Graph Theory Instructional Courseware - Work in Progress

The above screen dump shows the exciting potential of highly graphical instructional material in

graph theory which I am working on as an independent research project under the direction of Professors Boyd and Batchelder.

In addition to simple drill & practice presentation of the definitional basics of graph theory, an underpinning of intelligent graph algorithms will provide a "construction set" environment for student exploration of graphs, their various representations and mathematical manipulations associated with their adjacency matrices. This goal of a user-driven instructional environment guided selection of ExperLISP[™] as the development environment.

Initial motivation to develop graph theoretical courseware came as a result of using Filevision[™] for a graph theory class homework assignment. My professors were most

Graph Theory Homework #1.

Ex. 2.17 Draw the four self-complementary graphs with eight points.

A STARTING POINT:

The Complete Graph of Eight Points, K₈.

Number of Lines = p(p-1)/2 = 8*7/2 = 28.

Eight points of degree 7.

					100	1st l					i de				i ang i			
od ha	formin d si ve ev e form	nce d en de	ensit gree	y mu on c	ist b one '	e m 'side	aint e", t llon	aine hen	ed oc rcu	in a dd i	a S in i	SC, ts r	hal efle	f th ectio	ер	oin	ts w	/ill
is t nui Co deg line	nen fa no lool mber, mber mplet grees es. Mu	c for c x, su of poi e Gra desir ultiply	on ev ch th nts a ph a ed ir 2q b K(su	en ir hat x(and p ind is a a S by the ub)8,	ntego (m)+ o(p-1 s, inc C gr e de solv	er, r x(n))/2 cide aph sire	n, a) = > is th ntly sin d de the	nd a (m- ne n , the ce c ensi	an +n) our e co d=2 ty o	od = nbe orr 2q of .	d ir p(p er o ect wh 5 a	nteg o-1) f lir nu en and	ger, /2 nes mb q is you	n, wh er d the u ge	and ere the of p e n et q m=	d so p = oin um].	ome = the soci it ber	e ateo of
ref thr	erefoi lect ir ee. Tl velopi	to found	ir of Ir vai	four riatio	degi ns o	rees of thi	s "3	ile f d/4	ou d"	r o [.] bal	f fo Ian	ur i ce a	refl are	ect fou	on Ind	fou	ir of	
1. 2. 3. 4.	3d ,	3d, 3d, 3d, 3d,	4d, 3d,	4d, 4d,	3d, 4d,	3d 4d	, 4c , 3c	I, 4 I, 4	ld ld	(by (b	y tv y tł	vo's hree	s) e's		y or y o			

Ex. 2.17 - Draw the four self-complementary graphs with eight points.

First Variation - Side 1:

Point degrees along the circumference are:

3,4,3,4,3,4,3,4

3

Graph Theory Homework [#]1.

Ex. 2.17 - Draw the four self-complementary

First Variation - Side 2:

Point degrees along the circumference are:

3,4,3,4,3,4,3,4

Ex. 2.17 - Draw the four self-complementary graphs with eight points.

Second Variation - Side 1:

Point degrees along the circumference are:

3,3,4,4,3,3,4,4

Graph Theory Homework [#]1.

Ex. 2.17 - Draw the four self-complementary graphs with eight points.

Second Variation - Side 2:

Point degrees along the circumference are:

3,3,4,4,3,3,4,4

Ex. 2.17 - Draw the four self-complementary graphs with eight points.

Third Variation - Side 1:

Point degrees along the circumference are:

3,3,3,4,4,4,3,4

Graph Theory Homework #1.

Ex. 2.17 - Draw the four self-complementary eight points.

Third Variation - Side 2:

Point degrees along the circumference are:

3,3,3,4,4,4,3,4

Ex. 2.17 - Draw the four self-complementary graphs with eight points.

Fourth Variation - Side 1:

Point degrees along the circumference are:

<u>3,3,3,3,4,4,4,4</u>

Graph Theory Homework #1.

Ex. 2.17 - Draw the four self-complementary graphs with eight points.

Fourth Variation - Side 2:

Point degrees along the circumference are:

3,3,3,3,4,4,4,4

Graph Equivalence:

For <G,R>

$p \equiv_G q \leftrightarrow (p,q) \in \mathbb{R}$, and $(p,r) \in \mathbb{R} \leftrightarrow (q,r) \in \mathbb{R} [Ur \in G]$

From the statement of graph theoretic equivalence, \equiv_G , the proof can be reduced to the simplest case of three points. In other words, *u* and *w* represent the collective cases of all elements in sets *U* and *W*

A Complete Graph on V(G) is one which connects every point to every other. This implies that there exists a line between u and w

Since the Complement of a graph consists of all lines of the Complete graph on the same point set, V(G), the missing line which connects u and w must be in the Complement. So v's "privileged" status in being a cutpoint is necessarily destroyed in forming the Complement.

This relationship is easily seen in the case of three points as shown here. "Popping" back up to more complex graphs by appeal to the theorem of graph equivalence, it is intuitively apparent that in forming any complement of a graph with a cutpoint will necessarily involve connecting all points to all others that had been in the delicate position of being separable by v in the original graph.

> A relevant sociological example would be the dissolution of a brokerage relation.