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Introduction to Muen Separation Kernel
• a separation kernel is a specialized microkernel that provides an execution 

environment for multiple components that can only communicate according to a 
predetermined policy and are otherwise isolated from each other 

• Muen runs on Intel x86 platform 

• Muen is heavily based on Intel VT-x, Intel EPT and Intel VT-d DMA hardware-
assisted virtualization technologies, used to achieve full virtualization and 
separation, delegating certain management tasks to the hardware, greatly 
simplifying the kernel’s code 

• Muen’s kernel runs in VMX root mode, while components (so-called subjects) 
run in VMX non-root mode 

• Muen is completely written in Spark/Ada, to formally prove many properties of its 
code



Separation Kernels and Mixed-Criticality Systems

• In MCSs, safety critical functions are called the Trusted Computing Base 
(TCB) and must be isolated from the non-critical parts of the system 

• A separation kernel is a fundamental part component-based MCS, since 
its main purpose is to enforce the separation of all software components, 
by creating for each of them an environment which is indistinguishable 
from that provided by a physical dedicated system 

• A key aspect of a system running on top of a separation kernel is staticity: 
the entire system policy is verified and compiled to a suitable format at 
system integration time and cannot change in any way during runtime



Muen Subjects

Classification on Criticality: 

• trusted subjects = critical, isolated parts of the TCB, 
whose failure would break the safety constraints of the 
system 

• untrusted subjects = non-privileged, non-critical 
functions, implementing more advanced and complex 
features 

Classification on execution environment (execution 
profiles):  

• native application = bare-metal 64-bit application, no 
OS kernel, no memory management, no hardware 
exception handling and no control register access 

• virtual machine = entity that can run an OS and has 
more control over its execution environment (32/64 bit 
mode, memory and page table management via EPT, 
hardware exception handling)

Multiple software components running on 
the same hardware



Isolation Mechanisms 



Temporal isolation
Muen scheduling

• Temporal isolation of all subjects is achieved with a scheduler which must 
prevent any interference between guests 

• To achieve this, scheduling is offline, preemptive and cyclic 

• Scheduling information is declared in advance in a scheduling plan, 
which is part of the system policy 

• The scheduling plan is specified in terms of frames



• a minor frame specifies a subject 
and a precise amount of time for 
which it has to consecutively 
execute (without being 
preempted) 

• a major frame consists of a 
sequence of minor frames 

• Major frames are executed 
cyclically, starting over from their 
first minor frame, at their end

Major frame example (1 CPU)

Major frame example (2 CPU)



• On systems with multiple logical CPUs, a scheduling plan must specify a 
sequence of minor frames (major frame) for each processor core 

• In order for the cores to not run out of sync, a major frame must be of 
equal length on all CPUs 

• Subjects never migrate between cores (they can only be scheduled on 
one particular CPU) 

• Scheduling plans cannot be altered at runtime 

• But multiple scheduling plans can be specified 

• The privileged subject 𝜏0 is allowed to change among the scheduling 
plans, through the major frame index global variable



• The scheduling plan, specified in the policy, is 
organized in a hierarchical fashion 

• Each subject is assigned to a scheduling 
group 

• Subjects which are part of the same 
scheduling group can do efficient, 
cooperative scheduling using handover 
events 

• A scheduling partition contains one or more 
scheduling groups, whose subjects do not 
require strict temporal isolation, but only 
spatial isolation 

• This mechanism allows for a more efficient 
use of CPU time: all the scheduling groups 
within a partition are scheduled round robin 
with preemption and the opportunity to yield 
and/or sleep



• A prioritization is not implemented on purpose to avoid any starvation issues 

• Prioritization with starvation protection cannot be implemented with low 
complexity and, therefore, cannot be implemented in a microkernel 

• A subject can yield execution for the rest of the minor frame if it does not require 
further CPU time 

• When a subject yields, the kernel resumes execution of the next active scheduling 
group of the partition; if no other group is active, the subject which yielded will be 
scheduled again 

• Subjects which are event-driven can sleep until one of the following events: 
pending interrupt, pending target event or timed event expiry 

• When a subject requests sleep, the kernel resumes execution of the next 
scheduling group of the partition. If no other group is active, the whole scheduling 
partition is marked as sleeping and the subject will be scheduled but not execute 
any instruction, until it is woken up by an event



Resource isolation

• Resource assignment to subjects is static and done prior to the execution 
of the system, by completely describing it in the system policy 

• There is no dynamic resource management, reducing complexity and 
probability of unwanted interaction 

• When a subject tries to access resources, such as devices that are 
emulated, a system component performs the necessary actions to give 
the subject the impression that it has unrestricted access to a device, 
while in reality the necessary operations are effectively emulated by 
another component



Memory isolation
• All memory resources of the kernel and each 

subject are static and explicitly specified in 
the system policy 

• The exact memory layout of the final system 
is fixed at integration time 

• Subjects do not have access to any page 
tables, including their own, to assure that 
they cannot alter the memory layout 

• The hardware memory management 
mechanism then enforces the address 
translations specified by the page tables, 
ultimately restricting the subject to the 
virtual address space declared by the policy



Device isolation
• I/O ports and interrupts are defined in the 

subject specification 

• A device specification in the system policy 
defines which hardware interrupt it generates 

• Devices are assigned to subjects through 
device references 

• A global mapping of hardware interrupt to 
destination subject is known at integration time 

• Devices that are not allocated to a subject are 
not accessible during the runtime of the system 

• Interrupts that have no valid interrupt-to-subject 
mapping are ignored by the kernel.



Fault isolation
• The kernel executes in VMX root mode, while subjects run in VMX non-root mode, this shields the 

kernel from unwanted access by subjects 

• Hardware exceptions can occur in VMX non-root mode, while executing a subject, or in VMX root mode, 
when the kernel is operating  

• Use of the SPARK programming language with the ability to prove the absence of runtime errors means 
that exceptions are not expected during regular operation in VMX root-mode  

• A root mode exception indicates a serious error and the system is halted 

• In the case of an exception being caused by the execution of a subject, the exception handling depends 
on the profile of the running subject 

• If a native subject performs an illegal resource access or operation (violating its policy), a trap and a 
transition to VMX root-mode occurs and the Muen kernel is invoked; it can then determine the cause, 
using the trap table, and handle the condition according to policy 

• VM subjects are able to perform their own exception handling, a trap only occurs if the subject is 
somehow not able to handle the exception properly. The trap is then processed by the kernel like in the 
native subject case



Isolation Test



Project goal
• Demonstrating temporal isolation capabilities of Muen SK, by running two 

separated subjects on top of it and measuring activation latencies 

• a critical native subject running a simple periodical realtime task that only 
prints its timing informations 

• a non-critical Linux virtual machine subject which may (or may not) run a 
CPU intensive workload



Activation latency evaluation and comparison

Qemu emulated setup



System policy
Muen developers already provide different useful examples both for system policies and components, 
among which we chose the following as a starting point for this project: 

• example component, which provides a minimal template for a native subject component’s 
implementation 

• demo_system_vtd.xml system policy, which provides a minimal Muen setup with two Linux VMs and 
all the other mandatory subjects for the correct running of the system, plus the instance of the 
example component 

• qemu-kvm.xml hardware configuration 

• qemu-kvm.xml platform configuration 

• demo_system_vtd-qemu-kvm.xml scheduling plan, in which both tasks are scheduled on the same 
CPU, for the purpose of the isolation test, but in different scheduling partitions 

• An instance of the example component is used to implement the periodical hard real-time task 

• The lnx2 storage_linux virtual machine subject is used to generate the CPU intensive workload, 
through sysbench’s CPU test



Scheduling plan
• In the demo_system_vtd-qemu-kvm.xml 

scheduling plan: storage_linux and example 
are inserted in different scheduling groups, 
each in an independent scheduling partition, 
named storage_linux and example respectively, 
which are scheduled on the same CPU core 

• Our tick rate is set to 1000 (so 1 tick equals to 1 
ms), so minor frame durations are in 
milliseconds 

• The major frame’s duration is the same on all 
CPUs (200 ms) 

• The task’s period is set at 600 ms (multiple of 
200 ms), this way the example subject’s jobs 
will be released on its minor frame’s start with 
no additional latencies



Results

Two different scenarios were analysed  

1. running the system without interacting with the Linux VMs (no 
commands running) 

2. running the system while executing the sysbench cpu test in the 
storage_linux VM 

• All the logs on the serial output were readable through Qemu’s serial.out 
file, and were then compared in both scenarios 

• With emulation, timing behaviour is not predictable nor accurate

Qemu emulation



• When sysbench is executing, Linux’s CFS gives more execution time to Qemu process when 
it’s stressing the CPU, thus the unexpected lower activation latencies of the RT task 

• For this reason, we decided to run the tests directly on hardware, with a bare-metal 
execution of Muen SK and no emulation/virtualization layer in between



Activation latency evaluation and comparison

Bare-metal hardware setup



• In order to run Muen SK directly on hardware, we 
used a Lenovo ThinkPad L440 laptop, as it is 
the most similar hardware (in our possession) to 
those of Muen’s official supported hardware list 

• Its specifications are basically the same as the 
Lenovo ThinkPad T440s, except minor 
differences 

When porting the system from Qemu to real 
hardware, slight modifications were needed: 

• the real-time task (example component) and the 
demo_system_vtd.xml system policy remained 
unchanged 

• as the L440 still has the same number (2) of CPU 
cores as the emulated setup, the 
demo_system_vtd-qemu-kvm.xml scheduling 
plan was only renamed as demo_system_vtd-
lenovo-l440.xml, to match the new hardware 
configuration 

• the hardware description hardware/lenovo-
l440.xml file was extracted with the 
mugenhwcfg tool, using the mugenhwcfg-live 
ISO image on a bootable USB drive 

• for the purpose of this project, the platform 
description provided by Muen developers for 
the Lenovo ThinkPad T440s laptop was sufficient 
and was only renamed as platform/lenovo-
l440.xml 

• The Muen system defined via this system policy 
was then transformed and integrated by the 
provided toolchain to finally generate an ISO 
image, which was booted on the L440 laptop



Intel AMT™
Active Management Technology

• The Intel Core i5-4300M processor of 
this laptop supports Intel AMT 
technology, which turned out to be 
crucial for this project 

• Among all the useful management 
tools, it includes the Serial-over-LAN 
feature, which allows, when properly 
configured, to read the serial output on 
another computer, through the network, 
using tools like MeshCommander



Results
The same two scenarios as before were analysed, 
running the system with and without the 
sysbench cpu test. 

The RT task’s logs in all 4 scenarios were then 
compared: 

1. Qemu emulated 

2. Qemu emulated, sysbench cpu test running 

3. Bare-metal 

4. Bare-metal, sysbench cpu test running 

With the following interesting findings: 

• the overall logic behavior between the 
emulated setup and bare-metal execution is the 
same, but it is temporally accurate on real 
hardware 

• with the real-time task’s period set sufficiently 
high to match its WCET, on the bare-metal 
execution no deadline misses occur, and this is 
not influenced when the CPU is loaded using 
the sysbench test on the storage_linux VM 
(which runs on the same processor as the 
example task) 

• not only the CPU load does not cause any 
deadline misses, but it doesn’t induce any 
noticeable increase in the task’s activation 
latency, either

Bare-metal hardware execution



Hardware results



Overall results


