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Abstract—Sketches are compact bit string representations of
objects. Objects that have the same sketch are stored in the
same database bucket. By calculating the hamming distance of
the sketches, an estimation of the similarity of their respective
objects can be obtained. Objects that are close to each other
are expected to have sketches with small hamming distance
values. This estimation helps to schedule the order in which
buckets are visited during search time. Recent research has
shown that sketches can effectively approximate L1 and L2

distances in high dimensional settings. A remaining task is to
provide a general sketch for arbitrary metric spaces.

This paper presents a novel sketch based on generalized
hyperplane partitioning that can be employed on arbitrary
metric spaces. The core of the sketch is a heuristic that
tries to generate balanced partitions. The indexing method
AESA stores all the distances among database objects, and
this allows it to perform a small number of distance computa-
tions. Experimental evaluations show that given a good early
termination strategy, our algorithm performs up to one order
of magnitude fewer distance operations than AESA in string
spaces. Comparisons against other methods show greater gains.
Furthermore, we experimentally demonstrate that it is possible
to reduce the physical size of the sketches by a factor of ten
with different run length encodings.

Keywords-similarity search; k nearest neighbor; sketch; com-
pression

I. INTRODUCTION

Similarity search is the efficient retrieval of the closest
objects to a query in a database. New similarity search
applications are constantly being developed, ranging from
language translation systems [1] to open source license
violation detectors [2]. Similarity search is regarded as
an important tool to address the problem of information
overload.

In order to build efficient similarity search index im-
plementations, it is necessary to take into account the
computer hardware characteristics. When dealing with high
dimensional spaces, for certain distributions and queries,
hierarchical indexes perform worse than linear scan [3].
Therefore, some researchers have implemented sequential
access methods that work on compact representations [4],
[5], [6], [7]. Since the entries are smaller than the original
objects, the matching takes less time as there is less data to
read. Since CPU and secondary storage cache sub-systems
can exploit sequential access patterns, these schemes are a

natural fit for current hardware architectures. Very recently,
sketches[8], [9], [10] have been proposed as a promising,
space-efficient approach. A sketch is a binary string rep-
resentation of an object. To estimate the similarity of two
objects, the hamming distance of their sketches is calculated.
Sketches with small hamming distance are expected to
belong to objects that are close to each other. The hamming
distance can be efficiently implemented with XOR and bit
population counting operations that exploit bit parallelism.

In this paper we implement a sketch for general metric
spaces by using generalized hyperplane partitioning [11].
This technique partitions the space into two sets based
on a pair of distinguished objects called pivots. Sketch
implementations exist for L1 [8] and L2 [12] spaces. To
the best of our knowledge, this is the first sketch designed
for arbitrary metric spaces. The core of our technique is
a pivot selection strategy that tries to generate balanced
partitions. Experimental evaluations show that our technique
performs up to one order of magnitude fewer distance
operations than AESA [13] in string spaces if a good early
termination strategy is employed. If some error is allowed,
further improvements can be obtained. Although our method
outperforms or matches AESA with sketches of 64 bits,
smaller sketches are still competitive.

To lower I/O operations, it is necessary to reduce the
physical size of the sketch. We compare different run length
encodings and their effects on sketch size. In our experi-
ments, we show that sketches can be compressed to about
a tenth of their original size. For example, in a database of
500 million unique sketches of 30 bits, a compressed sketch
index requires about 130MB of disk space (2.1 bits per
sketch). The original database uses 220 GB of disk space.

II. BACKGROUND

A large number of similarity search algorithms [14],
[3], [15], [16] exist. As the dimensionality increases, for
certain queries and data distributions the performance of
hierarchical indexes decreases and sequential scans become
more effective [3], [4]. The VA-file [4] is a sequential scan
method that compresses the original feature vectors into
quantized (compact) representations. For each dimension,
a small number of bits is assigned. Each quantized vector
represents a bucket that holds one or more objects. During



search time, a filter and refine [17] procedure is applied on
the quantized vectors. The VA+-file [5] is an improvement
that takes into account the discriminatory level of different
features and data distribution. The IQ-tree [6] adds an extra
level of minimum bounding rectangles (MBRs) that allows
the algorithm to quantize different sections of the index
in a different way. The D-Index [18] resembles sequential
search only if the query radius does not exceed a small
value ρ. The lcluster [7] can also considered as a sequential
method because its structure consists of a list of compact ball
partitions. Finally, distance permutations [19] is a method
that stores compact representations of objects based on the
proximity to a set of pivots.

When embedding algorithms [20], [21], [22], [23] trans-
form an object into a feature vector, each resulting di-
mension of the feature vector usually becomes a real or
integer number. In the case of the VA-file, the authors
employed 4 to 8 bits for each quantized dimension in their
experiments. To further reduce the size of the embedding,
approximate methods called sketches, that transform objects
from specific metric spaces (L1, L2) to binary strings have
been proposed [8], [9], [10]. The similarity of the objects
can be estimated by using the hamming distance of their
respective sketches. The hamming distance can be computed
very efficiently by exploiting bit parallelism of the hardware.
At search time, a filter and refine procedure finds the closest
objects to a query.

The main advantage of sketches is that they can be
one order of magnitude smaller than the original feature
vectors [12]. Given this limited amount of information,
it is still possible to build asymmetric estimators (lower
bounds) of the real distance function as recently shown by
Dong et al. [12]. Sketches are related to locality sensitive
hashing (LSH) [24]. Wang et al. argue that LSH only works
efficiently in low dimensional spaces [10]. Closely related,
signature files [25] can be considered as the precursors of
sketches. Initially, signature files were created to index text
documents, as an alternative to inverted indexes. Recently,
signature files have been employed to perform similarity
search on multimedia databases [26].

A. Metric Spaces

LetM = (D, d) be a metric space for a domain of objects
D and d : D×D → R, a total distance function that satisfies
the following properties:

∀x, y ∈ D, d(x, y) ≥ 0
∀x, y ∈ D, d(x, y) = d(y, x)
∀x, y ∈ D, d(x, y) = 0 ⇐⇒ x = y
∀x, y, p ∈ D, d(x, y) ≤ d(x, p) + d(p, y)

Given a collection X ⊆ D, a k-nearest neighbor (k-NN)
query returns the k closest elements to the query object q,
or the set R ⊆ X such that |R| = k, for any x ∈ R and any
y ∈ X −R : d(q, x) ≤ d(q, y).

blue

fear

[beautiful]

evangelion

water

[democracy]

surfboard

world

economic

gondwana

[economic]

gondwana evangelion

democracy beautiful

[world]

surfboard

blue water

fear

[world]

[blue]
fear

evangelion

beautiful

water

democracy surfboard

economic gondwana

[blue]

[economic]

world

beautiful

water

fear

surfboard

evangelion

democracy

gondwana

i=1 i=2

i=3 i=4

Figure 1. Illustration of hyperplane partitioning in string (Levenshtein)
spaces. Each square encloses a different partition of the set. Words enclosed
by brackets indicate the pivots.

III. PROPOSED SKETCH: GHS

In this section, we introduce a sketch algorithm for arbi-
trary metric spaces. Our sketch is based on the generalized
hyperplane partitioning [11] scheme. Given a collection
X ⊆ D, two pivots p0, p1 ∈ D, this partitioning divides
the objects o ∈ X into two sets:

S0 = {o ∈ X|d(p0, o) ≤ d(p1, o)}
S1 = {o ∈ X|d(p0, o) > d(p1, o)}

For example, Figure 1 displays the four possible partitions
for a small set of words in string spaces. Each square holds a
different partition for the same set of words. In this example,
we are taking the pivots from X .

For a sketch of m dimensions, we generate m independent
hyperplane partitions. Each resulting dimension of the sketch
is determined by the partition in which the object falls.
Specifically,

GHS (Sketch) 1: The generalized hyperplane sketch
(GHS) for an object x ∈ D, is a bit vector σ(x) ∈ {0, 1}m,
where each bit σi(x) is generated by the function:

σi(x) =
{

0 if d(pi0, x) ≤ d(pi1, x)
1 if d(pi0, x) > d(pi1, x) ∀i = 1, 2, . . . ,m

where pi0, pi1 ∈ D are pivots selected for the dimension
i of the sketch. Each function σi partitions the dataset into
the sets Si0 and Si1. For two objects x, y ∈ D, their sketch
distance is defined as:

dσ(x, y) =
m∑
i=1

σi(x)⊕ σi(y).

If we consider the shaded partitions in Figure 1 as pivots
pi1, then the sketch for the strings “water” and “fear”
is “0101”. The sketch for the strings “democracy” and
“gondwana” is “1010”. The sketch distance of both sketches



is four. We employ the sketch distance to find the closest
buckets to a query at search time. We then refine the final
solution by using the distance function provided by the
user. Our sketch does not make explicit use of the triangle
inequality.

A. Pivot Selection

The generalized hyperplane partitioning does not guaran-
tee a balanced split [11], [3], [14]. Uhlmann [11] proposed
to use a median value c so that d(p0, o) − d(p1, o) ≤ c is
true for about half of the dataset. On the other hand, Zezula
et al. [14] suggested to divide the space in a balanced way
by selecting suitable pivots as another way of dealing with
this issue. In this paper we take the second approach by
implementing rf01, a pivot selection heuristic that attempts
to produce balanced partitions. Our algorithm is related to
the incremental pivot strategy proposed by Bustos et al. [27].
The main difference is the fitness function employed. We
consider only one pair of pivots at a time. This implies that
each partition i of the sketch is determined independently
of the others. We first randomly select a subset S of size
l from the database X . This set is used to estimate the
quality of the partition. Given two randomly selected pairs
of pivots P = {p0, p1} and Q = {q0, q1}, we consider
P better than Q if f(P,Q, S) is true (Figure 2). While
keeping the best pivot set found so far we generate random
pairs of pivots for n iterations until the best candidate has
been found. In Figure 2 (lines 4, 5), we estimate the quality
of the partition by calculating the differences of the sizes
of the partitions. If the pivot sets balance the data in a
similar way (line 6), then we proceed to choose the pivot
set with the largest inter-pivot distance (line 7). Otherwise,
the pivot set with the most balanced partition is chosen
(line 9). The process is repeated m times. Based on the
previous discussion, our pivot selection algorithm requires
2lmn distance computations.

B. Quality

We propose two metrics that estimate the overall quality
of the GHS partitioning for a specific dataset. Let b the
number of sketches of m bits generated for a given database
X . The spread of the index is defined as: b/min(2m, |X|).
This metric indicates the ratio of buckets filled from all the
possible number of buckets available. The distortion is the
normalized average difference between the cardinality of the
partitions of each dimension of the sketch:∑m

i=1 ||Si0| − |Si1||
|X| ×m

.

The distortion gives us an idea on how well the space is
divided in each hyperplane partition. A good pivot selection
heuristic is expected to have a distortion of 0.

S ⊆ D: sample of objects, P,Q ⊆ D: pivot sets
Returns true if P is better than Q, otherwise false.

1: function f (P = {p0, p1}, Q = {q0, q1}, S)
2: Calculate Sp0 and Sp1 based on P and S.
3: Calculate Sq0 and Sq1 based on Q and S.

. Get the difference of partition sizes:
4: stp ← ||Sp0| − |Sp1||
5: stq ← ||Sq0| − |Sq1||
6: if stp = stq then . Equally balanced partitions

. Greater inter pivot distance is better
7: return d(p0, p1) > d(q0, q1)
8: else
9: return stp < stq . S better balanced with P ?

10: end if
11: end function

Figure 2. Pivot selection algorithm: rf01

C. Sketch Compression

A sketch index is a sequence of binary strings of m
bits. We note that binary strings can be interpreted as pos-
itive integers. Therefore, compression techniques that work
on sorted, positive integers such as those used in bitmap
indexes [28] or inverted indexes [29] can be applied to
sketches. We compare the traditional Gamma and Delta [30]
codes with d-gaps and the Word-Aligned Hybrid (WAH)
code [28].

IV. EXPERIMENTS

In this section, we compare our pivot selection method
against other similarity search methods in two SISAP
datasets and a synthetic dataset. We first measure the
efficiency of each method in different error settings to
demonstrate the overall behavior of each algorithm. Then,
we focus on our method by measuring performance as the
database size grows. Finally, we evaluate the compression
algorithms mentioned in Section III-C. All our experiments
focus on k-NN queries.

A. Datasets

We employ two SISAP datasets and a synthetic dataset.
Table I displays a summary of the datasets.

Strings: From the SISAP “dictionaries” dataset we use
the “dutch” set (200000 words). The experiments of Sec-
tions IV-E and IV-F employ a concatenation of all the
dictionaries (800000 words, “dict”). The distance function
is the Levenshtein distance.

Trees: From the SISAP “slices” dataset we take 100000
trees of 300 nodes or less for validation. This subset is called
“trees”. The experiments of Sections IV-E and IV-F employ
up to 300000 trees (“trees-full”). The distance function is
called mtd [31]. It is roughly a sparse vector of at least
400000 dimensions with the L1 distance. The dimension is
always larger than the number of items in the dataset and



Table I
SUMMARY OF DATASETS. SPREAD AND DISTORTION FOR RF01 AND m.

Dataset |X| Size spread distortion m
dutch 200000 2MB 0.999 0.09 64
dict 800000 8MB 0.96 0.05 64
trees 100000 5MB 0.54 0.07 64
trees-full 300000 17MB 0.42 0.02 64
vectors 1 billion 223GB 0.48 0.03 30

the intrinsic dimensionality is 0.45. The trees were extracted
from program fragments [32].

Vectors: Vectors of 120 dimensions, uniformly generated.
Each dimension holds two bytes and we employed the L1

distance. The entire collection consists of one billion objects.
This dataset is only used in the compression experiments.

B. Methods

We compare the following five methods:
• GHS sketch with the pivot selection strategy rf01.

Unless otherwise noted, we employ sketches of 64 bits.
• Distance Permutations [19] (per) with 64 pivots. We

used the incremental pivot selection strategy [27]. We
employ one byte per dimension and therefore each
compact representation of this method is eight times
larger than the sketches.

• Symmetric L2 sketch [12] with 64 bits on a projected
space of 64 dimensions (64 pivots). The intended use
of this sketch was for L2 distance. Since we are not
estimating the distance function, this is not a major
concern. The best W parameter we found was 250 for
trees and 60 for strings.

• Slim Tree [33], using the Arboretum library from Vieira
et al.1.

• AESA [13] employing the implementation from SISAP.
Pivot selection strategies were configured with 4000 random
selections (n) on a sample of 1000 objects (l). The first three
methods were implemented using the library OBSearch 2.

C. Evaluation

Since sketches are inherently approximate methods, we
employ the error on the position (EP ) [14] to measure
the quality of the results. Consider a result set SA returned
by an approximate algorithm. Let OX be the ordered list
containing all elements of X , ordered by increasing distance
from the query. If L(oAi ) denotes the position of object
oAi ∈ SA in the ordered list L, the EP measure is denoted
as:

EP =
∑|SA|
i=1 (OX(oAi )− SA(oAi ))

|SA| × |X|
.

It is not clear yet which is the best way for sketch
algorithms to return results within a specific EP value3.

1http://gbdi.icmc.usp.br/arboretum/index.php
2http://obsearch.net
3A possible solution is presented in appendix A

Therefore, we sort all the buckets of the database based on
the hamming distance or the Spearman footrule distance to
the query. Then, we read one by one the sorted buckets
and match their objects against the query. We stop the
process if the current EP value is less or equal than a
specified threshold. Then, we proceed to count the number
of disk access operations (buckets read), the number of
objects read from secondary storage, and the number of
distance computations performed. We use the improvement
in efficiency measurement [14]: IE = cost(Q)

costA(Q)
where

cost(Q) and costA(Q) denote respectively the cost for the
precise and the approximate execution of a set of queries.
We employ three definitions of cost: the improvement on
the number of disk access operations IEacc, the number of
objects read IEobj and the number of distance computations
performed IEdis. We use as baselines the Slim Tree and
AESA methods. All our time measurement experiments are
done on a PC with an Intel Core 2 Quad CPU (2.66 Ghz) and
4GB of memory running Ubuntu Linux 8.04. The programs
were written in Java and were executed on Java JDK 1.6
(64 bit). We take the average of 1000 different queries.

D. Efficiency

For the “dutch” dataset we generated 1000 queries with 10
random modifications using the tool provided by the SISAP
library. The “trees” dataset was evaluated with 1000 ran-
domly selected queries that are removed from the database.
In Figures 3 and 4, the IEacc and IEobj over the Slim Tree
is shown for rf01, distance permutations (per) and the sym-
metric L2 sketch for the “dutch” and “trees” datasets. In both
datasets, rf01 is the clear winner. It shows improvements of
up to one order of magnitude over per and the L2 sketch for
small EP . L2 sketch and per are very close to each other. In
any case, all the methods provide considerable gains when
compared to the Slim Tree. For example, in Figure 3 the
results for IEobj when EP = 0.0005 show that rf01 is
reading 10000 times fewer objects than the Slim Tree. For
the same EP value, per and the L2 sketch have an IEobj of
respectively, 800 and 900. Even for small EP , our method
obtains improvements of two to three orders of magnitude
over the Slim Tree.

We can observe that the IEobj is higher than the IEacc
for the “dutch” dataset. The opposite occurs for the “trees”
dataset. The notion of spread can be useful to understand this
(Table I). First, note that the distortion levels are relatively
low for both datasets. Nevertheless, the spread in the “trees”
dataset is much lower than for the “dutch” dataset. This
means that more objects per bucket are available in the
“trees” dataset. Fewer access operations will be executed
because each bucket holds more objects. Moreover, distance
computations increase as the discriminatory power of the
sketch is lower.

In Figure 5, we show the IEdist results of comparing
rf01 against AESA for different values of m. The datasets
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Figure 3. IEacc and IEobj over the Slim Tree for the “dutch” dataset (200000 objects).
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Figure 4. IEacc and IEobj over the Slim Tree for the “trees” dataset (100000 objects).
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Figure 6. Performance when database size increases (“trees-full” and
“dict” datasets).

were reduced to 10000 objects. The most relevant result
is achieved for the “dutch” dataset when m = 64 and
k = 1. Our method achieved one order of magnitude
improvement over AESA for EP = 0. Lower values of m
still perform well. In the case of “trees”, our method is able
to calculate about the same number of distance computations
than AESA. Considering the small size of the index, this is
still a promising result.

E. Database Growth

Using the same queries of the previous section, we first
create a small database of 20000 objects (datasets “dict”
and “trees-full” and we extract pivots from this set. We
then continue inserting objects in increments of 20000
objects. The results for rf01 can be observed in Figure 6
for EP = 0.0003. For the “dict” dataset, the amount of
objects read and the access count remain constant as the
database grows. In the case of the “trees-full” dataset, only
the access count remains constant. For the reasons explained
in the previous experiment, buckets grow as we add more
data, and therefore the number of objects read increases.
The decreasing behavior for k = 10 and k = 50 occurs
because the probability of getting a sketch closer to a query
increases as we add more data. Since closer sketches are
more likely to contain data that is closer to the query, the
number of buckets/objects that must be accessed slowly
decreases because the search procedure finds the result sets
early on.

Table II
SKETCH COMPRESSION FOR RF01, m = 30. THE VALUE BETWEEN

PARENTHESES IN THE FIRST COLUMN IS THE SIZE OF THE SKETCH SET
WITHOUT COMPRESSION.

Data Set Method Size Milliseconds

dict(2.4MB)

BitSet 134MB 151.73
WAH 4MB 67.79
Delta 1.1MB 23.97
Gamma 1.2MB 28.67

trees-full(187Kb)

BitSet 134MB 151.73
WAH 264Kb 5
Delta 79Kb 2
Gamma 92Kb .72

vectors(1.7GB)

BitSet 134MB 14174
WAH 131MB 20917
Delta 251MB 10534
Gamma 204MB 10890

F. Compression

We use our pivot selection criterion to generate a set of
sketches. In the case of the “vectors” dataset, we extract
pivots from the first million objects. We evaluate different
compression schemes and measure the sizes of the com-
pressed sketches. We also measure the time it takes to
sequentially scan the compressed sketch set to get the closest
1000 sketches to a query. Due to platform limitations, the
sketch size was set to 30 bits. We compare the methods
listed in Section III-C along with a bit vector (the bit i is
set if the corresponding sketch exists). We show the results
in Table II. We can see that delta and gamma provide better
compression than WAH in “dict” and “trees-full” datasets.
On the other hand, WAH gives much better results for the
“vectors” dataset. In the case of this dataset, sketches are
already two orders of magnitude smaller than the original
database (223GB). Nevertheless, compression methods are
able to reduce the size of the sketch to roughly a tenth of
its original size.

V. CONCLUSIONS

The main contribution of this paper is the comparison
of sketches against established similarity search techniques.
Our experiments show that sketches are not only a compet-
itive approach, their space usage can also be substantially
reduced with standard compression techniques for inverted
files or bitmap indexes. In our experiments, sketches were
up to three orders of magnitude smaller than the original
objects. Our sketch based on hyperplane partitioning is the
first to be applicable to general metric spaces. Our simple
pivot selection strategy was capable to outperform AESA by
a factor of 10 in exact k-NN and for small k. We reduce I/O
by compressing the sketch and by minimizing the number
of objects that must be read from the hard disk. Even with
small error thresholds, our sketch read 100-10000 times
fewer objects than the Slim Tree. A simple heuristic that
allows GHS to search within some EP value is presented in
appendix A. In the future, we would like to develop better
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Figure 5. IEdist over AESA for the “trees” and “dutch” dataset (10000 objects) for m = 64, 32, 11.

heuristics that achieve this goal. In addition, we are also
interested in studying alternative pivot selection strategies.
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[19] E. Chávez, K. Figueroa, and G. Navarro, “Effective proximity
retrieval by ordering permutations,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), vol. 30,
no. 9, pp. 1647–1658, 2008.

[20] C. Faloutsos and K.-I. Lin, “Fastmap: a fast algorithm for
indexing, data-mining and visualization of traditional and
multimedia datasets,” in SIGMOD. New York, USA: ACM,
1995, pp. 163–174.

[21] T. Shinohara, J. Chen, and H. Ishizaka, “H-map: A dimen-
sion reduction mapping for approximate retrieval of multi-
dimensional data,” in DS ’99. London, UK: Springer-Verlag,
1999, pp. 299–305.

[22] T. Shinohara and H. Ishizaka, “On dimension reduction map-
pings for approximate retrieval of multi-dimensional data,”
in Progress in Discovery Science. London, UK: Springer-
Verlag, 2002, pp. 224–231.

[23] G. R. Hjaltason and H. Samet, “Properties of embedding
methods for similarity searching in metric spaces,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 25, no. 5, pp. 530–549,
2003.

[24] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in
high dimensions via hashing,” in VLDB ’99. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1999, pp. 518–
529.

[25] C. Faloutsos and S. Christodoulakis, “Signature files: an
access method for documents and its analytical performance
evaluation,” ACM Trans. Inf. Syst., vol. 2, no. 4, pp. 267–288,
1984.

[26] A. Davidson, J. Anvik, and M. A. Nascimento, “Parallel
traversal of signature trees for fast cbir,” in MULTIMEDIA
’01. New York, NY, USA: ACM, 2001, pp. 6–9.

[27] B. Bustos, G. Navarro, and E. Chávez, “Pivot selection
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APPENDIX

A. k-NN Algorithm

In this section we describe a simple early termina-
tion strategy algorithm that allows GHS to perform k-NN
searches within a specified EP value. Dong et al. em-
ployed [12] the following approach for k-NN queries:
• Select the h = t × k buckets with the smallest sketch

distance to the query sketch.
• Compare the objects stored in each of the buckets found

to get the k nearest neighbors of the query.
In the experiments presented in [12], t was arbitrarily set

to 20. Our k-NN algorithm follows the same approach. The
only difference is the way we calculate h.

We assume that GHS will be called only on a predefined
set of k values. We attempt to estimate the number of buckets
hk that must be accessed to return an approximate result for
a k-NN query. Given a collection X ⊆ D, and a sample
of objects S ⊆ D|S ∩ X = ∅, the algorithm of Figure 7
calculates statistics on the number of buckets that must be
accessed in order to fulfill some EP goal tEP for a k-NN
query. Specifically, we find the mean number of buckets
accessed x̄k and the corresponding standard deviation σk.
In line 3, we loop through a set of sample objects. These
sample objects must not exist in X , otherwise the EP value
calculated in line 9 would always find an object with distance
0. In line 7, we iterate through all the sketches of X ordered
by hamming distance to the sketch of s. In each iteration we
search the objects embedded in the bucket and update the
approximate result set SA. When the current EP value cEP
is lower or equal than the target EP value tEP (line 11), we
can stop the loop and we record the number of buckets that
had to be read in st. When the process is finished, we have
accumulated statistics on the number of buckets that were
read for the sample S and for a given k value. We store this
information in the meta-data of the index. At query time,
we can estimate the number of buckets that must be read to
satisfy a k-NN query with the following expression:

hk = x̄k + (α× σk)

The parameter α is provided by the user. A value of
3 should give a good estimation. Given hk, the search
procedure by Dong et al.(described above) can be applied.

B: set of sketches of X
S ⊆ D: sample of objects
X ⊆ D: database (S ∩X = ∅)
k: k-NN query that will be calculated
tEP : target EP value.
Output: mean number of buckets accessed x̄k, standard
deviation σk

1: function est(B,S,X, k, tEP )
2: st: statistics object
3: for s ∈ S do
4: OX: objects of X ordered by distance to s
5: OB: sketches of B ordered by hamming distance

to the sketch of s
6: i = 0
7: for b ∈ OB do
8: Update k-NN result SA by searching b
9: Calculate current EP value cEP with OX

and SA

10: i+ +
11: if cEP ≤ tEP then
12: st.add(i) . update stats
13: break; . Process the next s
14: end if
15: end for
16: end for

We can now obtain x̄k and σk from st.
17: end function

Figure 7. hk estimation algorithm


