
Draf
t

last modified 2016.01.25 11:11 Page 3 of 6 ©2016 Trygve M. H. Reenskaug

1 Introduction

Mental models and data
This article is about people, more specifically about people who understand and even
specify how their computers shall achieve their tasks. Their occupations range from
occasional users through schoolchildren to professionals in business and industry. Our
focus is on making computer programming accessible to people at large by matching the
end user’s mental model to what happens in the computer. This makes it imperative to
distinguish clearly between what is in the user’s mind and what is represented in the
computer. These IFIP definitions of 1966 have withstood the test of time:

“DATA. A representation of facts or ideas in a formalized manner capable of being
communicated or manipulated by some process.”

“INFORMATION. In automatic data processing the meaning that a human assigns to
data by means of the known conventions used in its representation.”

There is no information in a computer system, not even in the World Wide Web; there is
only data. Any human who can find the data and understand the conventions has reached
the first stage of computer literacy.

DCI
We propose a new programming paradigm that we call DCI, Data, Context, and
Interaction, to close the gap between mind and computer. Its goal is to make programming

easy to learn and understand for the beginner while it scales up to satisfy the sophisticated needs

of the expert. This is not a trivial goal. Indeed, in the introduction to the Design Patterns
book pp. 22-23, the authors write: “it's clear that code won't reveal everything about how a
system will work.” It is frightening to read that there are mission critical systems in use
today where the code does not reveal how the systems actually work. The end users are not
alone in their illiteracy; even system maintainers and other experts have problems
understanding what goes on in the computer.

This problem challenges us to find a way to write code
that clearly expresses the system’s runtime behavior.

Any human who can read and write such code has reached the second stage of computer
literacy. We claim that the DCI paradigm can form the foundation for our community at
large to reach this stage.

Critical events
DCI builds on the cumulated history of the human use of computers. Three critical events
are particularly relevant. The first event happened on the 21st June 1948 at the Victoria
University of Manchester, England when the world’s first stored program computer
executed its first instructions. The second event was in May 1981 at the National Computer
Conference in Chicago, Ill, when Xerox unveiled its new user interface with a desktop and
a direct manipulation interface. The third event is still in the future. It will be the birth of
Personal Programming (PP) which will empower users to program their Personal
Computer as naturally and simply as they use laptops. tablets, and smartphones today.

Stored program computer
The appearance of the stored program computer in 1948 marked the birth of software. A
program is stored as a bounded chunk of data in a computer’s memory so that it can be
processed as any other data. This facilitates programming languages and their attendant
support software. A program is manifested as a bounded chunk of text called its source
code.

Draf
t

last modified 2016.01.25 11:11 Page 4 of 6 ©2016 Trygve M. H. Reenskaug

Communicating computers
The stand-alone computer of 1948 has gradually been augmented by connecting the
computers through communication networks and the boundary of a program has gradually
dissolved. The program is becoming a dynamic collection of interconnected capabilities
and the whole is no longer controlled by an isolated chunk of source code. The Data
consists of the available capabilities. A Context musters the capabilities needed to realize
a given system behavior and its Interaction describes the algorithm that ties the capabilities
together to achieve this behavior.

Business communication
Business organizations are held together by communication between its people. Most of
them are equipped with their own computer. These computers are interconnected so that
their owners can delegate some of their communication to their computers. Digital
communication is now an essential part of the business processes. An example is a
proposed system for distributed planning and control. (Section 3.1: Prokon’s Distributed
System). The managers have a personal computer with their personal planning system that
is tailored to the technology of their departments. These computers are connected in a
network and a distributed algorithm ensures that the overall plan is consistent. There is no
identifiable Planning Program; the logic was to be distributed in an open-ended structure
of people and computers.The DCI paradigm supports this new approach to programming.

Direct manipulation interfaces
Before 1981, the prevalent style of human-computer interaction was the command-line
interface where textual commands alternated with the computer’s response. These
interfaces put a heavy load on the user’s memory and required a significant investment in
learning time to master. Contrast with the direct manipulation interfaces. Douglas
Engelbart first created this style of interaction as part of his strive for “making the
computer an extension of the human intellect”. He divided the screen into several windows
and invented the mouse to be able to replace the remember-and-type style with
see-and-select [NLS]. This style was refined at Xerox Palo Alto Research Center (PARC)
through the sixties and culminated with our second event in Chicago. This marked the
beginning of a new era when computing came within the reach of more than a billion
people around the world. Engelbart’s vision is now reality. The equipment is out of sight
and there is an apparent direct contact between mind and data.

MVC
In retrospect, we can describe the new style of user interfaces by MVC, a conceptual model
that describes the connection between mind and data. The user’s mental model of relevant
information is mirrored in the data Model stored in the computer. The user observes and
interacts with these data through Views that connect the human sensorymotor system with
the computer’s I/O channels to bridge the gap between the human and the computer.
(figure 1) We will use MVC to bridge the gap between the user’s conception of a program
and the actual program in the computer.
(Section 2: MVC - the Model, View, Controller Paradigm).

Figure 1: MVC bridges the gap between mind and computer.

Draf
t

last modified 2016.01.25 11:11 Page 5 of 6 ©2016 Trygve M. H. Reenskaug

Object
DCI is founded on Alan Kay’s definition of object orientation: “I thought of objects being
like biological cells and/or individual computers on a network, only able to communicate
with messages” a. In this model, an object is an entity with a globally unique and immutable
identity that encapsulates state and behavior. (Section 3.2: The First Object) and
(Section 3.3: Kay’s Object Orientation). The definition says what an object oriented
system is. DCI adds code that says what a system does when it achieves its goals through
message interaction between participating objects.

OOram
OOram (Object Oriented Role Analysis and Modeling) describes how objects interact
when realizing a use case. (Section 3.4: OOram Role Modeling). OOram introduces the
notion of the role that an object plays when interacting with other objects to achieve a use
case. The word role is taken from a theatre metaphor; an actor plays a role when interacting
with other roles in the performance of a play. OOram describes the messages (like cues)
that flow between the roles during a performance. OOram does not say anything about
what the objects actually do in response to the messages they receive. We go a step further
in DCI where we equip the roles with scripts that specify how they fulfil their
responsibilities as participants in an Interaction (like in the performance of a play).
Communication is now a first class citizen of programming. (Section 4: DCI, the new
Programming Paradigm).

Fuzzy program model
The notion of a program as a closed and static chunk of code can now be augmented by the
dynamic notion of system behavior as an interaction between communicating objects. The
contours of a program becomes hard if not impossible to describe in closed form. What
used to be application programs with their closed plethora of capabilities can now more
fruitfully be extended to an open Model that contains all the objects that are available at a
given time. Different Views on this Model specify how selected objects interact at runtime
to realize different system operations. Personal programming can be achieved by inviting
a person to specify a new operation through a View on the Model.

Example
An example illustrates our vision. Consider a woman, Ellen, who plans a long hike for the
morrow. She wants to start early, and to sets the alarm to wake her at 06:00 but only if the
meteorologists forecast a dry day. She needs an ad hoc program to do this, and opens an
empty workspace on her new program (figure 2).

Ellen’s objects
Ellen then considers the capabilities she needs to get the job done. Fist, she needs her
program to wake up at six o’clock. She pokes around the built-in services on her device
and finds a Time object that can do the job. She drags it into the workspace and calls it the
Clock role. Second, she needs to check the weather forecast. It takes some time with the
internet browser to find an object in the local weather service that will give the expected
precipitation. She drags it into the workspace and calls it the Forecaster role. Third, she
needs to activate the alarm that sits on her bedside table. She finds the alarm as an object
in her local Internet Of Things, drags it into the workspace, and calls it the Alarm role.

a. Alan Kay’s History of Smalltalk

Draf
t

last modified 2016.01.25 11:11 Page 6 of 6 ©2016 Trygve M. H. Reenskaug

Figure 2: Ellen’s alarm clock workspace; her ad hoc Personal Program:

Figure 3: Ellen’s alarm clock; her personal program

Ellen’s scripts
The next and final stage is to instruct the roles as to what to do for her. The Clock script
makes the process wait until morning before it cues the Forecaster to check the weather. If
rain is expected, the process stops here and Ellen sleeps on. Otherwise, the Alarm is cued
to wake Ellen according to the normal procedure for alarm clocks.

MVC applied to DCI
Ellen’s user interface is based on MVC and her conceptual foundation is the DCI paradigm.
She has a large and changing reservoir of Data objects and she can pick them from her
device, from the internet, and from her internet of things. In addition, advanced
programmers will know that Data objects can be instances of the programmer’s own
classes. Most importantly, a Context object can play a role in outer, higher level contexts.
All the objects are Model objects in the MVC sense. Ellen’s workspace is a View on a DCI
context with its roles and other Views on the role scripts. An MVC Controller ties these
Views together to make up Ellen’s workspace.

The main goals of DCI are:

MENTAL MODELS. To reflect the way different users conceptualize the objects of their world so that
a program feels like an extension of its user's mind.

REASONING. To help software developers reason about system state and behavior in addition to the
state and behavior of isolated objects.

READABILITY. To improve the readability of object-oriented code by giving system behavior
first-class status.

REUSE. To be able to reuse old solutions for new purposes.

REVISION. To cleanly separate code for rapidly changing system behavior (what the system does)
from code for slowly changing domain knowledge (what the system is), instead of combining both
in one class hierarchy.

Ellen’s program is discussed in depth (Section 5: Example). In (Section 6: Related Work), we
briefly comment on other efforts that are related to DCI. Suggestions for further work are in
(Section 7: Future Work). In (Section 8: Conclusion), we conclude with the vision of DCI as a
programming paradigm that spans many programming and modeling languages as well as
Personal Programming.

	1 Introduction
	2 MVC - the Model, View, Controller Paradigm
	3 The Roots of DCI
	3.1 Prokon’s Distributed System
	3.2 The First Object
	3.3 Kay’s Object Orientation
	3.4 OOram Role Modeling

	4 DCI, the new Programming Paradigm
	4.1 The DCI Object and its Properties
	4.2 The D stands for Data - What the system Is.
	4.3 The C and I stand for Context and Interaction - What the system Does.
	4.4 Summing up

	5 Example
	5.1 Prokon: Our Activity Network Planning Program
	5.2 Frontloading
	5.3 Resource Allocation

	6 Related Work
	7 Future Work
	8 Conclusion
	9 Acknowledgements
	10 References

