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Abstract 

Ancient Venus and Earth may have been similar in crucial ways for the development of life, such 

as liquid water oceans, land-ocean interfaces, the favorable chemical ingredients and energy 

pathways. If life ever developed on, or was transported to, early Venus from elsewhere, it might 

have thrived, expanded and survived the changes that have led an inhospitable surface on Venus 

today. Today the Venus cloud layer may provide a refugium for extant life. We introduce the 

Venus Life equation - a theory- and evidence-based approach to calculate the probability of extant 

life on Venus, L, using three primary factors of life: Origination, Robustness, and Continuity. We 

evaluate each of these factors using our current understanding of Earth and Venus environmental 

conditions from the Archean to the present. We find that probability of origination of life on Venus 

is similar to that of the Earth and argue that the other factors are nonzero, yielding a probability of 

extant life of Venus of ≤ 0.1. The Venus Life Equation identifies poorly understood factors that 

can be addressed by direct observations with future exploration missions.  
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Introduction: One of the biggest motivators for exploring the solar system beyond Earth is 

examining whether extant life currently exists, or now-extinct life once existed, on worlds beyond 

ours. Our current state of knowledge of the past and present climate of Venus suggests it once had 

an extended period – perhaps 2 billion years – where a water ocean – and a land-ocean interface 

could have existed on the surface, in conditions resembling those of Archaean Earth (Way et al., 

2016; Way and Del Genio, 2020). Although today Venus’ surface (450°C, 90 bars) is not 

hospitable to life as we know it, there is a zone of the Venus middle atmosphere, at around 55 km 

altitude, just above the sulfuric acid cloud layer, where the conditions are reasonably Earth-like 

(Figure 1) (Cavicchioli, 2002). The question of whether life could have – or could still – exist on 

the Earth’s closest neighbor is in fact more open today than it’s ever been (Morowitz and Sagan, 

1967; Limaye et al., 2018; Seager et al., 2020). This paper approaches the question of extant life 

on Venus in a similar manner as Drake Equation (Burchel, 2006). We approach the question of 

whether life exists currently “on” Venus (we include the planet’s atmosphere in this definition) as 

an exercise in informal probability – seeking qualitatively the likelihood or chance of the answer 

being nonzero. 

 

The Venus Life Equation: The Venus Life Equation (Figure 2) is expressed as: 

L = O • R • C                              (1) 

where L is the likelihood (zero to 1) of there being life currently in a sustained airborne Venus 

ecosystem, O (origination) is the chance life ever began on Venus and survived long-term, R 

(robustness) is the potential current and historical size and diversity of the Venus biosphere, and 

C (continuity) is the chance that conditions amenable to life persisted spatially and temporally to 

the present. The following sections describe each variable. 
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Origination: Life on a planet can start via independent abiogenesis, or importation from elsewhere 

(panspermia), where:  

                                                     O = OA + OP,     (2) 

or possibly:                                

                                                     O = 1- ((1- OA) • (1- OP))                          (3) 

where OA is the likelihood of origin by abiogenesis and OP is the likelihood of origin by panspermia. 

The difference between Eqns. 2 and 3 is that Eqn. 3 removes a potential double-counting if life 

has arisen by both abiogenesis and panspermia, i.e., the probability of two separate geneses. If OA 

and OP are both small, this difference is negligible.  

OA depends on how likely it is for life to independently arise. In our own solar system, 

empirically, we assign OA ~ 1 for Earth. For other bodies, for lack of other definitive evidence, we 

assume the baseline is effectively zero, with probabilities increasing as current or historical 

conditions become similar those of early Earth. OP in our solar system may be nonzero from 

possible transportation of life due to impacts emanating from Earth, at the very least (Nicholson, 

2009; Beech et al., 2018). Because of its relative proximity and size, Venus is the most likely to 

receive viable life from Earth (Gladman et al., 1996), and thus, over geologic history, we can 

estimate a value of OP ~ 0.1-0.5. But just starting life would not be enough to result in a sustained 

biosphere.          

For the purposes of life that we might be able to detect with astrobiological investigations, 

breakout is an essential component of origination. It is the chance life escaped its point of origin 

to spread across the planet. On Earth life may have arisen, once, or dozens or thousands of times 

in different surface or subsurface regions only to be snuffed out by events for which we have no 
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record. This is encapsulated in the variable OB, which for Earth became 1 early in its history. If we 

assume early Venus was similar to Archean Earth for 2+ billion years, an OB of 0.9 to 1 for Venus 

may be reasonable. 

Accounting for breakout modifies the Origination term: 

                                               O = (OA + OP) • OB                          (4) 

or: 

                                               O = (1- ((1- OA) • (1- OP))) • OB              (5) 

On Venus, example estimates for the subfactors might range from 0.1 (or below) as “low” and 0.4 

as “high” as a starting probability span for life getting a foothold on the second planet. 

Planetary and Astrobiology Study of Origination: Origination of life is a fundamental 

current focus of evolutionary biology and astrobiology alike. Understanding the possibility of 

independent origination of life on Venus benefits substantially from investigations of life’s origins 

on Earth, and on understanding how similar and how different conditions on early-Venus were 

from Archaean and Hadean Earth. Assessing the likelihood of transfer from Earth or other life 

abodes to Venus would benefit from statistical modeling of the survivability of life as we know 

between the solar system’s rocky planets (e.g., Nicholson et al., 2009). Favorable biochemical 

conditions on several Ocean worlds in the outer solar system may have allowed life to arise. But 

outer worlds will have a lower chance of exchanging materials with rocky planets like Earth and 

Venus. Observation and modeling of the frequency of atmospheric impacts within solar systems 

(e.g. Harrington et al., 2004) and the aerobraking effects on materials delivered will also help 

constrain Origination factor estimates for atmosphere-rich giant planets and exoplanets. 

Further exploration of our own system’s potential abodes, and examination of the 

properties and statistics of the growing number of known planets outside the solar system (Seager 
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et al., 2016; Rossmo 2017); may allow the Venus Life Equation to help estimate the probability 

of life on exoplanets, and vice versa. 

Why O is not zero for Venus: Current models suggest that early Venus conditions paralleled 

those of early Earth during the period in which Earth life arose (Way et al., 2016; Way and Del 

Genio, 2020), which, absent other information supports an Earth-like value of OA 0.9 ~ 1. 

Regardless of a potential independent biogenesis on Venus, we know that lithopanspermia 

subfactors outlined in OP would have sent endolithic terrestrial microbes towards the planet 

throughout its habitable history, yielding an estimate of OP ~ 0.1-0.5.  

 

Robustness: Life on Earth has survived in part because it spread so widely, with such variety and 

quantity; it was therefore hard to completely eradicate during acute or gradual environmental 

changes. An estimation of this robustness may be expressed with:  

                                                                       R = RB • RD                          (6) 

where RB is a measure of potential biomass supported over time, and RD is a similar measure of 

potential diversity.  

On Earth, the value of R has been sufficiently high to allow survival through dramatic 

climate events, near-global mass extinctions, and other regional changes delivering stress or 

pressure on ecosystems. R can be considered to represent the “best case” for a planetary biosphere 

at a given time, which is then multiplied by other terms representing losses or threats to produce a 

probability of continued survival. If enough data are available for a given planet to define different 

epochs, then historical subvalues of R can be weighted by risks specific to each epoch to yield a 

more precise estimate of overall R.  
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Planetary and Astrobiology Study of Robustness: Like O, R is affected by the “n=1” 

problem. Earth, past and present, is our only example of a biosphere. It is possible for us to estimate 

how much lower an Earth-like planet’s R could be under less-favorable global conditions, using 

results from studies of life in extreme environments, comparative ecology, paleoclimatology, and 

the like. However, it is much more difficult to make conservative estimates about a planet 

theoretically more habitable than Earth. To account for these limits, we define R here as a fraction 

of REarth, and let REarth = 1. This makes our bias explicit, and allows a straightforward recalculation if 

one wishes to make different assumptions about Earth’s relative habitability. 

Biomass on Earth, on a planetary scale, is usually quantified as either organically bound 

carbon (Gt C) or primary production (Gt C ∙ yr-1). Both measures assume biospheres based on 

carbon; the former assumes that the majority of organic carbon is biogenic; the latter is intended 

to account for extant life being recycled and dead organic matter accumulating. None of these are 

necessarily true for other potential biospheres (NRC, 2007). However, part of the astrobiological 

appeal of Venus is its similarity to Earth during the early period in which life may have arisen, 

implying a similar potential biochemistry. We know very little about the possible productivity of 

a modern Venus ecosystem, although some potential nutrient sources have been proposed 

(Schulze-Makuch et al., 2004, Limaye et al., 2018). We therefore use estimates of Earth's RB in Gt 

C as a baseline. 

Though much remains unknown about Venus's past history, it is clear that its early state, 

modeled to have clement oceans, is very different from its current state, in which liquid water 

cannot exist on the surface and the most commonly suggested extant habitat is aerosols within 

certain bands of the cloud layers. Early Venus is speculated to be relatively similar to early Earth, 

so we use early Earth as a reasonable template for estimating RB for early Venus. Although much 
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remains unknown about Earth's Archaean biosphere, some estimates place it in the range of 100 - 

400 Gt C (Franck et al., 2005), about 0.2 - 0.7 times Earth's current biomass (~550 Gt C) (Bar-On 

et al,. 2018).  

On Earth, biomass over time has been sufficient to allow survival despite dramatic climatic 

change and near-global extinction events. Here, reasoning by analogy for Venus becomes more 

challenging. The most commonly argued case for life on modern-day Venus is that life originated 

in the oceans and could have colonized the dense, persistent cloud layer and endured there after 

the loss of the surface oceans (Grinspoon and Bullock, 2007). However, Earth has no habitat 

directly analogous to Venus's cloud layer. The closest regime, in terms of chemistry and isolation 

from surface nutrient and water sources, is probably the stratospheric sulfate layer (Gentry and 

Dahlgren, 2019), where the longest-enduring microbe-sized aerosols may have residence times of 

years. However, under stratospheric conditions it is likely impossible for terrestrial 

microorganisms to metabolize, grow, or reproduce. Survivors recovered at extreme heights above 

the Earth’s surface tend to be dormant, resilient, endospore-forming bacteria enduring harsh 

irradiation until dropping out by gravitational settling (Bryan et al., 2019). At lower altitudes, 

terrestrial aerobiologists are exploring whether short-lived airborne ecosystems exist within Earth 

clouds where environmental conditions are more favorable, including water and nutrient 

availability (Amato et al., 2019). Additional in-situ cloud microbiology measurements will be 

required before it can be determined if some life on Earth is periodically “independent” of the 

planet’s surface (Smith, 2013) (Figure 3).  

If a terrestrial analogue environment existed, we could estimate RB as the typical biomass 

supported in the analogue environment, multiplied by the size of the target environment. For 

example, if the biomass supported in Earth’s sulfate aerosol layer were m Gt C per m3 with a 
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particle density of n per m3, the potential RB for Venus could be estimated as m/n, multiplied by the 

particle density and volume of Venus’s haze layer. 

As an example of how to apply the Robustness subfactors, we can place an order-of-

magnitude upper bound on the RB estimate using a similar approach. Let's assume that all the 

particles in Venus's cloud layer larger than 0.2 µm, the lower end of terrestrial microbes’ size 

range, are putative microorganisms. A quick calculation using reported particle concentrations 

(Esposito et al., 1984) yields a count of 5×1024 potential organisms. By comparison, the estimated 

number of prokaryotes on Earth is in the range of 4×1030 (Whitman et al., 1998). These assumptions 

yield an upper limit on the current RB of Venus of ~ 0.000001. Other suggestions that have been 

put forward for Venus include surface life adapted to use supercritical carbon dioxide as a solvent 

(Budisa and Schulze-Makuch, 2014), and subsurface microbes in refugia of highly pressurized 

water (Schulze-Makuch et al., 2005). RB can be recalculated considering these farther-ranging 

hypotheticals to produce a different answer (this is left as an exercise for the reader).  

Life on Earth, which represents our baseline RD ~ 1, is incredibly diverse, where nearly 

every liquid and solid surface measured to date is colonized with a well-developed ecosystem. 

Even more so than with biomass, there are a wide variety of biodiversity metrics in use, and each 

reflects one or more terrestrial biases. As is perhaps to be expected, more quantitative metrics, 

such as taxonomic diversity, are also less extensible to other theoretical biospheres. Functional 

diversity, which reflects how many distinct niches life can occupy in a given habitat -- e.g., "apex 

predator (obligate heterotroph)" or "primary producer (sulfur-reducing chemolithotroph)" -- is 

probably the most intuitively applicable to a theoretical non-terrestrial biosphere. As with biomass, 

the metric chosen should reflect constrainable similarities between Earth and Venus. 
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We know very little about the biodiversity of Archaean Earth, even as an analogue. For 

hundreds of millions of years, early Earth lacked several major functional niches present today 

(Nisbet, 1995), including oxygenic photosynthesis and all, or nearly all, land-based ecology. We 

have no way of knowing how many historical niches may once have existed -- e.g., 

chemolithotrophs utilizing minerals only stable in a reducing atmosphere -- but are now lost. We 

know even less, of course, about early Venus. However, since R is meant to represent a best-case, 

and we know that any extant life on Venus is almost certainly a relic of a more thriving era, we 

can pick an example range for early Earth's RD of 0.1 - 0.5 and use this as our estimate for early 

Venus as well. 

Modern-day Venus is a more tractable case. Although, as with RB, there is no direct 

analogue, we can at least estimate an upper bound based on partial analogue reasoning. Chemically 

speaking, terrestrial acid hot springs have been proposed as the inhabited environments that most 

closely reproduce Venus cloud temperature (97 – -45ºC) and pH (less than -1.3 to 0.35) (Grinspoon 

and Bullock, 2007; Krasnopolsky, 2019), whereas deserts or concentrated brines may best 

represent the low water activity in Venus aerosols (~0.02 at a relatively optimistic assumption of 

75% H2SO4 and 25% H2O) (Deno and Taft, 1954; Hansen and Hovenier, 1974; Kleft, 2003; Bolhuis 

et al., 2006). Each of these environments show significantly less diversity than more typical 

mesophilic environments. At pH levels at or below 1, terrestrial life is limited to a few lineages of 

archaea (Barrie Johnson and Hallberg, 2008). Brines at water activities below 0.75 are similarly 

limited to other lineages of archaea (Grant, 2004; Oren, 2011). Life forms in both environments 

are restricted in the metabolic pathways which occur (Barrie Johnson and Hallberg, 2008; Oren, 

2011) - although (complicating the analogy) the modern archaeal isolates are generally aerobic 

heterotrophs, a strategy which appears to have emerged via horizontal gene transfer with bacteria 
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(Fütterer et al., 2004; Sorokin et al., 2017). Only the most extreme deserts on Earth approach water 

activities below 0.1, and here, though more taxonomically diverse, life is primarily phototrophic, 

adapted to long periods of inactive desiccation followed by brief bursts of activity during sporadic 

water influx.  

Why R Is Not Zero for Venus: Because R represents a “best-case” biosphere, it could only 

be zero for a target environment which meets no known criteria for habitability -- for example, the 

sun, dry lunar regolith, or the exposed surface of an asteroid. While the potentially supportable 

biosphere on modern Venus may be quite low or limited by terrestrial standards, the relative 

clemency of early Venus, and its similarity to the empirically inhabited early Earth, means R 

should not be zero. 

 

Continuity: This factor reflects the necessity of continuous existence of habitats over time and 

space; or, equivalently, the lack of global extinction-level events. Environmental continuity is 

affected by both internal and external factors. The former includes variations in the 

carbonate/water cycles that are governed by plate recycling, rates of volcanism and rock 

weathering. Study of the composition and deformation histories of the most ancient terrains on 

Venus (tesserae) may help determine the presence, extent and duration of some of these factors 

(e.g. Gilmore et al., 2017). External factors include solar-system wide events such as stellar 

variability (life-threatening flares/CMEs), stellar aging (changing luminosity inducing climatic 

shifts), and large impactors. (Bostrom and Circovic, 2011; Chapman and Morrison, 2013). Some 

of these external factors, such as stellar lifetime, are empirically known to be 1 for Venus by the 

continuing presence of life on neighboring Earth. Others, such as activity sufficient to sterilize life 
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only out to 0.8 AU, or an extinction-level coronal mass ejection while Venus and Earth were in 

opposition, must be estimated. 

Continuity can be quantifiably constrained for Venus through direct measurement; 

determining the availability of current resources in potential niches (e.g. the elements C, H, N, O, 

P, & S and solvents as necessary building blocks for Earth-like biology in Venus clouds), and 

through unraveling the geologic history of the planet to determine if a continuous path might have 

been available for life to evolve to survive and maintain itself for tens or hundreds of millions of 

years of post-ocean Venus history. For example, one possible pathway to extant Venus life would 

require conditions to evolve contiguously and continuously from a marine-land interface (e.g. one 

of the likely ‘breakout’ environments for Earth), to a globe-spanning biosphere, to eventual 

adaptation towards complete airborne life cycles and a biosphere maintainable solely in the clouds. 

 Complications for continuity are rooted in both understanding of terrestrial biology and 

lack of understanding of Venus’ geologic history and present conditions. If one assumes a 

“terrestrial-like” biochemistry, neither the trace composition of Venus’s aerosols nor current 

conditions such as atmospheric circulation of dust are understood well enough to determine water 

activity or the presence of bioavailable forms of nitrogen and phosphorus, let alone the more rare 

‘essential’ heavy elements like Fe, Zn, Pb, Cu, Sn, V, Cd, Ni, Se, Mn, Co, Cr, As, Mo and W. 

Detections of both phosphorus and iron were reported by the Vega X-ray fluorescent radiometers 

(Andreychikov et al., 1987), but a comprehensive trace elemental assay of the Venus clouds, with 

sensitive 21st century instruments, has not been performed. Also, it must be kept in mind that what 

is observed to be an “essential” element in the terrestrial biota is also the product of an 

opportunistic evolutionary process which might well have found “work arounds” in other planetary 

environments with a different complement of available elements. More exotic proposed 
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biochemistries (such as direct use of sulfuric acid as an alternative polar solvent) are even less 

constrained in terms of energy and chemistry requirements (Schulze-Makuch and Irwin, 2008; 

Cockell and Nixon, 2016). 

Non-chemical requirements are also critical. Energy pathways such as photosynthesis or 

chemosynthesis need to have been established and maintained or evolved to in a similar contiguous 

and continuous manner. For example, although Venus receives more photonic energy at the top of 

its atmosphere than Earth, the thick atmosphere and haze layer reflect or block larger fractions of 

it. This is particularly important for a potential atmospheric ecosystem, as the residence time of 

potential aerosol habitats imposes a particular constraint. Many terrestrial microbes in extremely 

harsh or nutrient-limited environments have very long generation times of weeks to months, 

potentially in combination with long periods of inactivity. If microbe-bearing aerosols, on average, 

settle out (as on Earth) or fall to an altitude at which they dry out or boil off (as on Venus) faster 

than the microbes can reproduce, an aerosol-based biosphere without periodic injections from 

other reservoir habitats will not be stable over the long term, even if short-term conditions are 

otherwise favorable. 

One of the major sub-factors of C specific to Venus is the timeline of Venus's water loss 

and cloud formation. Although life is capable of very rapid adaptation and diversification in some 

circumstances, major habitat transitions on Earth such as colonization of land took at least 

hundreds of millions of years. The shorter the period of overlap between the potential origination 

of life in the oceans and the formation of the modern-day habitat of persistent cloud cover, the 

lower the likelihood of colonization; and if the two did not overlap at all, it would be negligible at 

best. Though this timeline is not currently well constrained, there may have been a gap between 
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the end of Venus’ surface oceans and the current thick cloud deck of 10s Myr to 100s Myr (Way 

and Del Genio, 2020). 

Planetary and Astrobiology Study of Continuity: Continuity is hard to estimate given how 

little we know about both Venus’ history and current potential habitats. However, of the three 

factors of the Venus Life Equation, it is the one we can do the most to improve quantification 

through direct study of Venus and its history. Most of the areas delineated in the Goals, Objectives, 

and Investigations for Venus Exploration (VEXAG, 2019) document will result in direct 

quantitative improvement of the estimate for C. For example, determining the presence and extent 

of silicic igneous rocks constrains the history of possible early Venus oceans and crustal evolution. 

Measuring isotopic ratios of noble gases, oxygen, hydrogen in the atmosphere will constrain the 

history of water, and possibly biological or prebiotic effects on global chemistry. Deep dynamics 

will constrain the possibility of circulation of materials from near the surface through the lower 

atmosphere, and geologic history and activity will determine the present and past supply of 

chemicals to different parts of potential Venus ecosystems. The entirety of Goal 1, in fact, 

prioritizes the understanding of Venus’ early history and potential habitability. 

Why C Is Not Zero for Venus. At the moment, this could be the most difficult stipulation 

of the Venus Life Equation. We simply don’t know enough about Venus’ evolution to do more 

than make model and geologically and evolutionary plausible ‘what if’ scenarios. Assigning for C 

a range of 0.1 to 0.5 may be generous, or not. Continuity estimates can only be vastly improved 

with each new mission we send to Venus. 

 

Life: With estimates for all 3 factors for Venus, we can calculate a range for the chance of life. 

Using example low and high values throughout: 
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                    L =  0.1 •  0.1 •  0.1 = 0.001 (low) or              (7) 

                    L =  0.4   •  0.5   •  0.5 = 0.1 (high)                      (8) 

These numbers are simply example estimates. Individual investigations and additional constraints, 

experiments, or observations may drive any one of the factors or subfactors higher, or perhaps 

more likely, lower. This exercise can be performed for any potential abode of life in our solar 

system and adapted and estimated for any potential habitable world. For example, the known and 

theorized sub-ice oceans on several icy moons (and Pluto) harbor several niches and pathways that 

might increase R or C in the equation, with Op from the inner solar system being statistically 

smaller. The atmospheres of the giant planets require a different set of assumptions for sources 

and renewability of potential heavier elements for life processes. In all these cases, for our own 

solar system, we know where to look and what we can measure to more quantitatively constrain 

these factors. It’s just a question of going there and doing it with missions. Although a similar 

exercise may well reveal several environments on solar system bodies having ranges of estimated 

L which exceed that of Venus, at least on the high end of the range, any strategy for astrobiology 

exploration must also factor in the accessibility of the potentially habitable environment. Venus is 

the nearest planet to Earth in both average distance and delta-V. A non-negligible estimate for L 

on Venus would seem to argue strongly for exploratory missions operating within the cloud 

environment as part of any comprehensive strategy to look for extant life in the solar system. 

Estimates of both R and C are complicated by an observability bias. Though we can 

speculate about the existence, size, and complexity of a potential habitat by extrapolating from 

what we know of Earth life, ultimately, the only thing that conclusively proves habitability is 

inhabitation. This is the primary reason for separating R into a "best case" biosphere and C into 

the probabilistic challenges to R; it allows the likelihood of a surviving biosphere to be captured 
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in the traditional sense, as a product of desired outcome and estimated probability. However, if 

any R term could be directly measured, then L would be one or zero, empirically (or at least for 

that epoch; the equation could still be used to estimate the likelihood of an extant biosphere given 

only evidence of past life). The Venus Life Equation is intended to be an exercise in identifying 

assumptions and needed constraints for a planet for which direct life detection efforts have yet to 

be attempted. 

Beyond Venus: The L determined by the Venus Life Equation, adapted for and integrated 

over many possible worlds, is related to the term fl of the Drake Equation (Burchel, 2006): the 

fraction of planets in our galaxy that develop life. The equation applied to Venus shows how we 

might approach questions of habitability on worlds beyond Earth. 

Consequences for Planetary Protection: Currently, NASA classifies Venus missions under 

planetary protection Category II, which “includes all types of missions to target those bodies where 

there is significant interest relative to the process of chemical evolution and the origin of life, but 

where there is only a remote chance that contamination carried by a spacecraft could jeopardize 

future exploration,” (NAS 2006). The National Academies (2006) recommended that the Category 

II planetary protection classification of Venus be retained. With respect to forward contamination 

of Venus clouds, this recommendation is based on the conclusion that “the cloud droplets consist 

of concentrated sulfuric acid, any terrestrial organisms would be rapidly destroyed by chemical 

degradation.”  

The only terrestrial life that might endure conditions in Venus aerosols are extreme 

acidophiles, which have not been observed to survive long periods of time airborne and are 

unlikely to be clean-room contaminants.  This is true even if one assumes that putative extant 

Venus microbes rely on substantially different metabolic inputs and outputs from possible 
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transported terrestrial life to the point that the "potentially habitable region" for each does not 

overlap.  This implies that the types of possible terrestrial (bio)chemical contamination that could 

survive exposure to Venus atmosphere/aerosols are unlikely to cause false positives in experiments 

looking for Venus life. The NAS study did not recommend any scientific investigations for the 

specific purpose of reducing uncertainty with respect to planetary protection issues. Thus, the 

Category II classification of the NAS study remains unchallenged by a nonzero value for L. Like 

any life detection experiment, however, any in-situ instrumentation will need to invoke a high level 

of internal protection to ensure accurate measurement. 

 

Conclusion: The Venus Life Equation allows an estimation of the probability of extant life on 

Venus can be made by examining the Earth analog, improving our understanding of planetary 

bodies in our solar system, and studying current conditions on Venus. The chances of life 

originating and surviving on Venus to today are low, but nonzero. Improved in-situ observation of 

conditions on Venus, especially in the potentially habitable zone in its middle atmosphere will help 

to constrain any estimate for Venus and other cloudy worlds. Adaptation and expansion of the 

Origination, Robustness, and Continuity factors to additional bodies within and outside our solar 

system will allow adaptation of the equation’s principles to other potential biospheres. 
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Figure 1. Three factors for which reasonable constraints exist that may point to favorable 

habitability conditions in the middle Venus atmosphere. Shown are upper and lower limits of 

temperature, pressure and pH prevailing in Venus clouds in the height range 45-70 km from its 

surface in the context of selected limit values for terrestrial life. Future missions may help to 

constrain additional major habitability variables such as water availability and ultraviolet radiation 

flux in this altitude range. 
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Figure 2. Schematic of the Venus Life Equation. Variables and equations elaborated in text. The 

final estimate for L in this figure represents an example low and high range of estimates for each 

factor.  
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Figure 3. Notional particles potentially to be encountered in the Venus cloud decks, inspired by 

terrestrial atmospheric sampling, to guide future instrument and analysis selection: 1) Complex 

shapes with fluorescent properties, 2) Particulate aggregates of sulfates and related compounds, 3) 

Unidentified group of complex shapes adhered to an aerosol particle, 4) Objects that resemble 

Earth bacteria or archaea, and 5) volcanic ash particles. 

  


