
Muen Separation Kernel

Alessandro Monaco - M63001301
Pietro Di Maro - M63001319

Analysis and isolation testing

Roadmap

• Introduction to Muen SK

• Separation Kernel and MCSs

• Muen Subjects

• Isolation mechanisms in Muen

• Isolation test (Qemu)

• Isolation test (Bare-metal)

• Results and conclusions

Muen Separation Kernel

Introduction to Muen Separation Kernel
• a separation kernel is a specialized microkernel that provides an execution

environment for multiple components that can only communicate according to a
predetermined policy and are otherwise isolated from each other

• Muen runs on Intel x86 platform

• Muen is heavily based on Intel VT-x, Intel EPT and Intel VT-d DMA hardware-
assisted virtualization technologies, used to achieve full virtualization and
separation, delegating certain management tasks to the hardware, greatly
simplifying the kernel’s code

• Muen’s kernel runs in VMX root mode, while components (so-called subjects)
run in VMX non-root mode

• Muen is completely written in Spark/Ada, to formally prove many properties of its
code

Separation Kernels and Mixed-Criticality Systems

• In MCSs, safety critical functions are called the Trusted Computing Base
(TCB) and must be isolated from the non-critical parts of the system

• A separation kernel is a fundamental part component-based MCS, since
its main purpose is to enforce the separation of all software components,
by creating for each of them an environment which is indistinguishable
from that provided by a physical dedicated system

• A key aspect of a system running on top of a separation kernel is staticity:
the entire system policy is verified and compiled to a suitable format at
system integration time and cannot change in any way during runtime

Muen Subjects

Classification on Criticality:

• trusted subjects = critical, isolated parts of the TCB,
whose failure would break the safety constraints of the
system

• untrusted subjects = non-privileged, non-critical
functions, implementing more advanced and complex
features

Classification on execution environment (execution
profiles):

• native application = bare-metal 64-bit application, no
OS kernel, no memory management, no hardware
exception handling and no control register access

• virtual machine = entity that can run an OS and has
more control over its execution environment (32/64 bit
mode, memory and page table management via EPT,
hardware exception handling)

Multiple software components running on
the same hardware

Isolation Mechanisms

Temporal isolation
Muen scheduling

• Temporal isolation of all subjects is achieved with a scheduler which must
prevent any interference between guests

• To achieve this, scheduling is offline, preemptive and cyclic

• Scheduling information is declared in advance in a scheduling plan,
which is part of the system policy

• The scheduling plan is specified in terms of frames

• a minor frame specifies a subject
and a precise amount of time for
which it has to consecutively
execute (without being
preempted)

• a major frame consists of a
sequence of minor frames

• Major frames are executed
cyclically, starting over from their
first minor frame, at their end

Major frame example (1 CPU)

Major frame example (2 CPU)

• On systems with multiple logical CPUs, a scheduling plan must specify a
sequence of minor frames (major frame) for each processor core

• In order for the cores to not run out of sync, a major frame must be of
equal length on all CPUs

• Subjects never migrate between cores (they can only be scheduled on
one particular CPU)

• Scheduling plans cannot be altered at runtime

• But multiple scheduling plans can be specified

• The privileged subject 𝜏0 is allowed to change among the scheduling
plans, through the major frame index global variable

• The scheduling plan, specified in the policy, is
organized in a hierarchical fashion

• Each subject is assigned to a scheduling
group

• Subjects which are part of the same
scheduling group can do efficient,
cooperative scheduling using handover
events

• A scheduling partition contains one or more
scheduling groups, whose subjects do not
require strict temporal isolation, but only
spatial isolation

• This mechanism allows for a more efficient
use of CPU time: all the scheduling groups
within a partition are scheduled round robin
with preemption and the opportunity to yield
and/or sleep

• A prioritization is not implemented on purpose to avoid any starvation issues

• Prioritization with starvation protection cannot be implemented with low
complexity and, therefore, cannot be implemented in a microkernel

• A subject can yield execution for the rest of the minor frame if it does not require
further CPU time

• When a subject yields, the kernel resumes execution of the next active scheduling
group of the partition; if no other group is active, the subject which yielded will be
scheduled again

• Subjects which are event-driven can sleep until one of the following events:
pending interrupt, pending target event or timed event expiry

• When a subject requests sleep, the kernel resumes execution of the next
scheduling group of the partition. If no other group is active, the whole scheduling
partition is marked as sleeping and the subject will be scheduled but not execute
any instruction, until it is woken up by an event

Resource isolation

• Resource assignment to subjects is static and done prior to the execution
of the system, by completely describing it in the system policy

• There is no dynamic resource management, reducing complexity and
probability of unwanted interaction

• When a subject tries to access resources, such as devices that are
emulated, a system component performs the necessary actions to give
the subject the impression that it has unrestricted access to a device,
while in reality the necessary operations are effectively emulated by
another component

Memory isolation
• All memory resources of the kernel and each

subject are static and explicitly specified in
the system policy

• The exact memory layout of the final system
is fixed at integration time

• Subjects do not have access to any page
tables, including their own, to assure that
they cannot alter the memory layout

• The hardware memory management
mechanism then enforces the address
translations specified by the page tables,
ultimately restricting the subject to the
virtual address space declared by the policy

Device isolation
• I/O ports and interrupts are defined in the

subject specification

• A device specification in the system policy
defines which hardware interrupt it generates

• Devices are assigned to subjects through
device references

• A global mapping of hardware interrupt to
destination subject is known at integration time

• Devices that are not allocated to a subject are
not accessible during the runtime of the system

• Interrupts that have no valid interrupt-to-subject
mapping are ignored by the kernel.

Fault isolation
• The kernel executes in VMX root mode, while subjects run in VMX non-root mode, this shields the

kernel from unwanted access by subjects

• Hardware exceptions can occur in VMX non-root mode, while executing a subject, or in VMX root mode,
when the kernel is operating

• Use of the SPARK programming language with the ability to prove the absence of runtime errors means
that exceptions are not expected during regular operation in VMX root-mode

• A root mode exception indicates a serious error and the system is halted

• In the case of an exception being caused by the execution of a subject, the exception handling depends
on the profile of the running subject

• If a native subject performs an illegal resource access or operation (violating its policy), a trap and a
transition to VMX root-mode occurs and the Muen kernel is invoked; it can then determine the cause,
using the trap table, and handle the condition according to policy

• VM subjects are able to perform their own exception handling, a trap only occurs if the subject is
somehow not able to handle the exception properly. The trap is then processed by the kernel like in the
native subject case

Isolation Test

Project goal
• Demonstrating temporal isolation capabilities of Muen SK, by running two

separated subjects on top of it and measuring activation latencies

• a critical native subject running a simple periodical realtime task that only
prints its timing informations

• a non-critical Linux virtual machine subject which may (or may not) run a
CPU intensive workload

Activation latency evaluation and comparison

Qemu emulated setup

System policy
Muen developers already provide different useful examples both for system policies and components,
among which we chose the following as a starting point for this project:

• example component, which provides a minimal template for a native subject component’s
implementation

• demo_system_vtd.xml system policy, which provides a minimal Muen setup with two Linux VMs and
all the other mandatory subjects for the correct running of the system, plus the instance of the
example component

• qemu-kvm.xml hardware configuration

• qemu-kvm.xml platform configuration

• demo_system_vtd-qemu-kvm.xml scheduling plan, in which both tasks are scheduled on the same
CPU, for the purpose of the isolation test, but in different scheduling partitions

• An instance of the example component is used to implement the periodical hard real-time task

• The lnx2 storage_linux virtual machine subject is used to generate the CPU intensive workload,
through sysbench’s CPU test

Scheduling plan
• In the demo_system_vtd-qemu-kvm.xml

scheduling plan: storage_linux and example
are inserted in different scheduling groups,
each in an independent scheduling partition,
named storage_linux and example respectively,
which are scheduled on the same CPU core

• Our tick rate is set to 1000 (so 1 tick equals to 1
ms), so minor frame durations are in
milliseconds

• The major frame’s duration is the same on all
CPUs (200 ms)

• The task’s period is set at 600 ms (multiple of
200 ms), this way the example subject’s jobs
will be released on its minor frame’s start with
no additional latencies

Results

Two different scenarios were analysed

1. running the system without interacting with the Linux VMs (no
commands running)

2. running the system while executing the sysbench cpu test in the
storage_linux VM

• All the logs on the serial output were readable through Qemu’s serial.out
file, and were then compared in both scenarios

• With emulation, timing behaviour is not predictable nor accurate

Qemu emulation

• When sysbench is executing, Linux’s CFS gives more execution time to Qemu process when
it’s stressing the CPU, thus the unexpected lower activation latencies of the RT task

• For this reason, we decided to run the tests directly on hardware, with a bare-metal
execution of Muen SK and no emulation/virtualization layer in between

Activation latency evaluation and comparison

Bare-metal hardware setup

• In order to run Muen SK directly on hardware, we
used a Lenovo ThinkPad L440 laptop, as it is
the most similar hardware (in our possession) to
those of Muen’s official supported hardware list

• Its specifications are basically the same as the
Lenovo ThinkPad T440s, except minor
differences

When porting the system from Qemu to real
hardware, slight modifications were needed:

• the real-time task (example component) and the
demo_system_vtd.xml system policy remained
unchanged

• as the L440 still has the same number (2) of CPU
cores as the emulated setup, the
demo_system_vtd-qemu-kvm.xml scheduling
plan was only renamed as demo_system_vtd-
lenovo-l440.xml, to match the new hardware
configuration

• the hardware description hardware/lenovo-
l440.xml file was extracted with the
mugenhwcfg tool, using the mugenhwcfg-live
ISO image on a bootable USB drive

• for the purpose of this project, the platform
description provided by Muen developers for
the Lenovo ThinkPad T440s laptop was sufficient
and was only renamed as platform/lenovo-
l440.xml

• The Muen system defined via this system policy
was then transformed and integrated by the
provided toolchain to finally generate an ISO
image, which was booted on the L440 laptop

Intel AMT™
Active Management Technology

• The Intel Core i5-4300M processor of
this laptop supports Intel AMT
technology, which turned out to be
crucial for this project

• Among all the useful management
tools, it includes the Serial-over-LAN
feature, which allows, when properly
configured, to read the serial output on
another computer, through the network,
using tools like MeshCommander

Results
The same two scenarios as before were analysed,
running the system with and without the
sysbench cpu test.

The RT task’s logs in all 4 scenarios were then
compared:

1. Qemu emulated

2. Qemu emulated, sysbench cpu test running

3. Bare-metal

4. Bare-metal, sysbench cpu test running

With the following interesting findings:

• the overall logic behavior between the
emulated setup and bare-metal execution is the
same, but it is temporally accurate on real
hardware

• with the real-time task’s period set sufficiently
high to match its WCET, on the bare-metal
execution no deadline misses occur, and this is
not influenced when the CPU is loaded using
the sysbench test on the storage_linux VM
(which runs on the same processor as the
example task)

• not only the CPU load does not cause any
deadline misses, but it doesn’t induce any
noticeable increase in the task’s activation
latency, either

Bare-metal hardware execution

Hardware results

Overall results

