

Evening sky in November 2020

To use the chart, hold it up to the sky. Turn the chart so the direction you are looking is at the bottom of the chart. If you are looking to the south then have 'South horizon' at the lower edge. As the earth turns the sky appears to rotate clockwise around the south celestial pole (SCP on the chart). Stars rise in the east and set in the west, just like the sun. The sky makes a small extra clockwise rotation each night as we orbit the sun.

Golden Jupiter, in the west, and orange-red Mars, in the north, are the 'evening stars. Saturn is just above Jupiter. Sirius, the brightest true star, appears in the east. Left of Sirius is Orion containing 'The Pot'. Further left are Taurus and the Pleiades/Matariki star cluster. Canopus, the secondbrightest star, is midway up the southeast sky. The Pointers and Crux, the Southern Cross, are low in the south. The Clouds of Magellan, small nearby galaxies, are two misty patches high in the south. The Milky Way is wrapped around the horizon. Low in the north is the Great Square of Pegasus with the Andromeda galaxy below and right of it.

Chart produced by Guide 8 software; www.projectpluto.com. Labels and text added by Alan Gilmore, Mt John Observatory of the University of Canterbury, P.O. Box 56, Lake Tekapo 7945, New Zealand. www.canterbury.ac.nz

The Evening Sky in November 2020

Bright planets and bright stars light up the evening sky. **Jupiter** and **Mars** are the brightest. Golden Jupiter appears midway down the western sky soon after sunset. Orange-red Mars is in the north. As the sky darkens **Saturn** appears just above Jupiter. **Sirius**, the brightest true star, rises a little south of due east. By the end of the month it will be up at sunset. **Canopus**, the second-brightest star, is in the southeast. Both stars twinkle like diamonds as the air disperses their white light.

Jupiter and Saturn appear close enough together to be in the same binocular view. This happens every 20 years when Jupiter, circling the sun in 12 years, catches up on Saturn which takes 30 years to do an orbit. The pair will be even closer next month but low in the twilight. Their apparent pairing is just a line-of-sight effect, of course. Jupiter is 830 million km from us, mid-month, while Saturn is nearly twice that distance, 1560 million km away. The moon, just 374,000 km away, will appear near Jupiter on the 19th.

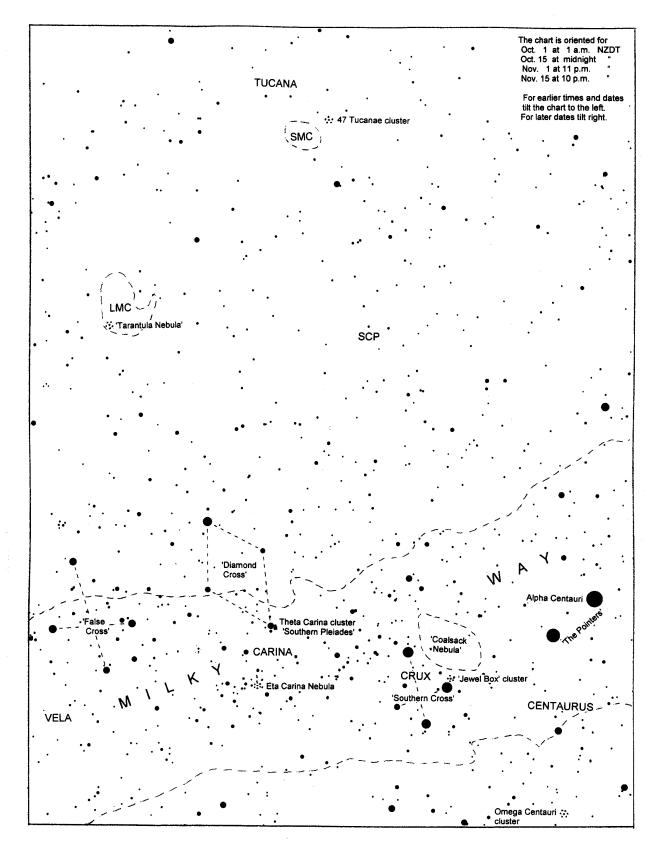
We passed Mars in mid-October and are now leaving it behind us. As we do it will slowly fade. It will also get smaller in a telescope, though it's still worth a look in larger telescopes. It will be 80 million km away mid-month. The moon will be near Mars on the 25th and 26th.

Left of Sirius is the constellation of **Orion**, with 'The Pot' at its centre. **Rigel**, a bluish supergiant star, is directly above the line of three stars; **Betelgeuse**, a red-giant star, is straight below. Left again is orange **Aldebaran**. It is at one tip of a triangular group called the Hyades cluster. The Hyades and Aldebaran make the upside down face of **Taurus** the bull. Still further left is the **Pleiades** or **Matariki** star cluster, also called the Seven Sisters, Subaru and many other names. Six stars are visible to most eyes. Dozens are seen in binoculars. The cluster is 440 light years* away and around 100 million years old.

Sirius is the brightest star both because it is relatively close, nine light years away. Seen up close it would be 23 times brighter than the sun. By contrast, Canopus is 300 light years away and 13 000 times brighter than the sun.

The **Milky Way** is low in the sky, visible around the horizon from the northwest, through south into the eastern sky. The broadest, brightest part is in **Sagittarius**, to the right of the Scorpion's sting. The Milky Way is our edgewise view of the galaxy, the pancake of billions of stars of which the sun is just one. The thick hub of the galaxy is 30 000 light years away in the direction of Sagittarius.

Low in the south are the Pointers, Beta and **Alpha Centauri**, and **Crux** the Southern Cross. In some Maori star lore the bright southern Milky Way makes the canoe of Maui with Crux being the canoe's anchor hanging off the side. In this picture the Scorpion's tail can be the canoe's prow and the Clouds of Magellan are the sails. Alpha Centauri is the closest naked-eye star; 4.3 light years away.


The Clouds of Magellan, (**LMC** and **SMC**), high in the southern sky, are two small galaxies about 160 000 and 200 000 light years away, respectively. They are easily seen by eye on a dark moonless night. The larger Cloud is about 1/20th the mass of the Milky Way galaxy, the smaller Cloud 1/30th. That's still billions of stars in each. The globular star cluster 47 Tucanae looks like a slightly fuzzy star near the top-right edge of the SMC. It is 'only' 16 000 light years away and merely on the line of sight to the SMC. Globular clusters are spherical clouds of stars many billions of years old.

Very low in the north is the **Andromeda Galaxy**, easily seen in binoculars in a dark sky and faintly visible to the eye. It appears as a spindle of light. It is similar to our galaxy and nearly three million light years away.

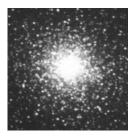
Brilliant Venus rises a little south of east an hour before the sun all month. Mercury might be seen in the dawn mid-month, below and right of Venus, and much fainter, rising 35 minutes before the sun.

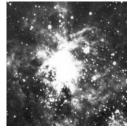
The moon grazes the Earth's outer shadow on the 30th. Its lower side will look darkest at 10:44 pm.

*A **light year** (**I.y**.) is the distance that light travels in one year: nearly 10 million million km or 10¹³ km. Sunlight takes eight minutes to get here; moonlight about one second. Sunlight reaches Neptune, the outermost major planet, in four hours. It takes sunlight four years to reach the nearest star, Alpha Centauri.

Southern Evening Sky in November

The chart shows the sky south of overhead. Interesting star clusters and nebulae are indicated with asterisks. They are described on the other side of this page.


Chart produced by Guide 8 software; www.projectpluto.com. Labels and text added by Alan Gilmore, Mt John Observatory of the University of Canterbury, P.O. Box 56, Lake Tekapo 7945, New Zealand. www.canterbury.ac.nz

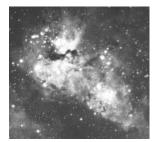


Interesting Objects in the Southern Sky

Large & Small Clouds of Magellan (LMC & SMC) appear as two luminous patches, easily seen by eye in a dark sky. They are two galaxies like the Milky Way but much smaller. Each is made of billions of stars. The Large Cloud contains many clusters of young luminous stars seen as patches of light in binoculars and telescopes. The Large Cloud is about 160 000 light years away, the Small Cloud 200 000 l.y; away very close by for galaxies. (1 light year is about 10 000 billion km, or 10¹³ km.)

47 Tucanae, looks like a faint fuzzy star on the edge of the SMC. It is a globular cluster, a ball of millions of stars. A telescope is needed to see a peppering of stars around the edge of the cluster. Though it appears on the edge of the SMC it is one-tenth the distance, 15 000 light years away, and is has no connection to the Small Cloud. Globular clusters are mostly very old, 10 billion years or more; at least twice the age of the sun. **Omega Centauri**, very low in the south, is a similar cluster.

Tarantula nebula is a glowing gas cloud in the LMC. The gas glows in the ultra-violet light from a cluster of very hot stars at centre of the nebula. The cloud is about 800 light years across. It is easily seen in binoculars and can be seen by eye on moonless nights.


This nebula is one of the brightest known. If it was as close as the Orion nebula (in The Pot's handle) then it would be as bright as the full moon.

Canopus is the second brightest star. It is 14 000 times brighter than the sun and 300 light years away. Sirius, low in the east on spring evenings, is the brightest star in the sky.

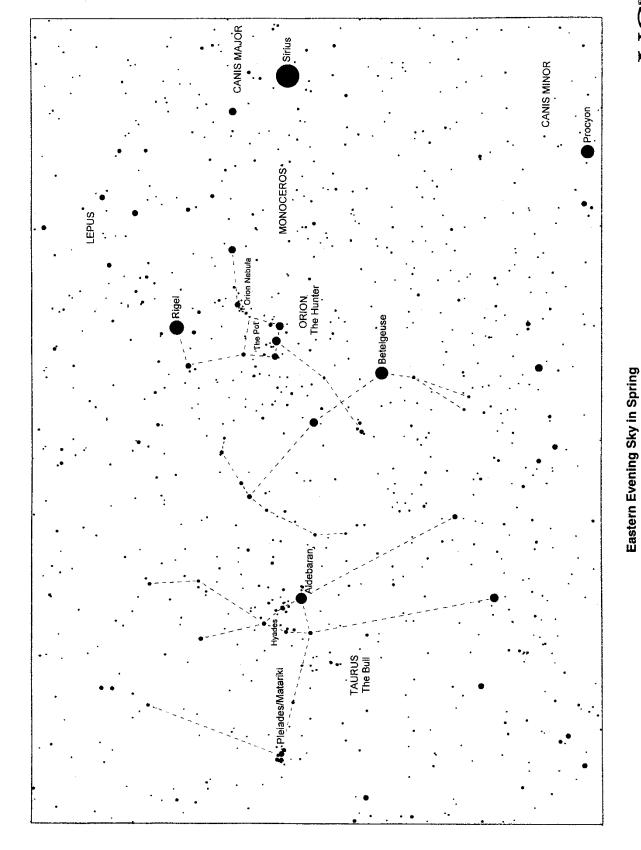
Alpha Centauri, the brighter Pointer, is the closest naked-eye star, 4.3 light-years away. Alpha Centauri is a binary star: two stars about the same size as the sun orbiting around each other in 80 years. A telescope that magnifies 50x splits the pair. (A very faint and slightly closer star, Proxima Centauri, orbits a quarter of a light-year, or 15 000 Sun-earth distances, from the Alpha pair.)

Coalsack nebula is a cloud of dust and gas about 600 light years away, dimming the more distant stars in the Milky Way. Many similar 'dark nebulae' can be seen, appearing as slots and holes in the Milky Way. These clouds of dust and gas eventually coalesce into clusters of stars.

The Jewel Box is a compact cluster of young luminous stars about 7000 light years away. The cluster formed around 25 million years ago. To the eye it looks like a faint star.

Eta Carinae nebula is a glowing gas cloud about 8000 light years away. The golden star in the cloud, visible in binoculars, is Eta Carinae. (Eta is the Greek 'e'.) It is estimated to be to be 60 times heavier than the sun and a million times brighter but is dimmed by dust clouds around it. It is expected to explode as a supernova any time in the next few thousand years. Many star clusters are found in this part of the sky.

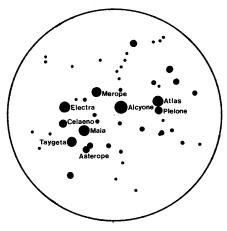
The Southern Pleiades is a newish name for a cluster of stars at one point of the 'Diamond Cross'. It is formally the **Theta Carinae cluster**, after its brightest star but is also known as the 'Five of Diamonds' cluster, the reason obvious when it is seen in a telescope. It is much fainter and smaller than the real Pleiades in Taurus but a nice sight in binoculars. The cluster is about 500 light years away and is around 10 million years old.


Text and photos by Alan Gilmore, Mt John Observatory of the University of Canterbury, P.O. Box 56, Lake Tekapo 7945, New Zealand. www.canterbury.ac.nz

081022

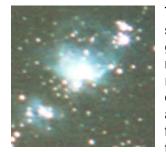
Chart produced by Guide 8 software; www.projectpluto.com. Labels and text added by Alan Gilmore, Mt John Observatory of the University of Canterbury, P.O. Box 56, Lake Tekapo 7945, New Zealand. www.canterbury.ac.nz

This chart shows the area of sky in the east on spring evenings. During the night these constellations move into the north, tilting leftward as they go. Interesting objects are described on the other side of the page.



Interesting Objects in Orion and Taurus

Taurus the Bull and **Orion** the Hunter are constellations recognised by most northern hemisphere cultures. To see the northern hemisphere pictures turn the chart upside down. The face of Taurus is outlined by the V-shaped **Hyades** cluster. The brightest star in this group is orange **Aldebaran**. Taurus's long horns extend down our sky. In the northern hemisphere picture the **Pleiades** cluster rides on the Bull's back.


Orion, in the northern hemisphere view, has a shield raised toward Taurus and a club ready for action. The line of three stars makes **Orion's Belt**. The line of faint stars above and left of the belt form **Orion's Sword** in the northern view, dangling from his belt. To most southern hemisphere sky watchers the belt and sword form **The Pot**, **The Iron Pot**, or **The Saucepan**.

The **Pleiades / Seven Sisters / Matariki / Subaru**, and many other names, is a cluster of stars well known in both hemispheres. Though often called the Seven Sisters, most modern eyes see only six stars. Dozens are visible in binoculars. The cluster is about 440 light years away. Its brightest stars are around 200 times brighter than the sun.

One **light year (l.y.)** is the distance light travels in one year: about 10 million million km or 6 million million miles. Light from the sun reaches us in 8 minutes; from the moon in 1 second. Sunlight takes 4 hours to reach Neptune, the outermost significant planet, and 4 years to reach Alpha Centauri, the nearest star.

The **Hyades** cluster is 160 light years away. Its brightest stars (not Aldebaran!) are about 70 times brighter than the sun. The cluster is 630 million years old. **Aldebaran** is not a member of the cluster but simply on the line of sight. It is 65 l.y. away and 150 times brighter than the sun. Aldebaran is a giant star about 25 times bigger than the sun though only five times heavier. Its orange colour is due to its temperature, around 3500° C. The sun is 5500° C.

The **Orion Nebula** is visible in binoculars as a misty glow around the middle stars of Orion's Sword or the handle of The Pot. It is a vast cloud of dust and gas about 1300 l.y. away and more than 20 l.y. across. Ultra-violet light from a massive, extremely hot star in the cloud causes it to glow. Some stars in this region are only two million years old. The sun, by contrast, is 4.6 billion years old. Stars continue to form in a giant cloud behind the glowing nebula. There are many bright and dark nebulae in this region. The Horsehead nebula, a favourite of astronomy books, is beside the right-hand star of Orion's Belt, but too faint to be seen in small telescopes.

Rigel is a blue 'supergiant' star around 40 000 times brighter than the sun and 800 l.y. away. Its surface temperature is around 20 000°C, giving it a bluish colour.

Betelgeuse is a red giant star 250 times bigger than the sun -- wider than earth's orbit! -- but only around 20 times heavier, so it is mostly very thin gas. It is around 10 000 times brighter than the sun, about 400 l.y. away, and has a surface temperature around 3000°C.

Sirius is the brightest star, though the planets Venus and Jupiter, and sometimes Mars, are brighter. Sirius appears bright because it is both brighter than the sun and relatively a close 8.6 l.y. away. Sirius was often called 'the dog star' being the brightest star in Canis Major, one of the two dogs that follow Orion across the sky.