directories. Add the lines below to the
makefrag file in the project directory root.

contrib_dir: core_dir
testSuite_dir: contrib_dir

Now the last step is to create a top-level makefile in the root of the project that calls the pre-
viously created makefiles in the correct order. We will use the --nolink option, exclude every
subdirectory from the build (-X.), and explicitly call the above makefiles using -d dirname.
opp_makemake will automatically include the above created makefrag file.

$ opp_makemake -f --nolink -O out -d testSuite -d core -d contrib -X.
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Chapter 10

Configuring Simulations

10.1 The Configuration File

Configuration and input data for the simulation are in a configuration file usually called
omnetpp.ini.

10.1.1 An Example

For a start, let us see a simple omnetpp.ini file which can be used to run the Fifo example
simulation.

[General]
network = FifoNet
sim-time-limit = 100h
cpu-time-limit = 300s
#debug-on-errors = true
#record-eventlog = true

[Config Fifo1]
description = "low job arrival rate"

**.gen.sendIaTime = exponential(0.2s)

**.gen.msgLength = 100b

**.fifo.bitsPerSec = 1000bps

[Config Fifo2]
description = "high job arrival rate"

**.gen.sendIaTime = exponential(0.01s)

**.gen.msgLength = 10b

**.fifo.bitsPerSec = 1000bps

The file is grouped into sections named [General], [Config Fifo1] and [Config Fifo2],
each one containing several entries.

219



OMNeT++ Manual – Configuring Simulations

10.1.2 File Syntax

An OMNeT++ configuration file is an ASCII text file, but non-ASCII characters are permitted
in comments and string literals. This allows for using encodings that are a superset of ASCII,
for example ISO 8859-1 and UTF-8. There is no limit on the file size or on the line length.

Comments may be placed at the end of any line after a hash mark, “#”. Comments extend
to the end of the line, and are ignored during processing. Blank lines are also allowed and
ignored.

The file is line oriented, and consists of section heading lines, key-value lines, and directive
lines:

1. Section heading lines contain a section name enclosed in square brackets.

2. Key-value lines have the <key>=<value> syntax; spaces are allowed (but not required) on
both sides of the equal sign. If a line contains more than one equal sign, the leftmost one
is taken as the key-value separator.

3. Currently there is only one kind of directive line, include. An include line starts with the
include word, followed by the name of the file to be included.

Key-value lines may not occur above the first section heading line (except in included files,
see later).

Keys may be further classified based on syntax alone:

1. Keys that do not contain dots represent global or per-run configuration options.

2. If a key contains a dot, its last component (substring after the last dot) is considered.
If the last component contains a hyphen or is equal to typename, the key represents a
per-object configuration option.

3. Otherwise, the key represents a parameter assignment. Thus, parameter assignment
keys contain a dot, and no hyphen after the last dot.

Long lines can be broken up using the backslash notation: if the last character of a line is “\”,
it will be merged with the next line.

An example:

# This is a comment line
[General] # section heading
network = Foo # configuration option
debug-on-errors = false # another configuration option

**.vector-recording = false # per-object configuration option

**.app*.typename = "HttpClient" # per-object configuration option

**.app*.interval = 3s # parameter value

**.app*.requestURL = "http://www.example.com/this-is-a-very-very-very-very\
-very-long-url?q=123456789" # a two-line parameter value
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10.1.3 File Inclusion

OMNeT++ supports including an ini file in another, via the include keyword. This feature
allows you to partition large ini files into logical units, fixed and varying part, etc.

An example:

# omnetpp.ini
...
include params1.ini
include params2.ini
include ../common/config.ini
...

You can also include files from other directories. If the included ini file further includes others,
their path names will be understood as relative to the location of the file which contains the
reference, rather than relative to the current working directory of the simulation.

This rule also applies to other file names occurring in ini files (such as the load-libs,
output-vector-file, output-scalar-file, etc. options, and xmldoc() module parame-
ter values.)

In included files, it is allowed to have key-value lines without first having a section heading
line. File inclusion is conceptually handled as text substitution, except that a section heading
in an included file will not change the current section the main file. The following example
illustrates the rules:

# incl.ini
foo1 = 1 # no preceding section heading: these lines will go into
foo2 = 2 # whichever section the file is included into
[Config Bar]
bar = 3 # this will always go to into [Config Bar]

# omnetpp.ini
[General]
include incl.ini # adds foo1/foo2 to [General], and defines [Config Bar] w/ bar
baz1 = 4 # include files don’t change the current section, so these
baz2 = 4 # lines still belong to [General]

NOTE: The concept of file inclusion implies that include files may not make sense on
their own. Thus, when you open an included ini file in an specialized ini file editor, the
file contents may be flagged with errors and warnings. These errors/warnings disappear
when the file is viewed as part of its main file.

10.2 Sections

An ini file may contain a [General] section and several [Config <configname>] sections.
The order of the sections doesn’t matter.

10.2.1 The [General] Section

The most commonly used options of the [General] section are the following.
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• The network option selects the model to be set up and run.

• The length of the simulation can be set with the sim-time-limit and the cpu-time-
limit options (the usual time units such as ms, s, m, h, etc. can be used).

Note that the NED files loaded by the simulation may contain several networks, and any of
them may be specified in the network option.

10.2.2 Named Configurations

Named configurations are sections of the form [Config <configname>], where <configname>
is by convention a camel-case string that starts with a capital letter: Config1, WirelessPing,
OverloadedFifo, etc. For example, omnetpp.ini for an Aloha simulation might have the
following skeleton:

[General]
...
[Config PureAloha]
...
[Config SlottedAloha1]
...
[Config SlottedAloha2]
...

Some configuration options (such as user interface selection) are only accepted in the [Gen-
eral] section, but most of them can go into Config sections as well.

When you run a simulation, you need to select one of the configurations to be activated. In
Cmdenv, this is done with the -c command-line option:

$ aloha -c PureAloha

The simulation will then use the contents of the [Config PureAloha] section to set up the
simulation. (Tkenv, of course, lets you select the configuration from a dialog.)

10.2.3 Section Inheritance

Actually, when you activate the PureAloha configuration, the contents of the [General] sec-
tion will also be taken into account: if some configuration option or parameter value is not
found in [Config PureAloha], then the search will continue in the [General] section. In
other words, lookups in [Config PureAloha] will fall back to [General]. The [General]
section itself is optional; when it is absent, it is treated like an empty [General] section.

All named configurations fall back to [General] by default. However, for each configuration
it is possible to specify the fall-back section or a list of fallback sections explicitly, using the
extends key. Consider the following ini file skeleton:

[General]
...
[Config SlottedAlohaBase]
...
[Config LowTrafficSettings]
...
[Config HighTrafficSettings]
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...

[Config SlottedAloha1]
extends = SlottedAlohaBase, LowTrafficSettings
...
[Config SlottedAloha2]
extends = SlottedAlohaBase, HighTrafficSettings
...
[Config SlottedAloha2a]
extends = SlottedAloha2
...
[Config SlottedAloha2b]
extends = SlottedAloha2
...

If you activate the SlottedAloha2b configuration, lookups will consider sections in the fol-
lowing order (this is also called the section fallback chain): SlottedAloha2b, SlottedAloha2,
SlottedAlohaBase, HighTrafficSettings, General.

The effect is the same as if the contents of the sections SlottedAloha2b, SlottedAloha2, Slot-
tedAlohaBase, HighTrafficSettings and General were copied together into one section, one
after another, [Config SlottedAloha2b] being at the top, and [General] at the bottom.
Lookups always start at the top, and stop at the first matching entry.

The order of the sections in the fallback chain is computed using the C3 linearization algorithm
([BCH+96]):

The fallback chain of a configuration A is

• if A does not have an extends key then A, General

• otherwise the merge of the configurations enumerated in the extends key, and all of
their fallback section chains. The merge is monotonic: if some configuration X precedes
configuration Y in one of the input chains, it will precede it in the output chain too.

The section fallback chain can be printed by the -X option of the command line of the simula-
tion program:

$ aloha -X SlottedAloha2b
OMNeT++ Discrete Event Simulation
...
Config SlottedAloha2b
Config SlottedAloha2
Config SlottedAlohaBase
Config HighTrafficSettings
General

The section fallback concept is similar to multiple inheritance in object-oriented languages,
and benefits are similar too; you can factor out the common parts of several configurations
into a “base” configuration, and additionally you can reuse existing configurations (as opposed
to copying them) by using them as a base. In practice you will often have “abstract” configu-
rations too (in the C++/Java sense), which assign only a subset of parameters and leave the
others open, to be assigned in derived configurations.

If you are experimenting a lot with different parameter settings of a simulation model, these
techniques will make it much easier to manage ini files.
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10.3 Assigning Module Parameters

Simulations get input via module parameters, which can be assigned a value in NED files or
in omnetpp.ini – in this order. Since parameters assigned in NED files cannot be overridden
in omnetpp.ini, one can think about them as being “hardcoded”. In contrast, it is easier and
more flexible to maintain module parameter settings in omnetpp.ini.

In omnetpp.ini, module parameters are referred to by their full paths (hierarchical names).
This name consists of the dot-separated list of the module names (from the top-level module
down to the module containing the parameter), plus the parameter name (see section 7.1.5).

An example omnetpp.ini which sets the numHosts parameter of the toplevel module and the
transactionsPerSecond parameter of the server module:

[General]
Network.numHosts = 15
Network.server.transactionsPerSecond = 100

Typename pattern assignments are also accepted:

[General]
Network.host[*].app.typename = "PingApp"

10.3.1 Using Wildcard Patterns

Models can have a large number of parameters to be configured, and it would be tedious to
set them one-by-one in omnetpp.ini. OMNeT++ supports wildcard patterns which allow for
setting several model parameters at once. The same pattern syntax is used for per-object
configuration options; for example <object-path-pattern>.record-scalar, or <module-
path-pattern>.rng-<N>.

The pattern syntax is a variation on Unix glob-style patterns. The most apparent differences
to globbing rules are the distinction between * and **, and that character ranges should be
written with curly braces instead of square brackets; that is, any-letter is expressed as {a-
zA-Z} and not as [a-zA-Z], because square brackets are reserved for the notation of module
vector indices.

Pattern syntax:

• ? : matches any character except dot (.)

• * : matches zero or more characters except dot (.)

• ** : matches zero or more characters (any character)

• {a-f} : set: matches a character in the range a-f

• {^a-f}: negated set: matches a character NOT in the range a-f

• {38..150} : numeric range: any number (i.e. sequence of digits) in the range 38..150,
inclusive; both limits are optional

• [38..150] : index range: any number in square brackets in the range 38..150, inclusive;
both limits are optional

• backslash (\) : takes away the special meaning of the subsequent character

224



OMNeT++ Manual – Configuring Simulations

Precedence

If you use wildcards, the order of entries is important; if a parameter name matches several
wildcard-patterns, the first matching occurrence is used. This means that you need to list
specific settings first, and more general ones later. Catch-all settings should come last.

An example ini file:

[General]

*.host[0].waitTime = 5ms # specifics come first

*.host[3].waitTime = 6ms

*.host[*].waitTime = 10ms # catch-all comes last

Asterisk vs Double Asterisk

The * wildcard is for matching a single module or parameter name in the path name, while
** can be used to match several components in the path. For example, **.queue*.bufSize
matches the bufSize parameter of any module whose name begins with queue in the model,
while *.queue*.bufSize or net.queue*.bufSize selects only queues immediately on net-
work level. Also note that **.queue**.bufSize would match net.queue1.foo.bar.bufSize
as well!

Sets, Negated Sets

Sets and negated sets can contain several character ranges and also enumeration of charac-
ters. For example, {_a-zA-Z0-9} matches any letter or digit, plus the underscore; {xyzc-f}
matches any of the characters x, y, z, c, d, e, f. To include ’-’ in the set, put it at a position
where it cannot be interpreted as character range, for example: {a-z-} or {-a-z}. If you want
to include ’}’ in the set, it must be the first character: {}a-z}, or as a negated set: {^}a-z}.
A backslash is always taken as a literal backslash (and not as an escape character) within set
definitions.

Numeric Ranges and Index Ranges

Only nonnegative integers can be matched. The start or the end of the range (or both) can
be omitted: {10..}, {..99} or {..} are valid numeric ranges (the last one matches any
number). The specification must use exactly two dots. Caveat: *{17..19} will match a17,
117 and 963217 as well, because the * can also match digits!

An example for numeric ranges:

[General]

*.*.queue[3..5].bufSize = 10

*.*.queue[12..].bufSize = 18

*.*.queue[*].bufSize = 6 # this will only affect queues 0,1,2 and 6..11

10.3.2 Using the Default Values

It is also possible to utilize the default values specified in the NED files. The <parameter-
fullpath>=default setting assigns the default value to a parameter if it has one.
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The <parameter-fullpath>=ask setting will try to get the parameter value interactively from the
user.

If a parameter was not set but has a default value, that value will be assigned. This is like
having a **=default line at the bottom of the [General] section.

If a parameter was not set and has no default value, that will either cause an error or will be
interactively prompted for, depending on the particular user interface.

NOTE: In Cmdenv you must explicitly enable the interactive mode with the --cmdenv-
interactive=true option otherwise you will get an error when running the simulation.

More precisely, parameter resolution takes place as follows:

1. If the parameter is assigned in NED, it cannot be overridden in the configuration. The
value is applied and the process finishes.

2. If the first match is a value line (matches <parameter-fullpath>=<value>), the value is
applied and the process finishes.

3. If the first match is a <parameter-fullpath>=default line, the default value is applied
and the process finishes.

4. If the first match is a <parameter-fullpath>=ask line, the parameter will be asked from
the user interactively (UI dependent).

5. If there was no match and the parameter has a default value, it is applied and the process
finishes.

6. Otherwise the parameter is declared unassigned, and handled accordingly by the user
interface. It may be reported as an error, or may be asked from the user interactively.

10.4 Parameter Studies

It is quite common in simulation studies that the simulation model is run several times with
different parameter settings, and the results are analyzed in relation to the input parameters.
OMNeT++ 3.x had no direct support for batch runs, and users had to resort to writing shell
(or Python, Ruby, etc.) scripts that iterated over the required parameter space, to generate a
(partial) ini file and run the simulation program in each iteration.

OMNeT++ 4.x largely automates this process, and eliminates the need for writing batch exe-
cution scripts. It is the ini file where the user can specify iterations over various parameter
settings. Here is an example:

[Config AlohaStudy]

*.numHosts = ${1, 2, 5, 10..50 step 10}

**.host[*].generationInterval = exponential(${0.2, 0.4, 0.6}s)

This parameter study expands to 8*3 = 24 simulation runs, where the number of hosts iterates
over the numbers 1, 2, 5, 10, 20, 30, 40, 50, and for each host count three simulation
runs will be done, with the generation interval being exponential(0.2), exponential(0.4), and
exponential(0.6).

How does it work? First of all, Cmdenv with the -x option will tell you how many simulation
runs a given section expands to. (You will of course use Cmdenv for batch runs, not Tkenv.)
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$ aloha -u Cmdenv -x AlohaStudy

OMNeT++ Discrete Event Simulation
...
Config: AlohaStudy
Number of runs: 24

If you add the -g option, the program will also print out the values of the iteration variables
for each run. (Use -G for even more info.) Note that the parameter study actually maps to
nested loops, with the last ${...} becoming the innermost loop. The iteration variables are
just named $0 and $1 – we’ll see that it is possible to give meaningful names to them. Please
ignore the $repetition=0 part in the printout for now.

$ aloha -u Cmdenv -x AlohaStudy -g
OMNeT++ Discrete Event Simulation
...
Config: AlohaStudy
Number of runs: 24
Run 0: $0=1, $1=0.2, $repetition=0
Run 1: $0=1, $1=0.4, $repetition=0
Run 2: $0=1, $1=0.6, $repetition=0
Run 3: $0=2, $1=0.2, $repetition=0
Run 4: $0=2, $1=0.4, $repetition=0
Run 5: $0=2, $1=0.6, $repetition=0
Run 6: $0=5, $1=0.2, $repetition=0
Run 7: $0=5, $1=0.4, $repetition=0
...
Run 19: $0=40, $1=0.4, $repetition=0
Run 20: $0=40, $1=0.6, $repetition=0
Run 21: $0=50, $1=0.2, $repetition=0
Run 22: $0=50, $1=0.4, $repetition=0
Run 23: $0=50, $1=0.6, $repetition=0

Any of these runs can be executed by passing the -r <runnumber> option to Cmdenv. So,
the task is now to run the simulation program 24 times, with -r running from 0 through 23:

$ aloha -u Cmdenv -c AlohaStudy -r 0
$ aloha -u Cmdenv -c AlohaStudy -r 1
$ aloha -u Cmdenv -c AlohaStudy -r 2
...
$ aloha -u Cmdenv -c AlohaStudy -r 23

This batch can be executed either from the OMNeT++ IDE (where you are prompted to pick an
executable and an ini file, choose the configuration from a list, and just click Run), or using a
little command-line batch execution tool (opp_runall) supplied with OMNeT++.

Actually, it is also possible to get Cmdenv execute all runs in one go, by simply omitting the
-r option.

$ aloha -u Cmdenv -c AlohaStudy

OMNeT++ Discrete Event Simulation
Preparing for running configuration AlohaStudy, run #0...
...
Preparing for running configuration AlohaStudy, run #1...
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...

...
Preparing for running configuration AlohaStudy, run #23...

However, this approach is not recommended, because it is more susceptible to C++ pro-
gramming errors in the model. (For example, if any of the runs crashes, the whole batch is
terminated – which may not be what the user wants.)

10.4.1 Iterations

Let us have a look at the example ini file in the previous section again:

[Config AlohaStudy]

*.numHosts = ${1, 2, 5, 10..50 step 10}

**.host[*].generationInterval = exponential( ${0.2, 0.4, 0.6}s )

The ${...} syntax specifies an iteration. It is sort of a macro: at each run, the whole ${...}
string is textually replaced with the current iteration value. The values to iterate over do
not need to be numbers (unless you want to use the "a..b" or "a..b step c" syntax), and the
substitution takes place even inside string constants. So, the following examples are all valid
(note that textual substitution is used):

*.param = 1 + ${1e-6, 1/3, sin(0.5)}
==> *.param = 1 + 1e-6

*.param = 1 + 1/3

*.param = 1 + sin(0.5)

*.greeting = "We will simulate ${1,2,5} host(s)."
==> *.greeting = "We will simulate 1 host(s)."

*.greeting = "We will simulate 2 host(s)."

*.greeting = "We will simulate 5 host(s)."

To write a literal ${..} inside a string constant, quote the left brace with a backslash: $\{..}.

NOTE: Inside ${..}, the values are separated with commas. However, not every comma
is taken as a value separator because the parser tries to be smart about what you meant.
Commas inside (nested) parentheses, brackets or curly braces are ignored so that ${uni-
form(0,3)} is parsed as one value and not as uniform(0 plus 3). Commas, curly braces
and other charachers inside double-quoted string literals are also ignored, so ${"Hello,
world"} yields a single "Hello, world" string and not "Hello plus world". It is as-
sumed that string literals use backslash as an escape characher, like in C/C++ and NED.
If you want to have a literal comma or close-brace inside a value, you need to escape it
with a backslash: ${foo\,bar\}baz} will parse as a single value, foo,bar}baz. Back-
slashes themselves must be doubled. As the above examples illustrate, the parser re-
moves one level of backslashes, except inside string literals where they are left intact.

10.4.2 Named Iteration Variables

You can assign names to iteration variables, which has the advantage that you will see mean-
ingful names instead of $0 and $1 in the Cmdenv output, and also lets you refer to the
variables at more than one place in the ini file. The syntax is ${<varname>=<iteration>},
and variables can be referred to simply as ${<varname>}:

228



OMNeT++ Manual – Configuring Simulations

[Config Aloha]

*.numHosts = ${N=1, 2, 5, 10..50 step 10}

**.host[*].generationInterval = exponential( ${mean=0.2, 0.4, 0.6}s )

**.greeting = "There are ${N} hosts"

The scope of the variable name is the section that defines it, plus sections based on that
section (via extends).

Referencing Other Iteration Variables

Iterations may refer to other iteration variables, using the dollar syntax ($var) or the dollar-
brace syntax (${var}).

This feature makes it possible to have loops where the inner iteration range depends on the
outer one. An example:

**.foo = ${i=1..10} # outer loop

**.bar = ${j=1..$i} # inner loop depends on $i

When needed, the default top-down nesting order of iteration loops is modified (loops are
reordered) to ensure that expressions only refer to more outer loop variables, but not to inner
ones. When this is not possible, an error is generated with the “circular dependency” message.

For instance, in the following example the loops will be nested in k - i - j order, k being the
outermost and j the innermost loop:

**.foo = ${i=0..$k} # must be inner to $k

**.bar = ${j=$i..$k} # must be inner to both $i and $k

**.baz = ${k=1..10} # may be the outermost loop

And the next example will stop with an error because there is no “good” ordering:

**.foo = ${i=0..$j}

**.bar = ${j=0..$k}

**.baz = ${k=0..$i} # --> error: circular references

Variables are substituted textually, and the result is normally not evaluated as an arithmetic
expression. The result of the substitution is only evaluated where needed, namely in the three
arguments of iteration ranges (from, to, step), and in the value of the constraint configura-
tion option.

To illustrate textual substitution, consider the following contorted example:

**.foo = ${i=1..3, 1s+, -}001s

Here, the foo NED parameter will receiving the following values in subsequent runs: 1001s,
2001s, 3001s, 1s+001s, -001s.
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CAUTION: Due to textual substitution, variables in arithmetic expressions should be
protected with parentheses – just like in C/C++ function-style macros. Consider the
following example:

**.foo = ${i=10}

**.bar = ${j=$i+5}

**.baz = ${k=2*$j} # bogus! $j should be written as ($j)
constraint = $i+50 < 2*$j # ditto: should use ($i) and ($j)

Here, the baz parameter will receive the string 2*10+5 after the substitutions and hence
evaluate to 25 instead of the correct 2 ∗ (10 + 5) = 30; the constraint expression is similarly
wrong. Mind the parens!

Substitution also works inside string constants within iterations (${..}).

**.foo = "${i=Jo}" # -> Jo

**.bar = ${"Hi $i", "Hi ${i}hn"} # -> Hi Jo /John

However, outside iterations the plain dollar syntax is not understood, only the dollar-brace
syntax is:

**.foo = "${i=Day}"

**.baz = "Good $i" # -> remains "Good $i"

**.baz = "Good ${i}" # -> becomes "Good Day"

Rationale: The text substitution model was chosen for greater flexibility as well as the
ability to produce more consistent semantics. The advantages outweigh the inconve-
nience of having to parenthesize variable references in arithmetic expressions.

10.4.3 Parallel Iteration

The body of an iteration may end in an exclamation mark followed by the name of another
iteration variable. This syntax denotes a parallel iteration. A parallel iteration does not define
a loop of its own, but rather, the sequence is advanced in lockstep with the variable after the
“!”. In other words, the “!” syntax chooses the kth value from the iteration, where k is the
position (iteration count) of the iteration variable after the “!”.

An example:

**.plan = ${plan= "A", "B", "C", "D"}

**.numHosts = ${hosts= 10, 20, 50, 100 ! plan}

**.load = ${load= 0.2, 0.3, 0.3, 0.4 ! plan}

In the above example, the only loop is defined by the first line, the plan variable. The other
two iterations, hosts and load just follow it; for the first value of plan the first values of host
and load are selected, and so on.

10.4.4 Predefined Variables, Run ID

There are a number of predefined variables: ${configname} and ${runnumber} with the
obvious meanings; ${network} is the name of the network that is simulated; ${processid}
and ${datetime} expand to the OS process id of the simulation and the time it was started;
and there are some more: ${runid}, ${iterationvars} and ${repetition}.
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${runid} holds the run ID. When a simulation is run, a a run ID is generated that uniquely
identifies that instance of the simulation: if you run the same thing again, it will get a different
run ID. Run ID is a concatenation of several variables like ${configname}, ${runnumber},
${datetime} and ${processid}. This yields an identifier that is unique “enough” for all
practical purposes, yet it is meaningful for humans. The run ID is recorded into result files
written during the simulation, and can be used to match vectors and scalars written by the
same simulation run.

10.4.5 Constraint Expression

In cases when not all combinations of the iteration variables make sense or need to be sim-
ulated, it is possible to specify an additional constraint expression. This expression is inter-
preted as a conditional (an "if" statement) within the innermost loop, and it must evaluate to
true for the variable combination to generate a run. The expression should be given with the
constraint configuration option. An example:

*.numNodes = ${n=10..100 step 10}

**.numNeighbors = ${m=2..10 step 2}
constraint = ($m) <= sqrt($n) # note: parens needed due to textual substitution

The expression syntax supports most C language operators including boolean, conditional
and binary shift operations, and most <math.h> functions; data types are boolean, double
and string. The expression must evaluate to a boolean.

NOTE: Remember that variables are substituted textually into the expresssion, so they
must be protected with parentheses to preserve evaluation order.

10.4.6 Repeating Runs with Different Seeds

It is directly supported to perform several runs with the same parameters but different random
number seeds. There are two configuration options related to this: repeat and seed-set. The
first one simply specifies how many times a run needs to be repeated. For example,

repeat = 10

causes every combination of iteration variables to be repeated 10 times, and the ${repeti-
tion} predefined variable holds the loop counter. Indeed, repeat=10 is equivalent to adding
${repetition=0..9} to the ini file. The ${repetition} loop always becomes the innermost
loop.

The seed-set configuration key affects seed selection. Every simulation uses one or more
random number generators (as configured by the num-rngs key), for which the simulation
kernel can automatically generate seeds. The first simulation run may use one set of seeds
(seed set 0), the second run may use a second set (seed set 1), and so on. Each set contains
as many seeds as there are RNGs configured. All automatic seeds generate random number
sequences that are far apart in the RNG’s cycle, so they will never overlap during simulations.

NOTE: Mersenne Twister, the default RNG of OMNeT++ has a cycle length of 219937, which
is more than enough for any conceivable purpose.

The seed-set key tells the simulation kernel which seed set to use. It can be set to a con-
crete number (such as seed-set=0), but it usually does not make sense as it would cause
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every simulation to run with exactly the same seeds. It is more practical to set it to either
${runnumber} or to ${repetition}. The default setting is ${runnumber}:

seed-set = ${runnumber} # this is the default

This causes every simulation run to execute with a unique seed set. The second option is:

seed-set = ${repetition}

where all $repetition=0 runs will use the same seeds (seed set 0), all $repetition=1 runs
use another seed set, $repetition=2 a third seed set, etc.

To perform runs with manually selected seed sets, you can just define an iteration for the
seed-set key:

seed-set = ${5,6,8..11}

In this case, the repeat key should be left out, as seed-set already defines an iteration and
there is no need for an extra loop.

It is of course also possible to manually specify individual seeds for simulations. The parallel
iteration feature is very convenient here:

repeat = 4
seed-1-mt = ${53542, 45732, 47853, 33434 ! repetition}
seed-2-mt = ${75335, 35463, 24674, 56673 ! repetition}
seed-3-mt = ${34542, 67563, 96433, 23567 ! repetition}

The meaning of the above is this: in the first repetition, the first column of seeds is chosen, for
the second repetition, the second column, etc. The "!" syntax chooses the kth value from the
iteration, where k is the position (iteration count) of the iteration variable after the "!". Thus,
the above example is equivalent to the following:

# no repeat= line!
seed-1-mt = ${seed1 = 53542, 45732, 47853, 33434}
seed-2-mt = ${ 75335, 35463, 24674, 56673 ! seed1}
seed-3-mt = ${ 34542, 67563, 96433, 23567 ! seed1}

That is, the iterators of seed-2-mt and seed-3-mt are advanced in lockstep with the seed1
iteration.

10.4.7 Experiment-Measurement-Replication

We have introduced three concepts that are useful for organizing simulation results generated
by batch executions or several batches of executions.

During a simulation study, a user prepares several experiments. The purpose of an experiment
is to find out the answer to questions like "how does the number of nodes affect response times
in the network?" For an experiment, several measurements are performed on the simulation
model, and each measurement runs the simulation model with a different set of parameters.
To eliminate the bias introduced by the particular random number stream used for the simu-
lation, several replications of every measurement are run with different random number seeds,
and the results are averaged.

OMNeT++ result analysis tools can take advantage of the experiment, measurement and repli-
cation labels recorded into result files, and display simulation runs and recorded results
accordingly on the user interface.
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These labels can be explicitly specified in the ini file using the experiment-label, measurement-
label and replication-label config options. If they are missing, the default is the follow-
ing:

experiment-label = "${configname}"
measurement-label = "${iterationvars}"
replication-label = "#${repetition},seed-set=<seedset>"

That is, the default experiment label is the configuration name; the measurement label is
concatenated from the iteration variables; and the replication label contains the repeat loop
variable and seed-set. Thus, for our first example the experiment-measurement-replication tree
would look like this:

"PureAloha"--experiment
$N=1,$mean=0.2 -- measurement

#0, seed-set=0 -- replication
#1, seed-set=1
#2, seed-set=2
#3, seed-set=3
#4, seed-set=4

$N=1,$mean=0.4
#0, seed-set=5
#1, seed-set=6
...
#4, seed-set=9

$N=1,$mean=0.6
#0, seed-set=10
#1, seed-set=11
...
#4, seed-set=14

$N=2,$mean=0.2
...

$N=2,$mean=0.4
...
...

The experiment-measurement-replication labels should be enough to reproduce the same sim-
ulation results, given of course that the ini files and the model (NED files and C++ code)
haven’t changed.

Every instance of running the simulation gets a unique run ID. We can illustrate this by listing
the corresponding run IDs under each repetition in the tree. For example:

"PureAloha"
$N=1,$mean=0.2

#0, seed-set=0
PureAloha-0-20070704-11:38:21-3241
PureAloha-0-20070704-11:53:47-3884
PureAloha-0-20070704-16:50:44-4612

#1, seed-set=1
PureAloha-1-20070704-16:50:55-4613

#2, seed-set=2
PureAloha-2-20070704-11:55:23-3892
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PureAloha-2-20070704-16:51:17-4615
...

The tree shows that ("PureAloha", "$N=1,$mean=0.2", "#0, seed-set=0") was run three times.
The results produced by these three executions should be identical, unless, for example, some
parameter was modified in the ini file, or a bug got fixed in the C++ code.

We believe that the default way of generating experiment-measurement-replication labels is
useful and sufficient for the majority of simulation studies. However, you can customize it if
needed. For example, here is a way to join two configurations into one experiment:

[Config PureAloha_Part1]
experiment-label = "PureAloha"
...
[Config PureAloha_Part2]
experiment-label = "PureAloha"
...

Measurement and replication labels can be customized in a similar way, making use of named
iteration variables, ${repetition}, ${runnumber} and other predefined variables. One pos-
sible benefit is to customize the generated measurement and replication labels. For example:

[Config PureAloha_Part1]
measurement = "${N} hosts, exponential(${mean}) packet generation interval"

One should be careful with the above technique though, because if some iteration variables
are left out of the measurement labels, runs with all values of those variables will be grouped
together to the same replications.

10.5 Configuring the Random Number Generators

The random number architecture of OMNeT++ was already outlined in section 7.4. Here we’ll
cover the configuration of RNGs in omnetpp.ini.

10.5.1 Number of RNGs

The num-rngs configuration option sets the number of random number generator instances
(i.e. random number streams) available for the simulation model (see 7.4). Referencing an
RNG number greater or equal to this number (from a simple module or NED file) will cause a
runtime error.

10.5.2 RNG Choice

The rng-class configuration option sets the random number generator class to be used.
It defaults to "cMersenneTwister", the Mersenne Twister RNG. Other available classes are
"cLCG32" (the "legacy" RNG of OMNeT++ 2.3 and earlier versions, with a cycle length of 231−2),
and "cAkaroaRNG" (Akaroa’s random number generator, see section 11.5).
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10.5.3 RNG Mapping

The RNG numbers used in simple modules may be arbitrarily mapped to the actual random
number streams (actual RNG instances) from omnetpp.ini. The mapping allows for great
flexibility in RNG usage and random number streams configuration – even for simulation
models which were not written with RNG awareness.

RNG mapping may be specified in omnetpp.ini. The syntax of configuration entries is the
following.

[General]
<modulepath>.rng-N = M # where N,M are numeric, M < num-rngs

This maps module-local RNG N to physical RNG M. The following example maps all gen mod-
ule’s default (N=0) RNG to physical RNG 1, and all noisychannel module’s default (N=0) RNG
to physical RNG 2.

[General]
num-rngs = 3

**.gen[*].rng-0 = 1

**.noisychannel[*].rng-0 = 2

This mapping allows variance reduction techniques to be applied to OMNeT++ models, without
any model change or recompilation.

10.5.4 Automatic Seed Selection

Automatic seed selection is used for an RNG if you do not explicitly specify seeds in om-
netpp.ini. Automatic and manual seed selection can co-exist; for a particular simulation,
some RNGs can be configured manually, and some automatically.

The automatic seed selection mechanism uses two inputs: the run number and the RNG
number. For the same run number and RNG number, OMNeT++ always selects the same
seed value for any simulation model. If the run number or the RNG number is different,
OMNeT++ does its best to choose different seeds which are also sufficiently separated in the
RNG’s sequence so that the generated sequences don’t overlap.

The run number can be specified either in in omnetpp.ini (e.g. via the cmdenv-runs-to-
execute option) or on the command line:

./mysim -r 1

./mysim -r 2

./mysim -r 3

For the cMersenneTwister random number generator, selecting seeds so that the generated
sequences don’t overlap is easy, due to the extremely long sequence of the RNG. The RNG is
initialized from the 32-bit seed value seed = runNumber ∗ numRngs+ rngNumber. (This implies
that simulation runs participating in the study should have the same number of RNGs set). 1

For the cLCG32 random number generator, the situation is more difficult, because the range
of this RNG is rather short (231 − 1, about 2 billion). For this RNG, OMNeT++ uses a table
of 256 pre-generated seeds, equally spaced in the RNG’s sequence. Index into the table is
calculated with the runNumber ∗ numRngs + rngNumber formula. Care should be taken that

1While (to our knowledge) no one has proven that the seeds 0,1,2,... are well apart in the sequence, this is probably
true, due to the extremely long sequence of MT. The author would however be interested in papers published about
seed selection for MT.
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one doesn’t exceed 256 with the index, or it will wrap and the same seeds will be used again.
It is best not to use the cLCG32 at all – cMersenneTwister is superior in every respect.

10.5.5 Manual Seed Configuration

In some cases you may want to manually configure seed values. Reasons for doing that may
be that you want to use variance reduction techniques, or you may want to use the same
seeds for several simulation runs.

To manually set seeds for the Mersenne Twister RNG, use the seed-k-mt option, where k is
the RNG index. An example:

[General]
num-rngs = 3
seed-0-mt = 12
seed-1-mt = 9
seed-2-mt = 7

For the now obsolete cLCG32 RNG, the name of the corresponding option is seed-k-lcg32,
and OMNeT++ provides a standalone program called opp_lcg32_seedtool to generate good
seed values that are sufficiently separated in the RNG’s sequence.

236



OMNeT++ Manual – Running Simulations

Chapter 11

Running Simulations

11.1 Introduction

This chapter describes how to run simulations. It covers basic usage, user interfaces, batch
runs, how to use Akaroa, and also explains how to solve the most common errors.

11.1.1 Running a Simulation Executable

By default, the output of an opp_makemake-generated makefile is a simulation executable
that can be run directly. In simple cases, this executable can be run without command-line
arguments, but usually one will need to specify options to specify what ini file to use, which
user interface to activate, where to load NED files from, and so on.

Getting Help

The following sections describe the most frequently used command-line options. To get a
complete list of supported command line options, run the opp_run command (or any other
simulation executable) with the -h option.

$ opp_run -h

Specifying Ini Files

The default ini file is omnetpp.ini, and is loaded if no other ini file is given on the command
line.

Ini files can be specified both as plain arguments and with the -f option, so the following two
commands are equivalent:

$ ./fifo experiment.ini common.ini
$ ./fifo -f experiment.ini -f common.ini

Multiple ini files can be given, and their contents will be merged. This allows for partitioning
the configuration into separate files, for example to simulation options, module parameters
and result recording options.
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Specifying the NED Path

NED files are loaded from directories listed on the NED path. More precisely, they are loaded
from the listed directories and their whole subdirectory trees. Directories are separated with
a semicolon (;).

NOTE: Semicolon is used as separator on both Unix and Windows.

The NED path can be specified in several ways:

• using the NEDPATH environment variable

• using the -n command-line option

• in ini files, with the ned-path configuration option

NED path resolution rules are as follows:

• OMNeT++ checks for NED path specified on the command line with the -n option

• if not found on the command line, it checks for the NEDPATH environment variable

• the ned-path option value from the ini file is appended to the result of the above steps

• if the result is still empty, it falls back to "." (the current directory)

Selecting a User Interface

OMNeT++ simulations can be run under different user interfaces. Currently the following
user interfaces are supported:

• Tkenv: Tcl/Tk-based graphical, windowing user interface

• Cmdenv: command-line user interface for batch execution

You would typically test and debug your simulation under Tkenv, then run actual simulation
experiments from the command line or shell script, using Cmdenv. Tkenv is also better suited
for educational or demonstration purposes.

Both Tkenv and Cmdenv are provided in the form of a library, and you may choose between
them by linking one or both into your simulation executable. (Creating the executable was
described in chapter 9). Both user interfaces are supported on Unix and Windows platforms.

You can choose which runtime environment is included in your simulation executable when
you generate your makefile. By default, both Tkenv and Cmdenv is linked in so you can
choose between them during runtime, but it is possible to specify only a single user interface
with the -u Cmdenv or -u Tkenv option on the opp_makemake command line. This can be
useful if you intend to run your simulations on a machine where Tcl/Tk is not installed.

By default, Tkenv will be used if both runtime environments are present in your executable.
You explicitly select a user interface by adding the user-interface=Cmdenv (or =Tkenv) op-
tion in your ini file, or by specifying -u Cmdenv or -u Tkenv on the command line. If both
the config option and the command line option are present, the command line option takes
precedence.

238



OMNeT++ Manual – Running Simulations

Selecting a Configuration and Run Number

Configurations can be selected with the -c <configname> command line option. If you do
not specify the configuration and you are running under:

• Tkenv: the runtime environment will prompt you to choose one.

• Cmdenv: the General configuration will be executed.

User interfaces may support the -r runnumber option to select runs, either one or more,
depending on the type of the user interface.

There are several command line options to get information about the iteration variables and
the number of runs in the configurations:

• -a – Prints all configuration names and the number of runs in them.

• -x <configname> – Prints the number of runs available in the given configuration.

• -g – Prints the unrolled configuration (together with the -x option) and expands the
iteration variables.

• -G – Prints even more details than -g.

Loading Extra Libraries

OMNeT++ allows you to load shared libraries at runtime. This means that you can create
simulation models as a shared library and load the model later into a different executable
without the need to explicitly link against that library. This approach has several advantages.

• It is possible to distribute the model as a shared library. Others may be able to use it
without recompiling it.

• You can split a large model into smaller, reusable components.

• You can mix several models (even from different projects) without the need of linking or
compiling.

Use the -l libraryname command line option to load a library dynamically. OMNeT++ will
attempt to load it using the dlopen() or LoadLibrary() functions and automatically regis-
ters all simple modules in the library.

The prefix and suffix from the library name can be omitted (the extensions .dll, .so, .dylib,
and also the common lib prefix on Unix systems). This means that you can specify the
library name in a platform independent way: if you specify -l foo, then OMNeT++ will look
for foo.dll, libfoo.dll, libfoo.so or libfoo.dylib, depending on the platform.

It is also possible to specify the libraries to be loaded in the ini file with the load-libs
configuration option. The values from the command line and the config file will be merged.

NOTE: Runtime loading is not needed if your executable or shared lib was already linked
against the library in question. In that case, the platform’s dynamic loader will automat-
ically load the library.
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NOTE: You must ensure that the library can be accessed by OMNeT++. Either specify
the library name with a full path (pre- and postfixes of the library file name still can be
omitted), or adjust the shared library path environment variable of your OS (PATH on
Windows, LD_LIBRARY_PATH on Unix, and DYLD_LIBRARY_PATH on Mac OS X.)

11.1.2 Running a Shared Library

Shared libraries can be run using the opp_run program. Both opp_run and simulation exe-
cutables are capable of loading additional shared libraries; actually, opp_run is nothing else
than an empty simulation executable.

Example:

opp_run -l mymodel

The above example will load the model found in libmymodel.so and execute it.

11.1.3 Controlling the Run

There are several useful configuration options that control how a simulation is run.

• cmdenv-express-mode – Provides only minimal status updates on the console.

• cmdenv-interactive – Allows the simulation to ask missing parameter values interac-
tively

• cmdenv-status-frequency – Controls how often the status is written to the console.

• cpu-time-limit – Limits how long the simulation should run (in wall clock time)

• sim-time-limit – Limits how long the simulation should run (in simulation time)

• debug-on-errors – If the runtime detects any error, it will generate a breakpoint so you
will be able to check the location and the context of the problem in your debugger.

• fingerprint – The simulation kernel computes a checksum while running the simula-
tion. It is calculated from the module id and from the current simulation time of each
event. If you specify the fingerprint option in the config file, the simulation runtime
will compare the computed checksum with the provided one. If there is a difference it will
generate an error. This feature is very useful if you make some cosmetic changes to your
source and want to be reasonable sure that your changes did not alter the behaviour of
the model.

WARNING: The value of the calculated fingerprint is heavily dependent on the accuracy
of the floating point arithmetic. There are differences between the floating point handling
of AMD and Intel CPUs. Running under a processor emulator software like valgrind may
also produce a different fingerprint. This is normal. Hint: see gcc options -mfpmath=sse
-msse2.

• record-eventlog – You can turn on the recording of the simulator events. The resulting
file can be analyzed later in the IDE with the sequence chart tool.
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NOTE: It is also possible to specify a configuration option on the command line (in which
case the command line takes precedence). To do so, prefix the option name with a double
dash (--), and be sure not to have spaces around the equal sign. Example: --debug-on-
errors=true

To get the list of all possible configuration options, type:

opp_run -h config

11.2 Cmdenv: the Command-Line Interface

The command line user interface is a small, portable and fast user interface that compiles
and runs on all platforms. Cmdenv is designed primarily for batch execution.

Cmdenv simply executes some or all simulation runs that are described in the configuration
file. If one run stops with an error message, subsequent ones will still be executed. The runs
to be executed can be passed via command-line argument or in the ini file.

11.2.1 Example Run

When you run the Fifo example under Cmdenv, you should see something like this:

$ ./fifo -u Cmdenv -c Fifo1

OMNeT++ Discrete Event Simulation (C) 1992-2008 Andras Varga, OpenSim Ltd.
Version: 4.0, edition: Academic Public License -- NOT FOR COMMERCIAL USE
See the license for distribution terms and warranty disclaimer
Setting up Cmdenv...
Loading NED files from .: 5

Preparing for running configuration Fifo1, run #0...
Scenario: $repetition=0
Assigned runID=Fifo1-0-20090104-12:23:25-5792
Setting up network ’FifoNet’...
Initializing...
Initializing module FifoNet, stage 0
Initializing module FifoNet.gen, stage 0
Initializing module FifoNet.fifo, stage 0
Initializing module FifoNet.sink, stage 0

Running simulation...

** Event #1 T=0 Elapsed: 0.000s (0m 00s) 0% completed
Speed: ev/sec=0 simsec/sec=0 ev/simsec=0
Messages: created: 2 present: 2 in FES: 1

** Event #232448 T=11719.051014922336 Elapsed: 2.003s (0m 02s) 3% completed
Speed: ev/sec=116050 simsec/sec=5850.75 ev/simsec=19.8351
Messages: created: 58114 present: 3 in FES: 2

...

** Event #7206882 T=360000.52066583684 Elapsed: 78.282s (1m 18s) 100% completed
Speed: ev/sec=118860 simsec/sec=5911.9 ev/simsec=20.1053
Messages: created: 1801723 present: 3 in FES: 2
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<!> Simulation time limit reached -- simulation stopped.

Calling finish() at end of Run #0...
End.

As Cmdenv runs the simulation, it periodically prints the sequence number of the current
event, the simulation time, the elapsed (real) time, and the performance of the simulation
(how many events are processed per second; the first two values are 0 because there wasn’t
enough data for it to calculate yet). At the end of the simulation, the finish() methods
of the simple modules are run, and the outputs from them are displayed. On my machine
this run took 34 seconds. This Cmdenv output can be customized via omnetpp.ini entries.
The output file results/Fifo1-0.vec contains vector data recorded during simulation (here,
queueing times), and it can be processed using the IDE or other tools.

11.2.2 Command-Line Options

The command line environment allows you to specify more than one run by using the -r
2,4,6..8 format. See 11.4 for more information about running simulation batches.

11.2.3 Cmdenv Ini File Options

cmdenv-runs-to-execute specifies which simulation runs should be executed. It accepts a
comma-separated list of run numbers or run number ranges, e.g. 1,3..4,7..9. If the value
is missing, Cmdenv executes all runs that have ini file sections; if no runs are specified in the
ini file, Cmdenv does one run. The -r command line option overrides this ini file setting.

Cmdenv can be executed in two modes, selected by the cmdenv-express-mode ini file option:

• Normal (non-express) mode is for debugging; detailed information will be written to the
standard output (event banners, module output, etc).

• Express mode can be used for long simulation runs; only periodical status updates are
displayed about the progress of the simulation.

cmdenv-performance-display affects express mode only: it controls whether to print perfor-
mance information. Turning it on results in a 3-line entry printed on each update, containing
ev/sec, simsec/sec, ev/simsec, number of messages created/still present/currently sched-
uled in FES.

For a full list of options, see the options beginning with cmdenv- in Appendix G.

11.2.4 Interpreting Cmdenv Output

When the simulation is running in “express” mode with detailed performance display enabled,
Cmdenv periodically outputs a three-line status report about the progress of the simulation.
The output looks like this:

...

** Event #250000 T=123.74354 ( 2m 3s) Elapsed: 0m 12s
Speed: ev/sec=19731.6 simsec/sec=9.80713 ev/simsec=2011.97
Messages: created: 55532 present: 6553 in FES: 8
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** Event #300000 T=148.55496 ( 2m 28s) Elapsed: 0m 15s
Speed: ev/sec=19584.8 simsec/sec=9.64698 ev/simsec=2030.15
Messages: created: 66605 present: 7815 in FES: 7

...

The first line of the status display (beginning with **) contains:

• how many events have been processed so far

• the current simulation time (T), and

• the elapsed time (wall clock time) since the beginning of the simulation run.

The second line displays info about simulation performance:

• ev/sec indicates performance: how many events are processed in one real-time second.
On one hand it depends on your hardware (faster CPUs process more events per second),
and on the other hand it depends on the complexity (amount of calculations) associated
with processing one event. For example, protocol simulations tend to require more pro-
cessing per event than e.g. queueing networks, thus the latter produce higher ev/sec
values. In any case, this value is independent of the size (number of modules) in your
model.

• simsec/sec shows relative speed of the simulation, that is, how fast the simulation is
progressing compared to real time, how many simulated seconds can be done in one real
second. This value virtually depends on everything: on the hardware, on the size of the
simulation model, on the complexity of events, and the average simulation time between
events as well.

• ev/simsec is the event density: how many events are there per simulated second. Event
density only depends on the simulation model, regardless of the hardware used to sim-
ulate it: in a cell-level ATM simulation you will have very hight values (109), while in a
bank teller simulation this value is probably well under 1. It also depends on the size
of your model: if you double the number of modules in your model, you can expect the
event density double, too.

The third line displays the number of messages, and it is important because it may indicate
the ‘health’ of your simulation.

• Created: total number of message objects created since the beginning of the simulation
run. This does not mean that this many message object actually exist, because some
(many) of them may have been deleted since then. It also does not mean that you created
all those messages – the simulation kernel also creates messages for its own use (e.g. to
implement wait() in an activity() simple module).

• Present: the number of message objects currently present in the simulation model, that
is, the number of messages created (see above) minus the number of messages already
deleted. This number includes the messages in the FES.

• In FES: the number of messages currently scheduled in the Future Event Set.

The second value, the number of messages present, is more useful than perhaps one would
initially think. It can be an indicator of the ‘health’ of the simulation; if it is growing steadily,
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then either you have a memory leak and losing messages (which indicates a programming
error), or the network you simulate is overloaded and queues are steadily filling up (which
might indicate wrong input parameters).

Of course, if the number of messages does not increase, it does not mean that you do not have
a memory leak (other memory leaks are also possible). Nevertheless the value is still useful,
because by far the most common way of leaking memory in a simulation is by not deleting
messages.

11.3 Tkenv: the Graphical User Interface

Tkenv is a portable graphical windowing user interface. Tkenv supports interactive execution
of the simulation, tracing and debugging. Tkenv is recommended in the development stage of
a simulation and for presentation purposes, since it allows one to get a detailed picture of the
state of simulation at any point of execution and to follow what happens inside the network.

NOTE: This section only covers the command-line and configuration options of Tkenv;
the user interface is described in the Tkenv chapter of the OMNeT++ User Guide.

11.3.1 Command-Line and Configuration Options

A simulation program built with Tkenv accepts all the general command line options. Addi-
tionally, the -c configname and -r runnumber options can be used to preselect a single run
for execution; that is, these options suppress the initial run selection dialog.

Tkenv configuration options:

• tkenv-default-config: Specifies which config Tkenv should set up automatically on
startup. The default is to ask the user. This option is equivalent to the -c command-line
option.

• tkenv-default-run: Specifies which run (of the default config, see tkenv-default-config)
Tkenv should set up automatically on startup. The default is to ask the user. This option
is equivalent to the -r command-line option.

• tkenv-extra-stack: Specifies the extra amount of stack that is reserved for each activ-
ity() simple module when the simulation is run under Tkenv.

• tkenv-image-path: Specifies the path for loading module icons.

• tkenv-plugin-path: Specifies the search path for Tkenv plugins. Tkenv plugins are .tcl
files that get evaluated on startup.

Tkenv-specific configuration options can also be specified on the command line by prefixing
them with two dashes (e.g --tkenv-option=value). See Appendix G for the list of possible
configuration options.

11.4 Batch Execution

Once your model works reliably, you will usually want to run several simulations. You may
want to run the model with various parameter settings, or you may want (should want?) to
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run the same model with the same parameter settings but with different random number
generator seeds, to achieve statistically more reliable results.

Running a simulation several times by hand can easily become tedious, and then a good
solution is to write a control script that takes care of the task automatically. Unix shell
is a natural language choice to write the control script in, but other languages like Perl,
Matlab/Octave, Tcl, Ruby might also have justification for this purpose.

Before running simulation batches, you must set a condition to stop your simulation. This is
usually a time limit set by the sim-time-limit configuration option, but you can limit your
simulation by using wall clock time (cpu-time-limit) or by directly ending a simulation with
an API call if some condition is true.

11.4.1 Using Cmdenv

To execute more than one run using Cmdenv, use the -r option and specify the runs in a
comma separated format 1,2,4,9..11, or you may leave out the -r option to execute all
runs in the experiment.

WARNING: Although it is very convenient, we do not recommend that you use this
method for running simulation batches. Specifying more than one run number would run
those simulations in the same process. This method is more prone to C++ programming
errors. A failure in a single run may abort execution (segfault) or invalidate the results
of subsequent runs. If you want to execute more than one run, we recommend that you
run each of them in a separate process; you can use the opp_runall program for this
purpose.

11.4.2 Using Shell Scripts

The following script executes a simulation named wireless several times, with parameters
for the different runs given in the runs.ini file.

Before you execute your simulation batch, you may check how many runs are available in the
configuration you are using. Use the -x config command line option to print the number of
runs or add the -g to get more details.

#! /bin/sh
./wireless -f runs.ini -r 1
./wireless -f runs.ini -r 2
./wireless -f runs.ini -r 3
./wireless -f runs.ini -r 4
...
./wireless -f runs.ini -r 10

To run the above script, type it in a text file called e.g. run, give it x (executable) permission
using chmod, then you can execute it by typing ./run:

$ chmod +x run
$ ./run

You can simplify the above script by using a for loop. In the example below, the variable i
iterates through the values of list given after the in keyword. It is very practical, since you can
leave out or add runs, or change the order of runs by simply editing the list – to demonstrate
this, we skip run 6, and include run 15 instead.
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#! /bin/sh
for i in 3 2 1 4 5 7 15 8 9 10; do

./wireless -f runs.ini -r $i
done

If you have many runs, you can use a C-style loop:

#! /bin/sh
for ((i=1; $i<50; i++)); do

./wireless -f runs.ini -r $i
done

11.4.3 Using opp_runall

OMNeT++ has a utility program called opp_runall which allows you to execute a simulation
batch in command line mode. You must specify the whole command line you would use to
run your batch in Cmdenv. There are advantages to running your batches this way:

• Each simulation run executes in a separate operating system process. This means that
a crash because of a programming error does not affect the outcome of the other runs.
They are totally independent of each other.

• If you happen to have a multi core/processor machine, you can take advantage of the
processing power by running sevaral runs in parallel.

The command basically creates a makefile which contains a separate target for each run.
By default the makefile will be executed causing each target to run. You can give additional
options to the opp_runall command to activate parallel building. The -j option can be used
to specify the maximum number of parallel runs allowed.

WARNING: Use the parallel execution option only if you have enough memory to run
several simulations side by side. If you run out of memory your operating system will
start swapping, and the overall performance of the system will be greatly reduced. Always
specify the number of processes after the -j option, otherwise the make program will try
to start all runs at the same time. As a rule of thumb: if you have 4 cores (and enough
memory), use -j4.

The form of the command is:

opp_runall -j2 ./aloha -u Cmdenv -c PureAlohaExperiment -r 0..23

You can use the -x ConfigName -g command line options with your simulation to check the
number of available runs.

Using the --export filename option only generates the makefile, but does not start it. You
can run your batch later by invoking the generated makefile.

11.5 Akaroa Support: Multiple Replications in Parallel

11.5.1 Introduction

Typical simulations are Monte-Carlo simulations: they use (pseudo-)random numbers to drive
the simulation model. For the simulation to produce statistically reliable results, one has to

246



OMNeT++ Manual – Running Simulations

carefully consider the following:

• When the initial transient is over, when can we start collecting data? We usually don’t
want to include the initial transient when the simulation is still “warming up.”

• When can we stop the simulation? We want to wait long enough so that the statistics
we are collecting can “stabilize”, or reach the required sample size to be statistically
trustable.

Neither question is trivial to answer. One might just suggest to wait “very long” or “long
enough”. However, this is neither simple (how do you know what is “long enough”?) nor
practical (even with today’s high speed processors simulations of modest complexity can take
hours, and one may not afford multiplying runtimes by, say, 10, “just to be safe.”) If you need
further convincing, please read [PJL02] and be horrified.

A possible solution is to look at the statistics while the simulation is running, and decide at
runtime when enough data have been collected for the results to have reached the required
accuracy. One possible criterion is given by the confidence level, more precisely, by its width
relative to the mean. But ex ante it is unknown how many observations have to be collected
to achieve this level – it must be determined at runtime.

11.5.2 What Is Akaroa

Akaroa [EPM99] addresses the above problem. According to its authors, Akaroa (Akaroa2) is
a “fully automated simulation tool designed for running distributed stochastic simulations in
MRIP scenario” in a cluster computing environment.

MRIP stands for Multiple Replications in Parallel. In MRIP, the computers of the cluster run
independent replications of the whole simulation process (i.e. with the same parameters but
different seed for the RNGs (random number generators)), generating statistically equivalent
streams of simulation output data. These data streams are fed to a global data analyser
responsible for analysis of the final results and for stopping the simulation when the results
reach a satisfactory accuracy.

The independent simulation processes run independently of one another and continuously
send their observations to the central analyser and control process. This process combines
the independent data streams, and calculates from these observations an overall estimate of
the mean value of each parameter. Akaroa2 decides by a given confidence level and precision
whether it has enough observations or not. When it judges that is has enough observations it
halts the simulation.

If n processors are used, the needed simulation execution time is usually n times smaller
compared to a one-processor simulation (the required number of observations are produced
sooner). Thus, the simulation would be sped up approximately in proportion to the number
of processors used and sometimes even more.

Akaroa was designed at the University of Canterbury in Christchurch, New Zealand and can
be used free of charge for teaching and non-profit research activities.

11.5.3 Using Akaroa with OMNeT++

Akaroa

Before the simulation can be run in parallel under Akaroa, you have to start up the system:
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• Start akmaster running in the background on some host.

• On each host where you want to run a simulation engine, start akslave in the back-
ground.

Each akslave establishes a connection with the akmaster.

Then you use akrun to start a simulation. akrun waits for the simulation to complete, and
writes a report of the results to the standard output. The basic usage of the akrun command
is:

akrun -n num_hosts command [argument..]

where command is the name of the simulation you want to start. Parameters for Akaroa are
read from the file named Akaroa in the working directory. Collected data from the processes
are sent to the akmaster process, and when the required precision has been reached, ak-
master tells the simulation processes to terminate. The results are written to the standard
output.

The above description is not detailed enough help you set up and successfully use Akaroa –
for that you need to read the Akaroa manual.

Configuring OMNeT++ for Akaroa

First of all, you have to compile OMNeT++ with Akaroa support enabled.

The OMNeT++ simulation must be configured in omnetpp.ini so that it passes the observa-
tions to Akaroa. The simulation model itself does not need to be changed – it continues to
write the observations into output vectors (cOutVector objects, see chapter 7). You can place
some of the output vectors under Akaroa control.

You need to add the following to omnetpp.ini:

[General]
rng-class = "cAkaroaRNG"
outputvectormanager-class = "cAkOutputVectorManager"

These lines cause the simulation to obtain random numbers from Akaroa, and allows data
written to selected output vectors to be passed to Akaroa’s global data analyser. 1

Akaroa’s RNG is a Combined Multiple Recursive pseudorandom number generator (CMRG)
with a period of approximately 2191 random numbers, and provides a unique stream of random
numbers for every simulation engine.

NOTE: It is vital that you obtain random numbers from Akaroa; otherwise, all simulation
processes will run with the same RNG seeds, and produce exactly the same results.

Then you need to specify which output vectors you want to be under Akaroa control (by
default, none of them are). You can use the *, ** wildcards (see section 10.3.1) to place
certain vectors under Akaroa control.

<modulename>.<vectorname1>.with-akaroa = true
<modulename>.<vectorname2>.with-akaroa = true

1For more details on the plugin mechanism these settings make use of, see section 16.1.

248



OMNeT++ Manual – Running Simulations

Using Shared File Systems

It is usually practical to have the same physical disk mounted (e.g. via NFS or Samba) on
all computers in the cluster. However, because all OMNeT++ simulation processes run with
the same settings, they would overwrite each other’s output files (e.g. omnetpp.vec, om-
netpp.sca). Your can prevent this from happening using the fname-append-host ini file
entry:

[General]
fname-append-host = true

When turned on, it appends the host name to the names of the output files (output vector,
output scalar, snapshot files).

11.6 Troubleshooting

11.6.1 Unrecognized Configuration Option

If you receive an error message about unrecognized configuration options you may use -h
config or -h configdetails options to display all possible configuration options and their
descriptions.

11.6.2 Stack Problems

“Stack violation (FooModule stack too small?) in module bar.foo”

OMNeT++ detected that the module has used more stack space than it has allocated. The
solution is to increase the stack for that module type. You can call the getStackUsage()
from finish() to find out actually how much stack the module used.

“Error: Cannot allocate nn bytes stack for module foo.bar”

The resolution depends on whether you are using OMNeT++ on Unix or on Windows.

Unix. If you get the above message, you have to increase the total stack size (the sum of all
coroutine stacks). You can do so in omnetpp.ini:

[General]
total-stack = 2MiB

There is no performance penalty if you set total-stack too high. I recommend to set it to
a few K less than the maximum process stack size allowed by the operating system (ulimit
-s; see next section).

Windows. You need to set a low (!) “reserved stack size” in the linker options, for example
64K (/stack:65536 linker flag) will do. The “reserved stack size” is an attribute in the Windows
exe files’ internal header. It can be set from the linker, or with the editbin Microsoft utility.
You can use the opp_stacktool program (which relies on another Microsoft utility called
dumpbin) to display reserved stack size for executables.

You need a low reserved stack size because the Win32 Fiber API, which is the mechanism
underlying activity(), uses this number as the coroutine stack size, and with 1MiB being
the default, it is easy to run out of the 2GiB possible address space (2GiB/1MiB=2048).
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A more detailed explanation follows. Each fiber has its own stack, by default 1MiB (this is the
“reserved” stack space – i.e. reserved in the address space, but not the full 1MiB is actually
“committed”, i.e. has physical memory assigned to it). This means that a 2GiB address space
will run out after 2048 fibers, which is way too few. (In practice, you won’t even be able to cre-
ate this many fibers, because physical memory is also a limiting factor). Therefore, the 1MiB
reserved stack size (RSS) must be set to a smaller value: the coroutine stack size requested for
the module, plus the extra-stack-kb amount for Cmdenv/Tkenv – which makes about 16K
with Cmdenv, and about 48K when using Tkenv. Unfortunately, the CreateFiber() Win32 API
doesn’t allow the RSS to be specified. The more advanced CreateFiberEx() API which accepts
RSS as parameter is unfortunately only available from Windows XP.

The alternative is the stacksize parameter stored in the EXE header, which can be set via the
STACKSIZE .def file parameter, via the /stack linker option, or on an existing executable using
the editbin /stack utility. This parameter specifies a common RSS for the main program stack,
fiber and thread stacks. 64K should be enough. This is the way the simulation executable
should be created; linked with the /stack:65536 option, or the /stack:65536 parameter ap-
plied using editbin later. For example, after applying the editbin /stacksize:65536 command
to dyna.exe, I was able to successfully run the Dyna sample with 8000 Client modules on my
Win2K PC with 256M RAM (that means about 12000 modules at runtime, including about
4000 dynamically created modules.)

“Segmentation fault”

On Unix, if you set the total stack size higher, you may get a segmentation fault during
network setup (or during execution if you use dynamically created modules), for exceeding
the operating system limit for maximum stack size. For example, in Linux 2.4.x, the default
stack limit is 8192K (that is, 8MiB). The ulimit shell command can be used to modify the
resource limits, and you can raise the allowed maximum stack size up to 64M.

$ ulimit -s 65500
$ ulimit -s
65500

Further increase is only possible if you are root. Resource limits are inherited by child pro-
cesses. The following sequence can be used under Linux to get a shell with 256M stack limit:

$ su root
Password:
# ulimit -s 262144
# su andras
$ ulimit -s
262144

If you don’t want to go through the above process at each login, you can change the limit in
the PAM configuration files. In Redhat Linux (maybe other systems too), add the following line
to /etc/pam.d/login:

session required /lib/security/pam_limits.so

and the following line to /etc/security/limits.conf:

* hard stack 65536

A more drastic solution is to recompile the kernel with a larger stack limit. Edit /us-
r/src/linux/include/linux/sched.h and increase _STK_LIM from (8*1024*1024) to
(64*1024*1024).
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Finally, if you are tight with memory, you can switch to Cmdenv. Tkenv increases the stack
size of each module by about 32K so that user interface code that is called from a simple
module’s context can be safely executed. Cmdenv does not need that much extra stack.

Eventually...

Once you get to the point where you have to adjust the total stack size to get your program
running, you should probably consider transforming (some of) your activity() simple mod-
ules to handleMessage(). activity() does not scale well for large simulations.

11.6.3 Memory Leaks and Crashes

The most common problems in C++ are associated with memory allocation (usage of new and
delete):

• memory leaks, that is, forgetting to delete objects or memory blocks no longer used;

• crashes, usually due to referring to an already deleted object or memory block, or trying
to delete one for a second time;

• heap corruption (eventually leading to crash) due to overrunning allocated blocks, i.e.
writing past the end of an allocated array.

The most common cause of memory leaks in OMNeT++ simulations is forgetting to delete
messages. Both Tkenv and Cmdenv are able to display the number of messages currently in
the simulation, helping you to determine if you have such a memory leak; see section 11.2.4.
If you find that the number of messages is steadily increasing, you need to find where the
message objects are located. You can do so by selecting Inspect|From list of all objects... from
the Tkenv menu, and reviewing the list in the dialog that pops up.

If the number of messages is stable, it is still possible you are leaking other cOwnedObject-
based objects. You can find them using Tkenv’s Inspect|From list of all objects... function as
well.

If you are leaking non-cOwnedObject-based objects or just memory blocks (structs, arrays,
etc., allocated by new), you will not be able to find them via Tkenv. You will probably need a
specialized memory debugging tool like the ones described below.

Memory Debugging Tools

If you suspect that you may have memory allocation problems (crashes associated with
double-deletion or accessing already deleted block, or memory leaks), you can use special-
ized tools to track them down.

By far the most efficient, most robust and most versatile tool is Valgrind, originally developed
for debugging KDE.

Other memory debuggers are NJAMD, MemProf, MPatrol, dmalloc and ElectricFence. Most of
the above tools support tracking down memory leaks as well as detecting double deletion,
writing past the end of an allocated block, etc.

A proven commercial tool is Rational Purify. It has a good reputation and has proved its
usefulness many times.
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11.6.4 Simulation Executes Slowly

Check the following if you think your simulation is running too slowly:

• Turn on express mode with the cmdenv-express-mode=true configuration option.

• Be sure that event logging is turned off (record-eventlog=false configuration option).

• Turn of vector file recording if you don’t absolutely need it (**.vector-recording=false).

• If you are running under Tkenv, disable animation features, close inspectors, hide the
timeline, hide object tree, turn off log filtering.

• Compile your code as release instead of debug (in some cases this can give you 5x
speedup)

What can you do if the simulation executes much slower than you expect? The best advice
that can be given here is that you should use a good profiler to find out how much time is
spent in each part of the program. Do not make the mistake of omitting this step, thinking
that you know which part is slow! Even for experienced programmers, a profiling session is
all too often full of surprises. It often turns out that lots of CPU time is spent in completely
innocent-looking statements, while big and complex algorithms don’t take nearly as much
time as you expected. Don’t assume anything – profile before you optimize!

A great profiler on Linux is the Valgrind-based callgrind, and its visualizer KCachegrind. Un-
fortunately it won’t be ported to Windows anytime soon. On Windows, you are out of luck
– commercial products may help, or, port your simulation to Linux. The latter goes usually
much more smoothly than one would expect.
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Chapter 12

Result Recording and Analysis

12.1 Result Recording

OMNeT++ provides built-in support for recording simulation results, via output vectors and
output scalars. Output vectors are time series data, recorded from simple modules or chan-
nels. You can use output vectors to record end-to-end delays or round trip times of packets,
queue lengths, queueing times, module state, link utilization, packet drops, etc. – anything
that is useful to get a full picture of what happened in the model during the simulation run.

Output scalars are summary results, computed during the simulation and written out when
the simulation completes. A scalar result may be an (integer or real) number, or may be
a statistical summary comprised of several fields such as count, mean, standard deviation,
sum, minimum, maximum, etc., and optionally histogram data.

Results may be collected and recorded in two ways:

1. Based on the signal mechanism, using declared statistics;

2. Directly from C++ code, using the simulation library

The second method has been the traditional way of recording results. The first method,
based on signals and declared statistics, was introduced in OMNeT++ 4.1, and it is preferable
because it allows you to always record the results in the form you need, without requiring
heavy instrumentation or continuous tweaking of the simulation model.

12.1.1 Using Signals and Declared Statistics

This approach combines the signal mechanism (see 4.14) and NED properties (see 3.12) in
order to de-couple the generation of results from their recording, thereby providing more
flexibility in what to record and in which form. The details of the solution have been described
in section 4.15 in detail; here we just give a short overview.

Statistics are declared in the NED files with the @statistic property, and modules emit
values using the signal mechanism. The simulation framework records data by adding special
result file writer listeners to the signals. By being able to choose what listeners to add, the
user can control what to record in the result files and what computations to apply before
recording. The aforementioned section 4.15 also explains how to instrument simple modules
and channels for signals-based result recording.
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The signals approach allows for calculation of aggregate statistics (such as the total number
of packet drops in the network) and for implementing a warm-up period without support
from module code. It also allows you to write dedicated statistics collection modules for the
simulation, also without touching existing modules.

The same configuration options that were used to control result recording with cOutVector
and recordScalar() also work when utilizing the signals approach, and there are extra
configuration options to make the additional possibilities accessible.

12.1.2 Direct Result Recording

With this approach, scalar and statistics results are collected in class variables inside mod-
ules, then recorded in the finalization phase via recordScalar() calls. Vectors are recorded
using cOutVector objects. To record more details, like the minimum/maximum value or the
standard deviation, cStdDev and cWeightedStdDev can be used, and for recording the dis-
tribution there are histogram and other distribution estimation classes (cDoubleHistogram,
cLongHistogram, cPSquare, cKSplit, and others). These classes are described in sections
7.8 and 7.9. Recording of individual vectors, scalars and statistics can be enabled or disabled
via the configuration (ini file), and it is also the place to set up recording intervals for vectors.

The drawback of recording results directly from modules is that result recording is hardcoded
in modules, and even simple requirement changes (e.g. record the average delay instead of
each delay value, or vice versa) requires either code change or an excessive amount of result
collection code in the modules.

12.2 Configuring Result Collection

12.2.1 Configuring Signal-Based Statistics Recording

Signal-based statistics recording has been designed so that it can be easily configured to
record a “default minimal” set of results, a “detailed” set of results, and a custom set of
results (by modifying the previous ones, or defined from scratch).

Recording can be tuned with the result-recording-modes per-object configuration option.
The “object” here is the statistic, which is identified by the full path (hierarchical name) of the
module or connection channel object in question, plus the name of the statistic (which is the
“index” of @statistic property, i.e. the name in the square brackets). Thus, configuration
keys have the syntax <module-full-path>.<statistic-name>.result-recording-modes=.

The result-recording-modes option accepts one or more items as value, separated by
comma. An item may be a result recording mode (surprise!), and two words with a special
meaning, default and all:

• A result recording mode means any item that may occur in the record key of the @statis-
tic property; for example, count, sum, mean, vector((count-1)/2).

• default stands for the set of non-optional items from the @statistic property’s record
list, that is, those without question marks.

• all means all items from the @statistic property’s record list, including the ones with
question marks.

The default value is default.
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A lone “-” as option value disables all recording modes.

Recording mode items in the list may be prefixed with “+” or “-” to add/remove them from
the set of result recording modes. The initial set of result recording modes is default; if the
first item is prefixed with “+” or “-”, then that and all subsequent items are understood as
modifying the set; if the first item does not start with with “+” or “-”, then it replaces the set,
and further items are understood as modifying the set.

This sounds more complicated than it is; an example will make it clear. Suppose we are
configuring the following statistic:

@statistic[foo](record=count,mean,max?,vector?);

With the following the ini file lines (see results in comments):

**.result-recording-modes = default # --> count, mean

**.result-recording-modes = all # --> count, mean, max

**.result-recording-modes = - # --> none

**.result-recording-modes = mean # --> only mean (disables ’default’)

**.result-recording-modes = default,-vector,+histogram # --> count,mean,histogram

**.result-recording-modes = -vector,+histogram # --> same as above

**.result-recording-modes = all,-vector,+histogram # --> count,mean,max,histogram

Here is another example which shows how to write a more specific option key. The following
line applies to queueLength statistics of fifo[] submodule vectors anywhere in the network:

**.fifo[*].queueLength.result-recording-modes = +vector # default modes plus vector

In the result file, the recorded scalars will be suffixed with the recording mode, i.e. the mean
of queueingTime will be recorded as queueingTime:mean.

NOTE: Signal-based statistics recording forms a layer above the normal scalar and
vector recording infrastructure, so options like scalar-recording, vector-recording,
vector-recording-intervals also affect it. These options are described in the follow-
ing sections.

12.2.2 Warm-up Period

The warmup-period option specifies the length of the initial warm-up period. When set,
results belonging to the first x seconds of the simulation will not be recorded into output
vectors, and will not be counted into the calculation of output scalars. This option is useful
for steady-state simulations. The default is 0s (no warmup period).

Example:

warmup-period = 20s

Results recorded via signal-based statistics automatically obey the warm-up period setting,
but modules that compute and record scalar results manually (via recordScalar()) need to
be modified so that they take the warm-up period into account.

NOTE: When configuring a warm-up period, make sure that modules that compute and
record scalar results manually via recordScalar() actually obey the warm-up period in
the C++ code.

255



OMNeT++ Manual – Result Recording and Analysis

The warm-up period is available via the getWarmupPeriod() method of the simulation ob-
ject, so the C++ code that updates the corresponding state variables needs to be surrounded
with an if statement:

Old:

dropCount++;

New:

if (simTime() >= simulation.getWarmupPeriod())
dropCount++;

12.2.3 Result File Names

Simulation results are recorded into output scalar files that actually hold statistics results as
well, and output vector files. The usual file extension for scalar files is .sca, and for vector
files .vec.

Every simulation run generates a single scalar file and a vector file. The file names can be
controlled with the output-vector-file and output-scalar-file options. These options
rarely need to be used, because the default values are usually fine. The defaults are:

output-vector-file = "${resultdir}/${configname}-${runnumber}.vec"
output-scalar-file = "${resultdir}/${configname}-${runnumber}.sca"

Here, ${resultdir} is the value of the result-dir configuration option which defaults to
results/, and ${configname} and ${runnumber} are the name of the configuration name
in the ini file (e.g. [Config PureAloha]), and the run number. Thus, the above defaults
generate file names like results/PureAloha-0.vec, results/PureAloha-1.vec, and so on.

NOTE: In OMNeT++ 3.x, the default result file names were omnetpp.vec and om-
netpp.sca, and scalar files were always appended to, rather than being overwritten as
in the 4.x version. When needed, the old behavior for scalar files can be turned back on
by setting output-scalar-file-append=true in the configuration.

12.2.4 Configuring Scalar Results

Recording results into the scalar file can be turned off globally by adding the following line to
the ini file. Any existing file with the same name will still be removed before the simulation
starts.

**.scalar-recording = false

Recording scalar results can be enabled or disabled individually, using patterns. The syntax of
the configuration option is <module-full-path>.<scalar-name>.scalar-recording=true/false,
where both <module-full-path> and <scalar-name> may contain wildcards (see 10.3.1). <scalar-
name> is the signal name, or the string passed to the recordScalar() call. By default, the
recording of all scalars is enabled.

The following example turns off recording all scalar results, except end-to-end delays and
those produced by TCP modules:

**.tcp.**.scalar-recording = true

**.endToEndDelay.scalar-recording = true

**.scalar-recording = false
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12.2.5 Configuring Output Vectors

Recording output vector results can be turned off globally by adding the following line to the
ini file. Any existing file with the same name will still be removed before the simulation starts.

**.vector-recording = false

The size of output vector files can easily reach the magnitude of several hundred megabytes,
but very often, only some of the recorded statistics are interesting to the analyst. OMNeT++
allows you to control which vectors you want to record, and to specify one or more collection
intervals.

Output vectors can be configured with the vector-recording and vector-recording-intervals
per-object options. The syntax of the configuration options are <module-full-path>.<vector-
name>.vector-recording=true/false, and <module-full-path>.<vector-name>.vector-recording-
intervals=<intervals>, where both <module-full-path> and <vector-name> may contain wild-
cards (see 10.3.1). <vector-name> is the signal name, or the name string of the cOutVector
object. By default, all output vectors are turned on for the whole duration the simulation.

The following example only records the queueLength vectors and endToEndDelay in voiceApp
modules, and turns off the rest:

**.queueLength.vector-recording = true

**.voiceApp.endToEndDelay.vector-recording = true

**.vector-recording = false

For the vector-recording-intervals option, one can specify one or more intervals in the
<startTime>..<stopTime> syntax, separated by comma. <startTime> or <stopTime> need to be
given with measurement units, and both can be omitted to denote the beginning and the end
of the simulation, respectively.

The following example limits all vectors to three intervals, except dropCount vectors which
will be recorded during the whole simulation run:

**.dropCount.vector-recording-intervals = 0..

**.vector-recording-intervals = 0..1000s, 5000s..6000s, 9000s..

A third per-vector configuration option is vector-record-eventnumbers, which specifies
whether to record event numbers for an output vector. (Simulation time and value are always
recorded. Event numbers are needed by the Sequence Chart Tool, for example.) Event number
recording is enabled by default; it may be turned off to save disk space.

**.vector-record-eventnumbers = false

If the (default) cIndexedFileOutputVectorManager class is used to record output vectors,
there are two more options to fine-tune its resource usage. output-vectors-memory-limit
specifies the total memory that can be used for buffering output vectors. Larger values pro-
duce less fragmented vector files (i.e. cause vector data to be grouped into larger chunks),
and therefore allow more efficient processing later. vector-max-buffered-values specifies
the maximum number of values to buffer per vector, before writing out a block into the output
vector file. The default is no per-vector limit (i.e. only the total memory limit is in effect.)

12.2.6 Saving Parameters as Scalars

When you are running several simulations with different parameter settings, you’ll usually
want to refer to selected input parameters in the result analysis as well – for example when
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drawing a throughput (or response time) versus load (or network background traffic) plot.
Average throughput or response time numbers are saved into the output scalar files, and it is
useful for the input parameters to get saved into the same file as well.

For convenience, OMNeT++ automatically saves the iteration variables into the output scalar
file if they have numeric value, so they can be referred to during result analysis.

WARNING: If an iteration variable has non-numeric value, it will not be recorded auto-
matically and cannot be used during analysis. This can happen unintentionally if you
specify units inside an iteration variable list:

**.param = exponential( ${mean=0.2s, 0.4s, 0.6s} ) #WRONG!

**.param = exponential( ${mean=0.2, 0.4, 0.6}s ) #OK

Module parameters can also be saved, but this has to be requested by the user, by configuring
param-record-as-scalar=true for the parameters in question. The configuration key is a
pattern that identifies the parameter, plus .param-record-as-scalar. An example:

**.host[*].networkLoad.param-record-as-scalar = true

This looks simple enough, however there are three pitfalls: non-numeric parameters, too
many matching parameters, and random-valued volatile parameters.

First, the scalar file only holds numeric results, so non-numeric parameters cannot be recorded
– that will result in a runtime error.

Second, if wildcards in the pattern match too many parameters, that might unnecessarily
increase the size of the scalar file. For example, if the host[] module vector size is 1000 in
the example below, then the same value (3) will be saved 1000 times into the scalar file, once
for each host.

**.host[*].startTime = 3

**.host[*].startTime.param-record-as-scalar = true # saves "3" once for each host

Third, recording a random-valued volatile parameter will just save a random number from
that distribution. This is rarely what you need, and the simulation kernel will also issue a
warning if this happens.

**.interarrivalTime = exponential(1s)

**.interarrivalTime.param-record-as-scalar = true # wrong: saves random values!

These pitfalls are quite common in practice, so it is usually better to rely on the iteration
variables in the result analysis. That is, one can rewrite the above example as

**.interarrivalTime = exponential( ${mean=1}s )

and refer to the $mean iteration variable instead of the interarrivalTime module parameter(s)
during result analysis. param-record-as-scalar=true is not needed, because iteration vari-
ables are automatically saved into the result files.

12.2.7 Recording Precision

Output scalar and output vector files are text files, and floating point values (doubles) are
recorded into it using fprintf()’s "%g" format. The number of significant digits can be con-
figured using the output-scalar-precision and output-vector-precision configuration
options.
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The default precision is 12 digits. The following has to be considered when setting a different
value:

IEEE-754 doubles are 64-bit numbers. The mantissa is 52 bits, which is roughly equivalent
to 16 decimal places (52*log(2)/log(10)). However, due to rounding errors, usually only 12..14
digits are correct, and the rest is pretty much random garbage which should be ignored. How-
ever, when you convert the decimal representation back into a double for result processing,
an additional small error will occur, because 0.1, 0.01, etc. cannot be accurately represented
in binary. This conversion error is usually smaller than what that the double variable already
had before recording into the file. However, if it is important, you can eliminate this error by
setting the recording precision to 16 digits or more (but again, be aware that the last digits are
garbage). The practical upper limit is 17 digits, setting it higher doesn’t make any difference
in fprintf()’s output.

Errors resulting from converting to/from decimal representation can be eliminated by choos-
ing an output vector/output scalar manager class which stores doubles in their native bi-
nary form. The appropriate configuration options are outputvectormanager-class and
outputvectormanager-class. For example, cMySQLOutputScalarManager and cMySQLOut-
putScalarManager provided in samples/database fulfill this requirement.

However, before worrying too much about rounding and conversion errors, consider the real
accuracy of your results:

• in real life, it is very difficult to measure quantities (weight, distance, even time) with
more than a few digits of precision. What precision are your input data? For exam-
ple, if you approximate inter-arrival time as exponential(0.153) when the mean is really
0.152601... and the distribution is not even exactly exponential, you are already starting
out with a bigger error than rounding can cause.

• the simulation model is itself an approximation of real life. How much error do the
(known and unknown) simplifications cause in the results?

12.3 Overview of the Result File Formats

Both output vector and scalar files are textual, line-oriented files. The advantage of a text-
based format is that it is very accessible with a wide range of tools and languages. The format
of result files is documented in detail in Appendix H.

By default, each file contains data from one run only.

Result files start with a header that contains several attributes of the simulation run: a rea-
sonably globally unique run ID, the network NED type name, the experiment-measurement-
replication labels, the values of iteration variables and the repetition counter, the date and
time, the host name, the process id of the simulation, random number seeds, configuration
options, and so on. These data can be useful during result processing, and increase the
reproducibility of the results.

Vectors are recorded into a separate file for practical reasons: vector data usually consume
several magnitudes more disk space than scalars.

12.3.1 Output Vector Files

All output vectors from a simulation run are recorded into the same file. The following sections
describe the format of the file, and how to process it.
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An example file fragment (without header):

...
vector 1 net.host[12] responseTime TV
1 12.895 2355.66
1 14.126 4577.66664666
vector 2 net.router[9].ppp[0] queueLength TV
2 16.960 2
1 23.086 2355.66666666
2 24.026 8
...

There two types of lines: vector declaration lines (beginning with the word vector), and data
lines. A vector declaration line introduces a new output vector, and its columns are: vector
Id, module of creation, name of cOutVector object, and multiplicity (usually 1). Actual data
recorded in this vector are on data lines which begin with the vector Id. Further columns on
data lines are the simulation time and the recorded value.

Since OMNeT++ 4.0, vector data are recorded into the file clustered by output vectors, which,
combined with index files, allows much more efficient processing. Using the index file, tools
can extract particular vectors by reading only those parts of the file where the desired data
are located, and do not need to scan through the whole file linearly.

12.3.2 Scalar Result Files

Fragment of an output scalar file (without header):

...
scalar "lan.hostA.mac" "frames sent" 99
scalar "lan.hostA.mac" "frames rcvd" 3088
scalar "lan.hostA.mac" "bytes sent" 64869
scalar "lan.hostA.mac" "bytes rcvd" 3529448
...

Every scalar generates one scalar line in the file.

Statistics objects (cStatictic subclasses such as cStdDev) generate several lines: mean,
standard deviation, etc.

12.4 The Analysis Tool in the Simulation IDE

The Simulation IDE provides an Analysis Tool for analysis and visualization of simulation re-
sults. The Analysis Tool lets you load several result files at once, and presents their contents
somewhat like a database. You can browse the results, select the particular data you are
interested in (scalars, vectors, histograms), apply processing steps, and create various charts
or plots from them. Data selection, processing and charting steps can be freely combined,
resulting in a high degree of freedom. These steps are grouped into and stored as "recipes",
which get automatically re-applied when new result files are added or existing files are re-
placed. This automation spares the user lots of repetitive manual work, without resorting to
scripting.

The Analysis Tool is covered in detail in the User Guide.
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12.5 Scave Tool

Much of the IDE Analysis Tool’s functionality is available on the command line as well, via
the scavetool program. scavetool is suitable for filtering and basic processing of result
files, and exporting the result in various formats digestible for other tools. scavetool has
no graphics capabilities, but it can be used to produce files that can be directly plotted with
other tools like gnuplot (see 12.6.4).

When scavetool is invoked without arguments, it prints usage information:

scavetool <command> [options] <file>...

12.5.1 The filter Command

The filter command allows you to filter and/or convert result files.

A filter can be specified with the -p <filter> option. The filter is one or more <pattern> or
<fieldname>(<pattern>) expressions connected with AND, OR and NOT operators; a naked <pat-
tern> is understood as name(<pattern>). For example, the filter "module(**.sink) AND
name(delay)" (or just "module(**.sink) AND delay") selects the delay vectors from all
sink modules.

The possible field names are:

• file: full path of the result file

• run: run identifier

• module: module name

• name: vector name

• attr:<runAttribute>: value of an attribute of the run, e.g. experiment, datetime or
network

• param:<moduleParameter>: value of the parameter in the run

Processing operations can be applied to vectors by the -a <function>(<parameterlist>) option.
You can list the available functions and their parameters with the info command.

The name and format of the output file can be specified with the -O <file> and -F <formatname>
options, where the format name is one of the following:

• vec: vector file (default)

• csv: CSV file

• octave: Octave text file

• matlab: Matlab script file

The following example writes the window-averaged queuing times stored in in.vec into out.vec:

scavetool filter -p "queuing time" -a winavg(10) -O out.vec in.vec

The next example writes the queueing and transmission times of sink modules into CSV files.
It generates a separate file for each vector, named out-1.csv, out-2.csv, etc.
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scavetool filter -p "module(**.sink) AND
(\"queueing time\" OR \"transmission time\")"

-O out.csv -F csv in.vec

The generated CSV files contain a header and two columns:

time,"Queue.sink.queueing time"
2.231807576851,0
7.843802235089,0
15.797137536721,3.59449
21.730758362277,6.30398
[...]

12.5.2 The index Command

If the index file was deleted or the vector file was modified, you need to rebuild the index file
before running the filter command:

scavetool index Aloha-1.vec

Normally the vector data is written in blocks into the vector file. However, if the vector file
was generated by an older version of the cOutputVectorManager, it might not be so. In this
case you have to specify the -r option to rearrange the records of the vector file, otherwise the
index file would be too big and the indexing inefficient.

12.5.3 The summary Command

The summary command reports the list of statistics names, module names, run ids, configu-
ration names in the given files to the standard output.

scavetool summary Aloha-1.vec

12.6 Alternative Statistical Analysis and Plotting Tools

There are several programs and packages in addition to the OMNeT++ IDE and scavetool
that can also be used to analyze simulation results, and create various plots and charts from
them.

HINT: Our recommendation is GNU R because of its features, its popularity, and the
existence of an extension package written specifically for OMNeT++ result processing.

12.6.1 GNU R

R is a free software environment for statistical computing and graphics. R has an excellent
programming language and powerful plotting capabilities, and it is supported on all major
operating systems and platforms.

R is widely used for statistical software development and data analysis. The program uses a
command line interface, though several graphical user interfaces are available.
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HINT: An R package for OMNeT++ result processing is available from https://github.
com/omnetpp/omnetpp-resultfiles/wiki. The package supports loading the contents
of OMNeT++ result files into R, organizing the data and creating various plots and charts.
The package is well documented, and the web site offers a Tutorial, a Tips page, a tutorial
for the Scalar Lattice GUI package, and other information.

Several other OMNeT++-related packages such as SimProcTC and Syntony already use R for
data analysis and plotting.

12.6.2 NumPy, SciPy and MatPlotLib

NumPy and SciPy are numerical and scientific computing packages for the Python program-
ming language, and MatPlotlib is a plotting library (also for Python).

MatPlotlib provides a “pylab” API designed to closely resemble that of MATLAB, thereby mak-
ing it easy to learn for experienced MATLAB users. Matplotlib is distributed under a BSD-style
license.

12.6.3 MATLAB or Octave

MATLAB is a commercial numerical computing environment and programming language.
MATLAB allows easy matrix manipulation, plotting of functions and data, implementation
of algorithms, creation of user interfaces, and interfacing with programs in other languages.

Octave is an open-source Matlab-like package, available on nearly all platforms. Currently
Octave relies on Gnuplot for plotting, and has more limited graphics capabilities than GNU R
or MATLAB.

12.6.4 Gnuplot

Gnuplot is a very popular command-line program that can generate two- and three-dimensional
plots of functions and data. The program runs on all major platforms, and it is well supported.

Gnuplot has an interactive command interface. For example, if you have the data files
foo.csv and bar.csv that contain two values per line (x y; such files can be exported with
scavetool from vector files), you can plot them in the same graph by typing:

plot "foo.csv" with lines, "bar.csv" with lines

To adjust the y range, you would type:

set yrange [0:1.2]
replot

Several commands are available to adjust ranges, plotting style, labels, scaling etc. On Win-
dows, you can copy the resulting graph to the clipboard from the Gnuplot window’s system
menu, then insert it into the application you are working with.

12.6.5 ROOT

ROOT is an object-oriented data analysis framework, with strong support for plotting and
graphics in general. ROOT was developed at CERN, and is distributed under a BSD-like
license.
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ROOT is based on CINT, a “C/C++ interpreter” aimed at processing C/C++ scripts. It is
probably harder to get started using ROOT than with either Gnuplot or Grace, but you will
find that ROOT provides power and flexibility that would be unattainable with the other two
programs.

Curt Brune’s page at Stanford (http://www.slac.stanford.edu/c̃urt/omnet++/) shows exam-
ples of what you can achieve using ROOT with OMNeT++.

12.6.6 Grace

An “honorable mention,” Grace is a powerful GPL data visualization program with a menu-
and-dialog graphical user interface for X and Motif. It has also been ported to Windows. Grace
is also known as xmgrace, and it is a successor of ACE/gr or Xmgr.

Grace can export graphics in various raster and vector formats, and has many useful features
like built-in statistics and analysis functions (e.g. correlation, histogram), fitting, splines, etc.,
and it also has a built-in programming language.

12.6.7 Spreadsheet Programs

One straightforward solution is to use spreadsheets such as OpenOffice Calc, Microsoft Excel,
Gnumeric or Calligra Tables (formerly KSpread). Data can be imported from CSV or other
formats, exported with scavetool (see 12.5).

Spreadsheets have good charting and statistical features. A useful functionality spreadsheets
offer for analyzing scalar files is PivotTable (Excel) or DataPilot (OpenOffice). The drawback
of using spreadsheets is limited automation, leading to tedious and repetitive tasks; also,
the number of rows is usually limited to about 32,000..64,000, which can be limiting when
working with large vector files.
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Chapter 13

Eventlog

13.1 Introduction

The eventlog feature and the related tools are completely new in OMNeT++ 4.0. They aim to
help in understanding complex simulation models and to help correctly implement the desired
component behaviors. Using these tools you will be able to easily examine every minute detail
of the simulation back and forth in terms of simulation time, or step-by-step, focusing on the
behavior instead of the statistical results of your model.

The eventlog file is created automatically during a simulation run upon explicit request config-
urable in the ini file. The resulting file can be viewed in the OMNeT++ IDE using the Sequence
Chart and the Eventlog Table or can be processed by the command line Eventlog Tool. These
tools support filtering the collected data to allow you to focus on events relevant to what you
are looking for. They allow examining causality relationships and provide filtering based on
simulation times, event numbers, modules and messages.

The simulation kernel records into the eventlog among others: user level messages, creation
and deletion of modules, gates and connections, scheduling of self messages, sending of mes-
sages to other modules either through gates or directly, and processing of messages (that is
events). Optionally, detailed message data can also be automatically recorded based on a mes-
sage filter. The result is an eventlog file which contains detailed information of the simulation
run and later can be used for various purposes.

NOTE: The eventlog file may become quite large for long running simulations (often
hundreds of megabytes, but occasionally several gigabytes), because it contains a lot of
information about the run, especially when message detail recording is turned on.

13.2 Configuration

To record an eventlog file during the simulation, insert the following line into the ini file:

record-eventlog = true

NOTE: Eventlog recording is turned off by default, because creating the eventlog file
might significantly decrease the overall simulation performance.

265



OMNeT++ Manual – Eventlog

13.2.1 File Name

The simulation kernel will write the eventlog file during the simulation into the file specified
by the following ini file configuration entry (showing the default file name pattern here):

eventlog-file = ${resultdir}/${configname}-${runnumber}.elog

13.2.2 Recording Intervals

The size of an eventlog file is approximately proportional to the number of events it contains.
To reduce the file size and speed up the simulation, it might be useful to record only cer-
tain events. The eventlog-recording-intervals configuration option instructs the kernel
to record events only in the specified intervals. The syntax is similar to that of vector-
recording-intervals.

An example:

eventlog-recording-intervals = ..10.2, 22.2..100, 233.3..

13.2.3 Recording Modules

Another factor that affects the size of an eventlog file is the number of modules for which the
simulation kernel records events during the simulation. The module-eventlog-recording
per-module configuration option instructs the kernel to record only the events that occurred
in the matching modules. The default is to record events from all modules. This configuration
option only applies to simple modules.

The following example records events from any of the routers whose index is between 10 and
20, and turns off recording for all other modules.

**.router[10..20].**.module-eventlog-recording = true

**.module-eventlog-recording = false

13.2.4 Recording Message Data

Since recording message data dramatically increases the size of the eventlog file and also slows
down the simulation, it is turned off by default, even if writing the eventlog is enabled. To
turn on message data recording, supply a value for the eventlog-message-detail-pattern
option in the ini file.

An example configuration for an IEEE 80211 model that records the encapsulationMsg field
and all other fields whose name ends in Address, from messages whose class name ends in
Frame looks like this:

eventlog-message-detail-pattern = *Frame:encapsulatedMsg,*Address

An example configuration for a TCP/IP model that records the port and address fields in all
network packets looks like the following:

eventlog-message-detail-pattern =
PPPFrame:encapsulatedPacket|IPDatagram:encapsulatedPacket,*Address|TCPSegment:*Port
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13.3 Eventlog Tool

The Eventlog Tool is a command line tool to process eventlog files. Invoking it without pa-
rameters will display usage information. The following are the most useful commands for
users.

13.3.1 Filter

The eventlog tool provides off line filtering that is usually applied to the eventlog file after the
simulation has been finished and before actually opening it in the OMNeT++ IDE or processing
it by any other means. Use the filter command and its various options to specify what should
be present in the result file.

13.3.2 Echo

Since the eventlog file format is text based and users are encouraged to implement their own
filters, a way is needed to check whether an eventlog file is correct. The echo command
provides a way to check this and help users creating custom filters. Anything not echoed
back by the eventlog tool will not be taken into consideration by the other tools found in the
OMNeT++ IDE.

NOTE: Custom filter tools should filter out whole events only, otherwise the conse-
quences are undefined.
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Chapter 14

Documenting NED and Messages

14.1 Overview

OMNeT++ provides a tool which can generate HTML documentation from NED files and mes-
sage definitions. Like Javadoc and Doxygen, the NED documentation tool makes use of source
code comments. The generated HTML documentation lists all modules, channels, messages,
etc., and presents their details including description, gates, parameters, assignable submod-
ule parameters, and syntax-highlighted source code. The documentation also includes click-
able network diagrams (exported from the graphical editor) and usage diagrams as well as
inheritance diagrams.

The documentation tool integrates with Doxygen, meaning that it can hyperlink simple mod-
ules and message classes to their C++ implementation classes in the Doxygen documenta-
tion. If you also generate the C++ documentation with some Doxygen features turned on
(such as inline-sources and referenced-by-relation, combined with extract-all, extract-private
and extract-static), the result is an easily browsable and very informative presentation of the
source code. Of course, one still has to write documentation comments in the code.

In the 4.0 version, the documentation tool is part of the Eclipse-based simulation IDE.

14.2 Documentation Comments

Documentation is embedded in normal comments. All // comments that are in the “right
place” (from the documentation tool’s point of view) will be included in the generated docu-
mentation. 1

Example:

//
// An ad-hoc traffic generator to test the Ethernet models.
//
simple Gen
{

1In contrast, Javadoc and Doxygen use special comments (those beginning with /**, ///, //< or a similar marker)
to distinguish documentation from “normal” comments in the source code. In OMNeT++ there is no need for that:
NED and the message syntax is so compact that practically all comments one would want to write in them can serve
documentation purposes.
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parameters:
string destAddress; // destination MAC address
int protocolId; // value for SSAP/DSAP in Ethernet frame
double waitMean @unit(s); // mean for exponential interarrival times

gates:
output out; // to Ethernet LLC

}

You can also place comments above parameters and gates. This is useful if they need long
explanations. Example:

//
// Deletes packets and optionally keeps statistics.
//
simple Sink
{

parameters:
// You can turn statistics generation on and off. This is
// a very long comment because it has to be described what
// statistics are collected (or not).
bool collectStatistics = default(true);

gates:
input in;

}

14.2.1 Private Comments

If you want a comment line not to appear in the documentation, begin it with //#. Those lines
will be ignored by the documentation tool, and can be used to make “private” comments like
FIXME or TODO, or to comment out unused code.

//
// An ad-hoc traffic generator to test the Ethernet models.
//# TODO above description needs to be refined
//
simple Gen
{

parameters:
string destAddress; // destination MAC address
int protocolId; // value for SSAP/DSAP in Ethernet frame
//# double burstiness; -- not yet supported
double waitMean @unit(s); // mean for exponential interarrival times

gates:
output out; // to Ethernet LLC

}

14.2.2 More on Comment Placement

Comments should be written where the tool will find them. This is a) immediately above the
documented item, or b) after the documented item, on the same line.
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In the former case, make sure there is no blank line left between the comment and the docu-
mented item. Blank lines detach the comment from the documented item.

Example:

// This is wrong! Because of the blank line, this comment is not
// associated with the following simple module!

simple Gen
{

...
}

Do not try to comment groups of parameters together. The result will be awkward.

14.3 Referring to Other NED and Message Types

You can reference other NED and message types by name in comments. There are two styles
in which references can be written: automatic linking and tilde linking. The same style
must be following throughout the whole project, and the correct one must be selected in the
documentation generator tool when it is run.

14.3.1 Automatic Linking

In the automatic linking style, words that match existing NED of message types are hyper-
linked automatically. It is usually enough to write the simple name of the type (e.g. TCP), you
don’t need to spell out the fully qualified type (inet.transport.tcp.TCP), although you can.

Automatic hyperlinking is sometimes overly agressive. For example, when you write IP ad-
dress in a comment and an IP module exists in the project, it will create a hyperlink to the
module, which is probably not what you want. You can prevent hyperlinking of a word by in-
serting a backslash in front it: \IP address. The backslash will not appear in the HTML out-
put. The <nohtml> tag will also prevent hyperlinking words in the enclosed text: <nohtml>IP
address</nohtml>. On the other hand, if you deliberately want to print a backslash imme-
diately in front of a word (e.g. output “use \t to print a Tab”), use either two backslashes
(use \\t...) or the <nohtml> tag (<nohtml>use \t...</nohtml>). Backslashes in other
contexts (i.e. when not in front of a word) do not have a special meaning, and are preserved
in the output.

The detailed rules:

1. Words matching a type name are automatically hyperlinked

2. A backslash immediately followed by an identifier (i.e. letter or underscore) prevents
hyperlinking, and the backslash is removed from the output

3. A double backslash followed by an identifier produces a single backslash, plus the po-
tentially hyperlinked identifier

4. Backslashes in any other contexts are not interpreted, and preserved in the output

5. Tildes are not interpreted, and are preserved in the output

6. Inside <nohtml>, no backslash processing or hyperlinking takes place
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14.3.2 Tilde Linking

In the tilde style, only words that are explicitly marked with a tilde are subject to hyperlinking:
~TCP, ~inet.transport.tcp.TCP.

To produce a literal tilde followed by an identifier in the output (for example, to output “the
~TCP() destructor”), you need to double the tilde character: the ~~TCP() destructor.

The detailed rules:

1. Words matching a type name are not hyperlinked automatically

2. A tilde immediately followed by an identifier (i.e. letter or underscore) will be hyperlinked,
and the tilde is removed from the output. It is considered an error if there is no type with
that name.

3. A double tilde followed by an identifier produces a single tilde plus the identifier

4. Tildes in any other contexts are not interpreted, and preserved in the output

5. Backslashes are not interpreted, and are preserved in the output

6. Inside <nohtml>, no tilde processing or hyperlinking takes place

14.4 Text Layout and Formatting

14.4.1 Paragraphs and Lists

If you write longer descriptions, you will need text formatting capabilities. Text formatting
works like in Javadoc or Doxygen – you can break up the text into paragraphs and create
bulleted/numbered lists without special commands, and use HTML for more fancy formatting.

Paragraphs are separated by empty lines, like in LaTeX or Doxygen. Lines beginning with ‘-’
will be turned into bulleted lists, and lines beginning with ‘-#’ into numbered lists.

Example:

//
// Ethernet MAC layer. MAC performs transmission and reception of frames.
//
// Processing of frames received from higher layers:
// - sends out frame to the network
// - no encapsulation of frames -- this is done by higher layers.
// - can send PAUSE message if requested by higher layers (PAUSE protocol,
// used in switches). PAUSE is not implemented yet.
//
// Supported frame types:
// -# IEEE 802.3
// -# Ethernet-II
//

14.4.2 Special Tags

The documentation tool understands the following tags and will render them accordingly:
@author, @date, @todo, @bug, @see, @since, @warning, @version. Example usage:
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//
// @author Jack Foo
// @date 2005-02-11
//

14.4.3 Text Formatting Using HTML

Common HTML tags are understood as formatting commands. The most useful tags are:
<i>..</i> (italic), <b>..</b> (bold), <tt>..</tt> (typewriter font), <sub>..</sub> (sub-
script), <sup>..</sup> (superscript), <br> (line break), <h3> (heading), <pre>..</pre> (pre-
formatted text) and <a href=..>..</a> (link), as well as a few other tags used for table
creation (see below). For example, <i>Hello</i> will be rendered as “Hello” (using an italic
font).

The complete list of HTML tags interpreted by the documentation tool are: <a>, <b>, <body>,
<br>, <center>, <caption>, <code>, <dd>, <dfn>, <dl>, <dt>, <em>, <form>, <font>, <hr>,
<h1>, <h2>, <h3>, <i>, <input>, <img>, <li>, <meta>, <multicol>, <ol>, <p>, <small>,
<span>, <strong>, <sub>, <sup>, <table>, <td>, <th>, <tr>, <tt>, <kbd>, <ul>, <var>.

Any tags not in the above list will not be interpreted as formatting commands but will be
printed verbatim – for example, <what>bar</what> will be rendered literally as “<what>bar</what>”
(unlike HTML where unknown tags are simply ignored, i.e. HTML would display “bar”).

If you insert links to external pages (web sites), its useful to add the target="_blank" at-
tribute to ensure pages come up in a new browser window and not just in the current frame
which looks awkward. (Alternatively, you can use the target="_top" attribute which re-
places all frames in the current browser).

Examples:

//
// For more info on Ethernet and other LAN standards, see the
// <a href="http://www.ieee802.org/" target="_blank">IEEE 802
// Committee’s site</a>.
//

You can also use the <a href=..> tag to create links within the page:

//
// See the <a href="#resources">resources</a> in this page.
// ...
// <a name="resources"><b>Resources</b></a>
// ...
//

You can use the <pre>..</pre> HTML tag to insert source code examples into the docu-
mentation. Line breaks and indentation will be preserved, but HTML tags continue to be
interpreted (or you can turn them off with <nohtml>, see later).

Example:

// <pre>
// // my preferred way of indentation in C/C++ is this:
// <b>for</b> (<b>int</b> i=0; i<10; i++)
// {
// printf(<i>"%d\n"</i>, i);
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// }
// </pre>

will be rendered as

// my preferred way of indentation in C/C++ is this:
for (int i=0; i<10; i++)
{

printf("%d\n", i);
}

HTML is also the way to create tables. The example below

//
// <table border="1">
// <tr> <th>#</th> <th>number</th> </tr>
// <tr> <td>1</td> <td>one</td> </tr>
// <tr> <td>2</td> <td>two</td> </tr>
// <tr> <td>3</td> <td>three</td> </tr>
// </table>
//

will be rendered approximately as:

# number
1 one
2 two
3 three

14.4.4 Escaping HTML Tags

Sometimes you may need to turn off interpreting HTML tags (<i>, <b>, etc.) as formatting
instructions, and rather you want them to appear as literal <i>, <b> text in the documenta-
tion. You can achieve this via surrounding the text with the <nohtml>...</nohtml> tag. For
example,

// Use the <nohtml><i></nohtml> tag (like <tt><nohtml><i>this</i></nohtml><tt>)
// to write in <i>italic</i>.

will be rendered as “Use the <i> tag (like <i>this</i>) to write in italic.”

<nohtml>...</nohtml> will also prevent opp_neddoc from hyperlinking words that are acci-
dentally the same as an existing module or message name. Prefixing the word with a back-
slash will achieve the same. That is, either of the following will do:

// In <nohtml>IP</nohtml> networks, routing is...

// In \IP networks, routing is...

Both will prevent hyperlinking the word IP if you happen to have an IP module in the NED
files.
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14.5 Customizing and Adding Pages

14.5.1 Adding a Custom Title Page

The title page is the one that appears in the main frame after opening the documentation in
the browser. By default it contains a boilerplate text with the generic title “OMNeT++ Model
Documentation”. You probably want to customize that, and at least change the title to the
name of the documented simulation model.

You can supply your own version of the title page adding a @titlepage directive to a file-level
comment (a comment that appears at the top of a NED file, but is separated from the first
import, channel, module, etc. definition by at least one blank line). In theory you can place
your title page definition into any NED or MSG file, but it is probably a good idea to create a
separate package.ned file for it.

The lines you write after the @titlepage line up to the next @page line (see later) or the end
of the comment will be used as the title page. You probably want to begin with a title because
the documentation tool doesn’t add one (it lets you have full control over the page contents).
You can use the <h1>..</h1> HTML tag to define a title.

Example:

//
// @titlepage
// <h1>Ethernet Model Documentation</h1>
//
// This documents the Ethernet model created by David Wu and refined by Andras
// Varga at CTIE, Monash University, Melbourne, Australia.
//

14.5.2 Adding Extra Pages

You can add new pages to the documentation in a similar way as customizing the title page.
The directive to be used is @page, and it can appear in any file-level comment (see above).

The syntax of the @page directive is the following:

// @page filename.html, Title of the Page

Choose a file name that doesn’t collide with the files generated by the documentation tool
(such as index.html). If the file name does not end in .html already, it will be appended.
The page title you supply will appear on the top of the page as well as in the page index.

The lines after the @page line up to the next @page line or the end of the comment will be used
as the page body. You don’t need to add a title because the documentation tool automatically
adds one.

Example:

//
// @page structure.html, Directory Structure
//
// The model core model files and the examples have been placed
// into different directories. The <tt>examples/</tt> directory...
//
//

275



OMNeT++ Manual – Documenting NED and Messages

// @page examples.html, Examples
// ...
//

You can create links to the generated pages using standard HTML, using the <a href="...">...</a>
tag. All HTML files are placed in a single directory, so you don’t have to worry about specifying
directories.

Example:

//
// @titlepage
// ...
// The structure of the model is described <a href="structure.html">here</a>.
//

14.5.3 Incorporating Externally Created Pages

You may want to create pages outside the documentation tool (e.g. using a HTML editor)
and include them in the documentation. This is possible, all you have to do is declare such
pages with the @externalpage directive in any of the NED files, and they will be added
to the page index. The pages can then be linked to from other pages using the HTML <a
href="...">...</a> tag.

The @externalpage directive is similar in syntax to @page:

// @externalpage filename.html, Title of the Page

The documentation tool does not check if the page exists or not. It is your responsibility to
copy it manually into the directory of the generated documentation, and to make sure the
hyperlink works.

14.6 File inclusion

You can include content into the documentation comment with the @include directive. It
expects the path of the file to be incuded relative to the file that includes it.

The line of the @include directive will be replaced by the content of the file. The lines of the
included file do not need to start with //, but otherwise they are processed in the same way
as the NED comments. They can include other files, but circular includes are not allowed.

// ...
// @include ../copyright.txt
// ...
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Chapter 15

Parallel Distributed Simulation

15.1 Introduction to Parallel Discrete Event Simulation

OMNeT++ supports parallel execution of large simulations. This section provides a brief pic-
ture of the problems and methods of parallel discrete event simulation (PDES). Interested
readers are strongly encouraged to look into the literature.

For parallel execution, the model is to be partitioned into several LPs (logical processes) that
will be simulated independently on different hosts or processors. Each LP will have its own
local Future Event Set, and thus will maintain its own local simulation time. The main issue
with parallel simulations is keeping LPs synchronized in order to avoid violating the causality
of events. Without synchronization, a message sent by one LP could arrive in another LP when
the simulation time in the receiving LP has already passed the timestamp (arrival time) of the
message. This would break causality of events in the receiving LP.

There are two broad categories of parallel simulation algorithms that differ in the way they
handle causality problems outlined above:

1. Conservative algorithms prevents incausalities from happening. The Null Message Al-
gorithm exploits knowledge of the time when LPs send messages to other LPs, and uses
‘null’ messages to propagate this information to other LPs. If an LP knows it won’t re-
ceive any messages from other LPs until t + ∆t simulation time, it may advance until
t + ∆t without the need for external synchronization. Conservative simulation tends
to converge to sequential simulation (slowed down by communication between LPs) if
there is not enough parallelism in the model, or parallelism is not exploited by sending
a sufficient number of ‘null’ messages.

2. Optimistic synchronization allows incausalities to occur, but detects and repairs them.
Repairing involves rollbacks to a previous state, sending out anti-messages to cancel
messages sent out during the period that is being rolled back, etc. Optimistic synchro-
nization is extremely difficult to implement, because it requires periodic state saving and
the ability to restore previous states. In any case, implementing optimistic synchroniza-
tion in OMNeT++ would require – in addition to a more complicated simulation kernel
– writing significantly more complex simple module code from the user. Optimistic syn-
chronization may be slow in cases of excessive rollbacks.
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15.2 Assessing Available Parallelism in a Simulation Model

OMNeT++ currently supports conservative synchronization via the classic Chandy-Misra-
Bryant (or null message) algorithm [CM79]. To assess how efficiently a simulation can be
parallelized with this algorithm, we’ll need the following variables:

• P performance represents the number of events processed per second (ev/sec). 1 P
depends on the performance of the hardware and the computation-intensiveness of pro-
cessing an event. P is independent of the size of the model. Depending on the nature of
the simulation model and the performance of the computer, P is usually in the range of
20,000..500,000 ev/sec.

• E event density is the number of events that occur per simulated second (ev/simsec). E
depends on the model only, and not where the model is executed. E is determined by
the size, the detail level and also the nature of the simulated system (e.g. cell-level ATM
models produce higher E values than call center simulations.)

• R relative speed measures the simulation time advancement per second (simsec/sec). R
strongly depends on both the model and on the software/hardware environment where
the model executes. Note that R = P/E.

• L lookahead is measured in simulated seconds (simsec). When simulating telecommu-
nication networks and using link delays as lookahead, L is typically in the msimsec-
µsimsec range.

• τ latency (sec) characterizes the parallel simulation hardware. τ is the latency of send-
ing a message from one LP to another. τ can be determined using simple benchmark
programs. The authors’ measurements on a Linux cluster interconnected via a 100Mb
Ethernet switch using MPI yielded τ=22µs which is consistent with measurements re-
ported in [OF00]. Specialized hardware such as Quadrics Interconnect [Qua] can provide
τ=5µs or better.

In large simulation models, P , E and R usually stay relatively constant (that is, display little
fluctuations in time). They are also intuitive and easy to measure. The OMNeT++ displays
these values on the GUI while the simulation is running, see Figure 15.1. Cmdenv can also
be configured to display these values.

Figure 15.1: Performance bar in OMNeT++ showing P , R and E

After having approximate values of P , E, L and τ , calculate the λ coupling factor as the ratio
of LE and τP :

λ = (LE)/(τP )

Without going into the details: if the resulting λ value is at minimum larger than one, but
rather in the range 10..100, there is a good chance that the simulation will perform well
when run in parallel. With λ < 1, poor performance is guaranteed. For details see the paper
[VŞE03].

1Notations: ev: events, sec: real seconds, simsec: simulated seconds
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15.3 Parallel Distributed Simulation Support in OMNeT++

15.3.1 Overview

This chapter presents the parallel simulation architecture of OMNeT++. The design allows
simulation models to be run in parallel without code modification – it only requires configu-
ration. The implementation relies on the approach of placeholder modules and proxy gates
to instantiate the model on different LPs – the placeholder approach allows simulation tech-
niques such as topology discovery and direct message sending to work unmodified with PDES.
The architecture is modular and extensible, so it can serve as a framework for research on
parallel simulation.

The OMNeT++ design places a big emphasis on separation of models from experiments. The
main rationale is that usually a large number of simulation experiments need to be done on
a single model before a conclusion can be drawn about the real system. Experiments tend to
be ad-hoc and change much faster than simulation models; thus it is a natural requirement
to be able to carry out experiments without disturbing the simulation model itself.

Following the above principle, OMNeT++ allows simulation models to be executed in par-
allel without modification. No special instrumentation of the source code or the topology
description is needed, as partitioning and other PDES configuration is entirely described in
the configuration files.

OMNeT++ supports the Null Message Algorithm with static topologies, using link delays as
lookahead. The laziness of null message sending can be tuned. Also supported is the Ideal
Simulation Protocol (ISP) introduced by Bagrodia in 2000 [BT00]. ISP is a powerful research
vehicle to measure the efficiency of PDES algorithms, both optimistic and conservative; more
precisely, it helps determine the maximum speedup achievable by any PDES algorithm for a
particular model and simulation environment. In OMNeT++, ISP can be used for benchmark-
ing the performance of the Null Message Algorithm. Additionally, models can be executed
without any synchronization, which can be useful for educational purposes (to demonstrate
the need for synchronization) or for simple testing.

For the communication between LPs (logical processes), OMNeT++ primarily uses MPI, the
Message Passing Interface standard [For94]. An alternative communication mechanism is
based on named pipes, for use on shared memory multiprocessors without the need to install
MPI. Additionally, a file system based communication mechanism is also available. It commu-
nicates via text files created in a shared directory, and can be useful for educational purposes
(to analyse or demonstrate messaging in PDES algorithms) or to debug PDES algorithms. Im-
plementation of a shared memory-based communication mechanism is also planned for the
future, to fully exploit the power of multiprocessors without the overhead of and the need to
install MPI.

Nearly every model can be run in parallel. The constraints are the following:

• modules may communicate via sending messages only (no direct method call or member
access) unless mapped to the same processor

• no global variables

• there are some limitations on direct sending (no sending to a submodule of another
module, unless mapped to the same processor)

• lookahead must be present in the form of link delays

• currently static topologies are supported (we are working on a research project that aims
to eliminate this limitation)
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PDES support in OMNeT++ follows a modular and extensible architecture. New communica-
tion mechanisms can be added by implementing a compact API (expressed as a C++ class)
and registering the implementation – after that, the new communications mechanism can be
selected for use in the configuration.

New PDES synchronization algorithms can be added in a similar way. PDES algorithms are
also represented by C++ classes that have to implement a very small API to integrate with the
simulation kernel. Setting up the model on various LPs as well as relaying model messages
across LPs is already taken care of and not something the implementation of the synchro-
nization algorithm needs to worry about (although it can intervene if needed, because the
necessary hooks are provided).

The implementation of the Null Message Algorithm is also modular in itself in that the looka-
head discovery can be plugged in via a defined API. Currently implemented lookahead discov-
ery uses link delays, but it is possible to implement more sophisticated approaches and select
them in the configuration.

15.3.2 Parallel Simulation Example

We will use the Parallel CQN example simulation for demonstrating the PDES capabilities of
OMNeT++. The model consists of N tandem queues where each tandem consists of a switch
and k single-server queues with exponential service times (Figure 15.2). The last queues
are looped back to their switches. Each switch randomly chooses the first queue of one
of the tandems as destination, using uniform distribution. The queues and switches are
connected with links that have nonzero propagation delays. Our OMNeT++ model for CQN
wraps tandems into compound modules.

S

S

S

Figure 15.2: The Closed Queueing Network (CQN) model

To run the model in parallel, we assign tandems to different LPs (Figure 15.3). Lookahead is
provided by delays on the marked links.

To run the CQN model in parallel, we have to configure it for parallel execution. In OM-
NeT++, the configuration is in the omnetpp.ini file. For configuration, first we have to specify
partitioning, that is, assign modules to processors. This is done by the following lines:

[General]

*.tandemQueue[0]**.partition-id = 0

*.tandemQueue[1]**.partition-id = 1

*.tandemQueue[2]**.partition-id = 2

The numbers after the equal sign identify the LP.
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CPU2
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CPU0

Figure 15.3: Partitioning the CQN model

Then we have to select the communication library and the parallel simulation algorithm, and
enable parallel simulation:

[General]
parallel-simulation = true
parsim-communications-class = "cMPICommunications"
parsim-synchronization-class = "cNullMessageProtocol"

When the parallel simulation is run, LPs are represented by multiple running instances of the
same program. When using LAM-MPI [LAM], the mpirun program (part of LAM-MPI) is used
to launch the program on the desired processors. When named pipes or file communications
is selected, the opp_prun OMNeT++ utility can be used to start the processes. Alternatively,
one can run the processes by hand (the -p flag tells OMNeT++ the index of the given LP and
the total number of LPs):

./cqn -p0,3 &

./cqn -p1,3 &

./cqn -p2,3 &

For PDES, one will usually want to select the command-line user interface, and redirect the
output to files. (OMNeT++ provides the necessary configuration options.)

The graphical user interface of OMNeT++ can also be used (as evidenced by Figure 15.4),
independently of the selected communication mechanism. The GUI interface can be useful
for educational or demonstration purposes. OMNeT++ displays debugging output about the
Null Message Algorithm, EITs and EOTs can be inspected, etc.

15.3.3 Placeholder Modules, Proxy Gates

When setting up a model partitioned to several LPs, OMNeT++ uses placeholder modules and
proxy gates. In the local LP, placeholders represent sibling submodules that are instantiated
on other LPs. With placeholder modules, every module has all of its siblings present in the
local LP – either as placeholder or as the “real thing”. Proxy gates take care of forwarding
messages to the LP where the module is instantiated (see Figure 15.5).

The main advantage of using placeholders is that algorithms such as topology discovery em-
bedded in the model can be used with PDES unmodified. Also, modules can use direct mes-
sage sending to any sibling module, including placeholders. This is so because the destination
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Figure 15.4: Screenshot of CQN running in three LPs

of direct message sending is an input gate of the destination module – if the destination mod-
ule is a placeholder, the input gate will be a proxy gate which transparently forwards the
messages to the LP where the “real” module was instantiated. A limitation is that the desti-
nation of direct message sending cannot be a submodule of a sibling (which is probably a bad
practice anyway, as it violates encapsulation), simply because placeholders are empty and so
its submodules are not present in the local LP.

Instantiation of compound modules is slightly more complicated. Since submodules can be
on different LPs, the compound module may not be “fully present” on any given LP, and it
may have to be present on several LPs (wherever it has submodules instantiated). Thus,
compound modules are instantiated wherever they have at least one submodule instantiated,
and are represented by placeholders everywhere else (Figure 15.6).

tandem[1]
(placeholder)tandem[0]

CPU0

tandem[1]
tandem[0]

(placeholder)

CPU1 comm. (MPI, pipe, etc.)

Figure 15.5: Placeholder modules and proxy gates

15.3.4 Configuration

Parallel simulation configuration is the [General] section of omnetpp.ini.
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(placeholder for
compound module)

simple
module

CPU0

simple
module(placeh.)

CPU1

(placeh.)

(placeh.)(placeh.)

CPU2

simple
module

Figure 15.6: Instantiating compound modules

The parallel distributed simulation feature can be turned on with the parallel-simulation
boolean option.

The parsim-communications-class selects the class that implements communication be-
tween partitions. The class must implement the cParsimCommunications interface.

The parsim-synchronization-class selects the parallel simulation algorithm. The class
must implement the cParsimSynchronizer interface.

The following two options configure the Null Message Algorithm, so they are only effective if
cNullMessageProtocol has been selected as synchronization class:

• parsim-nullmessageprotocol-lookahead-class selects the lookahead class for the
NMA; the class must be subclassed from cNMPLookahead. The default class is cLinkDe-
layLookahead.

• parsim-nullmessageprotocol-laziness expects a number in the (0, 1) interval (the
default is 0.5), and it ontrols how often NMA should send out null messages; the value
is understood in proportion to the lookahead, e.g. 0.5 means every lookahead/2 simsec.

The parsim-debug boolean option enables/disables printing log messages about the parallel
simulation algorithm. It is turned on by default, but for production runs we recommend
turning it off.

Other configuration options configure MPI buffer sizes and other details; see options that
begin with parsim- in Appendix G.

When you are using cross-mounted home directories (the simulation’s directory is on a disk
mounted on all nodes of the cluster), a useful configuration setting is

[General]
fname-append-host = true

It will cause the host names to be appended to the names of all output vector files, so that
partitions don’t overwrite each other’s output files. (See section 11.5.3)
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15.3.5 Design of PDES Support in OMNeT++

The design of PDES support in OMNeT++ follows a layered approach, with a modular and
extensible architecture. The overall architecture is depicted in Figure 15.7.

Simulation Kernel
Parallel simulation
subsystem

Synchronization

Communication

Partitioning

Simulation Model

Event scheduling,
sending, receiving

communications library (MPI, sockets, etc.)

Figure 15.7: Architecture of OMNeT++ PDES implementation

The parallel simulation subsytem is an optional component itself, which can be removed
from the simulation kernel if not needed. It consists of three layers, from the bottom up:
Communications Layer, Partitioning Layer and Synchronization Layer.

The Communications Layer

The purpose of the Communications Layer is to provide elementary messaging services be-
tween partitions for the upper layer. The services include send, blocking receive, nonblocking
receive and broadcast. The send/receive operations work with buffers, which encapsulate
packing and unpacking operations for primitive C++ types. The message class and other
classes in the simulation library can pack and unpack themselves into such buffers. The Com-
munications layer API is defined in the cParsimCommunications interface (abstract class);
specific implementations like the MPI one (cMPICommunications) subclass from this, and en-
capsulate MPI send/receive calls. The matching buffer class cMPICommBuffer encapsulates
MPI pack/unpack operations.

The Partitioning Layer

The Partitioning Layer is responsible for instantiating modules on different LPs according to
the partitioning specified in the configuration, for configuring proxy gates. During the simula-
tion, this layer also ensures that cross-partition simulation messages reach their destinations.
It intercepts messages that arrive at proxy gates and transmits them to the destination LP us-
ing the services of the Communications Layer. The receiving LP unpacks the message and
injects it at the gate the proxy gate points at. The implementation basically encapsulates the
cParsimSegment, cPlaceholderModule, cProxyGate classes.

The Synchronization Layer

The Synchronization Layer encapsulates the parallel simulation algorithm. Parallel simula-
tion algorithms are also represented by classes, subclassed from the cParsimSynchronizer
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abstract class. The parallel simulation algorithm is invoked on the following hooks: event
scheduling, processing model messages outgoing from the LP, and messages (model messages
or internal messages) arriving from other LPs. The first hook, event scheduling, is a function
invoked by the simulation kernel to determine the next simulation event; it also has full ac-
cess to the future event set (FES) and can add/remove events for its own use. Conservative
parallel simulation algorithms will use this hook to block the simulation if the next event is
unsafe, e.g. the null message algorithm implementation (cNullMessageProtocol) blocks the
simulation if an EIT has been reached until a null message arrives (see [BT00] for terminol-
ogy); also it uses this hook to periodically send null messages. The second hook is invoked
when a model message is sent to another LP; the null message algorithm uses this hook to
piggyback null messages on outgoing model messages. The third hook is invoked when any
message arrives from other LPs, and it allows the parallel simulation algorithm to process its
own internal messages from other partitions; the null message algorithm processes incoming
null messages here.

The Null Message Protocol implementation itself is modular; it employs a separate, config-
urable lookahead discovery object. Currently only link delay based lookahead discovery has
been implemented, but it is possible to implement more sophisticated types.

The Ideal Simulation Protocol (ISP; see [BT00]) implementation consists of two parallel sim-
ulation protocol implementations: the first one is based on the null message algorithm and
additionally records the external events (events received from other LPs) to a trace file; the
second one executes the simulation using the trace file to find out which events are safe and
which are not.

Note that although we implemented a conservative protocol, the provided API itself would
allow implementing optimistic protocols, too. The parallel simulation algorithm has access
to the executing simulation model, so it could perform saving/restoring model state if model
objects support this 2.

We also expect that because of the modularity, extensibility and clean internal architecture
of the parallel simulation subsystem, the OMNeT++ framework has the potential to become a
preferred platform for PDES research.

2Unfortunately, support for state saving/restoration needs to be individually and manually added to each class in
the simulation, including user-programmed simple modules.
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Chapter 16

Plug-in Extensions

16.1 Overview

OMNeT++ is an open system, and several details of its operation can be customized via plug-
ins. To create a plug-in, you generally need to write a C++ class that implements a certain
interface (i.e. subclasses from a C++ abstract class), and register it in OMNeT++. The plug-in
class can be activated for a particular simulation with a corresponding configuration option.

The following plug-in interfaces are supported:

• cRNG. Interface for random number generators.

• cScheduler. The scheduler class. This plug-in interface allows for implementing real-
time, hardware-in-the-loop, distributed and distributed parallel simulation.

• cConfigurationEx. Configuration provider plug-in. This plug-in interface lets you re-
place omnetpp.ini with some other implementation, for example a database.

• cOutputScalarManager. It handles recording the scalar output data. The default output
scalar manager is cFileOutputScalarManager, defined in the Envir library.

• cOutputVectorManager. It handles recording the output from cOutVector objects. The
default output vector manager is cIndexedFileOutputVectorManager, defined in the
Envir library.

• cSnapshotManager. It provides an output stream to which snapshots are written (see
section 7.10.5). The default snapshot manager is cFileSnapshotManager, defined in
the Envir library.

The classes (cRNG, cScheduler, etc.) are documented in the API Reference.

To actually implement and select a plug-in for use:

1. Subclass the given interface class (e.g. for a custom RNG, cRNG) to create your own
version.

2. Register the class by putting the Register_Class(MyRNGClass) line into the C++ source.
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3. Compile and link your interface class into the OMNeT++ simulation executable. IM-
PORTANT: make sure the executable actually contains the code of your class! Over-
optimizing linkers (esp. on Unix) tend to leave out code to which there seem to be no
external reference.

4. Add an entry to omnetpp.ini to tell Envir use your class instead of the default class.
For RNGs, this setting is rng-class in the [General] section.

16.2 Plug-in Descriptions

16.2.1 Defining a New Random Number Generator

The new RNG C++ class must implement the cRNG interface, and can be activated with the
rng-class configuration option.

16.2.2 Defining a New Scheduler

The scheduler plug-in interface allows for implementing real-time, hardware-in-the-loop, dis-
tributed and distributed parallel simulation.

The scheduler C++ class must implement the cScheduler interface, and can be activated
with the scheduler-class configuration option.

To see examples of scheduler classes, check the cRealTimeScheduler class in the simulation
kernel, and cSocketRTScheduler which is part of the Sockets sample simulation.

16.2.3 Defining a New Configuration Provider

Overview

The configuration provider plug-in lets you replace ini files with some other storage imple-
mentation, for example a database. The configuration provider C++ class must implement the
cConfigurationEx interface, and can be activated with the configuration-class configu-
ration option.

The cConfigurationEx interface abstracts the inifile-based data model to some degree. It
assumes that the configuration data consists of several named configurations. Before every
simulation run, one of the named configurations is activated, and from then on, all queries
into the configuration operate on the active named configuration only.

It practice, you will probably use the SectionBasedConfiguration class (in src/envir) or
subclass from it, because it already implements a lot of functionality that you would otherwise
have to.

SectionBasedConfiguration does not assume ini files or any other particular storage for-
mat; instead, it accepts an object that implements the cConfigurationReader interface to
provide the data in raw form to it. The default implementation of cConfigurationReader is
InifileReader.
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The Startup Sequence

From the configuration plug-in’s point of view, the startup sequence looks like the following
(see src/envir/startup.cc in the source code):

1. First, ini files specified on the command-line are read into a boot-time configuration ob-
ject. The boot-time configuration is always a SectionBasedConfiguration with In-
ifileReader.

2. Shared libraries are loaded (see the -l command-line option, and the load-libs config-
uration option). This allows configuration classes to come from shared libraries.

3. The configuration-class configuration option is examined. If it is present, a configu-
ration object of the given class is instantiated, and replaces the boot-time configuration.
The new configuration object is initialized from the boot-time configuration, so that it
can read parameters (e.g. database connection parameters, XML file name, etc) from it.
Then the boot-time configuration object is deallocated.

4. The load-libs option from the new configuration object is processed.

5. Then everything goes on as normally, using the new configuration object.

Providing a Custom Configuration Class

To replace the configuration object with your custom implementation, you would write the
class:

#include "cconfiguration.h"

class CustomConfiguration : public cConfigurationEx
{

...
};

Register_Class(CustomConfiguration);

and then activate it in the boot-time configuration:

[General]
configuration-class = CustomConfiguration

Providing a Custom Reader for SectionBasedConfiguration

As said already, writing a configuration class from scratch can be a lot of work, and it may be
more practical to reuse SectionBasedConfiguration with a different configuration reader
class. This can be done with sectionbasedconfig-configreader-class config option, in-
terpreted by SectionBasedConfiguration. Specify the following in your boot-time ini file:

[General]
configuration-class = SectionBasedConfiguration
sectionbasedconfig-configreader-class = <my new reader class>

The configuration reader class should look like this:
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#include "cconfigreader.h"

class DatabaseConfigurationReader : public cConfigurationReader
{

...
};

Register_Class(DatabaseConfigurationReader);

16.2.4 Defining a New Output Scalar Manager

cOutputScalarManager handles recording the scalar output data. The default output scalar
manager is cFileOutputScalarManager, defined in the Envir library.

The new class can be activated with the outputscalarmanager-class configuration option.

16.2.5 Defining a New Output Vector Manager

cOutputVectorManager handles recording the output from cOutVector objects. The default
output vector manager is cIndexedFileOutputVectorManager, defined in the Envir library.

The new class can be activated with the outputvectormanager-class configuration option.

16.2.6 Defining a New Snapshot Manager

cSnapshotManager provides an output stream to which snapshots are written (see section
7.10.5). The default snapshot manager is cFileSnapshotManager, defined in the Envir li-
brary.

The new class can be activated with the snapshotmanager-class configuration option.

16.3 Accessing the Configuration

16.3.1 Defining New Configuration Options

New configuration options need to be declared with one of the appropriate registration macros.
These macros are:

Register_GlobalConfigOption(ID, NAME, TYPE, DEFAULTVALUE, DESCRIPTION)
Register_PerRunConfigOption(ID, NAME, TYPE, DEFAULTVALUE, DESCRIPTION)
Register_GlobalConfigOptionU(ID, NAME, UNIT, DEFAULTVALUE, DESCRIPTION)
Register_PerRunConfigOptionU(ID, NAME, UNIT, DEFAULTVALUE, DESCRIPTION)
Register_PerObjectConfigOption(ID, NAME, TYPE, DEFAULTVALUE, DESCRIPTION)
Register_PerObjectConfigOptionU(ID, NAME, UNIT, DEFAULTVALUE, DESCRIPTION)

Config options come in three flavors, as indicated by the macro names:

• Global options affect all configurations (i.e. they are only accepted in the [General]
section but not in [Config <name>] sections)
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• Per-Run options can be specified in any section (i.e. both in [General] and in [Config
<name>] sections). They are specific to a particular section. Their names always contain
a hyphen (-) character.

• Per-Object options can be specified in any section (i.e. both in [General] and in [Config
<name>] sections). They are specific to an object or group of objects and their name must
not contain a hypen (-) character.

The macro arguments are as follows:

• ID is a C++ identifier that will let you refer to the configuration option in cConfiguration
member functions. (It is actually pointer to a cConfigOption object that the macro
creates.)

• NAME is the name of the option (a string).

• TYPE is the data type of the option; it must be one of: CFG_BOOL, CFG_INT, CFG_DOUBLE,
CFG_STRING, CFG_FILENAME, CFG_FILENAMES, CFG_PATH, CFG_CUSTOM. The most signif-
icant difference between filesystem-related types (filename, filenames, path) and plain
strings is that relative filenames and paths are automatically converted to absolute when
the configuration is read, with the base directory being the location of the ini file where
the configuration entry was read from.

• UNIT is a string that names the measurement unit in which the option’s value is to be
interpreted; it implies type CFG_DOUBLE.

• DEFAULTVALUE is the default value in textual form (string); this should be NULL if the
option has no default value.

• DESCRIPTION is an arbitrarily long string that describes the purpose and and operation
of the option. It will be used in help texts etc.

For example, the debug-on-errors macro is declared in the following way:

Register_GlobalConfigOption(CFGID_DEBUG_ON_ERRORS,
"debug-on-errors", CFG_BOOL, "false",
"When enabled, runtime errors will etc etc...");

NOTE: Registration is necessary because from the 4.0 version, OMNeT++ validates the
configuration on startup, in order to be able to report invalid or mistyped option names
and other errors.

16.3.2 Reading Values from the Configuration

The configuration is accessible via the getConfig() method of cEnvir. It returns a pointer
to the configuration object (cConfiguration):

cConfiguration *config = ev.getConfig();

cConfiguration provides several methods for querying the configuration.

NOTE: The configuration object provides a flattened view of the ini file. Sections inherit-
ing from each other are merged for you. Configuration options provided on the command
line in the form -option=value are added first to the object. This ensures that the
command line options take precedence over the values specified in the INI file.
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const char *getAsCustom(cConfigOption *entry, const char *fallbackValue=NULL);
bool getAsBool(cConfigOption *entry, bool fallbackValue=false);
long getAsInt(cConfigOption *entry, long fallbackValue=0);
double getAsDouble(cConfigOption *entry, double fallbackValue=0);
std::string getAsString(cConfigOption *entry, const char *fallbackValue="");
std::string getAsFilename(cConfigOption *entry);
std::vector<std::string> getAsFilenames(cConfigOption *entry);
std::string getAsPath(cConfigOption *entry);

fallbackValue is returned if the value is not specified in the configuration, and there is no
default value.

bool debug = ev.getConfig()->getAsBool(CFGID_PARSIM_DEBUG);

16.4 Implementing a New User Interface

It is possible to extend OMNeT++ with a new user interface. The new user interface will have
fully equal rights to Cmdenv and Tkenv; that is, it can be activated by starting the simu-
lation executable with the -u <name> command-line or the user-interface configuration
option, it can be made the default user interface, it can define new command-line options and
configuration options, and so on.

User interfaces must implement (i.e. subclass from) cRunnableEnvir, and must be registered
to OMNeT++ with the Register_OmnetApp() macro. In practice, you will almost always want
to subclass EnvirBase instead of cRunnableEnvir, because EnvirBase already implements
lots of functionality that otherwise you’d have to.

NOTE: If you want something completely different from what EnvirBase provides, such
as embedding the simulation kernel into another application, then you should be reading
section 17.2, not this one.

An example user interface:

#include "envirbase.h"

class FooEnv : public EnvirBase
{

...
};

Register_OmnetApp("FooEnv", FooEnv, 30, "an experimental user interface");

The envirbase.h header comes from the src/envir directory, so it is necessary to add it to
the include path (-I).

The arguments to Register_OmnetApp() include the user interface name (for use with the
-u and user-interface options), the C++ class that implements it, a weight for default user
interface selection (if -u is missing, the user interface with the largest weight will be activated),
and a description string (for help and other purposes).

The C++ class should implement all methods left pure virtual in EnvirBase, and possibly
others if you want to customize their behavior. One method that you will surely want to
reimplement is run() – this is where your user interface runs. When this method exits, the
simulation program exits.
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NOTE: A good starting point for implementing your own user interface is Cmdenv – just
copy and modify its source code to quickly get going.
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Chapter 17

Embedding the Simulation Kernel

17.1 Architecture

OMNeT++ has a modular architecture. The following diagram illustrates the high-level archi-
tecture of the OMNeT++ simulations:

SIM ENVIR
main()

CMDENV
or

TKENV
or

...

Executing
Model

Model
Component
Library

Figure 17.1: Architecture of OMNeT++ simulation programs

The rectangles in the picture represent the following components:

• Sim is the simulation kernel and class library. Sim is a library linked to your simulation
program.

• Envir is another library containing all the code that is common to all the user interfaces.
main() also exists in the Envir library. Envir provides services, like ini file handling
for specific user interface implementations. Envir presents itself towards Sim and the
executing model via the ev facade object, hiding all other user interface internals. Some
aspects of the Envir library can be customized using plugin interfaces. Embedding OM-
NeT++ into applications can be achieved by implementing a new user interface in addi-
tion to Cmdenv and Tkenv, or by replacing Envir with another implementation of ev (see
sections 16.4 and 17.2.)
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• Cmdenv and Tkenv are specific user interface implementations. The simulation is
linked either to the Cmdenv or Tkenv user interfaces, or to both.

• The Model Component Library includes simple module definitions and their C++ im-
plementations, compound module types, channels, networks, message types, and every-
thing belonging to models that have been linked to the simulation program. A simulation
program can run any model that contains all of the required linked components.

• The Executing Model is the model that is set up for simulation. This model contains
objects (modules, channels, and so on) that are all instances of the components in the
model component library.

The arrows in the figure describe how components interact with each other:

• Executing Model ⇔ Sim. The simulation kernel manages the future events and acti-
vates modules in the executing model as events occur. The modules of the executing
model are stored in the main object of Sim, simulation (of class cSimulation). In turn,
the executing model calls functions in the simulation kernel and uses classes in the Sim
library.

• Sim ⇔ Model Component Library. The simulation kernel instantiates simple modules
and other components when the simulation model is set up at the beginning of the
simulation run. In addition, it refers to the component library when dynamic module
creation is used. The mechanisms for registering and looking up components in the
model component library are implemented as part of Sim.

• Executing Model ⇔ Envir. The ev object, logically part of Envir, is the facade of the
user interface towards the executing model. The model uses ev to write debug logs (ev«,
ev.printf()).

• Sim ⇔ Envir. Envir is in full command of what happens in the simulation program.
Envir contains the main() function where execution begins. Envir determines which
models should be set up for simulation, and instructs Sim to do so. Envir contains the
main simulation loop (determine-next-event, execute-event sequence) and invokes the
simulation kernel for the necessary functionality (event scheduling and event execution
are implemented in Sim). Envir catches and handles errors and exceptions that occur
in the simulation kernel or in the library classes during execution. Envir presents a
single facade object (ev) that represents the environment (user interface) toward Sim –
no Envir internals are visible to Sim or the executing model. During simulation model
setup, Envir supplies parameter values for Sim when Sim asks for them. Sim writes
output vectors via Envir, so one can redefine the output vector storing mechanism by
changing Envir. Sim and its classes use Envir to print debug information.

• Envir ⇔ Tkenv/Cmdenv. Tkenv and Cmdenv are concrete user interface implemen-
tations. When a simulation program is started, the main() function (which is part of
Envir) determines the appropriate user interface class, creates an instance and runs it
by invoking its run() method. Sim’s or the model’s calls on the ev object are delegated
to the user interface.

17.2 Embedding the OMNeT++ Simulation Kernel

This section discusses the issues of embedding the simulation kernel or a simulation model
into a larger application. We assume that you do not just want to change one or two aspects
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of the simulator (such as , event scheduling or result recording) or create a new user interface
such as Cmdenv or Tkenv – if so, see chapter 16.

For the following section, we assume that you will write the embedding program from scratch.
Meaning, starting from a main() function.

17.2.1 The main() Function

The minimalistic program described below initializes the simulation library and runs two
simulations. In later sections we will review the details of the code and discuss how to improve
it.

#include <omnetpp.h>

int main(int argc, char *argv[])
{

// the following line MUST be at the top of main()
cStaticFlag dummy;

// initializations
ExecuteOnStartup::executeAll();
SimTime::setScaleExp(-12);

// load NED files
cSimulation::loadNedSourceFolder("./foodir");
cSimulation::loadNedSourceFolder("./bardir");
cSimulation::doneLoadingNedFiles();

// run two simulations
simulate("FooNetwork", 1000);
simulate("BarNetwork", 2000);

return 0;
}

The first few lines of the code initialize the simulation library. The purpose of cStaticFlag is
to set a global variable to true for the duration of the main() function, to help the simulation
library handle exceptions correctly in extreme cases. ExecuteOnStartup::executeAll()
performs various startup tasks such as, building registration tables out of the Define_Module(),
Register_Class() and similar entries throughout the code. SimTime::setScaleExp(-12)
sets the simulation time resolution to picoseconds; other values can be used as well, but it is
mandatory to choose one.

NOTE: The simulation time exponent cannot be changed at a later stage, since it is a
global variable, and the values of the existing simtime_t instances would change.

The code then loads the NED files from the foodir and bardir subdirectories of the working
directory (as if the NED path was ./foodir;./bardir), and runs two simulations.
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17.2.2 The simulate() Function

A minimalistic version of the simulate() function is shown below. In order to shorten the
code, the exception handling code has been ommited (try/catch blocks) apart from the event
loop. However, every line is marked with “E!” where various problems with the simulation
model can occur and can be thrown as exceptions.

void simulate(const char *networkName, simtime_t limit)
{

// look up network type
cModuleType *networkType = cModuleType::find(networkName);
if (networkType == NULL) {

printf("No such network: %s\n", networkName);
return;

}

// create a simulation manager and an environment for the simulation
cEnvir *env = new CustomSimulationEnv(argc, argv, new EmptyConfig());
cSimulation *sim = new cSimulation("simulation", env);
cSimulation::setActiveSimulation(sim);

// set up network and prepare for running it
sim->setupNetwork(networkType); //E!
sim->startRun(); //E!

// run the simulation
bool ok = true;
try {

while (sim->getSimTime() < limit) {
cSimpleModule *mod = sim->selectNextModule(); //E!
if (!mod)

break;
sim->doOneEvent(mod); //E!

}
printf("Finished: time limit reached\n");

}
catch (cTerminationException& e) {

printf("Finished: %s\n", e.what());
}
catch (std::exception& e) {

ok = false;
printf("ERROR: %s\n", e.what());

}

if (ok)
simulation.callFinish(); //E!

// finish the simulation and clean up the network
sim->endRun(); //E!
sim->deleteNetwork(); //E!

cSimulation::setActiveSimulation(NULL);
delete sim; // deletes env as well
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}

The function accepts a network type name (which must be fully qualified with a package
name) and a simulation time limit.

In the first few lines the system looks up the network name among the modules that have
been loaded from the NED files, and an error message is printed if it is not found.

Then it is required to create and activate a simulation manager object (cSimulation). The
simulation manager requires another object, called the environment object. This environment
object is used by the simulation manager to read the configuration. In addition, the results
produced by the simulation manager are written to this environment object.

The environment object (CustomSimulationEnv in the above code) must be provided by the
programmer; this is described in detail in a later section.

NOTE: Before version 4.0, simulation and ev were global variables; In the current
version they are macros that refer to *cSimulation::getActiveSimulation() and
*cSimulation::getActiveSimulation()->getEnvir().

The network is then set up in the simulation manager. The sim->setupNetwork() method
creates the system module and recursively all modules and their interconnections; module
parameters are also read from the configuration (where required) and assigned. If there is an
error (for example, module type not found), an exception will be thrown. The exception object
is some kind of std::exception, usually a cRuntimeError.

If the network setup was successful, the sim->startRun() function is called, and the ini-
tialize() methods of modules and channels are then activated. An exception is thrown if
something goes wrong in any of the initialize() methods.

The following lines run the simulation by calling sim->selectNextModule() and sim->doOneEvent()
in an event loop, until the simulation time limit is reached or an exception occurs. Excep-
tions that are subclassed from cTerminationException signify the normal termination of
the simulation process; other exceptions indicate various errors.

If the simulation has completed successfully (ok==true), the code goes on to call the finish()
methods of modules and channels. Then, regardless of whether there was an error, sim-
>endRun() is called, and the network is shut down using sim->deleteNetwork().

Finally, the simulation manager object is deallocated, but the active simulation manager is
not allowed to be deleted; therefore it is deactivated using setActiveSimulation(NULL).

17.2.3 Providing an Environment Object

The environment object needs to be subclassed from the cEnvir class, but since it has many
pure virtual methods, it is easier to begin by subclassing cNullEnvir. cNullEnvir defines all
pure virtual methods with either an empty body or with a body that throws an "unsupported
method called" exception. You can redefine methods to be more sophisticated later on, as
you progress with the development.

You must redefine the readParameter() method. This enables module parameters to ob-
tain their values. For debugging purposes, you can also redefine sputn() where module
log messages are written to. cNullEnvir only provides one random number generator, so
if your simulation model uses more than one, you also need to redefine the getNumRNGs()
and getRNG(k) methods. To print or store simulation records, redefine recordScalar(),
recordStatistic() and/or the output vector related methods. Other cEnvir methods are
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invoked from the simulation kernel to inform the environment about messages being sent,
events scheduled and cancelled, modules created, and so on.

The following example shows a minimalistic environment class that is enough to get started:

class CustomSimulationEnv : public cNullEnvir
{

public:
// constructor
CustomSimulationEnv(int ac, char **av, cConfiguration *c) :

cNullEnvir(ac, av, c) {}

// model parameters: accept defaults
virtual void readParameter(cPar *par) {

if (par->containsValue())
par->acceptDefault();

else
throw cRuntimeError("no value for %s", par->getFullPath().c_str());

}

// send module log messages to stdout
virtual void sputn(const char *s, int n) {

(void) ::fwrite(s,1,n,stdout);
}

};

17.2.4 Providing a Configuration Object

The configuration object needs to subclass from cConfiguration. cConfiguration also has
several methods, but the typed ones (getAsBool(), getAsInt(), etc.) have default imple-
mentations that delegate to the much fewer string-based methods (getConfigValue(), etc.).

It is fairly straightforward to implement a configuration class that emulates an empty ini file:

class EmptyConfig : public cConfiguration
{

protected:
class NullKeyValue : public KeyValue {

public:
virtual const char *getKey() const {return NULL;}
virtual const char *getValue() const {return NULL;}
virtual const char *getBaseDirectory() const {return NULL;}

};
NullKeyValue nullKeyValue;

protected:
virtual const char *substituteVariables(const char *value) {return value;}

public:
virtual const char *getConfigValue(const char *key) const

{return NULL;}
virtual const KeyValue& getConfigEntry(const char *key) const

{return nullKeyValue;}
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virtual const char *getPerObjectConfigValue(const char *objectFullPath,
const char *keySuffix) const {return NULL;}

virtual const KeyValue& getPerObjectConfigEntry(const char *objectFullPath,
const char *keySuffix) const {return nullKeyValue;}

};

17.2.5 Loading NED Files

NED files can be loaded with any of the following static methods of cSimulation: loadNed-
SourceFolder(), loadNedFile(), and loadNedText(). The first method loads an entire
subdirectory tree, the second method loads a single NED file, and the third method takes a
literal string containing NED code and parses it.

NOTE: One use of loadNedText() is to parse NED sources previously converted to C++
string constants and linked into the executable. This enables creating executables that
are self-contained, and do not require NED files to be distributed with them.

The above functions can also be mixed, but after the last call, doneLoadingNedFiles() must
be invoked (it checks for unresolved NED types).

Loading NED files has a global effect; therefore they cannot be unloaded.

17.2.6 How to Eliminate NED Files

It is possible to get rid of NED files altogether. This would also remove the dependency on
the oppnedxml library and the code in sim/netbuilder, although at the cost of additional
coding.

NOTE: When the only purpose is to get rid of NED files as external dependency of
the program, it is simpler to use loadNedText() on NED files converted to C++ string
constants instead.

The trick is to write cModuleType and cChannelType objects for your simple module, com-
pound module and channel types, and register them manually. For example, cModuleType
has pure virtual methods called createModuleObject(), addParametersAndGatesTo(module),
setupGateVectors(module), buildInside(module), which you need to implement. The
body of the buildInside() method would be similar to C++ files generated by nedtool of
OMNeT++ 3.x.

17.2.7 Assigning Module Parameters

As already mentioned, modules obtain values for their input parameters by calling the read-
Parameter() method of the environment object (cEnvir).

NOTE: readParameter() is only called for parameters that have not been set to a fixed
(i.e. non-default) value in the NED files.

The readParameter() method should be written in a manner that enables it to assign the
parameter. When doing so, it can recognize the parameter from its name (par->getName()),
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from its full path (par->getFullPath()), from the owner module’s class (par->getOwner()-
>getClassName()) or NED type name (((cComponent *)par->getOwner())->getNedTypeName()).
Then it can set the parameter using one of the typed setter methods (setBoolValue(), set-
LongValue(), etc.), or set it to an expression provided in string form (parse() method). It
can also accept the default value if it exists (acceptDefault()).

The following code is a straightforward example that answers parameter value requests from
a pre-filled table.

class CustomSimulationEnv : public cNullEnvir
{

protected:
// parameter (fullpath,value) pairs, needs to be pre-filled
std::map<std::string,std::string> paramValues;

public:
...
virtual void readParameter(cPar *par) {

if (paramValues.find(par->getFullPath())!=paramValues.end())
par->parse(paramValues[par->getFullPath()]);

else if (par->containsValue())
par->acceptDefault();

else
throw cRuntimeError("no value for %s", par->getFullPath().c_str());

}
};

17.2.8 Extracting Statistics from the Model

There are several ways you can extract statistics from the simulation.

C++ Calls into the Model

Modules in the simulation are C++ objects. If you add the appropriate public getter methods to
the module classes, you can call them from your main program to obtain statistics. Modules
may be looked up with the getModuleByPath() method of cSimulation, then cast to the
specific module type via check_and_cast<>() so that the getter methods can be invoked.

cModule *mod = simulation.getModuleByPath("Network.client[2].app");
WebApp *appMod = check_and_cast<WebApp *>(mod);
int numRequestsSent = appMod->getNumRequestsSent();
double avgReplyTime = appMod->getAvgReplyTime();
...

The drawback of this approach is that getters need to be added manually to all affected module
classes, which might not be practical, especially if modules come from external projects.

cEnvir Callbacks

A more general way is to catch recordScalar() method calls in the simulation model. The
cModule’s recordScalar() method delegates to the similar function in cEnvir. You may
define the latter function so that it stores all recorded scalars (for example in an std::map),
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where the main program can find them later. Values from output vectors can be captured in
a similar manner.

An example implementation:

class CustomSimulationEnv : public cNullEnvir
{

private:
std::map<std::string, double> results;

public:
virtual void recordScalar(cComponent *component, const char *name,

double value, opp_string_map *attributes=NULL)
{

results[component->getFullPath()+"."+name] = value;
}

const std::map<std::string, double>& getResults() {return results;}
};

...

const std::map<std::string, double>& results = env->getResults();
int numRequestsSent = results["Network.client[2].app.numRequestsSent"];
double avgReplyTime = results["Network.client[2].app.avgReplyTime"];

A drawback of this approach is that compile-time checking of statistics names is lost, but
the advantages are that any simulation model can now be used without changes, and that
capturing additional statistics does not require code modification in the main program.

17.2.9 The Simulation Loop

To run the simulation, the selectNextModule() and doOneEvent methods of cSimulation
must be called in a loop:

while (sim->getSimTime() < limit)
{

cSimpleModule *mod = sim->selectNextModule();
sim->doOneEvent(mod);

}

Depending on the concrete scheduler class, the selectNextModule() may return NULL. The
default cSequentialScheduler never returns NULL.

The execution may terminate in various ways. Runtime errors cause a cRuntimeError (or
other kind of std::exception) to be thrown. cTerminationException is thrown on normal
termination conditions, such as when the simulation runs out of events to process.

You may customize the loop to exit on other termination conditions as well, such as on a sim-
ulation time limit (see above), on a CPU time limit, or when results reach a required accuracy.
It is relatively straightforward to build in progress reporting and interactivity (start/stop).

Animation can be hooked up to the appropriate callback methods of cEnvir: beginSend(),
sendHop(), endSend(), and others.
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17.2.10 Multiple, Coexisting Simulations

It is possible for several instances of cSimulation to coexist, and also to set up and simulate
a network in each instance. However, this requires frequent use of cSimulation::set-
ActiveSimulation(). Before invoking any cSimulation method or module method, the
corresponding cSimulation instance needs to be designated as the active simulation man-
ager. This is necessary because several models and simulation kernel methods refer to the
active simulation manager instance via the simulation macro, and it is similar with the ev
macro.

NOTE: Before the 4.0 version, simulation and ev were global variables; in the cur-
rent version they are macros that refer to *cSimulation::getActiveSimulation() and
*cSimulation::getActiveSimulation()->getEnvir().

Every cSimulation instance should have its own associated environment object (cEnvir).
Environment objects may not be shared among several cSimulation instances. The cSimu-
lation’s destructor also removes the associated cEnvir instance.

cSimulation instances may be reused from one simulation to another, but it is also possible
to create a new instance for each simulation run.

NOTE: It is not possible to run different simulations concurrently from different theads,
due to the use of global variables which are not easy to eliminate, such as the active
simulation manager pointer and the active environment object pointer. Static buffers
and objects (like string pools) are also used for efficiency reasons in some places inside
the simulation kernel.

17.2.11 Installing a Custom Scheduler

The default event scheduler is cSequentialScheduler. To replace it with a different sched-
uler (e.g. cRealTimeScheduler or your own scheduler class), add a setScheduler() call
into main():

cScheduler *scheduler = new CustomScheduler();
simulation.setScheduler(scheduler);

It is usually not a good idea to change schedulers in the middle of a simulation, therefore
setScheduler() may only be called when no network is set up.

17.2.12 Multi-Threaded Programs

The OMNeT++ simulation kernel is not reentrant; therefore it must be protected against con-
current access.
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Appendix A

NED Reference

A.1 Syntax

A.1.1 NED File Name Extension

NED files have the .ned file name suffix. This is mandatory, and cannot be overridden.

A.1.2 NED File Encoding

NED files are ASCII, but non-ASCII characters are permitted in comments and string literals.
This allows for using encodings that are a superset of ASCII, for example ISO 8859-1 and
UTF-8.

NOTE: There is no standard way to specify or determine the encoding of a NED file. It is
up to the user to configure the desired encoding in text editors and other tools that edit
or process NED files.

String literals (e.g. in parameter values) will be passed to the C++ code as const char *
without any conversion; it is up to the simulation model to interpret them using the desired
encoding.

Line ending may be either CR or CRLF, regardless of the platform.

A.1.3 Reserved Words

NED file authors have to take care that no reserved words are used as identifiers. The reserved
words of the NED language are:

allowunconnected bool channel channelinterface connections const default dou-
ble extends false for gates if import index inout input int like module mod-
uleinterface network output package parameters property simple sizeof string
submodules this true typename types volatile xml xmldoc
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A.1.4 Identifiers

Identifiers must be composed of letters of the English alphabet (a-z, A-Z), numbers (0-9) and
underscore “_”. Identifiers may only begin with a letter or underscore.

The recommended way to compose identifiers from multiple words is to capitalize the begin-
ning of each word (camel case).

A.1.5 Case Sensitivity

Keywords and identifiers in the NED language are case sensitive. For example, TCP and Tcp
are two different names.

A.1.6 Literals

String Literals

String literals use double quotes. The following C-style backslash escapes are recognized: \b,
\f, \n, \r, \t, \\, \", and \xhh where h is a hexadecimal digit.

Numeric Constants

Numeric constants are accepted in the usual decimal, hexadecimal (0x prefix) and scientific
notations. Octal numbers are not accepted (numbers that start with the 0 digit are interpreted
as decimal.)

Quantity Constants

A quantity constant has the form (<numeric-constant> <unit>)+, for example 12.5mW or 3h
15min 37.2s. Whitespace is optional in front of a unit, but must be present after a unit if it
is followed by a number.

When multiple measurement units are present, they have to be convertible into each other
(i.e. refer to the same physical quantity).

Section A.5.6 lists the units recognized by OMNeT++. Other units can be used as well; the
only downside being that OMNeT++ will not be able to perform conversions on them.

A.1.7 Comments

Comments can be placed at the end of lines. Comments begin with a double slash //, and
continue until the end of the line.

A.1.8 Grammar

The grammar of the NED language can be found in Appendix B.
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A.2 Built-in Definitions

The NED language has the following built-in definitions, all in the ned package: channels
IdealChannel, DelayChannel, and DatarateChannel; module interfaces IBidirection-
alChannel, and IUnidirectionalChannel. The latter two are reserved for future use.

The bodies of @statistic properties have been omitted for brevity from the following listing.

NOTE: You can print the full definitions by running opp_run -h neddecls.

package ned;
@namespace("");

channel IdealChannel
{

@class(cIdealChannel);
}

channel DelayChannel
{

@class(cDelayChannel);
@signal[messageSent](type=cMessage);
@signal[messageDiscarded](type=cMessage);
@statistic[messages](...);
@statistic[messagesDiscarded](...);
bool disabled = default(false);
double delay = default(0s) @unit(s); // propagation delay

}

channel DatarateChannel
{

@class(cDatarateChannel);
@signal[channelBusy](type="int");
@signal[messageSent](type=cMessage);
@signal[messageDiscarded](type=cMessage);
@statistic[busy](...);
@statistic[utilization](...);
@statistic[packets](...);
@statistic[packetBytes](...);
@statistic[packetsDiscarded](...);
@statistic[throughput](...);
bool disabled = default(false);
double delay = default(0s) @unit(s); // propagation delay
double datarate = default(0bps) @unit(bps); // bits per second; 0=infinite
double ber = default(0); // bit error rate (BER)
double per = default(0); // packet error rate (PER)

}

moduleinterface IBidirectionalChannel
{

gates:
inout a;
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inout b;
}

moduleinterface IUnidirectionalChannel
{

gates:
input i;
output o;

}

A.3 Packages

NED supports hierarchical namespaces called packages. The model is similar to Java pack-
ages, with minor changes.

A.3.1 Package Declaration

A NED file may contain a package declaration. The package declaration uses the package
keyword, and specifies the package for the definitions in the NED file. If there is no package
declaration, the file’s contents are in the default package.

Component type names must be unique within their package.

A.3.2 Directory Structure, package.ned

Like in Java, the directory of a NED file must match the package declaration. However, it
is possible to omit directories at the top which do not contain any NED files (like the typical
/org/<projectname> directories in Java).

The top of a directory tree containing NED files is named a NED source folder.

NOTE: The OMNeT++ runtime recognizes a NEDPATH environment variable, which con-
tains a list of NED source folders, and is similar to the Java CLASSPATH variable. NEDPATH
also has a command-line option equivalent.

The package.ned file at the top level of a NED source folder plays a special role.

If there is no toplevel package.ned or it contains no package declaration, the declared pack-
age of a NED file in the folder <srcfolder>/x/y/z must be x.y.z. If there is a toplevel
package.ned and it declares the package as a.b, then any NED file in the folder <src-
folder>/x/y/z must have the declared package a.b.x.y.z.

NOTE: package.ned files are allowed in other folders as well. They may contain proper-
ties and/or documentation for their package, but cannot be used to define the package
they are in.
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A.4 Components

Simple modules, compound modules, networks, channels, module interfaces and channel
interfaces are called components.

A.4.1 Simple Modules

Simple module types are declared with the simple keyword; see the NED Grammar (Appendix
B) for the syntax.

Simple modules may have properties (A.4.8), parameters (A.4.9) and gates (A.4.11).

A simple module type may not have inner types (A.4.15).

A simple module type may extend another simple module type, and may implement one or
more module interfaces (A.4.5). Inheritance rules are described in section A.4.21, and inter-
face implementation rules in section A.4.20.

Every simple module type has an associated C++ class, which must be subclassed from cSim-
pleModule. The way of associating the NED type with the C++ class is described in section
A.4.7.

A.4.2 Compound Modules

Compound module types are declared with the module keyword; see the NED Grammar (Ap-
pendix B) for the syntax.

A compound module may have properties (A.4.8), parameters (A.4.9), and gates (A.4.11); its
internal structure is defined by its submodules (A.4.12) and connections (A.4.13); and it may
also have inner types (A.4.15) that can be used for its submodules and connections.

A compound module type may extend another compound module type, and may implement
one or more module interfaces (A.4.5). Inheritance rules are described in section A.4.21, and
interface implementation rules in section A.4.20.

A.4.3 Networks

The network Keyword

A network declared with the network keyword is equivalent to a compound module (module
keyword) with the @isNetwork(true) property.

NOTE: A simple module can only be designated to be a network by spelling out the
@isNetwork property; the network keyword cannot be used for that purpose.

The @isNetwork Property

The @isNetwork property is only recognized for simple modules and compound modules. The
value may be empty, true or false:

@isNetwork;
@isNetwork();
@isNetwork(true);
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@isNetwork(false);

The empty value corresponds to @isNetwork(true).

The @isNetwork property is not inherited; that is, a subclass of a module with @isNetwork
set does not automatically become a network. The @isNetwork property needs to be explicitly
added to the subclass to make it a network.

Rationale: Subclassing may introduce changes to a module that make it unfit to be
used as a network.

A.4.4 Channels

Channel types are declared with the channel keyword; see the NED Grammar (Appendix B)
for the syntax.

Channel types may have properties (A.4.8) and parameters (A.4.9).

A channel type may not have inner types (A.4.15).

A channel type may extend another channel type, and may implement one or more channel
interfaces (A.4.6). Inheritance rules are described in section A.4.21, and interface implemen-
tation rules in section A.4.20.

Every channel type has an associated C++ class, which must be subclassed from cChannel.
The way of associating the NED type with the C++ class is described in section A.4.7.

The @defaultname property of a channel type determines the default name of the channel
object when used in a connection.

A.4.5 Module Interfaces

Module interface types are declared with the moduleinterface keyword; see the NED Gram-
mar (Appendix B) for the syntax.

Module interfaces may have properties (A.4.8), parameters (A.4.9), and gates (A.4.11). How-
ever, parameters are not allowed to have a value assigned, not even a default value.

A module interface type may not have inner types (A.4.15).

A module interface type may extend one or more other module interface types. Inheritance
rules are described in section A.4.21.

A.4.6 Channel Interfaces

Channel interface types are declared with the channelinterface keyword; see the NED
Grammar (Appendix B) for the syntax.

Channel interfaces may have properties (A.4.8) and parameters (A.4.9). However, parameters
are not allowed to have a value assigned, not even a default value.

A channel interface type may not have inner types (A.4.15).

A channel interface type may extend one or more other channel interface types. Inheritance
rules are described in section A.4.21.
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A.4.7 Resolving the C++ Implementation Class

The procedure for determining the C++ implementation class for simple modules and for
channels are identical. It goes as follows (we are going to say component instead of “simple
module or channel”):

If the component extends another component and has no @class property, the C++ imple-
mentation class is inherited from the base type.

If the component contains a @class property, the C++ class name will be composed of the
current namespace (see below) and the value of the @class property. The @class property
should contain a single value.

NOTE: The @class property may itself contain a namespace declaration (ie. may contain
“::”).

If the component contains no @class property and has no base class, the C++ class name will
be composed of the current namespace and the unqualified name of the component.

IMPORTANT: NED subclassing does not imply subclassing the C++ implementation! If
you want to subclass a simple module or channel in NED as well as in C++, you explicitly
need to specify the @class property, otherwise the derived simple module or channel will
continue to use the C++ class from its super type.

For compound modules, the built-in default compound module C++ class cCompoundModule
will be used, unless the module contains the @class property. When @class is present, the
resolution rules are the same as with simple modules.

Current Namespace

The current namespace is the value of the first @namespace property found while searching
the following order:

1. the current NED file

2. the package.ned file in the current package or the first ancestor package searching
upwards

NOTE: Note that namespaces coming from multiple @namespace properties in different
scopes do not nest, but rather, the nearest one wins.

The @namespace property should contain a single value.

A.4.8 Properties

Properties are a means of adding metadata annotations to NED files, component types, pa-
rameters, gates, submodules, and connections.
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Identifying a Property

Properties are identified by name. It is possible to have several properties on the same object
with the same name, as long as they have unique indices. An index is an identifier in square
brackets after the property name.

The following example shows a property without index, one with the index index1, and a third
with the index index2.

@prop1();
@prop2[index1]();
@prop3[index2]();

Property Value

The value of the property is specified inside parentheses. The property value consists of
key=valuelist pairs, separated by semicolons; valuelist elements are separated with commas.
Example:

@prop(key1=value11,value12,value13;key2=value21,value22)

Keys must be unique.

If the key+equal sign part (key=) is missing, the valuelist belongs to the default key. Examples:

@prop1(value1,value2)
@prop2(value1,value2;key1=value11,value12,value13)

Most of the properties use the default key with one value. Examples:

@namespace(inet);
@class(Foo);
@unit(s);

Property values have a liberal syntax (see Appendix B). Values that do not fit the grammar
(notably, those containing a comma or a semicolon) need to be surrounded with double quotes.

When interpreting a property value, one layer of quotes is removed automatically, that is, foo
and "foo" are the same. Within quotes, escaping works in the same way as within string
literals (see A.1.6).

Example:

@prop(marks=the ! mark, "the , mark", "the ; mark", other marks); // 4 items

Placement

Properties may be added to NED files, component types, parameters, gates, submodules and
connections. For the exact syntax, see Appendix B.

When a component type extends another component type(s), properties are merged. This is
described in section A.4.21.
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Property Declarations

The property keyword is reserved for future use. It is envisioned that accepted property
names and property keys would need to be pre-declared, so that the NED infrastructure can
warn the user about mistyped or unrecognized names.

A.4.9 Parameters

Parameters can be defined and assigned in the parameters section of component types. In
addition, parameters can also be assigned in the parameters sections of submodule bodies
and connection bodies, but those places do not allow adding new parameters.

The parameters keyword is optional, and can be omitted without change in the meaning.

The parameters section may also hold pattern assignments (A.4.10) and properties (A.4.8).

A parameter is identified by a name, and has a data type. A parameter may have value or
default value, and may also have properties (see A.4.8).

Accepted parameter data types are double, int, string, bool, and xml. Any of the above
types can be declared volatile as well (volatile int, volatile string, etc.)

The presence of a data type keyword determines whether the given line defines a new param-
eter or refers to an existing parameter. One can assign a value or default value to an existing
parameter, and/or modify its properties or add new properties.

Examples:

int a; // defines new parameter
int b @foo; // new parameter with property
int c = default(5); // new parameter with default value
int d = 5; // new parameter with value assigned
int e @foo = 5; // new parameter with property and value
f = 10; // assignment to existing (e.g.inherited) parameter
g = default(10); // overrides default value of existing parameter
h; // legal, but does nothing
i @foo(1); // adds a property to existing parameter
j @foo(1) = 10; // adds a property and value to existing parameter

Parameter values are NED expressions. Expressions are described in section A.5.

For volatile parameters, the value expression is evaluated every time the parameter value
is accessed. Non-volatile parameters are evaluated only once.

NOTE: The const keyword is reserved for future use within expressions to define con-
stant subexpressions, i.e. to denote a part within an expression that should only be
evaluated once. Constant subexpressions are not supported yet.

The following properties are recognized for parameters: @unit, @prompt.

The @prompt Property

The @prompt property defines a prompt string for the parameter. The prompt string is used
when/if a simulation runtime user interface interactively prompts the user for the parameter’s
value.

The @prompt property is expected to contain one string value for the default key.
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The @unit Property

A parameter may have a @unit property to associate it with a measurement unit. The @unit
property should contain one string value for the default key. Examples:

@unit(s)
@unit(second)

When present, values assigned to the parameter must be in the same or in a compatible (that
is, convertible) unit. Examples:

double a @unit(s) = 5s; // OK
double a @unit(s) = 10ms; // OK; will be converted to seconds
double a @unit(s) = 5; // error: should be 5s
double a @unit(s) = 5kg; // error: incompatible unit

@unit behavior for non-numeric parameters (boolean, string, XML) is unspecified (may be
ignored or may be an error).

The @unit property of a parameter may not be modified via inheritance.

Example:

simple A {
double p @unit(s);

}
simple B extends A {

p @unit(mW); // illegal: cannot override @unit
}

A.4.10 Pattern Assignments

Pattern assignments allow one to set more than one parameter using wildcards, and to as-
sign parameters deeper down in a submodule tree. Pattern assignments may occur in the
parameters section of component types, submodules and connections.

The syntax of a pattern assignment is <pattern> = <value>.

A pattern consists of two or more pattern elements, separated by dots. The pattern element
syntax is defined so that it can accomodate names of parameters, submodules (optionally
with index), gates (optionally with the $i/$o suffix and/or index) and connections, and their
wildcard forms. (The default name of connection channel objects is channel.)

Wildcard forms may use:

1. Asterisks: They match zero or more characters except dots.

2. Numeric ranges, {<start>..<end>} e.g. {5..120} or {..10}. They match numbers em-
bedded in identifiers, that is, a sequence of decimal digit characters interpreted as a
nonnegative integer that is within the specified start..end range (both limits are inclu-
sive). Both start and end are optional.

3. Numeric index ranges,[<start>..<end>]. e.g. [5..120] or [..10]. They are intended for
selecting submodule and gate index ranges. They match a nonnegative integer enclosed
in square brackets that is within the specified start..end range (both limits are inclusive).
Both start and end are optional.
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4. Double asterisks: They match zero or more characters (including dots), and can be used
to match more than one parameter path elements.

See the NED language grammar (Appendix B) for a more formal definition of the pattern
syntax.

Examples:

host1.tcp.mss = 512B;
host*.tcp.mss = 512B; // matches host, host1, host2, hostileHost, ...
host{9..11}.tcp.mss = 512B; // matches host9/host10/host11, but nothing else
host[9..11].tcp.mss = 512B; // matches host[9]/host[10]/host[11], but nothing else

**.mss = 512B; // matches foo.mss, host[1].transport.tcp[0].mss, ...

A.4.11 Gates

Gates can be defined in the gates section of component types. The size of a gate vector (see
below) may be specified at the place of defining the gate, via inheritance in a derived type, and
also in the gates block of a submodule body. A submodule body does not allow defining new
gates.

A gate is identified by a name, and is characterized by a type (input, output, inout) and
optionally a vector size. Gates may also have properties (see A.4.8).

Gates may be scalar or vector. The vector size is specified with a numeric expression inside
square brackets. The vector size may also be left unspecified by writing an empty pair of
square brackets.

An already specified gate vector size may not be overridden in subclasses or in a submodule.

The presence of a gate type keyword determines whether the given line defines a new gate
or refers to an existing gate. One can specify the gate vector size for an existing gate vector,
and/or modify its properties, or add new properties.

Examples:

gates:
input a; // defines new gate
input b @foo; // new gate with property
input c[]; // new gate vector with unspecified size
input d[8]; // new gate vector with size=8
e[10]; // set gate size for existing (e.g.inherited) gate vector
f @foo(bar); // add property to existing gate
g[10] @foo(bar); // set gate size and add property to existing gate

Gate vector sizes are NED expressions. Expressions are described in section A.5.

See the Connections section (A.4.13) for more information on gates.

Recognized Gate Properties

The following properties are recognized for gates: @directIn and @loose. They have the same
effect: When either of them is present on a gate, the gate is not required to be connected in
the connections section of a compound module (see A.4.13).
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@directIn should be used when the gate is an input gate that is intended for being used as
a target for the sendDirect() method; @loose should be used in any other case when the
gate is not required to be connected for some reason.

NOTE: The reason @directIn gates are not required to remain unconnected is that
it is often useful to wrap such modules in a compound module, where the compound
module also has a @directIn input gate that is internally connected to the submodule’s
corresponding gate.

Example:

gates:
input radioIn @directIn;

A.4.12 Submodules

Submodules are defined in the submodules section of the compound module.

The type of the submodule may be specified statically or parametrically.

Submodules may be scalar or vector. The size of submodule vectors must be specified as a
numeric expression inside square brackets.

Submodules may also be conditional.

A submodule definition may or may not have a body (a curly brace delimited block). An empty
submodule body is equivalent to a missing one.

Syntax examples:

submodules:
ip : IP; // scalar submodule without body
tcp : TCP {} // scalar submodule with empty body
app[10] : App; // submodule vector

Submodule Type

The simple or compound module type (A.4.1, A.4.2) that will be instantiated as the submodule
may be specified either statically (with a concrete module type name) or parametrically.

Static Submodule Type

Submodules with a statically defined type are those that contain a concrete NED module type
name. Example:

tcp : TCP;

See section A.4.18 for the type resolution rules.

Parametric Submodule Type

Parametric submodule type means that the NED type name is given in a string expression.
The string expression may be specified locally in the submodule declaration, or elsewhere
using typename patterns (see later).
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Parametric submodule types are syntactically denoted by the presence of a pair of angle brack-
ets and the like keyword. The angle brackets contain the string expression; or if the type
is not specified locally, they may be empty or may contain a default value for the type name
(default(...) syntax). The syntax mandates that you also specify a module interface type
A.4.5 (after the like keyword), which the concrete module type must implement in order for
it to be eligible to be chosen.

Examples:

tcp : <tcpType> like ITCP; // type comes from parent module parameter
tcp : <"TCP_"+suffix> like ITCP; // expression using parent module parameter

tcp : <> like ITCP; // type must be specified elsewhere

tcp : <default("TCP")> like ITCP; // type may be specified elsewhere;
// if not, the default is "TCP"

tcp : <default("TCP_"+suffix)> like ITCP;
// type may be specified elsewhere;
// if not, the default is an expression

See the NED Grammar (Appendix B) for the formal syntax, and section A.4.19 for the type
resolution rules.

Conditional Submodules

Submodules may be made conditional using the if keyword. The condition expression must
evaluate to a boolean; if the result is false, the submodule is not created, and trying to
connect its gates or reference its parameters will be an error.

An example:

submodules:
tcp : TCP if withTCP { ... }

Parameters, Gates

A submodule body may contain parameters (A.4.9) and gates (A.4.5).

A submodule body cannot define new parameters or gates. It is only allowed to assign existing
parameters, and to set the vector size of existing gate vectors.

It is also allowed to add or modify submodule properties and parameter/gate properties.

A.4.13 Connections

Connections are defined in the connections section of the compound module.

Connections may not span multiple hierarchy levels, that is, a connection may be created
between two submodules, a submodule and the compound module, or between two gates of
the compound module.

Normally, all gates must be connected, including submodule gates and the gates of the com-
pound module. When the allowunconnected modifier is present after connections, gates
will be allowed to be left unconnected.
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NOTE: The @directIn and @loose gate properties are alternatives to the connections
allowunconnected syntax; see A.4.11.

Connections may be conditional, and may be created using loops (see A.4.14).

Connection Syntax

The connection syntax uses arrows (-->, <--) to connect input and output gates, and double
arrows (<-->) to connect inout gates. The latter is also said to be a bidirectional connection.

Arrows point from the source gate (a submodule output gate or a compound module input
gate) to the destination gate (a submodule input gate or a compound module output gate).
Connections may be written either left to right or right to left, that is, a-->b is equivalent to
b<--a.

Gates are specified as <modulespec>.<gatespec> (to connect a submodule), or as <gatespec>
(to connect the compound module). <modulespec> is either a submodule name (for scalar
submodules), or a submodule name plus an index in square brackets (for submodule vectors).
For scalar gates, <gatespec> is the gate name; for gate vectors it is either the gate name plus
a numeric index expression in square brackets, or <gatename>++.

The <gatename>++ notation causes the first unconnected gate index to be used. If all gates
of the given gate vector are connected, the behavior is different for submodules and for the
enclosing compound module. For submodules, the gate vector expands by one. For the
compound module, it is an error to use ++ on a gate vector with no unconnected gates.

Syntax examples:

connections:
a.out --> b.in; // unidirectional between two submodules
c.in[2] <-- in; // parent-to-child; gate vector with index
d.g++ <--> e.g++; // bidirectional, auto-expanding gate vectors

Rationale: The reason it is not supported to expand the gate vector of the compound
module is that the module structure is built in top-down order: new gates would be left
unconnected on the outside, as there is no way in NED to "go back" and connect them
afterwards.

When the ++ operator is used with $i or $o (e.g. g$i++ or g$o++, see later), it will actually
add a gate pair (input+output) to maintain equal gate size for the two directions.

The syntax to associate a channel (see A.4.4) with the connection is to use two arrows with a
channel specification in between (see later). The same syntax is used to add properties such
as @display to the connection.

Inout Gates

An inout gate is represented as a gate pair: an input gate and an output gate. The two sub-
gates may also be referenced and connected individually, by adding the $i and $o suffix to
the name of the inout gate.

A bidirectional connection (which uses a double arrow to connect two inout gates), is also a
shorthand for two uni-directional connections; that is,

a.g <--> b.g;
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is equivalent to

a.g$o --> b.g$i;
a.g$i <-- b.g$o;

In inout gate vectors, gates are always in pairs, that is, sizeof(g$i)==sizeof(g$o) always
holds. It is maintained even when g$i++ or g$o++ is used: the ++ operator will add a gate
pair, not just an input or an output gate.

Specifying Channels

A channel specification associates a channel object with the connection. A channel object is
an instance of a channel type (see A.4.4).

NOTE: As bidirectional connections are a shorthand for a pair of uni-directional connec-
tions, they will actually create two channel objects, one for each direction.

The channel type to be instantiated may be implicit, or may be specified statically or paramet-
rically.

A connection may have a body (a curly brace delimited block) for setting properties and/or
parameters of the channel.

A connection syntax allows one to specify a name for the channel object. When not specified,
the channel name will be taken from the @defaultname property of the channel type; when
there is no such property, it will be "channel". Custom connection names can be useful for
easier addressing of channel objects when assigning parameters using patterns.

See subsequent sections for details.

Implicit Channel Type

If the connection syntax does not say anything about the channel type, it is implicitly deter-
mined from the set of connection parameters used.

Syntax examples for connections with implicit channel types:

a.g <--> b.g; // no parameters
a.g <--> {delay = 1ms;} <--> b.g; // assigns delay
a.g <--> {datarate = 100Mbps; delay = 50ns;} <--> b.g; // assigns delay and datarate

For such connections, the actual NED type to be used will depend on the parameters set in
the connection:

1. When no parameters are set, ned.IdealChannel is chosen.

2. When only ned.DelayChannel parameters are used (delay and disabled), ned.DelayChannel
is chosen.

3. When only ned.DatarateChannel parameters are used (datarate, delay, ber, per,
disabled), the chosen channel type will be ned.DatarateChannel.

Connections with implicit channel types may not use any other parameter.
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Static Channel Type

Connections with a statically defined channel type are those that contain a concrete NED
channel type name.

Examples:

a.g <--> FastEthernet <--> b.g;
a.g <--> FastEthernet {per = 1e-6;} <--> b.g;

See section A.4.18 for the type resolution rules.

Parametric Channel Type

Parametric channel types are similar to parametric submodule types, described in section
A.4.12.

Parametric channel type means that the NED type name is given in a string expression. The
string expression may be specified locally in the connection declaration, or elsewhere using
typename patterns (see later).

Parametric channel types are syntactically denoted by the presence of a pair of angle brackets
and the like keyword. The angle brackets contain the string expression; or if the type is
not specified locally, they may be empty or may contain a default value for the type name
(default(...) syntax). The syntax mandates that you also specify a channel interface type
A.4.5 (after the like keyword), which the concrete channel type must implement in order for
it to be eligible to be chosen.

Examples:

a.g++ <--> <channelType> like IMyChannel <--> b.g++;
// type comes from parent module parameter

a.g++ <--> <"Ch_"+suffix> like IMyChannel <--> b.g++;
// expression using parent module parameter

a.g++ <--> <> like IMyChannel <--> b.g++;
// type must be specified elsewhere

a.g++ <--> <default("MyChannel")> like IMyChannel <--> b.g++;
// type may be specified elsewhere;
// if not, the default is "MyChannel"

a.g++ <--> <default("Ch_"+suffix)> like IMyChannel <--> b.g++;
// type may be specified elsewhere;
// if not, the default is an expression

See the NED Grammar (Appendix B) for the formal syntax, and section A.4.19 for the type
resolution rules.

Channel Parameters and Properties

A channel definition may or may not have a body (a curly brace delimited block). An empty
channel body ({ }) is equivalent to a missing one.

A channel body may contain parameters (A.4.9).

A channel body cannot define new parameters. It is only allowed to assign existing parame-
ters.

It is also allowed to add or modify properties and parameter properties.
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A.4.14 Conditional and Loop Connections, Connection Groups

The connections section may contain any number of connections and connection groups. A
connection group is one or more connections grouped with curly braces.

Both connections and connection groups may be conditional (if keyword) or may be multiple
(for keyword).

Any number of for and if clauses may be added to a connection or connection loop; they are
interpreted as if they were nested in the given order. Loop variables of a for may be referenced
from subsequent conditions and loops as well as in module and gate index expressions in the
connections.

See the NED Grammar (B) for the exact syntax.

Example connections:

a.out --> b.in;
c.out --> d.in if p>0;
e.out[i] --> f[i].in for i=0..sizeof(f)-1, if i%2==0;

Example connection groups:

if p>0 {
a.out --> b.in;
a.in <-- b.out;

}
for i=0..sizeof(c)-1, if i%2==0 {

c[i].out --> out[i];
c[i].in <-- in[i];

}
for i=0..sizeof(d)-1, for j=0..sizeof(d)-1, if i!=j {

d[i].out[j] --> d[j].in[i];
}
for i=0..sizeof(e)-1, for j=0..sizeof(e)-1 {

e[i].out[j] --> e[j].in[i] if i!=j;
}

A.4.15 Inner Types

Inner types can be defined in the types section of compound modules, with the same syntax
as toplevel (i.e. non-inner) types.

Inner types may not contain further inner types, that is, type nesting is limited to two levels.

Inner types are only visible inside the enclosing component type and its subclasses.

A.4.16 Name Uniqueness

Identifier names within a component must be unique. That is, the following items in a com-
ponent are considered to be in the same name space and must not have colliding names:

• parameters

• gates
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• submodules

• inner types

• the above items of super type(s)

For example, a gate and a submodule cannot have the same name.

A.4.17 Parameter Assignment Order

A module or channel parameter may be assigned in parameters blocks (see A.4.9) at various
places in NED: in the module or channel type that defines it; in the type’s subclasses; in the
submodule or connection that instantiates the type. The parameter may also be assigned
using pattern assignments (see A.4.10) in any compound module that uses the given module
or channel type directly or indirectly.

Patterns are matched against the relative path of the parameter, which is the relative path of
its submodule or connection, with a dot and the parameter name appended. The relative path
is composed of a list of submodule names (name plus index) separated by dots; a connection
is identified by the full name of its source gate plus the name of the channel object (which is
currently always channel) separated by a dot.

NOTE: As bidirectional connections are a shorthand for two unidirectional connections,
the source gate name is qualified with $i or $o in the relative path.

Note that the parameters keyword itself is optional, and is usually not written out in sub-
modules and connections.

This section describes the module and channel parameter assignments procedure.

The general rules are the following:

1. A (non-default) parameter assignment may not be overridden later; that is, if there are
assignments in multiple places, the assignment “closest” to the parameter declaration
will be effective; others will be flagged as errors.

2. A default value is only used if a non-default value is not present for the given parameter.
A non-default value may also come from a source external to NED, namely the simulation
configuration (omnetpp.ini).

3. Unlike non-default values, a default value may be overridden; that is, if there are default
value assignments in multiple places, the assignment “farthest” from the parameter dec-
laration will win.

4. Among pattern assignments within the same parameters block, the first match will
win. Pattern assignments with default and non-default values are considered to be two
disjoint sets, only one of which are searched at a time.

This yields the following conceptual search order for non-default parameter assignments:

1. First, the NED type that contains the parameter declaration is checked;

2. Then its subclasses are checked;

3. Then the submodule or connection that instantiates the type is checked;
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4. Then the compound module that contains the submodule or connection is checked for
matching pattern assignments;

5. Then, assuming the compound module is part of a network, the search for matching
pattern assignments continues up on the module tree until the root (the module that
represents the network). At each level (compound module), first the specific submodule
definition is checked, then the (parent) compound module. If a compound module is
subclassed before instantiated, the base type is checked first.

When no (non-default) assignment is found, the same places are searched in the reverse order
for default value assignments. If no default value is found, an error may be raised or the user
may be interactively prompted.

To illustrate the above rules, consider the following example where we want to assign param-
eter p:

simple A { double p; }
simple A2 extends A {...}
module B { submodules: a2: A2 {...} }
module B2 extends B {...}
network C { submodules: b2: B2 {...} }

Here, the search order is: A, A2, a2, B, B2, b2, C. NED conceptually searches the parameters
blocks in that order for a (non-default) value, and then in reverse order for a default value.

The full search order and the form of assignment expected on each level:

1. A { p = ...; }

2. A2 { p = ...; }

3. a2 { p = ...; }

4. B { a2.p = ...; }

5. B2 { a2.p = ...; }

6. b2 { a2.p = ...; }

7. C { b2.a2.p = ...; }

8. C { b2.a2.p = default(...); }

9. b2 { a2.p = default(...); }

10. B2 { a2.p = default(...); }

11. B { a2.p = default(...); }

12. a2 { p = default(...); }

13. A2 { p = default(...); }

14. A { p = default(...); }

If only a default value is found or not even that, external configuration has a say. The config-
uration may contain an assignment for C.b2.a2.p; it may apply the default if there is one; it
may ask the user interactively to enter a value; or if there is no default, it may raise an error
“no value for parameter”.
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A.4.18 Type Name Resolution

Names from other NED files can be referred to either by fully qualified name (“inet.network-
layer.ip.RoutingTable”), or by short name (“RoutingTable”) if the name is visible.

Visible names are:

• inner types of the same type or its super types;

• anything from the same package;

• imported names.

Imports

Imports have a similar syntax to Java, but they are more flexible with wildcards. All of the
following are legal:

import inet.networklayer.ipv4.RoutingTable;
import inet.networklayer.ipv4.*;
import inet.networklayer.ipv4.Ro*Ta*;
import inet.*.ipv4.*;
import inet.**.RoutingTable;

One asterisk stands for any character sequence not containing dots; and a double asterisk
stands for any character sequence (which may contain dots). No other wildcards are recog-
nized.

An import not containing a wildcard must match an existing NED type. However, it is legal
for an import that does contain wildcards not to match any NED type (although that might
generate a warning.)

Inner types may not be referenced outside their enclosing types and their subclasses.

Base Types and Submodules

Fully qualified names and simple names are accepted. Simple names are looked up among
the inner types of the enclosing type (compound module), then using imports, then in the
same package.

Network Name in the Ini File

The network name in the ini file may be given as a fully qualified name or as a simple (un-
qualified) name.

Simple (unqualified) names are tried with the same package as the ini file is in (provided it is
in a NED directory).

A.4.19 Resolution of Parametric Types

This section describes the type resolution for submodules and connections that are defined
using the like keyword.
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Type resolution is done in two steps. In the first step, the type name string expression is
found and evaluated. Then in the second step, the resulting type name string is resolved to
an actual NED type.

Step 1. The lookup of the type name string expression is similar to that of a parameter value
lookup (A.4.17).

The expression may be specified locally (between the angle brackets), or using typename pat-
tern assignments in any compound module that contains the submodule or connection di-
rectly or indirectly. A typename pattern is a pattern that ends in .typename.

Patterns are matched against the relative path of the submodule or connection, with .type-
name appended. The relative path is composed of a list of submodule names (name plus index)
separated by dots; a connection is identified by the full name of its source gate plus the name
of the channel object (which is currently always channel) separated by a dot.

NOTE: As bidirectional connections are a shorthand for two unidirectional connections,
the source gate name is qualified with $i or $o in the relative path.

An example that uses typename pattern assignment:

module Host {
submodules:

tcp: <> like ITCP;;
...

connections:
tcp.ipOut --> <> like IMyChannel --> ip.tcpIn;

}

network Network {
parameters:

host[*].tcp.typename = "TCP_lwIP";
host[*].tcp.ipOut.channel.typename = "DebugChannel";

submodules:
host[10] : Host;
...

}

The general rules are the following:

1. A (non-default) parameter assignment may not be overridden later; that is, if there are
assignments in multiple places, the assignment “closest” to the submodule or connection
definition will be effective; others will be flagged as errors.

2. A default value is only used if a non-default value is not present. A non-default value
may also come from a source external to NED, namely the simulation configuration
(omnetpp.ini).

3. Unlike non-default values, a default value may be overridden; that is, if there are default
value assignments in multiple places, the assignment “farthest” from the submodule or
connection definition will win.

4. Among pattern assignments within the same parameters block, the first match will
win. Patterns assignments with default and non-default values are considered to be two
disjoint sets, only one of which are searched at a time.
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This yields the following conceptual search order for typename assignments:

1. First, the submodule or connection definition is checked (angle brackets);

2. Then the compound module that contains the submodule or connection is checked for
matching pattern assignments;

3. Then, assuming the compound module is part of a network, the search for matching
pattern assignments continues up on the module tree until the root (the module that
represents the network). At each level (compound module), first the specific submodule
definition is checked, then the (parent) compound module. If a compound module is
subclassed before instantiated, the base type is checked first.

When no (non-default) assignment is found, the same places are searched in the reverse order
for default value assignments. If no default value is found, an error may be raised or the user
may be interactively prompted.

To illustrate the above rules, consider the following example:

module A { submodules: h: <> like IFoo; }
module A2 extends A {...}
module B { submodules: a2: A2 {...} }
module B2 extends B {...}
network C { submodules: b2: B2 {...} }

Here, the search order is: h, A, A2, a2, B, B2, b2, C. NED conceptually searches the param-
eters blocks in that order for a (non-default) value, and then in reverse order for a default
value.

The full search order and the form of assignment expected on each level:

1. h: <...> like IFoo;

2. A { h.typename = ...; }

3. A2 { h.typename = ...; }

4. a2 { h.typename = ...; }

5. B { a2.h.typename = ...; }

6. B2 { a2.h.typename = ...; }

7. b2 { a2.h.typename = ...; }

8. C { b2.a2.h.typename = ...; }

9. C { b2.a2.h.typename = default(...); }

10. b2 { a2.h.typename = default(...); }

11. B2 { a2.h.typename = default(...); }

12. B { a2.h.typename = default(...); }

13. a2 { h.typename = default(...); }

14. A2 { h.typename = default(...); }
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15. A { h.typename = default(...); }

16. h: <default(...)> like IFoo;

If only a default value is found or not even that, external configuration has a say. The config-
uration may contain an assignment for C.b2.a2.h.typename; it may apply the default value
if there is one; it may ask the user interactively to enter a value; or if there is no default value,
it may raise an error “cannot determine submodule type”.

Step 2. The type name string is expected to hold the simple name or fully qualified name
of the desired NED type. Resolving the type name string to an actual NED type differs from
normal type name lookups in that it ignores the imports in the file altogether. Instead, a list of
NED types that have the given simple name or fully qualified name and implement the given
interface is collected. The result must be exactly one module or channel type.

A.4.20 Implementing an Interface

A module type may implement one or more module interfaces, and a channel type may imple-
ment one or more channel interfaces, using the like keyword.

The module or channel type is required to have at least those parameters and gates that the
interface has.

Regarding component properties, parameter properties and gate properties defined in the in-
terface: the module or channel type is required to have at least the properties of the interface,
with at least the same values. The component may have additional properties, and properties
may add more keys and values.

NOTE: Implementing an interface does not cause the properties, parameters and gates
to be interited by the module or channel type; they have to be added explicitly.

NOTE: A module or channel type may have extra properties, parameters and gates in
addition to those in the interface.

A.4.21 Inheritance

Component inheritance is governed by the following rules:

• A simple module may only extend a simple module.

• A compound module may only extend a compound module.

• A channel may only extend a channel.

• A module interface may only extend a module interface (or several module interfaces).

• A channel interface may only extend a channel interface (or several channel interfaces).

A network is a shorthand for a compound module with the @isNetwork property set, so the
same rules apply to it as to compound modules.

Inheritance may:

• add new properties, parameters, gates, inner types, submodules, connections, as long
as names do not conflict with inherited names
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• modify inherited properties, and properties of inherited parameters and gates

• it may not modify inherited submodules, connections and inner types

Other inheritance rules:

• for inner types: new inner types can be added, but inherited ones cannot be changed

• for properties: contents will be merged (rules like for display strings: values on same key
and same position will overwrite old ones)

• for parameters: type cannot be redefined; value may be redefined in subclasses or at
place of usage

• for gates: type cannot be redefined; vector size may be specified in subclasses or at place
of usage if it was unspecified

• for gate/parameter properties: extra properties can be added; existing properties can be
overridden/extended as for standalone properties

• for submodules: new submodules may be added, but inherited ones cannot be modified

• for connections: new connections may be added, but inherited ones cannot be modified

The following sections will elaborate on the above rules.

Property Inheritance

Generally, properties may be modified via inheritance. Inheritance may:

• add new keys

• add/overwrite values for existing keys

• remove a value from an existing key by using hyphen as a special value

Parameter Inheritance

Default values for parameters may be overridden in subclasses.

Gate Inheritance

Gate vector size may not be overridden in subclasses.

A.4.22 Network Build Order

When a network is instantiated for simulation, the module tree is built in a top-down preorder
fashion. This means that starting from an empty system module, all submodules are created,
their parameters and vector sizes are assigned, and they get fully connected before proceeding
to go into the submodules to build their internals.

This implies that inside a compound module definition (including in submodules and connec-
tions), one can refer to the compound module’s parameters and gate sizes, because they are
already built at the time of usage.

The same rules apply to compound or simple modules created dynamically during runtime.
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A.5 Expressions

NED language expressions have a C-like syntax, with some variations on operator names (see
^, #, ##). Expressions may refer to module parameters, loop variables (inside connection for
loops), gate vector and module vector sizes, and other attributes of the model. Expressions
can use built-in and user-defined functions as well.

NOTE: New NED functions can be defined in C++; see section 7.11.

A.5.1 Operators

The following operators are supported (in order of decreasing precedence):

Operator Meaning
-, !, ∼ unary minus, negation, bitwise complement
^ power-of
*, /, % multiply, divide, integer modulo
+, - add, subtract, string concatenation
«, » bitwise shift
&, |, # bitwise and, or, xor
== equal
!= not equal
>, >= greater than, greater than or equal to
<, <= less than, less than or equal to
&&, ||, ## logical operators and, or, xor
?: the C/C++ “inline if”

Conversions

Values may have the same types as NED parameters: boolean, integer, double, string, or XML
element. An integer or double value may have an associated measurement unit (s, mW, etc.)

Integer and double values are implicitly converted to one another where needed.

There is no implicit conversion between boolean and numeric types, so 0 is not a synonym for
false, and nonzero numbers are not a synonym for true.

There is also no conversion between string and numeric types, so e.g. "foo"+5 is illegal.
There are functions for converting a number to string and vice versa.

For bitwise operators and modulo (%), doubles are converted to integers.

NOTE: Integers are represented with the C++ type long. double-to-long conversions
are performed using the C++ language’s built-in typecast operator. As long is 32 bits on
most 32-bit architectures, for portability reasons it is not recommended to use integers
that do not fit into 32 bits.

Unit Handling

Operations involving numbers with units work in the following way:

Addition, substraction, and numeric comparisons require their arguments to have the same
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unit or compatible units; in the latter case a unit conversion is performed before the operation.
Incompatible units cause an error.

Modulo, power-of and the bitwise operations require their arguments to be dimensionless,
otherwise the result would depend on the choice of the unit.

NOTE: If you need a floating-point modulo operator that handles units as well, use the
fmod() function.

Multiplying two numbers with units is not supported.

For division, dividing two numbers with units is only supported if the two units are convertible
(i.e. the result will be dimensionless). Dividing a dimensionless number with a number with
unit is not supported.

A.5.2 Referencing Parameters and Loop Variables

Identifiers in expressions occurring anywhere in component definitions are interpreted as
referring to parameters of the given component. For example, identifiers inside submodule
bodies refer to the parameters of the compound module.

Expressions may also refer to parameters of submodules defined earlier in the NED file, us-
ing the submoduleName.paramName or the submoduleName[index].paramName syntax. To
refer to parameters of the local submodule inside a submodule body, use the this qualifier:
this.destAddress.

Exception: if an identifier occurs in a connection for loop and names a previously defined
loop variable, then it is understood as referring to the loop variable.

A.5.3 The index Operator

The index operator is only allowed in a vector submodule’s body, and yields the index of the
submodule instance.

A.5.4 The sizeof() Operator

The sizeof() operator expects one argument, and it is only accepted in compound module
definitions.

The sizeof(identifier) syntax occurring anywhere in a compound module yields the size
of the named submodule or gate vector of the compound module.

Inside submodule bodies, the size of a gate vector of the same submodule can be referred to
with the this qualifier: sizeof(this.out).

To refer to the size of a submodule’s gate vector defined earlier in the NED file, use the
sizeof(submoduleName.gateVectorName) or sizeof(submoduleName[index].gateVector-
Name) syntax.

A.5.5 Functions

The functions available in NED are listed in Appendix D.

Selected functions are documented below.
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The xmldoc() Function

The xmldoc() NED function can be used to assign xml parameters, that is, point them to
XML files or to specific elements inside XML files.

xmldoc() accepts a file name as well as an optional second string argument that contains an
XPath-like expression.

The XPath expression is used to select an element within the document. If the expression
matches several elements, the first element (in preorder depth-first traversal) will be selected.
(This is unlike XPath, which selects all matching nodes.)

The expression syntax is the following:

• An expression consists of path components (or "steps") separated by "/" or "//".

• A path component can be an element tag name, "*", "." or "..".

• "/" means child element (just as in /usr/bin/gcc); "//" means an element any number
of levels under the current element.

• ".", ".." and "*" mean the current element, the parent element, and an element with any
tag name, respectively.

• Element tag names and "*" can have an optional predicate in the form "[position]" or
"[@attribute=’value’]". Positions start from zero.

• Predicates of the form "[@attribute=$param]" are also accepted, where $param can
be one of: $MODULE_FULLPATH, $MODULE_FULLNAME, $MODULE_NAME, $MODULE_INDEX,
$MODULE_ID, $PARENTMODULE_FULLPATH, $PARENTMODULE_FULLNAME, $PARENTMODULE_-
NAME, $PARENTMODULE_INDEX, $PARENTMODULE_ID, $GRANDPARENTMODULE_FULLPATH, $GRAND-
PARENTMODULE_FULLNAME, $GRANDPARENTMODULE_NAME, $GRANDPARENTMODULE_INDEX, $GRAND-
PARENTMODULE_ID.

The xml() Function

The xml() NED function can be used to parse a string as an XML document, and assign the
result to an xml parameter.

xml() accepts the string to be parsed as well as an optional second string argument that
contains an XPath-like expression.

The XPath expression is used in the same manner as with the xmldoc() function.

A.5.6 Units of Measurement

The following measurements units are recognized in constants. Other units can be used as
well, but there are no conversions available for them (i.e. parsec and kiloparsec will be
treated as two completely unrelated units.)

Unit Name Value
s second
d day 86400s
h hour 3600s

min minute 60s
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ms millisecond 1e-3s
us microsecond 1e-6s
ns nanosecond 1e-9s
ps picosecond 1e-12s
bps bit/sec
kbps kilobit/sec 1e3bps
Mbps megabit/sec 1e6bps
Gbps gigabit/sec 1e9bps
Tbps terabit/sec 1e12bps

B byte
KiB kilo (kibi) byte 1024B
MiB mega (mebi) byte 1.04858e6B
GiB giga (gibi) byte 1.07374e9B
TiB tera (tebi) byte 1.09951e12B
b bit
m meter
km kilometer 1e3m
cm centimeter 1e-2m
mm millimeter 1e-3m
W watt

mW milliwatt 1e-3W
Hz hertz
kHz kilohertz 1e3Hz
MHz megahertz 1e6Hz
GHz gigahertz 1e9Hz

g gram 1e-3kg
kg kilogram
J joule
kJ kilojoule 1e3J
MJ megajoule 1e6J
V volt
kV kilovolt 1e3V
mV millivolt 1e-3V
A ampere

mA milliampere 1e-3A
uA microampere 1e-6A

mps meter/sec
kmph kilometer/hour (1/3.6)mps
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Appendix B

NED Language Grammar

This appendix contains the grammar for the NED language.

In the NED language, space, horizontal tab and new line characters count as delimiters, so one
or more of them is required between two elements of the description which would otherwise
be unseparable.

’//’ (two slashes) may be used to write comments that last to the end of the line.

The language is fully case sensitive.

Notation:

• rule syntax is that of bison/yacc

• uppercase words are terminals, lowercase words are nonterminals

• NAME, STRINGCONSTANT, INTCONSTANT, REALCONSTANT represent identifier names and
string, integer and real number literals (defined as in the C language, except that a 0
prefix does not stand for octal notation)

• other terminals represent keywords in all lowercase

nedfile
: definitions
|
;

definitions
: definitions definition
| definition
;

definition
: packagedeclaration
| import
| propertydecl
| fileproperty
| channeldefinition
| channelinterfacedefinition
| simplemoduledefinition
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| compoundmoduledefinition
| networkdefinition
| moduleinterfacedefinition
| ’;’
;

packagedeclaration
: PACKAGE dottedname ’;’
;

dottedname
: dottedname ’.’ NAME
| NAME
;

import
: IMPORT importspec ’;’
;

importspec
: importspec ’.’ importname
| importname
;

importname
: importname NAME
| importname ’*’
| importname ’**’
| NAME
| ’*’
| ’**’
;

propertydecl
: propertydecl_header opt_inline_properties ’;’
| propertydecl_header ’(’ opt_propertydecl_keys ’)’ opt_inline_properties ’;’
;

propertydecl_header
: PROPERTY ’@’ NAME
| PROPERTY ’@’ NAME ’[’ ’]’
;

opt_propertydecl_keys
: propertydecl_keys
|
;

propertydecl_keys
: propertydecl_keys ’;’ propertydecl_key
| propertydecl_key
;
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propertydecl_key
: NAME
;

fileproperty
: property_namevalue ’;’
;

channeldefinition
: channelheader ’{’

opt_paramblock
’}’

;

channelheader
: CHANNEL NAME

opt_inheritance
;

opt_inheritance
:
| EXTENDS extendsname
| LIKE likenames
| EXTENDS extendsname LIKE likenames
;

extendsname
: dottedname
;

likenames
: likenames ’,’ likename
| likename
;

likename
: dottedname
;

channelinterfacedefinition
: channelinterfaceheader ’{’

opt_paramblock
’}’

;

channelinterfaceheader
: CHANNELINTERFACE NAME

opt_interfaceinheritance
;

opt_interfaceinheritance
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: EXTENDS extendsnames
|
;

extendsnames
: extendsnames ’,’ extendsname
| extendsname
;

simplemoduledefinition
: simplemoduleheader ’{’

opt_paramblock
opt_gateblock

’}’
;

simplemoduleheader
: SIMPLE NAME

opt_inheritance
;

compoundmoduledefinition
: compoundmoduleheader ’{’

opt_paramblock
opt_gateblock
opt_typeblock
opt_submodblock
opt_connblock

’}’
;

compoundmoduleheader
: MODULE NAME

opt_inheritance
;

networkdefinition
: networkheader ’{’

opt_paramblock
opt_gateblock
opt_typeblock
opt_submodblock
opt_connblock

’}’
;

networkheader
: NETWORK NAME

opt_inheritance
;

moduleinterfacedefinition
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: moduleinterfaceheader ’{’
opt_paramblock
opt_gateblock

’}’
;

moduleinterfaceheader
: MODULEINTERFACE NAME

opt_interfaceinheritance
;

opt_paramblock
: opt_params
| PARAMETERS ’:’

opt_params
;

opt_params
: params
|
;

params
: params paramsitem
| paramsitem
;

paramsitem
: param
| property
;

param
: param_typenamevalue
| pattern_value
;

param_typenamevalue
: param_typename opt_inline_properties ’;’
| param_typename opt_inline_properties ’=’ paramvalue opt_inline_properties ’;’
;

param_typename
: opt_volatile paramtype NAME
| NAME
;

pattern_value
: pattern ’=’ paramvalue ’;’
;

paramtype
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: DOUBLE
| INT
| STRING
| BOOL
| XML
;

opt_volatile
: VOLATILE
|
;

paramvalue
: expression
| DEFAULT ’(’ expression ’)’
| DEFAULT
| ASK
;

opt_inline_properties
: inline_properties
|
;

inline_properties
: inline_properties property_namevalue
| property_namevalue
;

pattern
: pattern2 ’.’ pattern_elem
| pattern2 ’.’ TYPENAME
;

pattern2
: pattern2 ’.’ pattern_elem
| pattern_elem
;

pattern_elem
: pattern_name
| pattern_name ’[’ pattern_index ’]’
| pattern_name ’[’ ’*’ ’]’
| ’**’
;

pattern_name
: NAME
| NAME ’$’ NAME
| CHANNEL
| ’{’ pattern_index ’}’
| ’*’
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| pattern_name NAME
| pattern_name ’{’ pattern_index ’}’
| pattern_name ’*’
;

pattern_index
: INTCONSTANT
| INTCONSTANT ’..’ INTCONSTANT
| ’..’ INTCONSTANT
| INTCONSTANT ’..’
;

property
: property_namevalue ’;’
;

property_namevalue
: property_name
| property_name ’(’ opt_property_keys ’)’
;

property_name
: ’@’ NAME
| ’@’ NAME ’[’ NAME ’]’
;

opt_property_keys
: property_keys
;

property_keys
: property_keys ’;’ property_key
| property_key
;

property_key
: NAME ’=’ property_values
| property_values
;

property_values
: property_values ’,’ property_value
| property_value
;

property_value
: property_value_tokens
| STRINGCONSTANT
|
;

property_value_tokens
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: property_value_tokens property_value_token
| property_value_token
;

property_value_token
: NAME | INTCONSTANT | REALCONSTANT | TRUE | FALSE
| ’$’ | ’@’ | ’:’ | ’[’ | ’]’ | ’{’ | ’}’ | ’.’ | ’?’
| ’^’ | ’+’ | ’-’ | ’*’ | ’/’ | ’%’ | ’<’ | ’>’ | ’==’ | ’!=’ | ’<=’ | ’>=’
| ’**’ | ’..’ | ’++’ | ’||’ | ’&&’ | ’##’ | ’!’
;

opt_gateblock
: gateblock
|
;

gateblock
: GATES ’:’

opt_gates
;

opt_gates
: gates
|
;

gates
: gates gate
| gate
;

gate
: gate_typenamesize

opt_inline_properties ’;’
;

gate_typenamesize
: gatetype NAME
| gatetype NAME ’[’ ’]’
| gatetype NAME vector
| NAME
| NAME ’[’ ’]’
| NAME vector
;

gatetype
: INPUT
| OUTPUT
| INOUT
;

opt_typeblock
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: typeblock
|
;

typeblock
: TYPES ’:’

opt_localtypes
;

opt_localtypes
: localtypes
|
;

localtypes
: localtypes localtype
| localtype
;

localtype
: propertydecl
| channeldefinition
| channelinterfacedefinition
| simplemoduledefinition
| compoundmoduledefinition
| networkdefinition
| moduleinterfacedefinition
| ’;’
;

opt_submodblock
: submodblock
|
;

submodblock
: SUBMODULES ’:’

opt_submodules
;

opt_submodules
: submodules
|
;

submodules
: submodules submodule
| submodule
;

submodule
: submoduleheader ’;’
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| submoduleheader ’{’
opt_paramblock
opt_gateblock
’}’ opt_semicolon

;

submoduleheader
: submodulename ’:’ dottedname opt_condition
| submodulename ’:’ likeexpr LIKE dottedname opt_condition
;

submodulename
: NAME
| NAME vector
;

likeexpr
: ’<’ ’>’
| ’<’ expression ’>’
| ’<’ DEFAULT ’(’ expression ’)’ ’>’
;

opt_condition
: condition
|
;

opt_connblock
: connblock
|
;

connblock
: CONNECTIONS ALLOWUNCONNECTED ’:’

opt_connections
| CONNECTIONS ’:’

opt_connections
;

opt_connections
: connections
|
;

connections
: connections connectionsitem
| connectionsitem
;

connectionsitem
: connectiongroup
| connection opt_loops_and_conditions ’;’
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;

connectiongroup
: opt_loops_and_conditions ’{’

connections ’}’ opt_semicolon
;

opt_loops_and_conditions
: loops_and_conditions
|
;

loops_and_conditions
: loops_and_conditions ’,’ loop_or_condition
| loop_or_condition
;

loop_or_condition
: loop
| condition
;

loop
: FOR NAME ’=’ expression ’..’ expression
;

connection
: leftgatespec ’-->’ rightgatespec
| leftgatespec ’-->’ channelspec ’-->’ rightgatespec
| leftgatespec ’<--’ rightgatespec
| leftgatespec ’<--’ channelspec ’<--’ rightgatespec
| leftgatespec ’<-->’ rightgatespec
| leftgatespec ’<-->’ channelspec ’<-->’ rightgatespec
;

leftgatespec
: leftmod ’.’ leftgate
| parentleftgate
;

leftmod
: NAME vector
| NAME
;

leftgate
: NAME opt_subgate
| NAME opt_subgate vector
| NAME opt_subgate ’++’
;

parentleftgate
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: NAME opt_subgate
| NAME opt_subgate vector
| NAME opt_subgate ’++’
;

rightgatespec
: rightmod ’.’ rightgate
| parentrightgate
;

rightmod
: NAME
| NAME vector
;

rightgate
: NAME opt_subgate
| NAME opt_subgate vector
| NAME opt_subgate ’++’
;

parentrightgate
: NAME opt_subgate
| NAME opt_subgate vector
| NAME opt_subgate ’++’
;

opt_subgate
: ’$’ NAME
|
;

channelspec
: channelspec_header
| channelspec_header ’{’

opt_paramblock
’}’

;

channelspec_header
: opt_channelname
| opt_channelname dottedname
| opt_channelname likeexpr LIKE dottedname
;

opt_channelname
:
| NAME ’:’
;

condition
: IF expression

344



OMNeT++ Manual – NED Language Grammar

;

vector
: ’[’ expression ’]’
;

expression
:

expr
;

expr
: simple_expr
| ’(’ expr ’)’
| CONST ’(’ expr ’)’
| expr ’+’ expr
| expr ’-’ expr
| expr ’*’ expr
| expr ’/’ expr
| expr ’%’ expr
| expr ’^’ expr
| ’-’ expr
| expr ’==’ expr
| expr ’!=’ expr
| expr ’>’ expr
| expr ’>=’ expr
| expr ’<’ expr
| expr ’<=’ expr
| expr ’&&’ expr
| expr ’||’ expr
| expr ’##’ expr
| ’!’ expr
| expr ’&’ expr
| expr ’|’ expr
| expr ’#’ expr
| ’~’ expr
| expr ’<<’ expr
| expr ’>>’ expr
| expr ’?’ expr ’:’ expr
| INT ’(’ expr ’)’
| DOUBLE ’(’ expr ’)’
| STRING ’(’ expr ’)’
| funcname ’(’ ’)’
| funcname ’(’ expr ’)’
| funcname ’(’ expr ’,’ expr ’)’
| funcname ’(’ expr ’,’ expr ’,’ expr ’)’
| funcname ’(’ expr ’,’ expr ’,’ expr ’,’ expr ’)’
| funcname ’(’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’)’
| funcname ’(’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’)’
| funcname ’(’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’)’
| funcname ’(’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’)’
| funcname ’(’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’)’

345



OMNeT++ Manual – NED Language Grammar

| funcname ’(’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’,’ expr ’)’
;

simple_expr
: identifier
| special_expr
| literal
;

funcname
: NAME
| XMLDOC
| XML
;

identifier
: NAME
| THIS ’.’ NAME
| NAME ’.’ NAME
| NAME ’[’ expr ’]’ ’.’ NAME
;

special_expr
: INDEX
| INDEX ’(’ ’)’
| SIZEOF ’(’ identifier ’)’
;

literal
: stringliteral
| boolliteral
| numliteral
;

stringliteral
: STRINGCONSTANT
;

boolliteral
: TRUE
| FALSE
;

numliteral
: INTCONSTANT
| REALCONSTANT
| quantity
;

quantity
: quantity INTCONSTANT NAME
| quantity REALCONSTANT NAME
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| INTCONSTANT NAME
| REALCONSTANT NAME
;

opt_semicolon
: ’;’
|
;
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Appendix C

NED XML Binding

This appendix shows the DTD for the XML binding of the NED language and message defini-
tions.

<!ELEMENT files ((ned-file|msg-file)*)>

<!--

** NED-2.
-->

<!ELEMENT ned-file (comment*, (package|import|property-decl|property|
simple-module|compound-module|module-interface|
channel|channel-interface)*)>

<!ATTLIST ned-file
filename CDATA #REQUIRED
version CDATA "2">

<!-- comments and whitespace; comments include ’//’ marks. Note that although
nearly all elements may contain comment elements, there are places
(e.g. within expressions) where they are ignored by the implementation.
Default value is a space or a newline, depending on the context.

-->
<!ELEMENT comment EMPTY>
<!ATTLIST comment

locid NMTOKEN #REQUIRED
content CDATA #IMPLIED>

<!ELEMENT package (comment*)>
<!ATTLIST package

name CDATA #REQUIRED>

<!ELEMENT import (comment*)>
<!ATTLIST import

import-spec CDATA #REQUIRED>

<!ELEMENT property-decl (comment*, property-key*, property*)>
<!ATTLIST property-decl
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name NMTOKEN #REQUIRED
is-array (true|false) "false">

<!ELEMENT extends (comment*)>
<!ATTLIST extends

name CDATA #REQUIRED>

<!ELEMENT interface-name (comment*)>
<!ATTLIST interface-name

name CDATA #REQUIRED>

<!ELEMENT simple-module (comment*, extends?, interface-name*, parameters?, gates?)>
<!ATTLIST simple-module

name NMTOKEN #REQUIRED>

<!ELEMENT module-interface (comment*, extends*, parameters?, gates?)>
<!ATTLIST module-interface

name NMTOKEN #REQUIRED>

<!ELEMENT compound-module (comment*, extends?, interface-name*,
parameters?, gates?, types?, submodules?, connections?)>

<!ATTLIST compound-module
name NMTOKEN #REQUIRED>

<!ELEMENT channel-interface (comment*, extends*, parameters?)>
<!ATTLIST channel-interface

name NMTOKEN #REQUIRED>

<!ELEMENT channel (comment*, extends?, interface-name*, parameters?)>
<!ATTLIST channel

name NMTOKEN #REQUIRED>

<!ELEMENT parameters (comment*, (property|param)*)>
<!ATTLIST parameters

is-implicit (true|false) "false">

<!ELEMENT param (comment*, expression?, property*)>
<!ATTLIST param

type (double|int|string|bool|xml) #IMPLIED
is-volatile (true|false) "false"
name CDATA #REQUIRED
value CDATA #IMPLIED
is-pattern (true|false) "false"
is-default (true|false) "false">

<!ELEMENT property (comment*, property-key*)>
<!ATTLIST property

is-implicit (true|false) "false"
name NMTOKEN #REQUIRED
index NMTOKEN #IMPLIED>

<!ELEMENT property-key (comment*, literal*)>
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<!ATTLIST property-key
name CDATA #IMPLIED>

<!ELEMENT gates (comment*, gate*)>

<!ELEMENT gate (comment*, expression?, property*)>
<!ATTLIST gate

name NMTOKEN #REQUIRED
type (input|output|inout) #IMPLIED
is-vector (true|false) "false"
vector-size CDATA #IMPLIED>

<!ELEMENT types (comment*, (channel|channel-interface|simple-module|
compound-module|module-interface)*)>

<!ELEMENT submodules (comment*, submodule*)>

<!ELEMENT submodule (comment*, expression*, condition?, parameters?, gates?)>
<!ATTLIST submodule

name NMTOKEN #REQUIRED
type CDATA #IMPLIED
like-type CDATA #IMPLIED
like-expr CDATA #IMPLIED
is-default (true|false) "false"
vector-size CDATA #IMPLIED>

<!ELEMENT connections (comment*, (connection|connection-group)*)>
<!ATTLIST connections

allow-unconnected (true|false) "false">

<!ELEMENT connection (comment*, expression*, parameters?, (loop|condition)*)>
<!ATTLIST connection

src-module NMTOKEN #IMPLIED
src-module-index CDATA #IMPLIED
src-gate NMTOKEN #REQUIRED
src-gate-plusplus (true|false) "false"
src-gate-index CDATA #IMPLIED
src-gate-subg (i|o) #IMPLIED
dest-module NMTOKEN #IMPLIED
dest-module-index CDATA #IMPLIED
dest-gate NMTOKEN #REQUIRED
dest-gate-plusplus (true|false) "false"
dest-gate-index CDATA #IMPLIED
dest-gate-subg (i|o) #IMPLIED
name NMTOKEN #IMPLIED
type CDATA #IMPLIED
like-type CDATA #IMPLIED
like-expr CDATA #IMPLIED
is-default (true|false) "false"
is-bidirectional (true|false) "false"
is-forward-arrow (true|false) "true">
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<!ELEMENT connection-group (comment*, (loop|condition)*, connection*)>

<!ELEMENT loop (comment*, expression*)>
<!ATTLIST loop

param-name NMTOKEN #REQUIRED
from-value CDATA #IMPLIED
to-value CDATA #IMPLIED>

<!ELEMENT condition (comment*, expression?)>
<!ATTLIST condition

condition CDATA #IMPLIED>

<!--

** Expressions
-->

<!ELEMENT expression (comment*, (operator|function|ident|literal))>
<!ATTLIST expression

target CDATA #IMPLIED>

<!ELEMENT operator (comment*, (operator|function|ident|literal)+)>
<!ATTLIST operator

name CDATA #REQUIRED>

<!-- functions, "index", "const" and "sizeof" -->
<!ELEMENT function (comment*, (operator|function|ident|literal)*)>
<!ATTLIST function

name NMTOKEN #REQUIRED>

<!-- Ident is either a parameter reference or an argument for the "sizeof"
operator; its NED source form is one of the following: "name", "module.name",
"module[n].name". If there is a child, it represents the module index n.
A reserved module name (with special meaning) is "this".

-->
<!ELEMENT ident (comment*, (operator|function|ident|literal)?)>
<!ATTLIST ident

module CDATA #IMPLIED
name NMTOKEN #REQUIRED>

<!ELEMENT literal (comment*)>
<!-- Note: value is in fact REQUIRED, but empty attr value should

also be accepted because that represents the "" string literal;
"spec" is for properties, to store the null value and "-",
the antivalue. Unit can only be present with "double".

-->
<!ATTLIST literal

type (double|int|string|bool|spec) #REQUIRED
unit CDATA #IMPLIED
text CDATA #IMPLIED
value CDATA #IMPLIED>
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<!--**********************************************************************-->

<!--

**
** OMNeT++/OMNEST Message Definitions (MSG)

**
-->

<!ELEMENT msg-file (comment*, (namespace|property-decl|property|cplusplus|
struct-decl|class-decl|message-decl|packet-decl|enum-decl|
struct|class|message|packet|enum)*)>

<!ATTLIST msg-file
filename CDATA #IMPLIED
version CDATA "2">

<!ELEMENT namespace (comment*)>
<!ATTLIST namespace

name CDATA #REQUIRED> <!-- note: not NMTOKEN because it may contain "::" -->

<!ELEMENT cplusplus (comment*)>
<!ATTLIST cplusplus

body CDATA #REQUIRED>

<!-- C++ type announcements -->

<!ELEMENT struct-decl (comment*)>
<!ATTLIST struct-decl

name CDATA #REQUIRED>

<!ELEMENT class-decl (comment*)>
<!ATTLIST class-decl

name CDATA #REQUIRED
is-cobject (true|false) "false"
extends-name CDATA #IMPLIED>

<!ELEMENT message-decl (comment*)>
<!ATTLIST message-decl

name CDATA #REQUIRED>

<!ELEMENT packet-decl (comment*)>
<!ATTLIST packet-decl

name CDATA #REQUIRED>

<!ELEMENT enum-decl (comment*)>
<!ATTLIST enum-decl

name CDATA #REQUIRED>

<!-- Enums -->

<!ELEMENT enum (comment*, enum-fields?)>
<!ATTLIST enum
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name NMTOKEN #REQUIRED
extends-name CDATA #IMPLIED
source-code CDATA #IMPLIED>

<!ELEMENT enum-fields (comment*, enum-field*)>

<!ELEMENT enum-field (comment*)>
<!ATTLIST enum-field

name NMTOKEN #REQUIRED
value CDATA #IMPLIED>

<!-- Message, class, struct -->

<!ELEMENT message (comment*, (property|field)*)>
<!ATTLIST message

name NMTOKEN #REQUIRED
extends-name CDATA #IMPLIED
source-code CDATA #IMPLIED>

<!ELEMENT packet (comment*, (property|field)*)>
<!ATTLIST packet

name NMTOKEN #REQUIRED
extends-name CDATA #IMPLIED
source-code CDATA #IMPLIED>

<!ELEMENT class (comment*, (property|field)*)>
<!ATTLIST class

name NMTOKEN #REQUIRED
extends-name CDATA #IMPLIED
source-code CDATA #IMPLIED>

<!ELEMENT struct (comment*, (property|field)*)>
<!ATTLIST struct

name NMTOKEN #REQUIRED
extends-name CDATA #IMPLIED
source-code CDATA #IMPLIED>

<!ELEMENT field (comment*, property*)>
<!ATTLIST field

name NMTOKEN #REQUIRED
data-type CDATA #IMPLIED
is-abstract (true|false) "false"
is-readonly (true|false) "false"
is-vector (true|false) "false"
vector-size CDATA #IMPLIED
default-value CDATA #IMPLIED>

<!--

** ’unknown’ is used internally to represent elements not in this NED DTD
-->

<!ELEMENT unknown ANY>
<!ATTLIST unknown
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element CDATA #REQUIRED>
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Appendix D

NED Functions

The functions that can be used in NED expressions and ini files are the following. The question
mark (as in “rng?”) marks optional arguments.

Category "conversion":

double : double double(any x)
Converts x to double, and returns the result. A boolean argument becomes 0 or 1; a
string is interpreted as number; an XML argument causes an error.

int : int int(any x)
Converts x to an integer (C++ long), and returns the result. A boolean argument becomes
0 or 1; a double is converted using floor(); a string is interpreted as number; an XML
argument causes an error.

string : string string(any x)
Converts x to string, and returns the result.

Category "math":

acos : double acos(double)
Trigonometric function; see standard C function of the same name

asin : double asin(double)
Trigonometric function; see standard C function of the same name

atan : double atan(double)
Trigonometric function; see standard C function of the same name

atan2 : double atan2(double, double)
Trigonometric function; see standard C function of the same name

ceil : double ceil(double)
Rounds down; see standard C function of the same name

cos : double cos(double)
Trigonometric function; see standard C function of the same name
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exp : double exp(double)
Exponential; see standard C function of the same name

fabs : quantity fabs(quantity x)
Returns the absolute value of the quantity.

floor : double floor(double)
Rounds up; see standard C function of the same name

fmod : quantity fmod(quantity x, quantity y)
Returns the floating-point remainder of x/y; unit conversion takes place if needed.

hypot : double hypot(double, double)
Length of the hypotenuse; see standard C function of the same name

log : double log(double)
Natural logarithm; see standard C function of the same name

log10 : double log10(double)
Base-10 logarithm; see standard C function of the same name

max : quantity max(quantity a, quantity b)
Returns the greater one of the two quantities; unit conversion takes place if needed.

min : quantity min(quantity a, quantity b)
Returns the smaller one of the two quantities; unit conversion takes place if needed.

pow : double pow(double, double)
Power; see standard C function of the same name

sin : double sin(double)
Trigonometric function; see standard C function of the same name

sqrt : double sqrt(double)
Square root; see standard C function of the same name

tan : double tan(double)
Trigonometric function; see standard C function of the same name

Category "misc":

firstAvailable : string firstAvailable(...)
Accepts any number of strings, interprets them as NED type names (qualified or un-
qualified), and returns the first one that exists and its C++ implementation class is also
available. Throws an error if none of the types are available.

simTime : quantity simTime()
Returns the current simulation time.

select : any select(int index, ...)
Returns the <index>th item from the rest of the argument list; numbering starts from 0.
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Category "ned":

ancestorIndex : int ancestorIndex(int numLevels)
Returns the index of the ancestor module numLevels levels above the module or channel
in context.

fullName : string fullName()
Returns the full name of the module or channel in context.

fullPath : string fullPath()
Returns the full path of the module or channel in context.

parentIndex : int parentIndex()
Returns the index of the parent module, which has to be part of module vector.

Category "random/continuous":

beta : double beta(double alpha1, double alpha2, int rng?)
Returns a random number from the Beta distribution

cauchy : quantity cauchy(quantity a, quantity b, int rng?)
Returns a random number from the Cauchy distribution

chi_square : double chi_square(int k, int rng?)
Returns a random number from the Chi-square distribution

erlang_k : quantity erlang_k(int k, quantity mean, int rng?)
Returns a random number from the Erlang distribution

exponential : quantity exponential(quantity mean, int rng?)
Returns a random number from the Exponential distribution

gamma_d : quantity gamma_d(double alpha, quantity theta, int rng?)
Returns a random number from the Gamma distribution

lognormal : double lognormal(double m, double w, int rng?)
Returns a random number from the Lognormal distribution

normal : quantity normal(quantity mean, quantity stddev, int rng?)
Returns a random number from the Normal distribution

pareto_shifted : quantity pareto_shifted(double a, quantity b, quantity c, int
rng?)
Returns a random number from the Pareto-shifted distribution

student_t : double student_t(int i, int rng?)
Returns a random number from the Student-t distribution

triang : quantity triang(quantity a, quantity b, quantity c, int rng?)
Returns a random number from the Triangular distribution

truncnormal : quantity truncnormal(quantity mean, quantity stddev, int rng?)
Returns a random number from the truncated Normal distribution

uniform : quantity uniform(quantity a, quantity b, int rng?)
Returns a random number from the Uniform distribution

weibull : quantity weibull(quantity a, quantity b, int rng?)
Returns a random number from the Weibull distribution
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Category "random/discrete":

bernoulli : int bernoulli(double p, int rng?)
Returns a random number from the Bernoulli distribution

binomial : int binomial(int n, double p, int rng?)
Returns a random number from the Binomial distribution

geometric : int geometric(double p, int rng?)
Returns a random number from the Geometric distribution

intuniform : int intuniform(int a, int b, int rng?)
Returns a random number from the Intuniform distribution

negbinomial : int negbinomial(int n, double p, int rng?)
Returns a random number from the Negbinomial distribution

poisson : int poisson(double lambda, int rng?)
Returns a random number from the Poisson distribution

Category "strings":

choose : string choose(int index, string list)
Interprets list as a space-separated list, and returns the item at the given index. Negative
and out-of-bounds indices cause an error.

contains : bool contains(string s, string substr)
Returns true if string s contains substr as substring

endsWith : bool endsWith(string s, string substr)
Returns true if s ends with the substring substr.

expand : string expand(string s)
Expands $ variables ($configname, $runnumber, etc.) in the given string, and returns
the result.

indexOf : int indexOf(string s, string substr)
Returns the position of the first occurrence of substring substr in s, or -1 if s does not
contain substr.

length : int length(string s)
Returns the length of the string

replace : string replace(string s, string substr, string repl, int startPos?)
Replaces all occurrences of substr in s with the string repl. If startPos is given, search
begins from position startPos in s.

replaceFirst : string replaceFirst(string s, string substr, string repl, int startPos?)
Replaces the first occurrence of substr in s with the string repl. If startPos is given,
search begins from position startPos in s.

startsWith : bool startsWith(string s, string substr)
Returns true if s begins with the substring substr.

substring : string substring(string s, int pos, int len?)
Return the substring of s starting at the given position, either to the end of the string or
maximum len characters
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substringAfter : string substringAfter(string s, string substr)
Returns the substring of s after the first occurrence of substr, or the empty string if s
does not contain substr.

substringAfterLast : string substringAfterLast(string s, string substr)
Returns the substring of s after the last occurrence of substr, or the empty string if s
does not contain substr.

substringBefore : string substringBefore(string s, string substr)
Returns the substring of s before the first occurrence of substr, or the empty string if s
does not contain substr.

substringBeforeLast : string substringBeforeLast(string s, string substr)
Returns the substring of s before the last occurrence of substr, or the empty string if s
does not contain substr.

tail : string tail(string s, int len)
Returns the last len character of s, or the full s if it is shorter than len characters.

toLower : string toLower(string s)
Converts s to all lowercase, and returns the result.

toUpper : string toUpper(string s)
Converts s to all uppercase, and returns the result.

trim : string trim(string s)
Discards whitespace from the start and end of s, and returns the result.

Category "units":

convertUnit : quantity convertUnit(quantity x, string unit)
Converts x to the given unit.

dropUnit : double dropUnit(quantity x)
Removes the unit of measurement from quantity x.

replaceUnit : quantity replaceUnit(quantity x, string unit)
Replaces the unit of x with the given unit.

unitOf : string unitOf(quantity x)
Returns the unit of the given quantity.

Category "xml":

xml : xml xml(string xmlstring, string xpath?)
Parses the given XML string into a cXMLElement tree, and returns the root element.
When called with two arguments, it returns the first element from the tree that matches
the expression given in simplified XPath syntax.

xmldoc : xml xmldoc(string filename, string xpath?)
Parses the given XML file into a cXMLElement tree, and returns the root element. When
called with two arguments, it returns the first element from the tree that matches the
expression given in simplified XPath syntax.
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Appendix E

Message Definitions Grammar

This appendix contains the grammar for the message definitions language.

In the language, space, horizontal tab and new line characters count as delimiters, so one or
more of them is required between two elements of the description which would otherwise be
unseparable.

’//’ (two slashes) may be used to write comments that last to the end of the line.

The language is fully case sensitive.

Notation:

• rule syntax is that of bison/yacc

• uppercase words are terminals, lowercase words are nonterminals

• NAME, CHARCONSTANT, STRINGCONSTANT, INTCONSTANT, REALCONSTANT represent identi-
fier names and string, character, integer and real number literals (defined as in the C
language)

• other terminals represent keywords in all lowercase

Nonterminals ending in _old are present so that message files from the previous versions of
OMNeT++ (3.x) can be parsed.

msgfile
: definitions
;

definitions
: definitions definition
|
;

definition
: namespace_decl
| cplusplus
| struct_decl
| class_decl
| message_decl
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| packet_decl
| enum_decl
| enum
| message
| packet
| class
| struct
;

namespace_decl
: NAMESPACE qname0 ’;’

qname0
: qname0 DOUBLECOLON NAME
| NAME
;

qname
: DOUBLECOLON qname0
| qname0
;

cplusplus
: CPLUSPLUS ’{{’ ... ’}}’ opt_semicolon
;

struct_decl
: STRUCT qname ’;’
;

class_decl
: CLASS qname ’;’
| CLASS NONCOBJECT qname ’;’
| CLASS qname EXTENDS qname ’;’
;

message_decl
: MESSAGE qname ’;’
;

packet_decl
: PACKET qname ’;’
;

enum_decl
: ENUM qname ’;’
;

enum
: ENUM NAME ’{’

opt_enumfields ’}’ opt_semicolon
;
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opt_enumfields
: enumfields
|
;

enumfields
: enumfields enumfield
| enumfield
;

enumfield
: NAME ’;’
| NAME ’=’ enumvalue ’;’
;

message
: message_header body
;

packet
: packet_header body
;

class
: class_header body
;

struct
: struct_header body
;

message_header
: MESSAGE NAME ’{’
| MESSAGE NAME EXTENDS qname ’{’
;

packet_header
: PACKET NAME ’{’
| PACKET NAME EXTENDS qname ’{’
;

class_header
: CLASS NAME ’{’
| CLASS NAME EXTENDS qname ’{’
;

struct_header
: STRUCT NAME ’{’
| STRUCT NAME EXTENDS qname ’{’
;
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body
: opt_fields_and_properties

opt_propertiesblock_old
opt_fieldsblock_old
’}’ opt_semicolon

;

opt_fields_and_properties
: fields_and_properties
|
;

fields_and_properties
: fields_and_properties field
| fields_and_properties property
| field
| property
;

field
: fieldtypename opt_fieldvector opt_inline_properties ’;’
| fieldtypename opt_fieldvector opt_inline_properties ’=’ fieldvalue opt_inline_properties ’;’
;

fieldtypename
: fieldmodifiers fielddatatype NAME
| fieldmodifiers NAME
;

fieldmodifiers
: ABSTRACT
| READONLY
| ABSTRACT READONLY
| READONLY ABSTRACT
|
;

fielddatatype
: qname
| qname ’*’
| CHAR
| SHORT
| INT
| LONG
| UNSIGNED CHAR
| UNSIGNED SHORT
| UNSIGNED INT
| UNSIGNED LONG
| DOUBLE
| STRING
| BOOL
;
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opt_fieldvector
: ’[’ INTCONSTANT ’]’
| ’[’ qname ’]’
| ’[’ ’]’
|
;

fieldvalue
: fieldvalue fieldvalueitem
| fieldvalueitem
;

fieldvalueitem
: STRINGCONSTANT
| CHARCONSTANT
| INTCONSTANT
| REALCONSTANT
| TRUE
| FALSE
| NAME
| DOUBLECOLON
| ’?’ | ’:’ | ’&&’ | ’||’ | ’##’ | ’==’ | ’!=’ | ’>’ | ’>=’ | ’<’ | ’<=’
| ’&’ | ’|’ | ’#’ | ’<<’ | ’>>’
| ’+’ | ’-’ | ’*’ | ’/’ | ’%’ | ’^’ | ’&’ | UMIN | ’!’ | ’~’
| ’.’ | ’,’ | ’(’ | ’)’ | ’[’ | ’]’
;

enumvalue
: INTCONSTANT
| ’-’ INTCONSTANT
| NAME
;

opt_inline_properties
: inline_properties
|
;

inline_properties
: inline_properties property_namevalue
| property_namevalue
;

property
: property_namevalue ’;’
;

property_namevalue
: property_name
| property_name ’(’ opt_property_keys ’)’
;
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property_name
: ’@’ property_name_token
| ’@’ property_name_token ’[’ NAME ’]’
| ENUM
;

property_name_token
: NAME
| ENUM
;

opt_property_keys
: property_keys
;

property_keys
: property_keys ’;’ property_key
| property_key
;

property_key
: NAME ’=’ property_values
| property_values
;

property_values
: property_values ’,’ property_value
| property_value
;

property_value
: property_value_tokens
| STRINGCONSTANT
|
;

property_value_tokens
: property_value_tokens property_value_token
| property_value_token
;

property_value_token
: NAME | INTCONSTANT | REALCONSTANT | CHARCONSTANT | TRUE | FALSE
| ’$’ | ’@’ | ’:’ | ’=’ | ’[’ | ’]’ | ’{’ | ’}’ | ’.’ | ’?’
| ’^’ | ’+’ | ’-’ | ’*’ | ’/’ | ’%’ | ’<’ | ’>’ | ’==’ | ’!=’ | ’<=’ | ’>=’
| DOUBLECOLON | ’||’ | ’&&’ | ’##’ | ’!’
| ’&’ | ’|’ | ’#’ ’~’ | ’<<’ | ’>>’
| MESSAGE | PACKET | CLASS | STRUCT | ENUM | NONCOBJECT
| BOOL | CHAR | SHORT | INT | LONG | DOUBLE | UNSIGNED | STRING
;
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opt_fieldsblock_old
: FIELDS ’:’

opt_fields_old
|
;

opt_fields_old
: fields_old
|
;

fields_old
: fields_old field
| field
;

opt_propertiesblock_old
: PROPERTIES ’:’

opt_properties_old
|
;

opt_properties_old
: properties_old
|
;

properties_old
: properties_old property_old
| property_old
;

property_old
: NAME ’=’ property_value ’;’
;

opt_semicolon : ’;’ | ;
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Appendix F

Display String Tags

F.1 Module and Connection Display String Tags

Supported module and connection display string tags are listed in the following table.

Tag[argument index] - name Description
p[0] - x X position of the center of the icon/shape; de-

faults to automatic graph layouting
p[1] - y Y position of the center of the icon/shape; de-

faults to automatic graph layouting
p[2] - arrangement Arrangement of submodule vectors. Values:

row (r), column (c), matrix (m), ring (ri), exact
(x)

p[3] - arr. par1 Depends on arrangement: matrix => ncols,
ring => rx, exact => dx, row => dx, column =>
dy

p[4] - arr. par2 Depends on arrangement: matrix => dx, ring
=> ry, exact => dy

p[5] - arr. par3 Depends on arrangement: matrix => dy
b[0] - width Width of object. Default: 40
b[1] - height Height of object. Default: 24
b[2] - shape Shape of object. Values: rectangle (rect), oval

(oval). Default: rect
b[3] - fill color Fill color of the object (colorname or #RRGGBB

or @HHSSBB). Default: #8080ff
b[4] - border color Border color of the object (colorname or

#RRGGBB or @HHSSBB). Default: black
b[5] - border width Border width of the object. Default: 2
i[0] - icon An icon representing the object
i[1] - icon color A color to colorize the icon (colorname or

#RRGGBB or @HHSSBB)
i[2] - icon colorization Amount of colorization in percent. Default: 30
is[0] - icon size The size of the image. Values: very small (vs),

small (s), normal (n), large (l), very large (vl)
i2[0] - overlay icon An icon added to the upper right corner of the

original image
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i2[1] - overlay icon color A color to colorize the overlay icon (colorname
or #RRGGBB or @HHSSBB)

i2[2] - overlay icon colorization Amount of colorization in percent. Default: 30
r[0] - range Radius of the range indicator
r[1] - range fill color Fill color of the range indicator (colorname or

#RRGGBB or @HHSSBB)
r[2] - range border color Border color of the range indicator (colorname

or #RRGGBB or @HHSSBB). Default: black
r[3] - range border width Border width of the range indicator. Default: 1
q[0] - queue object Displays the length of the named queue object
t[0] - text Additional text to display
t[1] - text position Position of the text. Values: left (l), right (r), top

(t). Default: t
t[2] - text color Color of the displayed text (colorname or

#RRGGBB or @HHSSBB). Default: blue
tt[0] - tooltip Tooltip to be displayed over the object
bgp[0] - bg x Module background horizontal offset
bgp[1] - bg y Module background vertical offset
bgb[0] - bg width Width of the module background rectangle
bgb[1] - bg height Height of the module background rectangle
bgb[2] - bg fill color Background fill color (colorname or #RRGGBB

or @HHSSBB). Default: grey82
bgb[3] - bg border color Border color of the module background rect-

angle (colorname or #RRGGBB or @HHSSBB).
Default: black

bgb[4] - bg border width Border width of the module background rect-
angle. Default: 2

bgtt[0] - bg tooltip Tooltip to be displayed over the module’s back-
ground

bgi[0] - bg image An image to be displayed as a module back-
ground

bgi[1] - bg image mode How to arrange the module’s background im-
age. Values: fix (f), tile (t), stretch (s), center
(c). Default: fixed

bgg[0] - grid tick distance Distance between two major ticks measured in
units

bgg[1] - grid minor ticks Minor ticks per major ticks. Default: 1
bgg[2] - grid color Color of the grid lines (colorname or #RRGGBB

or @HHSSBB). Default: grey
bgl[0] - layout seed Seed value for layout algorithm
bgl[1] - layout algorithm Algorithm for child layouting
bgs[0] - pixels per unit Number of pixels per distance unit
bgs[1] - unit name Name of distance unit
m[0] - routing constraint Connection routing constraint. Values: auto

(a), south (s), north (n), east (e), west (w)
ls[0] - line color Connection color (colorname or #RRGGBB or

@HHSSBB). Default: black
ls[1] - line width Connection line width. Default: 1
ls[2] - line style Connection line style. Values: solid (s), dotted

(d), dashed (da). Default: solid
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F.2 Message Display String Tags

To customize the appearance of messages in the graphical runtime environment, override the
getDisplayString() method of cMessage or cPacket to return a display string.

Tag Meaning
b=width,height,oval Ellipse with the given height and width.

Defaults: width=10, height=10
b=width,height,rect Rectangle with the given height and width.

Defaults: width=10, height=10
o=fillcolor,outlinecolor,borderwidth Specifies options for the rectangle or oval. For

color notation, see section 8.3.
Defaults: fillcolor=red, outlinecolor=black, bor-
derwidth=1

i=iconname,color,percentage Use the named icon. It can be colorized, and
percentage specifies the amount of
colorization. If color name is "kind", a
message kind dependent colors is used (like
default behaviour).
Defaults: iconname: no default – if no icon
name is present, a small red solid circle will
be used; color: no coloring; percentage: 30%

tt=tooltip-text Displays the given text in a tooltip when the
user moves the mouse over the message icon.
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Appendix G

Configuration Options

G.1 Configuration Options

This section lists all configuration options that are available in ini files. A similar list can be
obtained from any simulation executable by running it with the -h configdetails option.

cmdenv-autoflush=<bool>, default:false; per-run setting
Call fflush(stdout) after each event banner or status update; affects both
express and normal mode. Turning on autoflush may have a performance
penalty, but it can be useful with printf-style debugging for tracking down
program crashes.

cmdenv-config-name=<string>; global setting
Specifies the name of the configuration to be run (for a value ‘Foo’,
section [Config Foo] will be used from the ini file). See also
cmdenv-runs-to-execute=. The -c command line option overrides this setting.

<object-full-path>.cmdenv-ev-output=<bool>, default:true; per-object setting
When cmdenv-express-mode=false: whether Cmdenv should print debug messages
(ev<<) from the selected modules.

cmdenv-event-banner-details=<bool>, default:false; per-run setting
When cmdenv-express-mode=false: print extra information after event
banners.

cmdenv-event-banners=<bool>, default:true; per-run setting
When cmdenv-express-mode=false: turns printing event banners on/off.

cmdenv-express-mode=<bool>, default:true; per-run setting
Selects ‘‘normal’’ (debug/trace) or ‘‘express’’ mode.

cmdenv-extra-stack=<double>, unit="B", default:8KiB; global setting
Specifies the extra amount of stack that is reserved for each activity()
simple module when the simulation is run under Cmdenv.

cmdenv-interactive=<bool>, default:false; global setting
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Defines what Cmdenv should do when the model contains unassigned
parameters. In interactive mode, it asks the user. In non-interactive mode
(which is more suitable for batch execution), Cmdenv stops with an error.

cmdenv-message-trace=<bool>, default:false; per-run setting
When cmdenv-express-mode=false: print a line per message sending (by
send(),scheduleAt(), etc) and delivery on the standard output.

cmdenv-module-messages=<bool>, default:true; per-run setting
When cmdenv-express-mode=false: turns printing module ev<< output on/off.

cmdenv-output-file=<filename>; global setting
When a filename is specified, Cmdenv redirects standard output into the
given file. This is especially useful with parallel simulation. See the
‘fname-append-host’ option as well.

cmdenv-performance-display=<bool>, default:true; per-run setting
When cmdenv-express-mode=true: print detailed performance information.
Turning it on results in a 3-line entry printed on each update, containing
ev/sec, simsec/sec, ev/simsec, number of messages created/still
present/currently scheduled in FES.

cmdenv-runs-to-execute=<string>; global setting
Specifies which runs to execute from the selected configuration (see
cmdenv-config-name=). It accepts a comma-separated list of run numbers or
run number ranges, e.g. 1,3..4,7..9. If the value is missing, Cmdenv
executes all runs in the selected configuration. The -r command line option
overrides this setting.

cmdenv-status-frequency=<double>, unit="s", default:2s; per-run setting
When cmdenv-express-mode=true: print status update every n seconds.

configuration-class=<string>; global setting
Part of the Envir plugin mechanism: selects the class from which all
configuration information will be obtained. This option lets you replace
omnetpp.ini with some other implementation, e.g. database input. The
simulation program still has to bootstrap from an omnetpp.ini (which
contains the configuration-class setting). The class should implement the
cConfigurationEx interface.

constraint=<string>; per-run setting
For scenarios. Contains an expression that iteration variables (${} syntax)
must satisfy for that simulation to run. Example: $i < $j+1.

cpu-time-limit=<double>, unit="s"; per-run setting
Stops the simulation when CPU usage has reached the given limit. The
default is no limit.

debug-on-errors=<bool>, default:false; global setting
When set to true, runtime errors will cause the simulation program to break
into the C++ debugger (if the simulation is running under one, or
just-in-time debugging is activated). Once in the debugger, you can view
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the stack trace or examine variables.

debug-statistics-recording=<bool>, default:false; per-run setting
Turns on the printing of debugging information related to statistics
recording (@statistic properties)

description=<string>; per-run setting
Descriptive name for the given simulation configuration. Descriptions get
displayed in the run selection dialog.

eventlog-file=<filename>, default:${resultdir}/${configname}-${runnumber}.elog; per-run setting
Name of the eventlog file to generate.

eventlog-message-detail-pattern=<custom>; per-run setting
A list of patterns separated by ’|’ character which will be used to write
message detail information into the eventlog for each message sent during
the simulation. The message detail will be presented in the sequence chart
tool. Each pattern starts with an object pattern optionally followed by ’:’
character and a comma separated list of field patterns. In both patterns
and/or/not/* and various field match expressions can be used. The object
pattern matches to class name, the field pattern matches to field name by
default.

EVENTLOG-MESSAGE-DETAIL-PATTERN := ( DETAIL-PATTERN ’|’ )* DETAIL_PATTERN
DETAIL-PATTERN := OBJECT-PATTERN [ ’:’ FIELD-PATTERNS ]
OBJECT-PATTERN := MATCH-EXPRESSION
FIELD-PATTERNS := ( FIELD-PATTERN ’,’ )* FIELD_PATTERN
FIELD-PATTERN := MATCH-EXPRESSION

Examples (enter them without quotes):
"*": captures all fields of all messages
"*Frame:*Address,*Id": captures all fields named somethingAddress and

somethingId from messages of any class named somethingFrame
"MyMessage:declaredOn(MyMessage)": captures instances of MyMessage

recording the fields declared on the MyMessage class
"*:(not declaredOn(cMessage) and not declaredOn(cNamedObject) and not

declaredOn(cObject))": records user-defined fields from all messages

eventlog-recording-intervals=<custom>; per-run setting
Simulation time interval(s) when events should be recorded. Syntax:
[<from>]..[<to>],... That is, both start and end of an interval are
optional, and intervals are separated by comma. Example: ..10.2, 22.2..100,
233.3..

experiment-label=<string>, default:${configname}; per-run setting
Identifies the simulation experiment (which consists of several,
potentially repeated measurements). This string gets recorded into result
files, and may be referred to during result analysis.

extends=<string>; per-run setting
Name of the configuration this section is based on. Entries from that
section will be inherited and can be overridden. In other words,
configuration lookups will fall back to the base section.
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fingerprint=<string>; per-run setting
The expected fingerprint of the simulation. When provided, a fingerprint
will be calculated from the simulation event times and other quantities
during simulation, and checked against the given one. Fingerprints are
suitable for crude regression tests. As fingerprints occasionally differ
across platforms, more than one fingerprint values can be specified here,
separated by spaces, and a match with any of them will be accepted. To
obtain the initial fingerprint, enter a dummy value such as \"0000\"),
and run the simulation.

fname-append-host=<bool>; global setting
Turning it on will cause the host name and process Id to be appended to the
names of output files (e.g. omnetpp.vec, omnetpp.sca). This is especially
useful with distributed simulation. The default value is true if parallel
simulation is enabled, false otherwise.

load-libs=<filenames>; global setting
A space-separated list of dynamic libraries to be loaded on startup. The
libraries should be given without the ‘.dll’ or ‘.so’ suffix -- that will
be automatically appended.

max-module-nesting=<int>, default:50; per-run setting
The maximum allowed depth of submodule nesting. This is used to catch
accidental infinite recursions in NED.

measurement-label=<string>, default:${iterationvars}; per-run setting
Identifies the measurement within the experiment. This string gets recorded
into result files, and may be referred to during result analysis.

<object-full-path>.module-eventlog-recording=<bool>, default:true; per-object setting
Enables recording events on a per module basis. This is meaningful for
simple modules only.
Example:

**.router[10..20].**.module-eventlog-recording = true

**.module-eventlog-recording = false

ned-path=<path>; global setting
A semicolon-separated list of directories. The directories will be regarded
as roots of the NED package hierarchy, and all NED files will be loaded
from their subdirectory trees. This option is normally left empty, as the
OMNeT++ IDE sets the NED path automatically, and for simulations started
outside the IDE it is more convenient to specify it via a command-line
option or the NEDPATH environment variable.

network=<string>; per-run setting
The name of the network to be simulated. The package name can be omitted
if the ini file is in the same directory as the NED file that contains the
network.

num-rngs=<int>, default:1; per-run setting
The number of random number generators.
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output-scalar-file=<filename>, default:${resultdir}/${configname}-${runnumber}.sca; per-run setting
Name for the output scalar file.

output-scalar-file-append=<bool>, default:false; per-run setting
What to do when the output scalar file already exists: append to it
(OMNeT++ 3.x behavior), or delete it and begin a new file (default).

output-scalar-precision=<int>, default:14; per-run setting
The number of significant digits for recording data into the output scalar
file. The maximum value is ~15 (IEEE double precision).

output-vector-file=<filename>, default:${resultdir}/${configname}-${runnumber}.vec; per-run setting
Name for the output vector file.

output-vector-precision=<int>, default:14; per-run setting
The number of significant digits for recording data into the output vector
file. The maximum value is ~15 (IEEE double precision). This setting has no
effect on the "time" column of output vectors, which are represented as
fixed-point numbers and always get recorded precisely.

output-vectors-memory-limit=<double>, unit="B", default:16MiB; per-run setting
Total memory that can be used for buffering output vectors. Larger values
produce less fragmented vector files (i.e. cause vector data to be grouped
into larger chunks), and therefore allow more efficient processing later.

outputscalarmanager-class=<string>, default:cFileOutputScalarManager; global setting
Part of the Envir plugin mechanism: selects the output scalar manager class
to be used to record data passed to recordScalar(). The class has to
implement the cOutputScalarManager interface.

outputvectormanager-class=<string>, default:cIndexedFileOutputVectorManager; global setting
Part of the Envir plugin mechanism: selects the output vector manager class
to be used to record data from output vectors. The class has to implement
the cOutputVectorManager interface.

parallel-simulation=<bool>, default:false; global setting
Enables parallel distributed simulation.

<object-full-path>.param-record-as-scalar=<bool>, default:false; per-object setting
Applicable to module parameters: specifies whether the module parameter
should be recorded into the output scalar file. Set it for parameters whose
value you’ll need for result analysis.

parsim-communications-class=<string>, default:cFileCommunications; global setting
If parallel-simulation=true, it selects the class that implements
communication between partitions. The class must implement the
cParsimCommunications interface.

parsim-debug=<bool>, default:true; global setting
With parallel-simulation=true: turns on printing of log messages from the
parallel simulation code.

379



OMNeT++ Manual – Configuration Options

parsim-filecommunications-prefix=<string>, default:comm/; global setting
When cFileCommunications is selected as parsim communications class:
specifies the prefix (directory+potential filename prefix) for creating the
files for cross-partition messages.

parsim-filecommunications-preserve-read=<bool>, default:false; global setting
When cFileCommunications is selected as parsim communications class:
specifies that consumed files should be moved into another directory
instead of being deleted.

parsim-filecommunications-read-prefix=<string>, default:comm/read/; global setting
When cFileCommunications is selected as parsim communications class:
specifies the prefix (directory) where files will be moved after having
been consumed.

parsim-idealsimulationprotocol-tablesize=<int>, default:100000; global setting
When cIdealSimulationProtocol is selected as parsim synchronization class:
specifies the memory buffer size for reading the ISP event trace file.

parsim-mpicommunications-mpibuffer=<int>; global setting
When cMPICommunications is selected as parsim communications class:
specifies the size of the MPI communications buffer. The default is to
calculate a buffer size based on the number of partitions.

parsim-namedpipecommunications-prefix=<string>, default:omnetpp; global setting
When cNamedPipeCommunications is selected as parsim communications class:
selects the name prefix for Windows named pipes created.

parsim-nullmessageprotocol-laziness=<double>, default:0.5; global setting
When cNullMessageProtocol is selected as parsim synchronization class:
specifies the laziness of sending null messages. Values in the range [0,1)
are accepted. Laziness=0 causes null messages to be sent out immediately as
a new EOT is learned, which may result in excessive null message traffic.

parsim-nullmessageprotocol-lookahead-class=<string>, default:cLinkDelayLookahead; global setting
When cNullMessageProtocol is selected as parsim synchronization class:
specifies the C++ class that calculates lookahead. The class should
subclass from cNMPLookahead.

parsim-synchronization-class=<string>, default:cNullMessageProtocol; global setting
If parallel-simulation=true, it selects the parallel simulation algorithm.
The class must implement the cParsimSynchronizer interface.

<object-full-path>.partition-id=<string>; per-object setting
With parallel simulation: in which partition the module should be
instantiated. Specify numeric partition ID, or a comma-separated list of
partition IDs for compound modules that span across multiple partitions.
Ranges ("5..9") and "*" (=all) are accepted too.

print-undisposed=<bool>, default:true; global setting
Whether to report objects left (that is, not deallocated by simple module
destructors) after network cleanup.
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realtimescheduler-scaling=<double>; global setting
When cRealTimeScheduler is selected as scheduler class: ratio of simulation
time to real time. For example, scaling=2 will cause simulation time to
progress twice as fast as runtime.

record-eventlog=<bool>, default:false; per-run setting
Enables recording an eventlog file, which can be later visualized on a
sequence chart. See eventlog-file= option too.

repeat=<int>, default:1; per-run setting
For scenarios. Specifies how many replications should be done with the same
parameters (iteration variables). This is typically used to perform
multiple runs with different random number seeds. The loop variable is
available as ${repetition}. See also: seed-set= key.

replication-label=<string>, default:#${repetition}; per-run setting
Identifies one replication of a measurement (see repeat= and
measurement-label= as well). This string gets recorded into result files,
and may be referred to during result analysis.

result-dir=<string>, default:results; per-run setting
Value for the ${resultdir} variable, which is used as the default directory
for result files (output vector file, output scalar file, eventlog file,
etc.)

<object-full-path>.result-recording-modes=<string>, default:default; per-object setting
Defines how to calculate results from the @statistic property matched by
the wildcard. Special values: default, all: they select the modes listed in
the record= key of @statistic; all selects all of them, default selects the
non-optional ones (i.e. excludes the ones that end in a question mark).
Example values: vector, count, last, sum, mean, min, max, timeavg, stats,
histogram. More than one values are accepted, separated by commas.
Expressions are allowed. Items prefixed with ’-’ get removed from the list.
Example: **.queueLength.result-recording-modes=default,-vector,+timeavg

<object-full-path>.rng-%=<int>; per-object setting
Maps a module-local RNG to one of the global RNGs. Example: **.gen.rng-1=3
maps the local RNG 1 of modules matching ‘**.gen’ to the global RNG 3. The
default is one-to-one mapping.

rng-class=<string>, default:cMersenneTwister; per-run setting
The random number generator class to be used. It can be ‘cMersenneTwister’,
‘cLCG32’, ‘cAkaroaRNG’, or you can use your own RNG class (it must be
subclassed from cRNG).

runnumber-width=<int>, default:0; per-run setting
Setting a nonzero value will cause the $runnumber variable to get padded
with leading zeroes to the given length.

<object-full-path>.scalar-recording=<bool>, default:true; per-object setting
Whether the matching output scalars should be recorded. Syntax:
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<module-full-path>.<scalar-name>.scalar-recording=true/false. Example:

**.queue.packetsDropped.scalar-recording=true

scheduler-class=<string>, default:cSequentialScheduler; global setting
Part of the Envir plugin mechanism: selects the scheduler class. This
plugin interface allows for implementing real-time, hardware-in-the-loop,
distributed and distributed parallel simulation. The class has to implement
the cScheduler interface.

sectionbasedconfig-configreader-class=<string>; global setting
When configuration-class=SectionBasedConfiguration: selects the
configuration reader C++ class, which must subclass from
cConfigurationReader.

seed-%-lcg32=<int>; per-run setting
When cLCG32 is selected as random number generator: seed for the kth RNG.
(Substitute k for ’%’ in the key.)

seed-%-mt=<int>; per-run setting
When Mersenne Twister is selected as random number generator (default):
seed for RNG number k. (Substitute k for ’%’ in the key.)

seed-%-mt-p%=<int>; per-run setting
With parallel simulation: When Mersenne Twister is selected as random
number generator (default): seed for RNG number k in partition number p.
(Substitute k for the first ’%’ in the key, and p for the second.)

seed-set=<int>, default:${runnumber}; per-run setting
Selects the kth set of automatic random number seeds for the simulation.
Meaningful values include ${repetition} which is the repeat loop counter
(see repeat= key), and ${runnumber}.

sim-time-limit=<double>, unit="s"; per-run setting
Stops the simulation when simulation time reaches the given limit. The
default is no limit.

simtime-scale=<int>, default:-12; global setting
Sets the scale exponent, and thus the resolution of time for the 64-bit
fixed-point simulation time representation. Accepted values are -18..0; for
example, -6 selects microsecond resolution. -12 means picosecond
resolution, with a maximum simtime of ~110 days.

snapshot-file=<filename>, default:${resultdir}/${configname}-${runnumber}.sna; per-run setting
Name of the snapshot file.

snapshotmanager-class=<string>, default:cFileSnapshotManager; global setting
Part of the Envir plugin mechanism: selects the class to handle streams to
which snapshot() writes its output. The class has to implement the
cSnapshotManager interface.

tkenv-default-config=<string>; global setting
Specifies which config Tkenv should set up automatically on startup. The
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default is to ask the user.

tkenv-default-run=<int>, default:0; global setting
Specifies which run (of the default config, see tkenv-default-config) Tkenv
should set up automatically on startup. The default is to ask the user.

tkenv-extra-stack=<double>, unit="B", default:48KiB; global setting
Specifies the extra amount of stack that is reserved for each activity()
simple module when the simulation is run under Tkenv.

tkenv-image-path=<path>; global setting
Specifies the path for loading module icons.

tkenv-plugin-path=<path>; global setting
Specifies the search path for Tkenv plugins. Tkenv plugins are .tcl files
that get evaluated on startup.

total-stack=<double>, unit="B"; global setting
Specifies the maximum memory for activity() simple module stacks. You need
to increase this value if you get a ‘‘Cannot allocate coroutine stack’’
error.

<object-full-path>.typename=<string>; per-object setting
Specifies type for submodules and channels declared with ’like <>’.

user-interface=<string>; global setting
Selects the user interface to be started. Possible values are Cmdenv and
Tkenv. This option is normally left empty, as it is more convenient to
specify the user interface via a command-line option or the IDE’s Run and
Debug dialogs. New user interfaces can be defined by subclassing
cRunnableEnvir.

<object-full-path>.vector-max-buffered-values=<int>; per-object setting
For output vectors: the maximum number of values to buffer per vector,
before writing out a block into the output vector file. The default is no
per-vector limit (i.e. only the total memory limit is in effect)

<object-full-path>.vector-record-eventnumbers=<bool>, default:true; per-object setting
Whether to record event numbers for an output vector. Simulation time and
value are always recorded. Event numbers are needed by the Sequence Chart
Tool, for example.

<object-full-path>.vector-recording=<bool>, default:true; per-object setting
Whether data written into an output vector should be recorded.

<object-full-path>.vector-recording-intervals=<custom>; per-object setting
Recording interval(s) for an output vector. Syntax: [<from>]..[<to>],...
That is, both start and end of an interval are optional, and intervals are
separated by comma. Example: ..100, 200..400, 900..

warmup-period=<double>, unit="s"; per-run setting
Length of the initial warm-up period. When set, results belonging to the
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first x seconds of the simulation will not be recorded into output vectors,
and will not be counted into output scalars (see option

**.result-recording-modes). This option is useful for steady-state
simulations. The default is 0s (no warmup period). Note that models that
compute and record scalar results manually (via recordScalar()) will not
automatically obey this setting.

warnings=<bool>, default:true; per-run setting
Enables warnings.

<object-full-path>.with-akaroa=<bool>, default:false; per-object setting
Whether to the output vector should be under Akaroa control.

G.2 Predefined Configuration Variables

Predefined variables that can be used in config values:

${runid}
A reasonably globally unique identifier for the run, produced by
concatenating the configuration name, run number, date/time, etc.

${inifile}
Name of the (primary) inifile

${configname}
Name of the active configuration

${runnumber}
Sequence number of the current run within all runs in the active
configuration

${network}
Value of the "network" configuration option

${experiment}
Value of the "experiment-label" configuration option

${measurement}
Value of the "measurement-label" configuration option

${replication}
Value of the "replication-label" configuration option

${processid}
PID of the simulation process

${datetime}
Date and time the simulation run was started

${resultdir}
Value of the "result-dir" configuration option

${repetition}
The iteration number in 0..N-1, where N is the value of the "repeat"
configuration option

${seedset}
Value of the "seed-set" configuration option

${iterationvars}
Concatenation of all user-defined iteration variables in name=value form

${iterationvars2}
Concatenation of all user-defined iteration variables in name=value form,
plus ${repetition}
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Appendix H

Result File Formats

The file format described here applies to both output vector and output scalar files. Their
formats are consistent, only the types of entries occurring in them are different. This unified
format also means that they can be read with a common routine.

Result files are line oriented. A line consists of one or more tokens, separated by whitespace.
Tokens either do not contain whitespace, or whitespace is escaped using a backslash, or are
quoted using double quotes. Escaping within quotes using backslashes is also permitted.

The first token of a line usually identifies the type of the entry. A notable exception is an
output vector data line, which begins with a numeric identifier of the given output vector.

A line starting with # as the first non-whitespace character denotes a comment, and is to be
ignored during processing.

Result files are written from simulation runs. A simulation run generates physically con-
tiguous sets of lines into one or more result files. (That is, lines from different runs do not
arbitrarily mix in the files.)

A run is identified by a unique textual runId, which appears in all result files written during
that run. The runId may appear on the user interface, so it should be somewhat meaningful
to the user. Nothing should be assumed about the particular format of runId, but it will be
some string concatenated from the simulated network’s name, the time/date, the hostname,
and other pieces of data to make it unique.

A simulation run will typically write into two result files (.vec and .sca). However, when using
parallel distributed simulation, the user will end up with several .vec and .sca files, because
different partitions (a separate process each) will write into different files. However, all these
files will contain the same runId, so it is possible to relate data that belong together.

Entry types are:

• version: result file version

• run: simulation run identifier

• attr: run, vector, scalar or statistics object attribute

• param: module parameter

• scalar: scalar data

• vector: vector declaration
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• vector-id: vector data

• file: vector file attributes

• statistic: statistics object

• field: field of a statistics object

• bin: histogram bin

H.1 Version

Specifies the format of the result file. It is written at the beginning of the file.

Syntax:

version versionNumber

The version described in this document is 2. Version 1 files are produced by OMNeT++ 3.3 or
earlier.

H.2 Run Declaration

Marks the beginning of a new run in the file. Entries after this line belong to this run.

Syntax:

run runId

Example:

run TokenRing1-0-20080514-18:19:44-3248

Typically there will be one run per file, but this is not mandatory. In cases when there are
more than one run in a file and it is not feasible to keep the entire file in memory during
analysis, the offsets of the run lines may be indexed for more efficient random access.

The run line may be immediately followed by attribute lines. Attributes may store generic data
like the network name, date/time of running the simulation, configuration options that took
effect for the simulation, etc.

Run attribute names used by OMNeT++ include the following:

Generic attribute names:

• network: name of the network simulated

• datetime: date/time associated with the run

• processid: the PID of the simulation process

• inifile: the main configuration file

• configname: name of the inifile configuration

• seedset: index of the seed-set use for the simulation

Attributes associated with parameter studies (iterated runs):
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• runnumber: the run number within the parameter study

• experiment: experiment label

• measurement: measurement label

• replication: replication label

• repetition: the loop counter for repetitions with different seeds

• iterationvars: string containing the values of the iteration variables

• iterationvars2: string containing the values of the iteration variables

An example run header:

run TokenRing1-0-20080514-18:19:44-3248
attr configname TokenRing1
attr datetime 20080514-18:19:44
attr experiment TokenRing1
attr inifile omnetpp.ini
attr iterationvars ""
attr iterationvars2 $repetition=0
attr measurement ""
attr network TokenRing
attr processid 3248
attr repetition 0
attr replication #0
attr resultdir results
attr runnumber 0
attr seedset 0

H.3 Attributes

Contains an attribute for the preceding run, vector, scalar or statistics object. Attributes can
be used for saving arbitrary extra information for objects; processors should ignore unrecog-
nized attributes.

Syntax:

attr name value

Example:

attr network "largeNet"

H.4 Module Parameters

Contains a module parameter value for the given run. This is needed so that module pa-
rameters may be included in the analysis (e.g. to identify the load for a “throughput vs load”
plot).

It may not be practical to simply store all parameters of all modules in the result file, because
there may be too many. We assume that NED files are invariant and do not store parameters
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defined in them. However, we store parameter assignments that come from omnetpp.ini, in
their original wildcard form (i.e. not expanded) to conserve space. Parameter values entered
interactively by the user are also stored.

When the original NED files are present, it should thus be possible to reconstruct all param-
eters for the given simulation.

Syntax:

param parameterNamePattern value

Example:

param **.gen.sendIaTime exponential(0.01)
param **.gen.msgLength 10
param **.fifo.bitsPerSec 1000

H.5 Scalar Data

Contains an output scalar value.

Syntax:

scalar moduleName scalarName value

Examples:

scalar "net.switchA.relay" "processed frames" 100

Scalar lines may be immediately followed by attribute lines. OMNeT++ uses the following
attributes for scalars:

• title: suggested title on charts

• unit: measurement unit, e.g. s for seconds

H.6 Vector Declaration

Defines an output vector.

Syntax:

vector vectorId moduleName vectorName

vector vectorId moduleName vectorName columnSpec

Where columnSpec is a string, encoding the meaning and ordering the columns of data lines.
Characters of the string mean:

• E event number

• T simulation time

• V vector value

Common values are TV and ETV. The default value is TV.

Vector lines may be immediately followed by attribute lines. OMNeT++ uses the following
attributes for vectors:
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• title: suggested vector title on charts

• unit: measurement unit, e.g. s for seconds

• enum: symbolic names for values of the vector; syntax is "IDLE=0, BUSY=1, OFF=2"

• type: data type, one of int, double and enum

• interpolationmode: hint for interpolation mode on the chart: none (=do not connect the
dots), sample-hold, backward-sample-hold, linear

• min: minimum value

• max: maximum value

H.7 Vector Data

Adds a value to an output vector. This is the same as in older output vector files.

Syntax:

vectorId column1 column2 ...

Simulation times and event numbers within an output vector are required to be in increasing
order.

Performance note: Data lines belonging to the same output vector may be written out in
clusters (of size roughly a multiple of the disk’s physical block size). Then, since an output
vector file is typically not kept in memory during analysis, indexing the start offsets of these
clusters allows one to read the file and seek in it more efficiently. This does not require any
change or extension to the file format.

H.8 Index Header

The first line of the index file stores the size and modification date of the vector file. If the
attributes of a vector file differ from the information stored in the index file, then the IDE
automatically rebuilds the index file.

Syntax:

file filesize modificationDate

H.9 Index Data

Stores the location and statistics of blocks in the vector file.

Syntax:

vectorId offset length firstEventNo lastEventNo firstSimtime lastSimtime count min
max sum sqrsum

where

• offset: the start offset of the block

• length: the length of the block
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• firstEventNo, lastEventNo: the event number range of the block (optional)

• firstSimtime, lastSimtime: the simtime range of the block

• count, min, max, sum, sqrsum: collected statistics of the values in the block

H.10 Statistics Object

Represents a statistics object.

Syntax:

statistic moduleName statisticName

Example:

statistic Aloha.server "collision multiplicity"

A statistic line may be followed by field and attribute lines, and a series of bin lines that
represent histogram data.

OMNeT++ uses the following attributes:

• title: suggested title on charts

• unit: measurement unit, e.g. s for seconds

• type: type of the collected values: int or double; the default is double

A full example with fields, attributes and histogram bins:

statistic Aloha.server "collision multiplicity"
field count 13908
field mean 6.8510209951107
field stddev 5.2385484477843
field sum 95284
field sqrsum 1034434
field min 2
field max 65
attr type int
attr unit packets
bin -INF 0
bin 0 0
bin 1 0
bin 2 2254
bin 3 2047
bin 4 1586
bin 5 1428
bin 6 1101
bin 7 952
bin 8 785
...
bin 52 2
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H.11 Field

Represents a field in a statistics object.

Syntax:

field fieldName value

Example:

field sum 95284

Fields:

• count: observation count

• mean: mean of the observations

• stddev: standard deviation

• sum: sum of the observations

• sqrsum: sum of the squared observations

• min: minimum of the observations

• max: maximum of the observations

For weighted statistics, additionally the following fields may be recorded:

• weights: sum of the weights

• weightedSum: the weighted sum of the observations

• sqrSumWeights: sum of the squared weights

• weightedSqrSum: weighted sum of the squared observations

H.12 Histogram Bin

Represents a bin in a histogram object.

Syntax:

bin binLowerBound value

Histogram name and module is defined on the statistic line, which is followed by several bin
lines to contain data. Any non-bin line marks the end of the histogram data.

The binLowerBound column of bin lines represent the (inclusive) lower bound of the given
histogram cell. Bin lines are in increasing binLowerBound order.

The value column of a bin line represents the observation count in the given cell: value k is
the number of observations greater or equal to binLowerBound k, but smaller than binLower-
Bound k+1. Value is not necessarily an integer, because the cKSplit and cPSquare algorithms
produce non-integer estimates. The first bin line is the underflow cell, and the last bin line is
the overflow cell.

Example:
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bin -INF 0
bin 0 4
bin 2 6
bin 4 2
bin 6 1
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Appendix I

Eventlog File Format

This appendix documents the format of the eventlog file. Eventlog files are written by the
simulation (when enabled). Everything that happens during the simulation is recorded into
the file, 1 so the file can later be used to reproduce the history of the simulation on a sequence
chart, or in some other form.

The file is a line-oriented text file. Blank lines and lines beginning with "#" (comments) will
be ignored. Other lines begin with an entry identifier like E for Event or BS for BeginSend,
followed by attribute-identifier and value pairs. One exception is debug output (recorded from
ev«... statements), which are represented by lines that begin with a hyphen, and continue
with the actual text.

The grammar of the eventlog file is the following:

<file> ::= <line>*
<line> ::= <empty-line> | <user-log-message> | <event-log-entry>
<empty-line> ::= CR LF
<user-log-message> ::= - SPACE <text> CR LF
<event-log-entry> ::= <event-log-entry-type> SPACE <parameters> CR LF
<event-log-entry-type> ::= SB | SE | BU | MB | ME | MC | MD | MR | GC | GD |

CC | CD | CS | MS | CE | BS | ES | SD | SH | DM | E
<parameters> ::= (<parameter>)*
<parameter> ::= <name> SPACE <value>
<name> ::= <text>
<value> ::= <boolean> | <integer> | <text> | <quoted-text>

The eventlog file must also fulfill the following requirements:

• simulation events are in increasing event number and simulation time order

Here is a fragment of an existing eventlog file as an example:

E # 14 t 1.018454036455 m 8 ce 9 msg 6
BS id 6 tid 6 c cMessage n send/endTx pe 14
ES t 4.840247053855
MS id 8 d t=TRANSMIT,,#808000;i=device/pc_s
MS id 8 d t=,,#808000;i=device/pc_s

1With certain granularity of course, and subject to filters that were active during simulation
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E # 15 t 1.025727827674 m 2 ce 13 msg 25
- another frame arrived while receiving -- collision!
CE id 0 pe 12
BS id 0 tid 0 c cMessage n end-reception pe 15
ES t 1.12489449434
BU id 2 txt "Collision! (3 frames)"
DM id 25 pe 15

I.1 Supported Entry Types and Their Attributes

The following entries and attributes are supported in the eventlog file:

SB (SimulationBegin): mandatory first line of an eventlog file

• v (version, int): OMNeT++ version, e.g. 0x401 (=1025) is release 4.1

• rid (runId, string): identifies the simulation run

• b (keyframeBlockSize, int): the distance between keyframes in event numbers

SE (SimulationEnd): optional last line of an eventlog file

• e (isError, bool): specifies if the simulation terminated due to an error

• c (resultCode, int): the error code in case of an error, otherwise the normal result code

• m (message, string): human readable description

BU (Bubble): display a bubble message

• id (moduleId, int): id of the module which printed the bubble message

• txt (text, string): displayed message text

MB (ModuleMethodBegin): beginning of a call to another module

• sm (fromModuleId, int): id of the caller module

• tm (toModuleId, int): id of the module being called

• m (method, string): C++ method name

ME (ModuleMethodEnd): end of a call to another module

• no parameters

MC (ModuleCreated): creating a module

• id (moduleId, int): id of the new module

• c (moduleClassName, string): C++ class name of the module
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• t (nedTypeName, string): fully qualified NED type name

• pid (parentModuleId, int): id of the parent module

• n (fullName, string): full dotted hierarchical module name

• cm (compoundModule, bool): whether module is a simple or compound module

MD (ModuleDeleted): deleting a module

• id (moduleId, int): id of the module being deleted

MR (ModuleReparented): reparenting a module

• id (moduleId, int): id of the module being reparented

• p (newParentModuleId, int): id of the new parent module

GC (GateCreated): gate created

• m (moduleId, int): module in which the gate was created

• g (gateId, int): id of the new gate

• n (name, string): gate name

• i (index, int): gate index if vector, -1 otherwise

• o (isOutput, bool): whether the gate is input or output

GD (GateDeleted): gate deleted

• m (moduleId, int): module in which the gate was created

• g (gateId, int): id of the deleted gate

CC (ConnectionCreated): creating a connection

• sm (sourceModuleId, int): id of the source module identifying the connection

• sg (sourceGateId, int): id of the gate at the source module identifying the connection

• dm (destModuleId, int): id of the destination module

• dg (destGateId, int): id of the gate at the destination module

CD (ConnectionDeleted): deleting a connection

• sm (sourceModuleId, int): id of the source module identifying the connection

• sg (sourceGateId, int): id of the gate at the source module identifying the connection

CS (ConnectionDisplayStringChanged): a connection display string change

• sm (sourceModuleId, int): id of the source module identifying the connection
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• sg (sourceGateId, int): id of the gate at the source module identifying the connection

• d (displayString, string): the new display string

MS (ModuleDisplayStringChanged): a module display string change

• id (moduleId, int): id of the module

• d (displayString, string): the new display string

E (Event): an event that is processing a message

• # (eventNumber, eventnumber_t): unique event number

• t (simulationTime, simtime_t): simulation time when the event occurred

• m (moduleId, int): id of the processing module

• ce (causeEventNumber, eventnumber_t): event number from which the message being
processed was sent, or -1 if the message was sent from initialize

• msg (messageId, long): lifetime-unique id of the message being processed

KF (Keyframe):

• p (previousKeyframeFileOffset, int64): file offset of the previous keyframe entry

• c (consequenceLookaheadLimits, string): consequence lookahead data

• s (simulationStateEntries, string): simulation state data

abstract (Message): base class for entries referring to a message

• id (messageId, long): lifetime-unique id of the message

• tid (messageTreeId, long): id of the message inherited by dup

• eid (messageEncapsulationId, long): id of the message inherited by encapsulation

• etid (messageEncapsulationTreeId, long): id of the message inherited by both dup and
encapsulation

• c (messageClassName, string): C++ class name of the message

• n (messageName, string): message name

• k (messageKind, short): message kind

• p (messagePriority, short): message priority

• l (messageLength, int64): message length in bits

• er (hasBitError, bool): true indicates that the message has bit errors

• d (detail, string): detailed information of message content when recording message data
is turned on
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• pe (previousEventNumber, eventnumber_t): event number from which the message being
cloned was sent, or -1 if the message was sent from initialize

CE (CancelEvent): canceling an event caused by a self message

• no parameters

BS (BeginSend): beginning to send a message

• no parameters

ES (EndSend): prediction of the arrival of a message

• t (arrivalTime, simtime_t): when the message will arrive to its destination module

• is (isReceptionStart, bool): true indicates the message arrives with the first bit

SD (SendDirect): sending a message directly to a destination gate

• sm (senderModuleId, int): id of the source module from which the message is being sent

• dm (destModuleId, int): id of the destination module to which the message is being sent

• dg (destGateId, int): id of the gate at the destination module to which the message is
being sent

• pd (propagationDelay, simtime_t): propagation delay as the message is propagated through
the connection

• td (transmissionDelay, simtime_t): transmission duration as the whole message is sent
from the source gate

SH (SendHop): sending a message through a connection identified by its source module and
gate id

• sm (senderModuleId, int): id of the source module from which the message is being sent

• sg (senderGateId, int): id of the gate at the source module from which the message is
being sent

• pd (propagationDelay, simtime_t): propagation delay as the message is propagated through
the connection

• td (transmissionDelay, simtime_t): transmission duration as the whole message is sent
from the source gate

CM (CreateMessage): creating a message

• no parameters

CL (CloneMessage): cloning a message either via the copy constructor or dup

• cid (cloneId, long): lifetime-unique id of the clone

DM (DeleteMessage): deleting a message

• no parameters
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binomial(n, p, rng=0), 157
bit error, 84
bool, 22, 129, 182, 313
boolValue(), 67, 126, 183
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buildInside(module), 301
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cConfigurationReader, 288
cDatarateChannel, 50, 75, 86, 88, 100
cDelayChannel, 50, 75, 86, 88, 100
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cFileSnapshotManager, 287, 290
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Channel, 86
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cITimestampedValue, 114
cKSplit, 149, 157, 167, 168, 170, 173, 254
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cMatchableString, 167
cMatchExpression, 164, 166, 167
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Cmdenv, 153, 241
cmdenv-express-mode, 240, 242
cmdenv-interactive, 240
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cmdenv-runs-to-execute, 235, 242
cmdenv-status-frequency, 240
cMessage, 48, 76, 77, 87, 117–122, 124, 125,

127, 128, 133, 134, 147, 149, 157,
192, 194, 205, 206, 373

cMessageHeap, 50
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cModule, 50, 67, 71, 73, 89, 94–96, 99, 102,
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cNullMessageProtocol, 283
cNumericResultFilter, 114
cNumericResultRecorder, 114
cObject, 103, 107, 117, 120, 125, 134, 136,

137, 147, 150, 151, 157–159, 178,
187, 191

cObjectResultFilter, 114
collect(), 168
command line options, 244
command line user interface, 241
configuration-class, 288
connect(), 99
connection, 5

creating, 99
removing, 100

connections, 16, 32, 317
connectTo(), 99, 100
const, 313
constraint, 229, 231
convertTo(), 185
convertUnit(), 185
copy(), 188, 190, 191
coroutine, 53, 61, 63

stack size, 64
cout, 153
cOutputScalarManager, 287, 290
cOutputVectorManager, 262, 287, 290
cOutVector, 113, 149, 175, 248, 254, 257,

260, 287, 290
cOwnedObject, 135–137, 150, 187–194, 251

cPacket, 76, 81, 86, 87, 109, 117–120, 122–
124, 127, 128, 133, 134, 147, 150,
373

cPar, 67, 69, 149, 157, 170
cParsimCommunications, 283
cParsimSynchronizer, 283
cPatternMatcher, 164–166
cplusplus, 135, 137, 144, 145
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cPostGateDisconnectNotification, 107
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cPostModuleReparentNotification, 106
cPostParameterChangeNotification, 107
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cPostPathCutNotification, 107
cPreDisplayStringChangeNotification, 107
cPreGateAddNotification, 106
cPreGateConnectNotification, 106
cPreGateDeleteNotification, 106
cPreGateDisconnectNotification, 107
cPreGateVectorResizeNotification, 106
cPreModuleAddNotification, 106
cPreModuleDeleteNotification, 106
cPreModuleReparentNotification, 106
cPreParameterChangeNotification, 107
cPrePathCreateNotification, 107
cPrePathCutNotification, 107
cProperties, 69
cPSquare, 149, 157, 167–170, 254
CPU time, 48
cpu-time-limit, 222, 240, 245
cQueue, 85, 149, 152, 157, 158, 187, 192–

195, 202
cQueue::Iterator, 159
cRealTimeScheduler, 288, 304
create(), 98, 100
createModuleObject(), 301
createOne(), 188
createScheduleInit(), 98
cResultFilter, 114
cResultRecorder, 114
cRNG, 155, 156, 287, 288
cRunnableEnvir, 292
cRuntimeError, 184, 299, 303
cScheduler, 287, 288
cSequentialScheduler, 303, 304
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cSimpleModule, 18, 50, 52, 53, 56, 84, 99,
176, 309

cSimulation, 95, 296, 299, 301–304
cSimulation::setActiveSimulation(), 304
cSnapshotManager, 287, 290
cStaticFlag, 297
cStatictic, 260
cStatistic, 167, 174, 176
cStdDev, 149, 167, 168, 170, 254, 260
cStringPool, 185
cStringTokenizer, 69, 70
cSubModIterator, 95
cTDExpandingWindows, 174
cTerminationException, 299, 303
cTimestampedValue, 113
cTopology, 149, 160–163
cTopology::Link, 161, 162
cTopology::LinkIn, 162
cTopology::LinkOut, 161–163
cTopology::Node, 161–163
cTransientDetection, 174
customization, 295
cVarHistogram, 149, 157, 167, 168, 171
cWeightedStdDev, 167, 168, 254
cWeightedStddev, 149

dbl(), 49
dblrand(), 155, 156
debug-on-errors, 240
debug-statistics-recording, 113
decapsulate(), 123, 124
Define_Channel(), 86
Define_Function(), 181
Define_Module(), 52, 86, 97, 297
Define_NED_Function(), 157, 181, 183, 186
Define_NED_Math_Function(), 181, 186
delayed sending, 80
deleteGate(), 73
deleteModule(), 99, 107
deleteNetwork(), 299
detect(), 174
Dijkstra algorithm, 163
disable(), 163
disconnect(), 100
discrete event simulation, 47
display strings, 197
displayString, 205
distribution

as histogram, 157
custom, 157, 170
estimation, 168
even, 172

multi-dimensional, 171
online estimation, 171
predefined, 156
proportional, 172
random variables, 156

dlopen(), 239
doneLoadingNedFiles(), 301
doOneEvent, 303
doOneEvent(), 299
double, 22, 129, 182, 185, 189, 313
doubleValue(), 67, 126, 183
doubleValueInUnit(), 184, 185
drop(), 124, 194
dup(), 103, 119, 124, 128, 140, 152, 194

embedding, 295
emit(), 101–103, 105, 106, 113
emit(simsignal_t, cObject *), 113
empty(), 158
enable(), 163
encapsulate(), 123
end(), 61, 159
end-of-simulation, 56
endRun(), 299
endSend(), 303
endSimulation(), 89
entry code, 90
enum, 130
EnvirBase, 292
envirbase.h, 292
erlang_k(k, mean, rng=0), 156
error(), 89, 90
EV, 153
ev, 91, 149, 153, 304
ev.printf(), 153
event, 56, 63

causality, 277
event loop, 54, 63
event timestamp, 48
events, 47, 48

initial, 57
exit code, 90
experiment-label, 233
exponential(), 49, 149
exponential(mean, rng=0), 156
extends, 42, 133, 134, 136, 137, 222, 223,

229
extraStackforEnvir, 181

fabs(), 49
false, 329
FEL, 48
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FES, 48–50, 54, 63, 64, 77, 84, 87, 97, 117,
192, 242, 243, 285

finalize(), 56
finalizeParameters(), 98
findGate(), 72
findIncomingTransmissionChannel(), 76
findSubmodule(), 94
findTransmissionChannel(), 76
fingerprint, 240
finish(), 51, 53–57, 65, 71, 86, 99, 105, 176,

181, 242, 249, 299
finite state machine, 61, 90
float, 129
floor(), 49
fmod(), 49
fname-append-host, 249
for, 16, 321, 329, 330
for(), 91
forceTransmissionFinishTime(), 84
forEachChild(), 187, 188, 191, 192
front(), 158
FSM, 61, 90, 91

nested, 90
FSM_DEBUG, 91
FSM_Goto(), 91
FSM_Print(), 91
FSM_Switch(), 90, 91
future events, 48

gamma_d(alpha, beta, rng=0), 156
gate, 5, 71
gate(), 71–73
gateBaseId(), 72
gateHalf(), 71
GateIterator, 73
gates, 17, 315
gateSize(), 72
gateType(name), 73
geometric(p, rng=0), 157
getArrivalTime(), 121
getAsBool(), 300
getAsInt(), 300
getBaseClassDescriptor(), 147
getBaseName(), 74
getBasepoint(), 169
getByteLength(), 109, 122
getCDF(), 170
getCellInfo(), 169
getCellPDF(), 169
getCellValue(), 169
getChannel(), 75
getClassName(), 150, 151

getConfig(), 291
getConfigValue(), 300
getCount(), 168
getCreationTime(), 119
getDefaultOwner(), 194
getDeliverOnReceptionStart(), 83, 87
getDisplayString(), 121, 205, 209
getDistanceToTarget(), 163
getDuration(), 81, 83
getEncapsulatedPacket(), 123, 124
getFieldAsString(), 147
getFieldCount(), 147
getFieldName(), 147
getFieldTypeString(), 147
getFullName(), 74, 151
getFullPath(), 74, 151
getGateNames(), 73
getId(), 72, 74, 94
getIncomingTransmissionChannel(), 76
getIndex(), 74, 94
getKind(), 206
getLocalGate(), 162
getLocalGateId(), 162
getLocalListenedSignals(), 104
getLocalSignalListeners(), 104
getMax(), 168
getMaxTime, 49
getMean(), 168
getMin(), 168
getModuleByPath(), 95, 302
getModuleByRelativePath(), 95
getName(), 69, 74, 95, 119, 150, 151
getNameSuffix(), 74
getNextGate(), 74, 87, 95
getNodeFor(), 162
getNumCells(), 169
getNumInLinks(), 162
getNumNodes(), 162
getNumOutLinks(), 162
getNumPaths(), 163
getNumRNGs(), 299
getObject(), 125
getOverflowCell(), 169
getOwner(), 192, 193
getOwnerModule(), 74, 95
getParentModule(), 86, 94, 96
getParList(), 125
getPathEndGate(), 75
getPathStartGate(), 75
getPDF(), 170
getPooled(), 185
getPreviousGate(), 74, 95
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getProperties(), 69
getRemoteGate(), 162
getRemoteGateId(), 162
getRemoteNode(), 162
getRNG(), 156
getRNG(k), 299
getScaleExp(), 49
getSendingTime(), 121
getSignalName(), 102
getSignalTime(), 114
getSignalValue(), 114
getSourceGate(), 75
getSqrSum(), 168
getStackUsage(), 181, 249
getStddev(), 168
getSubmodule(), 94, 96
getSum(), 168
getTargetNode(), 163
getTransmissionChannel(), 76, 82
getTransmissionFinishTime(), 82, 86, 88
getType(), 69, 74, 185
getTypeName(), 69, 185
getUnderflowCell(), 169
getUnit(), 69, 184, 185
getVariance(), 168
getVectorSize(), 74, 94
getWarmupPeriod(), 256
global variables, 66
GNU R, 262
Gnuplot, 263
Grace, 264

handleMessage(), 51, 53, 56–59, 61, 63, 77,
84, 85, 87, 90, 175, 251

handleParameterChange, 56
handleParameterChange(), 69–71, 88
hasBitError() method, 83
hasGate(), 71, 72
hasListeners(), 103
hasMoreTokens(), 70
hasObject(), 125
hasPar(), 126
histogram

equal-sized, 168
equiprobable-cells, 168
range estimation, 169

if, 31, 317, 321
import, 44
index, 26, 330
info(), 191
ini file

file inclusion, 221
InifileReader, 288, 289
initial events, 48
initialization, 55

multi-stage, 55
initialize(), 51, 53–57, 59, 61, 63–65, 67, 70,

71, 83, 86, 97, 98, 102, 175, 177,
299

initialize(int stage), 55
inout, 315, 318
input, 315, 316, 318
insert(), 157, 158
insertAfter(), 158
insertBefore(), 158
int, 22, 129, 130, 141, 182, 184, 313
int16_t, 129
int32_t, 129
int64_t, 129
int8_t, 129
intrand(), 156
intrand(n), 155
intuniform(), 157
intuniform(a, b, rng=0), 157
isBusy(), 82, 86
isConnected(), 75
isConnectedInside(), 75
isConnectedOutside(), 75
isEnabled(), 163
isGateVector(name), 73
isNumeric(), 69, 185
isPacket(), 87, 119
isReceptionStart(), 83
isScheduled(), 77, 121
isSelfMessage(), 77, 121
isSet(), 185
isSubscribed(), 104
isTransformed(), 169
isTransmissionChannel(), 76, 86, 88
isVector(), 74
isVolatile(), 69
iter(), 95

length(), 158
like, 37, 42, 45, 317, 320, 324, 327
link, 5
load-libs, 221, 239
loadFromFile(), 170
LoadLibrary(), 239
loadNedFile(), 301
loadNedSourceFolder(), 301
loadNedText(), 301
lognormal(m, s, rng=0), 156
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long, 129
LongHistogram, 167
longValue(), 67, 126, 183

main(), 295, 297
make, 214, 215, 246
Makefile, 214

dependencies, 215
matches(), 164
Matlab, 263
MatPlotLib, 263
MAXTIME, 50
mayHaveListeners(), 103
measurement-label, 233
message, 48, 128, 134, 147

attaching non-object types, 125
attaching objects, 125
cancelling, 77
duplication, 119
exchanging, 5
IDs, 120
priority, 49

message definitions, 211
method calls

between modules, 95
model

time, 48
module, 309

accessing parameters, 67
compound, 4

patterns, 36
constructor, 53, 57
destructor, 55
dynamic creation, 96
dynamic deletion, 99
hierarchy, 4
id, 94
libraries, 5, 8
parameters, 5
simple, 2, 4, 6, 47, 51, 52, 63, 277
stack size, 53, 180
submodule

lookup, 94
types, 4
vector, 94

iteration, 95
Module_Class_Members(), 53
moduleByRelativePath(), 95
moduleinterface, 310
msg

files, 211
Multiple Replications in Parallel, 246

MultiShortestPathsTo(), 163
multitasking

cooperative, 63

ned
expressions, 329

operators, 329
files, 6, 7, 211
functions, 330
keywords

display, 197
language, 2, 333

ned-path, 43, 238
NEDFunction, 183
nedtool, 301
negbinomial(n, p, rng=0), 157
network, 14, 222, 309
nextToken(), 70
noncobject, 136
noncopyable, 103
normal(), 49, 149
normal(mean, stddev, rng=0), 156
num-rngs, 231, 234
numInitStages(), 55, 56
NumPy, 263

object
copy, 152
duplication, 152

objectValue(), 126
Octave, 263
omnetpp.ini, 7, 14, 17, 22, 23, 25, 27, 91,

153–155, 175, 188, 207, 219, 222,
224, 234, 235, 237, 242, 248, 249,
287, 288, 322, 325, 388

omnetpp.sna, 179
operator=(), 124, 128, 140, 152, 194
opp_error(), 152
opp_lcg32_seedtool, 236
opp_makedep, 215
opp_makedep --help, 215
opp_makemake, 212, 214–217, 237, 238
opp_msgc, 128, 216
opp_neddoc, 274
opp_run, 182, 237, 240
opp_runall, 227, 245, 246
optimal routes, 160
optimal routing, 162
output, 315, 318

file, 214
gate, 78
scalar file, 7
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scalars, 176
vector file, 7
vector object, 176

output-scalar-file, 221, 256
output-scalar-precision, 258
output-vector-file, 221, 256
output-vector-precision, 258
outputscalarmanager-class, 290
outputvectormanager-class, 259, 290
ownership, 79, 150, 194

package, 308
package.ned, 43, 44, 308
packet, 128, 134, 147

encapsulation, 123
par(), 67, 126
parallel simulation, 277

conservative, 277
optimistic, 277

parallel-simulation, 283
parameters, see module parameters, 17, 313,

314, 322, 323, 325, 326
pareto_shifted(a, b, c, rng=0), 156
parse(), 49, 302
PARSEC, 56
parsim-communications-class, 283
parsim-debug, 283
parsim-nullmessageprotocol-laziness, 283
parsim-nullmessageprotocol-lookahead-class,

283
parsim-synchronization-class, 283
parsimPack(), 188
parsimUnpack(), 188
path(), 163
PDES, 277
pointerValue(), 126
poisson(lambda, rng=0), 157
pop(), 157, 158
POST_MODEL_CHANGE, 106, 107
PRE_MODEL_CHANGE, 106, 107
printf(), 89, 153
processMessage(), 86–88
property, 313

quantity, 182, 185
queue

iteration, 159
order, 158

queue.setName(procqueue), 202

random
numbers, 170
numbers from distributions, 156

random number generator, 154
random(), 170
raw(), 49
readParameter(), 299, 301
real time, 48
receive

timeout, 84
receive(), 51, 57, 61, 62, 64, 84, 85, 87
receiveSignal(), 101, 105
record(), 175, 176
record-eventlog, 240
recordScalar(), 254–256, 299, 302
recordStatistic(), 299
recordWithTimestamp(), 113, 175
Register_Class(), 188, 297
Register_Class(MyRNGClass), 287
Register_OmnetApp(), 292
Register_ResultFilter(NAME, CLASSNAME), 114
Register_ResultRecorder(NAME, CLASSNAME),

114
registerSignal(), 102, 104
remove(), 158, 160, 194
removeObject(), 125
repeat, 231, 232
replication-label, 233
result accuracy, 174
result-dir, 256
result-recording-modes, 254
result_t, 87, 88
results/Fifo1-0.vec, 242
rng-class, 234, 288
ROOT, 263
routing support, 160

saveToFile(), 171
scalar-recording, 255
scavetool, 261–264
scheduleAt(), 57, 61, 77, 80, 85, 121, 193
scheduler-class, 288
scheduleStart(), 98
SciPy, 263
SectionBasedConfiguration, 288, 289
seed-set, 231, 232
seedtool, 155
segmentation fault, 250
selectNextModule(), 299, 303
self-message, 57, 77

cancelling, 77
send(), 57, 61, 78–80, 84, 87, 193
send...(), 121
sendDelayed(), 80
sendDirect(), 29, 80–82, 84, 316
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sendHop(), 303
set(), 183, 185
set...ArraySize(), 131, 132
setActiveSimulation(NULL), 299
setBitError(), 87
setBitErrorRate(), 100
setBoolValue(), 69, 125, 302
setControlInfo(), 120, 134
setDatarate(), 100
setDelay(), 100
setDeliverOnReceptionStart(), 21
setDeliverOnReceptionStart(), 81, 83
setDisplayString(), 200, 201, 205
setDoubleValue(), 69, 125
setDuration(), 86, 87
setFieldAsString(), 147
setGateSize(), 73
setLongValue(), 69, 125, 302
setName(), 119, 151, 152
setObjectValue(), 125
setPacketErrorRate(), 100
setPattern(), 164–166
setPointerValue(), 125
setPreservingUnit(), 184
setPreservingUnit(double), 185
setScheduler(), 304
setStringValue(), 69, 125
setTagArg(), 203
setTimeStamp(), 119
setUnit(), 185
setupGateVectors(module), 301
setupNetwork(), 299
setXMLValue(), 69, 125
short, 129, 141
shortest path, 160
sim-time-limit, 222, 240, 245
simple, 14, 17, 309
simTime(), 77, 175
SIMTIME_DBL(t), 50
SIMTIME_RAW(t), 50
SIMTIME_STR(), 50
simtime_t, 49, 129, 153, 154
SIMTIME_TTOA(buf,t), 50
simtimeToStr(), 153, 154
simtimeToStrShort(), 154
simulation, 296, 304

building, 6
concepts, 47
configuration file, 7
debugging, 244
kernel, 7, 212, 295
running, 6

user interface, 7
simulation time, 48
simulation time limits, 89
SingleShortestPaths(), 163
size(), 74, 160
sizeof, 26
sizeof(), 330
skiplist, 50
snapshot file, 177, 179
snapshot(), 179, 188
snapshotmanager-class, 290
Spreadsheets, 264
sprintf(), 151
sputn(), 299
stack, 63

for Tkenv, 251
overflow, 64, 181
size, 53, 180, 249
too small, 249
usage, 64
violation, 181

starter messages, 54, 57, 63, 64, 97
startRun(), 299
state transition, 91
std::exception, 299, 303
std::string detailedInfo(), 188
std::string info(), 188
stdstringValue(), 67, 183
steady states, 90
sTopoLinkIn, 161
str(), 49, 69
STR_SIMTIME(s), 50
string, 22, 37, 130, 135, 182, 313
stringValue(), 67, 126, 183
strToSimtime(), 154
strToSimtime0(), 154
struct, 128
student_t(i, rng=0), 156
submodules, 16, 316
subscribe(), 104
subscribedTo(), 105
suspend execution, 61
switch(), 91

take(), 124, 190
this, 330
Tkenv, 149, 244
tkenv-default-config, 244
tkenv-default-run, 244
tkenv-extra-stack, 244
tkenv-image-path, 244
tkenv-plugin-path, 244
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topology
description, 6
hypercube, 36
patterns, 36
random, 35
shortest path, 162
tree, 36

total-stack, 249
transferTo(), 63
transform(), 169, 171
transient detection, 174
transient states, 90
triang(a, b, c, rng=0), 156
true, 329
truncnormal(), 157
truncnormal(mean, stddev, rng=0), 156
typename, 38
types, 321

uint16_t, 129
uint32_t, 129
uint64_t, 129
uint8_t, 129
ulimit, 249, 250
uniform(), 49
uniform(a, b, rng=0), 156
unsigned char, 129
unsigned int, 129
unsigned long, 129
unsigned short, 129
unsubscribe(), 104, 106
unsubscribedFrom(), 105, 106
user interface, 7
user-interface, 292

valgrind, 240
vector-record-eventnumbers, 257
vector-recording, 255, 257
vector-recording-intervals, 255, 257
virtual, 129
virtual time, 48
volatile, 22, 26, 313

wait(), 57, 61, 62, 64, 85
waitAndEnqueue(), 85
warmup-period, 255
WATCH(), 149, 177, 178
WATCH_LIST(), 178
WATCH_MAP(), 178
WATCH_OBJ(), 178
WATCH_PTR(), 178
WATCH_PTRLIST(), 178
WATCH_PTRMAP(), 178, 179

WATCH_PTRSET(), 178
WATCH_PTRVECTOR(), 178
WATCH_RW(), 178
WATCH_SET(), 178
WATCH_VECTOR(), 178
weibull(a, b, rng=0), 156

X *dup() const, 188
xml, 22, 27, 28, 182, 313, 331
xml(), 28, 331
xmldoc(), 27, 28, 331
xmlValue(), 67, 126, 183

zero stack size, 57
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