
Flowchart

Use this flowchart to help you figure out what type of inheritance you’re working
with.

Definitions
Incidental Inheritance
The sharing of implementation details between dissimilar objects.

Essential Inheritance
The sharing of implementation details between similar objects.

Behavioral Subtype
A type of essential inheritance with the ability for a child to serve as a drop-in
replacement for it's parent.

Behavioral Subtype - Extension
The child retains all of it's parents abilities while adding new functionality that is
completely transparent to the parent object, or is defined in terms of the parent
object's functionality.

Behavioral Subtype - Restriction
The child retains all of it's parents abilities, but restricts some (or all) of those
abilities; providing a more specific implementation.

Thursday, May 17, 2012

Suppose we have a Report object which needs to iterate over a collection of
numerical data and perform some computations, including a sum of all the
values in the collection. There are several different ways we can model this:

1) We could create a StatisticalArray subclass and an instance of this class in
our Report object to wrap the collection and do the computations:

class StatisticalArray < Array

 def sum

 reduce(:+)

 end

 # ... other stats methods

end

2) We could add an each() method to our Report object and mix in the
Enumerable module, and then mix in our own Statistics module

module Statistics

 def sum

 reduce(:+)

 end

 # ... other stats methods

end

3) We can use simple aggregation to wrap the collection and do the necessary
computations:

class StatisticalCollection

 def initialize(data)

Incidental Inheritance
Code sharing between dissimilar objects

Analysis and Recommendations

While approach #1 and #2 are commonly seen in Ruby programs, they have
significant disadvantages to #3:

-When we take approach #1, we have to be aware of the entire API of Array
(both public and private) in order to safely extend it, and the end result is our
object is much more focused on being Array-like than it is on statistical
computations.
-When we take approach #2, we need to treat our Report as if it is a collection
rather than as if it simply *has a collection* it operates on, which is a violation of
the single responsibility principle.
-In approach #3, we avoid both issues and maintain a very narrow surface at the
cost writing slightly more verbose code.

This is a common pattern in Ruby programs, and often, the benefits of simple
aggregation outweigh the convenience of inheritance or module mixins when
objects are dissimilar.

Thursday, May 17, 2012

Suppose we have an XMLBuilder class and we’d like to create a subtype of this
class that allows for easier building of html.

We’d start with the XMLBuilder; something as shown below

class XMLBuilder

 def self.build(filename, &block)

 # create new XMLBuilder, instance_eval and save

 end

 def initialize

 self.xml = []

 end

 def tag(name, attrs = {}, &block)

 # convert tag into xml and render block via

 # instance_eval

 end

 # other methods such as #to_s, etc.

end

Now that we have our parent class, we can create the HTMLBuilder subtype as
shown below.

class HTMLBuilder < XMLBuilder

 def a(attrs = {}, &block)

 tag(“a”, attrs, &block)

 end

Behavioral Subtype - Extension
Transparently adding new functionality to a parent object

Analysis and Recommendations

-We are not overwriting any existing functionality
-Child should be a drop-in replacement for parent

Thursday, May 17, 2012

Suppose we have a simple Array class that allows insertion and deletion of
arbitrary objects. We can use this Array definition and restrict it’s functionality to
create both a Stack and a Queue.

First we start with a definition of a SimpleArray.

class SimpleArray

 def initialize

 @items = []

 end

 # #insert/#delete methods that allow you to insert/delete

 # objects at any position in the array.

end

Given our definition of a SimpleArray, we can define a Queue by restricting
#insert to inserting at the tail of the array and #delete working on the head.

class Queue

 # same #initialize as SimpleArray

 def insert(obj)

 @items.insert(-1, obj)

 end

 def delete

 @items.delete_at(0)

 end

end

Behavioral Subtype - Restriction
Restrict capabilities of a parent object

Analysis and Recommendations

-A restriction should be a drop in replacement. However, it will not display the
same functionality, like an extension does.
-Notice you cannot write a Queue as a restriction on Stack (or vice versa). This
is because their delete methods would invert the functionality of the other versus
restricting it.
-You should be able to define a restriction in terms of it’s parent. For example.

1. A simple array has a list of items.
2. A simple array has an insert operation to add an object at any position.
3. A simple array has a delete operation to remove an object at any position.

1. A queue is a simple array.
2. A queue’s insert operation can only add an object to the tail.
3. A queue’s delete operation can only remove an object from the head.

Thursday, May 17, 2012

As an example of a special case, suppose we have our Queue implementation
from the “Behavioral Subtype - Restriction“ section. We want to Persist this
Queue on disk by creating an extension of it called PersistentQueue.

First we start with a definition of a Queue.

1. A queue is a simple array.
2. A queue’s insert operation can only add an object to the tail.
3. A queue’s delete operation can only remove an object from the head.

class Queue

 # same as “Behavioral Subtype – Restriction” section

end

We now define our PersistentQueue.

1. A persistent queue is a queue.

2. A persistent queue’s initialize method take a filename to persist to.

3. A persistent queue’s insert method also updates the saved queue.

4. A persistent queue’s delete method also updates the saved queue.

class PersistentQueue

 def initialize(filename)

 @filename = filename

 File.open(@filename) do |f|

 @items = Marshal.load(f.read)

 end

 end

 # #insert/#delete have the same implementation as before

 # only they call #persist before returning

Refactoring & Special Cases

Analysis and Recommendations

Given a first glance at PersistentQueue we might think that it’s an extension.
However, because it is using `Marshal` it breaks the functionality of a Queue
being able to accept any object. Since Marshal doesn’t serialize all Ruby
objects, it will fail to load/persist all objects it’s given. Because of the need to
persist these Ruby objects, we cannot refactor. It would be acceptable to keep
this as a special case.

-Start by trying to refactor your code.
-Do your best.

Thursday, May 17, 2012

