

May 15 at 10 p.m. NZST
June 1 at 9 p.m.
June 15 at 8 p.m.
July 1 at 7 p.m.

Evening sky in June 2022

To use the chart, hold it up to the sky. Turn the chart so the direction you are looking is at the bottom of the chart. If you are looking to the south then have 'South horizon' at the lower edge. As the earth turns the sky appears to rotate clockwise around the south celestial pole, SCP on the chart. Stars rise in the east and set in the west, just like the sun. The sky makes a small extra westward shift each night as we orbit the sun.

Sirius is the 'evening star'. It appears in the west at dusk and sets in the southwest twinkling like a diamond. Canopus is in the southwest, swinging down to the south skyline later, also twinkling colourfully. South of overhead are the Pointers, Alpha and Beta Centauri, with the Southern Cross (Crux) to their right. High in the eastern sky is Scorpius, upside down, with orange Antares marking the scorpion's heart. Below Scorpius's string is the teapot pattern of Sagittarius. Orange Arcturus, low in the north, often twinkles red and green. All the planets are in the late night and morning sky.

The Night Sky in June 2022

Sirius is the 'evening star'. At the beginning of the month it appears due west at dusk and sets in the southwest before 10 pm . By the end of June it sets at 8 pm . Being bright and white, Sirius twinkles with all colours when low in the sky. Canopus, the second brightest star, is higher in the southwest sky, swinging lower in the south later. Like Sirius it twinkles colourfully. Canopus is 310 light years* away and 13,000 times brighter than the sun.

Arcturus is a lone bright orange star in the north sky. Lacking any blue light it twinkles red and green when low in the sky. It sets in the northwest in the morning hours.

Crux, the Southern Cross, is south of the zenith. Beside it and brighter are Beta and Alpha Centauri, often called 'The Pointers' because they point at Crux. Alpha Centauri is the closest naked-eye star, 4.3 light years away. Beta Centauri and many of the stars in Crux are hot, extremely bright blue-giant stars around 550 light years away.

Antares is a medium-bright orange star midway up the eastern sky. It marks the scorpion's body. Antares is a red giant star: about 600 light years away and 19000 times brighter than the sun. Red giants are much bigger than the sun but cooler, hence the orange-red colour. Below Scorpius is Sagittarius, its brighter stars making 'the teapot'.

The Milky Way is brightest and broadest in the southeast toward Scorpius and Sagittarius. It remains bright but narrower through Crux and Carina then fades in the western sky. The Milky Way is our edgewise view of the galaxy, the pancake of billions of stars of which the sun is just one. The thick hub of the galaxy, 30000 light years away, is in Sagittarius. A scan along the Milky Way with binoculars will find many clusters of stars and some glowing gas clouds. Relatively nearby dark clouds of dust and gas dim the light of distant stars in the Milky Way. The dust clouds look like holes and slots in the Milky Way. These clouds eventually coalesce into new stars.

The Clouds of Magellan, LMC and SMC, in the lower southern sky, are luminous patches easily seen by eye in a dark sky. They are two small galaxies about 160000 and 200000 light years away, close by as galaxies go.

All the naked-eye planets are all in the late evening to dawn half of the sky, so are not shown on the chart. Saturn is first up. It rises around 11 pm at the beginning of the month and 9 pm by the end. It looks like a cream-coloured star and doesn't twinkle much. It is the brightest object in an empty region of sky. The Moon will be near Saturn on the night of the 18th-19th.

Jupiter rises around 2 a.m. at the beginning of the month and around midnight at the end. It is goldencoloured and the brightest 'star' in the morning sky till Venus appears. Jupiter doesn't twinkle at all. Mars appears just below Jupiter at the start of June. It looks like a medium-bright orange-red star. Jupiter continues moving up the sky, morning to morning, leaving Mars behind. The Moon will be near Jupiter on the morning of the 22nd and very close to Mars on the 23rd.

Venus is the brilliant 'morning star'. It rises around 4:30 at the beginning of the month and around 5:30 at the end. It is leaving us behind and moving to the far side of the Sun. Mercury begins a morning sky appearance in the second week of June when it appears below and right of Venus. It keeps that position for a fortnight then slips down into the dawn twilight by the end of the month.

Venus is directly above the Matariki/Pleiades star cluster on the morning of the 15th, about when Matariki can be first seen. The cluster is 12° below Venus, roughly half a hand-span at arm's length. Mercury is closer and at an angle of 2 o'clock from the cluster. By the 27th Venus is 7° to the right of Matariki. The thin crescent Moon will be just above Matariki on the 26th. See www.rasnz.org.nz for a morning sky chart.

[^0]

Southern Evening Sky in May-June

The chart shows the southern sky. Interesting star clusters and nebulae are indicated with asterisks. They are described on the other side of this page.

Centaurus, with the bright 'Pointers', and Crux, the Southern Cross are south of overhead, the tightest grouping of bright stars in the whole sky. Originally Crux was the hind legs of the Centaur, the horse-man of Greek mythology. The complete Centaur, with bow, is outlined at left. It was only in the $17^{\text {th }}$ Century that Crux was split off as a separate constellation. The slow wobble of Earth's axis allowed this part of the sky to be seen from more northerly places in ancient times. The fainter Pointer and the three bluish-white stars of the Crux are all super-bright stars hundreds of light years away. Alpha Centauri is just 4.3 light years* away and the reddish top star of Crux is 90 light years from us.

Omega Centauri, nearly overhead, is a globular cluster, a ball-shaped cluster of millions of stars. Its total mass is six million times the sun's mass. It is 17000 light years away and 200 light years across. Globular clusters are very ancient, around 10 billion years old, twice the age of the sun. Omega Centauri is the biggest of the hundred-odd globulars randomly orbiting our galaxy. It may originally have been the core of a small galaxy that collided with the Milky Way and was stripped of its outer stars. 47 Tucanae, near the SMC, is a similar but smaller cluster about 16000 light years away.

Coalsack nebula, left of Crux, looks like a hole in the Milky Way. It is a cloud of dust and gas 600 light years away, dimming the distant stars in the Milky Way. Many 'dark nebulae' can be seen along the Milky Way, appearing as slots and holes. These clouds eventually form new stars.

The Jewel Box is a compact cluster of young bright stars about 7000 light years away. The cluster formed about 16 million years ago. To the eye it looks like a faint star close by the second-brightest star in Crux. A telescope is needed to see it well.

Eta Carinae nebula, a luminous spot in the Milky Way to the right of Crux and lower, is a glowing gas cloud about 8000 light years from us. The thin gas glows in the ultra-violet light of nearby hot young stars.

The golden star in the cloud, visible in binoculars, is Eta [Greek ' e '] Carinae. It is estimated to be to be 80 times heavier than the sun. It is four million times brighter than the sun but is dimmed by dust clouds around it. It is expected to explode as a supernova in the next few thousand years. There are many star clusters in this part of the sky.
Large \& Small Clouds of Magellan (LMC \& SMC) appear as two luminous clouds, easily seen by eye in a dark sky. They are galaxies like the Milky Way but much smaller. Each is made of billions of stars. The LMC contains many clusters of young bright stars seen as spots of light in binoculars. The LMC is 160000 I.y away; the SMC 200000 I.y. Both are very close by for galaxies.

Tarantula nebula is a glowing gas cloud in the LMC. The gas glows in the ultra-violet light from a cluster of very hot stars at the centre of the nebula. The cloud is about 800 light years across. It is easily seen in binoculars and can be seen by eye on moonless nights.

This nebula is one of the brightest known. If it was as close as the Orion nebula then it would be as bright as the full moon.

[^1]

\int 然UNIVERSITYOF

Interesting Objects in the Eastern Sky in Early Winter

UNIVERSITY OF
CANTERBURY
Te Whare Wänanga o Waitaha
CHRISTCHURCH NEW ZEALAND
Antares is the brightest star in the region. It is orange coloured; being a 'red giant' star. (The 'red' of red giants is usually more an orange tint.) It is 600 light years* away, 19000 times brighter than the sun, and big enough to fill Earth's orbit. Its mass or weight is about 20 times that of the sun, so most of the star is very thin gas spread around a hot dense core. Red giants are the last stage in the evolution of stars. The dense core of the star has shrunk and heated. The outer regions of the star have expanded to a very spread-out gas. The core is wringing the last of the thermo-nuclear energy out of elements like helium, carbon, oxygen and neon. In about two million years the core of Antares will run out of energy and collapse, triggering a spectacular supernova explosion. (The sun will become a red-giant in about seven billion years time but it ends up as a white dwarf star, not a supernova.)

Antares marks the heart of Scorpius. In the evening at this time of year the Scorpion is on its back with its tail on the right, curving upward then turning down and curling clockwise. The sting is the horizontal line of bright stars pointing toward Antares. In Maori star lore the tail's hook is the 'fish hook of Maui'.
By midnight the scorpion's tail is directly overhead.
At the right-angle bend in the tail is a large and bright cluster of stars, NGC 6231, looking like a small comet. It is around 6000 l.y. away. Its brightest stars are 60000 times brighter than the sun. The cluster is about 8 light years across, similar in size to the Pleiades/Matariki cluster in our summer sky. Were it as close at the Pleiades (400 l.y.) then its brightest stars would be as bright as Sirius. Below the Scorpion's sting is M7 a cluster obvious to the eye and nicely seen in binoculars. M7 is about $800 \mathrm{l} . \mathrm{y}$. away and around 260 million years old. (The older a star cluster, the fewer bright stars it has.)

Below M7 and fainter is M6, the 'butterfly cluster'. M6 is around 1300 I.y. away and is half the age of M7. Other clusters worth a look in binoculars are M21, M23, NGC 6167, and NGC 6193. The 'M' objects were listed by the $18^{\text {th }}$ Century French astronomer Charles Messier. He hunted comets, so made a catalogue of fuzzy objects that could be mistaken for comets. The NGC (New General Catalogue) objects shown are bright to enough to have been seen by Messier but are too far south to be seen from Paris.

Left of the Sagittarius 'Teapot' is the glowing gas cloud M8, the 'Lagoon Nebula'. It is a star-forming region where gas and dust have recently gathered into new stars. ('Recently' = the past million years or so.) Ultraviolet light from one particularly hot star is lighting up the leftover gas, making it glow. On colour photos it appears pink due to hydrogen atoms fluorescing in the UV light. Below M8 is M20, the Trifid Nebula, small glowing patch in binoculars, also a pink hydrogen region in photos. Right alongside it is a blue reflection nebula where starlight is scattered by dust. Other nearby nebulae (gas and dust clouds) are M16 and M17.

Globular clusters, spherical clusters of ancient stars, are found throughout the region. The brightest is M4 by Antares. It is also one of the closest at 10000 l.y. away. In binoculars and small telescopes 'globs' appear as round fuzzy spots. Others marked on the chart are M9, M10, M12, M14, M19, M22, M55, M54, M62, M80 and NGC 6541. The concentration of globular clusters in this area was an early clue that the centre of the galaxy lay in this direction.

This part of the Milky Way is broad and bright as we are looking to the centre of the galaxy. The actual centre, 27000 light years away, is hidden from our view by intervening dust clouds. The nearer clouds make gaps and slots along the Milky Way. The hub of the galaxy is a great sphere of stars, called the 'central bulge'. Some of the central bulge is glimpsed in gaps between the dust clouds. At the very centre lies a black hole four million times the sun's mass but only the size of our solar system. Infra-red telescopes, peering through the dust, show stars orbiting the invisible black hole at high speed. By plotting the movements of these stars over the past two decades, astronomers have been able to deduce the mass of the central black hole and its distance. All big galaxies have a massive black hole at their centre.

[^0]: *A light year (l.y.)is the distance that light travels in one year: nearly 10 million million km. Sunlight takes eight minutes to get here; moonlight about one second. Sunlight reaches Neptune, the outermost major planet, in four hours. It takes sunlight four years to reach the nearest star, Alpha Centauri.

[^1]: *A light year (l.y.)is the distance that light travels in one year: nearly 10 million million km , or $10^{13} \mathrm{~km}$. Sunlight takes eight minutes to get here; moonlight about one second. Sunlight reaches Neptune, the outermost major planet, in four hours. It takes four years to reach the nearest star, Alpha Centauri.

