

Six wise men and the elephant
(with apologies to John Godfrey Saxe)

Trygve Reenskaug’s DCI architecture has emerged in the past year as an exciting advance in
object-oriented software design. It is the culmination of more than a decade of work, work
that arguably stands on the shoulders of giants. Trygve and I often give presentations or write
papers about DCI and are invariably asked, “Isn’t that just dependency injection?” or are told,
“That’s just mix-ins!” I’m writing this article first to clarify the distinctions between DCI and
its siblings, and second to honor those who have been exploring these same areas for the past
40 years.

A long time ago (in the 1970s) in a land far away, the first elephant was born. It was a

software entity called an object and it was born in a land in the heart of the former Danish
empire, and was called Simula 67. Its origins are the lore of yore, but few people living today
have seen one of these objects firsthand.

While Simula 67 was often heralded as the primordial object, history in fact would
remember it much differently, as a kind of wooly mammoth, a shadow of what was to come.
The real elephant existed largely as an ideal in the minds of the original elephant trainers
Kristin and Ole-Johan. This was a vision of real-world objects like ships and cars, captured in
terms that the program could represent, unifying the end-user and programmer mental
models.

Though Simula 67 objects were true elephants in their conception and in the core of their
DNA, the language itself was dominated by class constructs that belied the true vision behind
it, giving it more the appearance of a wooly mammoth than of an elephant. It was unable to
inspire others to the object way of thinking. Smalltalk was an evolutionary mutant from the
left coast of the land of the Nacirema tribe [Nacirema] that produced the same kind of
elephants, but with none of the external features of traditional programming languages. Its
conceptualization and deep genetic structure were brilliant; each elephant even had a
recursive meta-genetic structure. Alan, a leading Nacirema elephant trainer, would protest
loudly for years that the Nacirema elephants were the true elephants and that their European
counterparts were as old as the wooly mammoth and unproductive [Kay]. Nonetheless, it still
had the hairy class-oriented-programming gene and so, in the end analysis, was just a
mastodon — a Nacirema variant of the wooly mammoth. We credit Alan with naming the
upbringing and care of these elephants as object-oriented programming.

There was also a right-coast Nacirema tribe of elephant trainers descended from the
ancient Danish masters, named Bjarne, who would take the class-oriented concept even
further. This led to a right-coast Nacirema population of mastodons, and they were much
hairier than their left-coast conterparts.

Nonetheless, both of these varieties of Elephant had many admirers and keepers. Most of
the admirers were little better than harmless and came around just to use the elephant dung for
their gardens of programming. They, too, called their style of gardening “object-oriented
programming” and, indeed, each such application carried a little essence of Elephant.
Elephant-dung gardens sprung up everywhere as the object label became a sine qua non of the
day’s software development.

A few others wanted to train the new elephants to do old tricks, like persistent storage of
large-scale data (object-oriented databases), GUI design (object-oriented GUIs, whatever that
means), and even to serve as the foundation of software methods (like object-oriented
analysis, whatever that means). While enough was written about these ideas to fill a
university library with books, no one ever saw real elephants that could be credibly traced to
any of these ideas. Yet an elephant is just an elephant, and there in an industry with all the
solemnity of a circus, the pressure for the elephants to do tricks grew and grew.

Six wise keepers
Six wise keepers of the elephant were disenchanted with how far the elephant species

had evolved since its birth in 1967. There were some problems with the elephant: it was
sometimes too weak, sometimes too clumsy, sometimes too stupid, to carry out its tasks.
Those out in the elephant-dung gardens didn’t even notice, but these trainers did. These
individuals were certainly the ones to know, as they were among the best elephant keepers
and trainers of the day. They decided to blind themselves to the superficial external beauty of
the elephant and to dig into its roots, its genetic code, to understand the very fundamental
nature of its makeup. A fine and wise elephant (as all elephants are) named Horton offered his
DNA for the task.

Each of the trainers analyzed the elephant DNA to identify places where it could be
improved. One of the trainers, named Howard, analyzed DNA relating to the features of the
hind part of the elephant. He found the genome for its tail and noted, “I have never thought of
the elephant as being like a simple rope. Good elephants are complex things, and we need to
think about the rope in terms of its individual strands. Instead of using pre-made, simple
ropes, we want to weave together the cords that we want, to build a strong and yet flexible
system.” So he set about weaving elephants together from building blocks called mix-ins.
Most of the mix-ins had interfaces that allowed multiple gardeners to regard the elephant as
being whatever flavor they wanted. With his tool, called Flavors, gardeners were able to
create chocolate, strawberry, and raspberry elephants. The basic elephant was vanilla. This
experiment failed, however, among the dominant gardeners of the time (many of whom were
tending C gardens before the elephant became widely known) due to too many jokes about
vanilla (white) elephants and strawberry (pink) elephants.

In about 1990, an elephant trainer named Guy discovered a genome from around the
elephant’s head. He discovered the roots of the canvas-like structure of its earflaps. He noted,
“The essence of elephant-ness is this structure similar to that of a circus tent. Elephants don’t
live in these tents, but they do tricks there in groups. People come to pay for the tricks, not the
elephants. The tricks have an identity all their own, and we should take care that the right
elephants together can do the right tricks.” So Guy pioneered a technique variably called
multiple dispatch or multi-methods that could orchestrate the dance of multiple elephants.
Guy would later genetically engineer elephants into a tropical variant that became prolific but
which lacked exactly the right meta-genetic structure that could have allowed it to adapt
further.

In about 1993 two trainers named Dave and Randy picked up some genetic material, also
from the head area of the elephant, and found the genome for tusks. The tusk is a spear-like
structure used, among other things, for defense. One could very easily stereotype the elephant
as a violent and warlike animal on the basis of this knowledge, and the elephant had
unfortunately established that reputation. Now, not all elephants have tusks; it varies
depending on their kind, their gender and their age. Dave and Randy said that if we were
really to be concerned with helping elephants, we should treat them as individuals. After all,
elephants are people, too, and elephants have been stereotyped for years: though they have
good memories, they are conservative and escalate wars like Republicans. It’s time to stop
stereotyping elephants — even on the basis of their genetic possibility — and to start treating
them as individuals. Dave and Randy would refine their work for many years to come, and
they produced some of the most hairless elephants as history. Some of their work actually
came round to some genetic engineering that helped elephants run faster. (It was an
interesting trick: if an elephant had been in the same place twice under the same
circumstances, it knew that it could do just the same thing as last time. And an elephant never
forgets). But as for the core of their work, people had become so used to the hairy class-
oriented coats of the mastadons that they found Dave and Randy’s objects to be somewhat
naked.

Another, called Martin, noted that elephants were noble and awesome creatures and,
aside from their size, Martin strove to discover the source of their ability to inspire fear. In the
genetic structure of the elephant he noted a gene for a long, narrow appendage. “Aha!” he

exclaimed, “elephants have a structure in common with the boa constrictor snake, so these
species must be related — perhaps descended from a common ancestor. Perhaps snakes and
elephants used to live in symbiosis, and the symbiosis became so great that the snake became
part of the elephant.” He noted that problems arose when objects from more than one type
hierarchy tried to work together separately. Perhaps, in the old days, elephants and snakes
were spending far too much time in school learning about each other to sustain this symbiosis.
Too much of the time, each had to know too much about the concrete class of the other. He
continued, “Each class hierarchy can create its own object and inject it, like this snake, into
another one of the objects, like an elephant, in a way that the two objects can be joined as one
in symbiosis. He called it dependency injection,[Depedency injection] and his perspective
developed many followers. Legend says that this elephant-snake relationship, later called the
snabel, would become the foundation of Email addressing among the descendants of the
original elephant herders. (There is nonetheless lingering confusion about whether it is really
a pig’s tail (grisehale) instead of an elephant’s trunk.)

Two other keepers named Jim and Tim approached the elephant from the side and felt its
tough, leathery skin. “Ah, this is so homogeneous and boring. I never thought of elements that
way. This elephant is like a wall. Everything is combined into one, flat, undifferentiated
surface — both the use case part and the domain behaviors are combined in the same
interface. We need to differentiate the use case parts out into procedures — in fact, those
aren’t very elephant-like at all, and we should probably even go beyond elephants for this part
of the system.” So they each came up with a vision of multi-paradigm design. While Tim
focused on differentiating computational models and Jim focused on differentiating
structuring techniques, they both agreed that there should be different ways to express the
procedural parts and the object parts. They both started talking about multi-paradigm design
and programming in about 1993 or 1994.

Yet that division seemed too coarse. Even though the separation was good, it was
difficult to put the parts back together. Gregor learned of this failure and proposed that it
owed to the strict partitioning and coarseness of the division of classes and procedures. He
noted that mix-ins had the same problem with respect to method granularity. His analysis of
the elephant’s genetic makeup discovered the genes for legs. Discerning its shape with his
hands, said, “This elephant is like a tree and, like a tree, has a strictly hierarchical structure. In
fact, layered or hierarchical tree structures are too simplistic for the complexity of the
software world.” He said that a clean separation of function and structure didn’t recognize the
essential, complex cross-cutting nature of their relationship. He said that, instead, we should
be using reflection to inject this functionality into the objects at finer levels of granularity. He
called this the aspect technique: a way to do gene splicing at fine levels of granularity. Since
most gardeners were C++ and Java gardeners, they didn’t understand this notion of
“reflection” or, if they did, dismissed it as an academic toy that belonged to academic
languages. The Nacerima radical right (the “east coast” programmers) abhorred it as a
practice akin to vivesection. So in 1997 Gregor and his co-trainer Christina showed how it
could be done even in the toy tropical language that Guy had created, with hopes that people
would see how ugly the implementation was and, out of horror and repentance, would
become true Lisp programmers. To his surprise, these tropical gardeners loved it and made it
their own.

A common thread
In fact, what each of the wise men was able to see in his mind’s eye was the limitation of

some kind of strict, Cartesian classification scheme. Howard Cannon’s Flavors [Flavors] were
an attempt to move beyond a strict classification that forced every object to be of one class at
a time, to one that permitted the class itself to be a composition of multiple class-like things.
Multiple dispatch was an attempt to stop classifying methods in terms of their method selector
and the single type of a single object, but instead to classify each method as potentially
belonging partly to several classes at once. The self language [Self] tried to destroy the very
notion of classification as found in a traditional class, and to return to the object foundations
that drew objects from the end-user mental model. Dependency injection strove to blend the
functionality of two objects into one. Multi-paradigm design refused to view the world
according to a single classification scheme, making it possible to carve up different parts of
the system in different ways. The goal of AOP is similar to that of mix-ins, except its cross-
cutting units are more invasive at a finer level of granularity. They are like multi-paradigm
design in that they allow a degree of separation of function and structure, but aspects’
functional structure is much richer. It is more like having multiple knives carving up the same
part of the system at the same time, whereas multi-paradigm design ensured that the knives
didn’t cross.

As all these fads came and went, this noble notion of Elephant perhaps lived on,
unnoticed beneath the circus trappings of all the pretenders to object-oriented-dom. Though
the brilliant folks in our industry each could see a part of the elephant, the idea of the whole
eluded most of them. And we haven’t even mentioned all of them. Delegation was another.

One stubborn old elephant trainer had known the first elephant but had difficulty finding
it in any of the programming language circuses over the years. His name was Trygve. He was
intrigued by the findings of the six wise men and was even more intrigued about how those
findings related to his own memories of that dearly beloved first elephant. Maybe that
elephant had just been a collective hallucination of other great men of the time, like Ole Dahl,
Kristin Nygaard, and Alan Kay. No, he was pretty sure that the real elephant had once existed
and had long since been forgotten.

The Smalltalk thinkers of the 1970s had a vision of a computation model that supported
objects, and those thinkers struggled to express that vision in a language. Unfortunately, the
language ended with building blocks called classes, which failed to capture the dynamics or
richness of relationships in the objects. The real death of Smalltalk came when VisualWorks
turned it from a framework for conceptualization into a GUI-builder.

(Photo by Steve Bloom. http://www.allposters.dk/)

What intrigued Trygve were those parts of the elephant that rarely made it into any
circus, into any language or programming environment. Yes, as the six wise men found, the
elephant did have parts: legs and trunks and tails and ears and tusks and skin. Just considering
the four legs, however, it is laughable to think of them as tree trunks. Legs are for running.
The complex motions of the legs of a charging elephant don’t come from the legs; they come
from an invisible brain and nervous system inside the elephant. Or at least that’s true at least
part of the time; sometimes, they are just to stand on, and sometimes they help the elephant
swim (elephants are remarkably good swimmers). It is this charging and standing and
swimming that intrigued Trygve more than the tree-trunk metaphor.

The last hurrah
A group, alleged to come from China, thought it would be worthwhile to dress up the

elephant by describing all of these things in a book. Martin’s notion of the trunk would
become Template Method and Abstract Factory or Factory Method. Guy’s ideas would be
named Visitor. It was like dressing up the elephant. Some of them even confused the
dependency-injected snake for a hat. It was one of the best-selling clothes line for elephants
ever. It didn’t change the elephant, but there is no arguing that it was one of the most
enduring fashions in what is arguably the greatest fashion industry on earth. But it was a bit
confused, because Howard’s ideas also had to be implemented using Template Method, and
many elephants ended wearing shoes on their head and hats on their feet.

DCI: the re-birth of the elephant
Trygve conceived of a paradigm of development called DCI that was rooted in the

original notions of object-orientation. DCI is faithful to the original elephant.
Trygve carefully considered that there are two worlds: the dynamic world of the running

program, and the static world of the program under construction. The former is tied closely to
the programmer mental model, the latter is closely tied to the end-user mental model (which
in turn is a learned part of the programmer’s mental model). In the interest of being Agile, we
want to accommodate the individuals in the system. We shouldn’t limit ourselves to the end
users. Programmers are people, too.

End-users tend to think in objects. Mette thinks of her kitchen telephone as an object.
She may think of it in a way that is somewhat free of the context of its use at any given time.
While in general it has something to do with communication (calling friends or reporting a
fire in the kitchen) it can also be used to hold down a recipe while she is cooking so the
breeze coming through the kitchen window doesn’t blow it away, or she may use its address
book facility to look up addresses. I think of my savings account as having a particular
balance and as being in a particular bank, without any particular regard for how I am or am
not using it a the moment, and with no regard to anyone else’s savings account. When I am
working as a circus worker struggling to raise a tent pole under a tent, I care about this pole:
its dimensions (does it fit?), its weight (should I get an elephant to help me raise it into place,
or is it a small enough tent can I do it myself?). The general properties of tent poles
disappears.

Whereas end users tend to think in objects, today’s programmers tend to think in classes.
The evolution of programming languages has all but stamped out the notion that gives first-
class standing to any notion of task sequencing. Java completely outlaws it, forcing all
activities to take place in the context of some class. In a world where classes are all that we
have at programming time, they have to capture a compression of all end-user concepts.
Contemporary programmers use classes for at least two things: to capture that part of the end-
user mental model that relates to the concrete things in their world, and to capture bits of how
the system behaves in the real world. So we find classes like Savings Accounts that
characterize my savings account; Telephones like Mette’s telephone; and tent poles like one
in a camping tent.

Yet in a world where everything is a class, and where we want to capture key mental
models in the code, the classes must also capture the system activity. This is like the nervous
system of the elephant. But classes don’t capture activities like “running:” the capture only
the primitive joints and muscles of the legs and perhaps capture their orchestration that helps
propel one quarter of an elephant. Those activities might be aspects or mix-ins — but we’ve
seen their limitations. And then there is the coordination between the legs, which a
methodologist might ascribe to the grand, nebulous concept of elephant. That’s wrong, too,
because elephants are not the only four-legged creatures with those gaits and cadences.
Running is a concept unto itself; it is not a method of an elephant object. Even if it is, such
knowledge doesn’t help us understand or manage its relationship to the legs.

What DCI does is to bring object-orientation to the current class-based world of
programming.1 The idea is simple. First, we divide code into the program’s basic domain data
on one hand and its functionality, or behavior, on the other. The domain structure is like legs
and trunks, and the functionality is like running or taking a bath. The domain structure we call
Data, the D of DCI. They are just barely smart data. Most of the “smarts” belong in the roles
rather than in the data, and object orientation has long made the mistake of mixing these two
in the same interface. The roles capture our mental chunking of the behavior into algorithms,
which are the archetypical Interactions between the objects. We represent these as
Interactions between roles, generalizing above the object level. Interactions are the I in DCI.

Second, we partition each of these spaces. Partitioning is inevitable because human
minds can understand small things better than large things, so we build on a basic
psychological skill called chunking. In the domain structure we use the same, time-honored
chunks as we always have in object orientation: classes. In the world of behavior, we divide
up long algorithms in terms of sequences of operations on roles. This is a good fit for human
mental models. When we conceive of how to transfer money from some source account to a
destination account, we indeed think of the concepts source account and destination account

1 There is a more general way of looking at DCI which doesn’t depend
on traits. In this article we are trying to take current programmers from
what they know to what they might want to know. Because most
contemporary programmers are working in classful languages, we
investigate that corner of the DCI world here.

— not the classes SavingsAccount or DepositAccount. Either of those objects can play any of
the roles. So we subdivide the system’s algorithms along role boundaries. Roles tend to
collect multiple related behaviors

We have to map this conceptualization onto programming languages. We often work in
programming languages where classes are the only construct for grouping objects (as in C#,
Smalltalk, C++, and so forth). That means that classes have to stand in for roles.

Next, we need to be able to “teach” specific objects how to play specific roles. Consider
a system that is based on this separation of functionality and domain knowledge. Domain
object are sitting around in memory waiting for work to do, and a use case arrives. Think of it
like the start of a play. The use case is the script. Each object will be asked to play a role. So
we need to educate each object how to play its role. That means injecting the role logic into
the objects that need it. It’s like hooking up Neo or his girlfriend to the Matrix and
downloading a program into him that will allow him to fly a helicopter. Now, the curtain
rises, and: Lights, camera, action. Each actor can play its role. The curtain falls, there is
applause, and the play has been carried out. Neither the actors nor the audience will ever be
the same again.

Teaching each object its role in real time is the tricky bit. If the script fragments are
inscribed in class code, and if each actor is an instance of a class, we must compose those
classes together — at least for those of their objects which will play those roles. Schärli
[Traits] describes this approach as traits. Each chunk of role functionality is a trait that can be
injected into the objects that need to play that role. Traits appear in different forms in
different programming languages. In Scala they are first-class citizens. In Ruby, we simulate
them using modules instead of classes. In C++ they are templates. In some languages this
injection happens at run-time, at the last microsecond; in others like C++ it is arranged at
compile time. Scala, which actually does all the work at compile time, it still gives the
illusion and feeling of doing the work at run time:

val source = new SavingsAccount with SourceAccount
val destination = new DepositAccount with DestinationAccount

Last, we need code that knows how to find the right objects for a use case (to hire the

right actors for the play) and to inject the right role logic into each one (to have each actor
learn its part of the script). This code is called the Context. It is the C in DCI.

Yes, there is hope that languages will give more prominence to objects and less to
classes over time. In Python and to some degree in Ruby we see the ability to freely mix
object and class operations with a uniform syntax and semantics. Javascript and Groovy are
similar. It is possible for a single object to have a unique method independent of its class.
Scala helps support this illusion, though there is actually class support behind the scenes. And

SourceAccount

DestinationAccount

SavingsAccount

DepositAccount
balance
increaseBalance
decreaseBalance

balance
increaseBalance
decreaseBalance

transferToDest

transferFromSrc

transferToDest
balance

increaseBalance
decreaseBalance

transferFromSrc
balance

increaseBalance
decreaseBalance

this illusion can be supported even in static languages like C++. With some instructive use of
the MOP, we can make even the Smalltalk elephant dance.

Mix-ins
Howard noticed that elephants could be complex things with many behaviors that we

think of independently. Furthermore, depending on which of these behaviors we chose, we
could make many different kinds of elephants. It was a brilliant notion and very close to
Trygve’s notion of DCI.

However, DCI is much more than just mix-ins. What mix-ins lack is a framework to tie
them together, and in particular to tie the mix-ins of one object with the mix-ins of another.
Mix-ins reflected a hierarchical composition. They worked well one elephant at a time, but
you couldn’t use them to make elephants follow each other around the circus ring or to stand
all at the same time, let alone put their forelegs on the back of the elephant in front of them.

Roles are in fact mix-ins that have a class-like feel to them. Each role is a collection of
behaviors; what it means to be of a certain role is to be able to be grouped by that behavior.
Anything that is large, grey, has a trunk, and lives in trees must be able to play the role of an
elephant.2 Perhaps a mastodon with a haircut could play the role of an elephant in a play.
Roles are like classes in that they are groupings of behavior, but they differ from classes in
that they are partial classifications while classes are total classifications. So every elephant
object is of class Elephant. However, even though a shorn mastodon is of class Mastodon it
can technically play the role of an elephant according to the above definition.

Multiple dispatch
Guy noticed that the actions of a system depended on the type of more than one kind of

thing in the system. More important, he could see the algorithm’s high-level behavior
standing as a separate concept independently of the objects or classes involved. He did this
out of necessity: some of the more complex operations involved multiple objects, so no one of
them could own the operation. The method “run” in the context of a human being likely
applies to two objects of type leg, whereas it applies to four leg objects in the context of the
elephant. The two algorithms are quite different, and we should choose the right variant.

However, DCI is much more than just multi-methods. What Guy missed is that large
parts of these algorithms are often invariant across the context of invocation, and other parts
could be factored into the objects themselves. There is a fundamental, universal process of
running that is invariant with respect to the objects to which it is applied, and multi-methods
don’t really capture that. We need to reinvent running from scratch every time.

Multiple dispatch is an advanced form of run-time polymorphism. Most pundits of old-
fashioned object-oriented programming hold polymorphism to be one of its most fundamental
features. Most class-oriented programming language support it directly by a special facility of
class-oriented programming. A programmer can arrange for all objects of a derived class to
override the function of the same name in the base class. It is a nice way for the programmer
to organize these functions at run time. However, this style provides that the method or
member function, and not even the class or object, is the unit of polymorphism. If a class
supports methods A and B, one may be polymorphic while the other isn’t. That means that the
programmer needs to look at multiple classes in the inheritance hierarchy to weave together a
picture of the object’s business behavior. Furthermore (though unrelated to multiple
dispatch), the programmer must repeat this exercise for the class hierarchy of each object
involved in a given use case. If we know at run time that method A in object O1 calls method
B in object O2, we don’t in general know how to find the source code of either function.

2 We apologize for lieing about the trees. See Ron Brachman, ’I Lied about the
Trees’ or, defaults and definitions in knowledge representation. AI Magazine, 6(3),
1985.

DCI minimizes this kind of polymorphism to the simple, primitive operations of the
domain objects. If the use case is a complicated simulated annealing, then we might override
methods like + and / on objects like ComplexNumber or Integer. This kind of polymorphism
usually doesn’t cause programmers to stumble as they try to understand code. The logic
supporting the business use case is in the roles and does not use this kind of polymorphism.

Classless programming
Dave and Randy noted that classes are only documents that described what an elephant

looked like. Like Trygve, they understood that there traditionally had been a distinction
between two worlds: the programming world and the execution world. They suspected that
the dichotomy might be artificial. The also knew that the instance perspective was important,
and that it was more in line with the original elephant than class-oriented programming
languages.

However, DCI is more than just giving stature to objects. Whereas Dave and Randy
could see the objects that made up the elephant, Trygve noted that it was also important to see
the whole elephant. That means understanding the elephant as a system. To focus on
individual objects is to lose the system view, and you can’t see the elephant for the trees.
Furthermore, though Dave and Randy tried hard to expunge classes from their system, there
are still class-like entities down at the bottom. They don’t call them classes but they are still
the programmatic constructs that developers ultimately rely on, statically, in a way that
compresses the run-time semantics down to something that fits into the programmer’s head.

In the end, we find that the programming / execution dichotomy isn’t a wholly artificial
one. The two environments vary wildly both in scale (dozens of classes compared with
millions of objects) and stability (the object graph is being re-created microsecond by
microsecond, whereas the class relationships evolve at human time scales).

So what makes an elephant a system? Of course, it has what we recognize as “parts”
(though, as in software, the parts are not as separable as children’s building blocks) or
objects: legs and trunk and tail and tusks, for example. But there are parts we can’t recognize
from the outside, such as the elephant’s nervous system — the locus of coordinated activity
between the legs of a charging, standing or swimming elephant. This nervous system provides
the context for the objects to interact. The nervous system is, of course, also another one of
the parts of the elephant. But it’s not a “part” in the common English sense of a highly de-
coupled element that has locus or identity. It is, in fact, a reification of the coupling itself — a
higher-order object than those other parts.

Instead of focusing just on objects as the loci of all things important, DCI realizes that
we need several perspectives that cut across each other. Yes, we still have the object view.
But we also have a nervous system, called a Context. Each Context is home for a coordinated
activity between objects. It establishes connections between objects that work with each other
to make the system do what it does; the legs and trunk and tail and tusks are just what it is.
For an elephant, this might mean running or standing or swimming. For a piece of software,
this “nervous system” is the use case that ties multiple objects together. Like use cases,
Contexts describe their activity in terms of roles. A role is a way of looking at a particular

elephant while wearing blinders: we see only as much of the elephant at a time as we need to
carry out the work. In fact, each Context encodes the object relationships in terms of the
interactions between the roles they play. These “interactions” are the I of DCI.

Dependency Injection
We can look at dependency injection as one way to combine the base domain code of an

object, and the code of the role it plays, into one. One can choose from many roles in the
what-the-system-does world and associate each chosen role’s behaviors with a kind of object
to play that role at run time. Dependency injection can relax the static dependency between
these two worlds so we can achieve a more dynamic vision of object orientation than with the
more static mechanisms of most programming languages.

However, DCI is more than just dependency injection. Dependency injection leaves us
with two objects and an identity crisis; DCI does not. The difference is that DCI changes the
behavior of an object by changing its type run time (or of its class at compile-time in a way
that anticipates the run-time need). Dependency injection changes behavior through patterns
like Abstract Factory or Factory Method, each of which bind the variant behavior to
instantiation. We want instead to bind and re-bind the behavior of a given object. It’s true that
mix-ins are a weak form of dependency injection that allow us to do this, but they alone aren’t
enough.

In fact, some DCI implementations use a form of mix-ins to represent roles (as we
described above). Most programming languages have no first-class concept called role, but
represent roles as classes. To do the mix-in thing we need to be able to inject the roles into the
objects that play them. We can do that at compile-time using mix-ins. We can do it at run-
time by manipulating the method table. Whether they are injected at run time or compile time,
the role logic we inject is called a trait. We tend to use the word role for the analysis concept
and the word trait for the programming constuct.

The Scala programming language has traits as full first-class citizens.

Multi-paradigm design
The multi-paradigm approach of Jim Coplien presumed, much like Howard, that

behaviors could be represented more like the trainers that train the elephants than like the
elephants themselves. Just put the behavioral part of the system into its own collection of
procedures, and it will be just fine. It is essentially an ad-hoc version of multi-methods. This
puts one part of the system in charge over another: the imperative parts in one place and the
domain parts in another.

However, DCI is much more than just separating form from function. The roles are
missing. Roles establish a structure over the functionality, whereas Coplien’s approach
establishes a structure over the domain data but says nothing about structuring the algorithm.
More seriously, Coplien said nothing about the mapping between them — and that’s where
the real architectural issues of coupling and cohesion arise.

Aspect-oriented programming
Gregor almost got it. Whereas multi-methods His initial instinct about the importance of

reflection is probably one of the great unsung insights of programming history. Dependency
injection fails to achieve DCI’s goals because it is at the level of the program instead of the
meta-program. The run-time type handling beneath multiple dispatch is too weak to achieve
DCI’s needs, and perhaps reflection could help. And unlike most of the other approaches,
aspects retain object locus and identity.

However, DCI is much more than just aspects. Where Aspects went wrong is in their
one-sided focus on the imperative side of design. In common use, aspects tend to capture
elements that are more part of the programmer model than of the end-user model. A banker
may talk about logging a transaction, but doesn’t design a log with respect to the detailed
actions that can deposit things in it.

DCI is designed to make code readable, and in so doing, raise the likelihood that it is
correct. AOP tends to be a good short-term convenience for the programmer, in making it
possible to quickly inject small snippets of code in multiple places across the program.
However, cutpoints [right term?] (see if they make the code more unreadable).

A bigger picture
Aspects, dependency injection, multiple dispatch, and mix-ins have become the modern

trappings of programming and replace the primitives that dominated programming
discussions of yesteryear: procedures, classes, inheritance, and so forth. Yet these are just
trappings of programming. Object-oriented programming — the whole elephant — is more
than that. Alan Kay, who coined the term “object-orientation,” tells us:

In computer terms, Smalltalk is a recursion on the notion of computer itself. Instead of
dividing “computer stuff” into things each less strong than the whole—like data
structures, procedures, and functions which are the usual paraphernalia of
programming languages—each Smalltalk object is a recursion on the entire
possibilities of the computer. Thus its semantics are a bit like having thousands and
thousands of computer all hooked together by a very fast network.

If we take a historical perspective on what went wrong, it probably goes back to the

Smalltalk programming language and its class model. Smalltalk, along with Simula 67, were
the programming language standards against which all other object-oriented programming
languages were judged. Smalltalk overshadowed Simula and earned the reputation of a more
highly evolved elephant than its predecessor. However, in spite of having a much more highly
evolved run-time object model than Simula, its language still clung to a Simula-like class
model for programmers instead of taking a more distinctive evolution path. Though C++ was
based more on the older Simula than on Smalltalk, a more distinguished evolution path might
have allowed it to overpower C++ in the market. The C heritage of C++ became the meme for
the whole menagerie of 1980s programming language and, as Richard Gabriel notes, the end
of programming ensued [The End of Programming].

Don’t think about elephants

Indian and African elephants

Kay: The Computer revolution hasn’t happened yet.
http://video.google.com/videoplay?docid=-2950949730059754521#

Nacirema: Horace Miner, Body ritual among the Nacerima,
https://www.msu.edu/~jdowell/miner.html

Dependency injection: Jakob Jenkov http://tutorials.jenkov.com/dependency-
injection/index.html,

Flavors:

Self: Self, the power of simplicity. http://research.sun.com/self/papers/self-power.html

Traits: Schärli, Nathaniel, Stéphane Ducasse, Oscar Nierstrasz and Andrew Black, “Traits:
Composable Units of Be- havior,” Proceedings of European Conference on Ob- ject-Oriented
Programming (ECOOP'03), LNCS, vol. 2743, Springer Verlag, July 2003, pp. 248—274.

The end of programming. Gabriel, Richard, Good News, Bad News, and How to Win Big,
http://www.ai.mit.edu.docs/articles/good-news/good-news.html

