
SHMStream Version 2 IPC Interface

Robert Dorn, secunet AG

April 2013

CONTENTS 1 PRINCIPLES OF OPERATION

Contents

1 Principles of Operation 2

1.1 Shared Memory Interface . 2

1.2 Speculative Access . 3

1.3 Ring Buffer . 3

1.4 Overrun Detection and Resynchronization . 3

1.5 Reset Detection . 3

2 Data Layout 3

3 Writer 4

3.1 Initialization . 4

3.2 Writing . 4

3.3 Deactivation . 5

4 Reader 5

4.1 Synchronization . 5

4.2 Reading . 6

A Example SHMStream memory region 7

List of Figures

1 Principles of Operation

This section explains the operation of the SHMStream interface in a general way. Details of the
interface are given later.

1.1 Shared Memory Interface

SHMStream is an interface for transferring fixed sized packets between different subjects which
operates on a shared memory region. By this it is independent from special system-specific
interfaces for data exchange.

A SHMStream interface provides a nonblocking channel between a single writer and poten-
tially multiple independent readers1. At any time the writer may be replaced by a different
instance which does not depend on the state of the previous writer. Assuming conforming be-
haviour all packets are guaranteed to arrive in the order written. Furthermore packets are only
lost when there are protocol mismatches, the writer overruns the reader or the writer is reset.
Readers can detect and recover from these events.

If no asynchronous notification is available, SHMStream can be used by polling, otherwise an
interrupt driven operation is possible.

1Typically there is exactly one reader for each writer.

2

2 DATA LAYOUT 1.2 Speculative Access

1.2 Speculative Access

By design SHMStream is a purely unidirectional interface without any kind of back channel.
Consequently no flow control or locking can be established and the buffer may change at any
time. Therefore only atomic accesses can be guaranteed to be internally consistent. Data which
cannot be accessed atomically (e.g. the payload) has to be read speculatively and can be deemed
valid only if its validity can be confirmed by a further read to an atomic control structure.

1.3 Ring Buffer

Data is transferred in packets of fixed size which are stored in a ring buffer. As no bidirectional
communication is desired, the reader maintains a private read counter (RC). In addition to the
write counter (WC) which is updated when a write has completed, a write start counter (WSC) is
introduced which is increased before data is written.

1.4 Overrun Detection and Resynchronization

A read operation can start whenever the writer is ahead of the reader (WC > RC). After reading
the packet(s) it must be verified that the writer did not begin overwriting the data read by
checking the write start counter (WSC ≤ RC + Elements). Otherwise the data read is not valid
and an overrun has to be signalled to the application.

Recovery from an overrun is possible by increasing the read counter so that it references
packets which are not yet overwritten (e.g. RC := WC).

1.5 Reset Detection

As writers may be reset without notification, readers must be able to detect a restarted writer.
For this purpose an Epoch field is set to a unique value whenever the SHMStream interface is
initialized2.

Data from any other field is only valid if the reader can assure that the Epoch is not zero and
did not change between accesses.

Whenever a new epoch is detected, the reader signals the change of epoch to the application
and resets the read counter.

2 Data Layout

The shared memory region consists of a fixed header of 64 bytes and an array of Elements packets
consisting of Size bytes each. There is no padding or alignment before or between packets. If
alignment is necessary, packet sizes have to be chosen accordingly.

Any additional memory should be zero. The fields Protocol, Size, and Elements may only
be written when the interface is inactive (Epoch = 0).

The header consists of eight 64 bit values stored in machine byte order:

2If the writer cannot be trusted to enforce this property, out-of-band measures have to be used for reliable
detection of transitions between epochs

3

3 WRITER

Field Offset Size Description
[Bytes] [Bytes]

Transport 0 8 SHMStream marker. Fixed value
16#4873 12b6 b79a 9b6d#. May be zero when inactive.

Epoch 8 8 Number chosen by writer. Changed on each reset. Zero when
inactive. Atomic value.

Protocol 16 8 Nonzero number used to detect protocol mismatches.
Size 24 8 Size of a packet in bytes.
Elements 32 8 Number of packets contained in the buffer.
Reserved 32 8 Zero, ignored.
WSC 48 8 (Write Start Counter) Increased for each packet before it is

written. Initially zero. Atomic value.
WC 56 8 (Write Counter) Total number of packets written. Initially

zero. Atomic value.

3 Writer

Note that the following pseudocode shows only a specific possibility for implementation. The
reader may not rely on any details following from the pseudocode.

3.1 Initialization

Before any changes can be made it must be assured that any previous epoch is ended. This is
performed by setting Epoch to zero.

1 Buffer.Header.Epoch := 0;

It may be desired to zero the complete memory area in order to remove any potential re-
mainders of the previous epoch.

The Header is initialized in arbitrary sequence.

2 Buffer.Header.Transport := 16#4873 _12b6_b79a_9b6d #;
3 Buffer.Header.Protocol := PROTOCOL_ID;
4 Buffer.Header.Size := PACKET_SIZE;
5 Buffer.Header.Elements := BUFFER_ENTRIES;
6 Buffer.Header.WSC := 0;
7 Buffer.Header.WC := 0;

Finally a new epoch is initiated. The method to determine the number of the Epoch field is
platform dependent.

8 Buffer.Header.Epoch := Get_Epoch;

3.2 Writing

It is assumed that the buffer has been initialized. At first the WSC is incremented.

1 WC := Buffer.Header.WC;
2 Position := WC mod Buffer.Header.Elements;
3 WC := WC + 1;
4 Buffer.Header.WSC := WC;

The increased WSC has invalidated the previous data element at Position which can now be
overwritten.

4

4 READER 3.3 Deactivation

5 Buffer.Data (Position) := Packet_To_Be_Written;

The new data has been written and can now be made visible by increasing WC.

6 Buffer.Header.WC := WC;

Note that the writer may choose to write multiple packets at the same time.

3.3 Deactivation

1 Buffer.Header.Epoch := 0;

4 Reader

The reader may rely on the correct behaviour of the writer for transferring packets. Should the
writer violate the protocol no attempts of the reader to recover are necessary. If a protocol error
is detected, the reader should wait for a change of epoch.

As the writer may be completely untrusted it shall nevertheless be assured that a rogue writer
cannot compromise the integrity or availability of the reader. This includes:

� The reader may not read packets which are not fully contained in the shared memory area.

� The reader may not affect unrelated data.

� The reader may not block.

� The reader must resynchronize itself on a new epoch.

4.1 Synchronization

As the first step the reader has to store the epoch for later comparison.

1 Reader.Epoch := Buffer.Header.Epoch;
2

3 if Reader.Epoch = 0 then
4 Result := Inactive;
5 -- Try again later.

If the epoch is not zero the reader determines if the interface is suitable. Readers may choose
to expect fixed interface parameters.

6 else
7 Reader.Protocol := Buffer.Header.Protocol;
8 Reader.Size := Buffer.Header.Size;
9 Reader.Elements := Buffer.Header.Elements;

10 Reader.RC := 0;
11

12 if not Is_Valid (Reader.Protocol ,
13 Reader.Size ,
14 Reader.Elements ,
15 MEMORY_REGION_SIZE) then
16 Result := Incompatible_Interface;
17 -- Wait for better times
18 else
19 Result := Success;
20 -- Interface can be used if the epoch did
21 -- not change behind our back
22 end if;
23 end if;

5

4.2 Reading 4 READER

Before the result can be trusted, the reader has to assure that the epoch did not change.
Otherwise the reader must ignore the previous result and try again.

24 if Reader.Epoch /= Buffer.Header.Epoch then
25 Result := Epoch_Changed;
26 -- Try again later.
27 end if;

4.2 Reading

Packets can only be read after a successful synchronization. At first it must be assured that a
packet is available:

1 if Reader.RC >= Buffer.Header.WC then
2 -- Note: Reader.RC > Buffer.Header.WC indicates a
3 -- protocol error.
4 Result := No_Data;
5 else
6 Packet := Buffer.Data (Reader.RC mod Reader.Elements);

After a packet is copied it must be assured that it was not overwritten while being read:

7 if Buffer.Header.WSC > Reader.RC + Reader.Elements then
8 Result := Overrun_Detected;
9 Reader.RC := Buffer.Header.WC; -- Recover

10 else
11 Result := Success;
12 Reader.RC := Reader.RC + 1; -- Increment buffer
13 end if;
14 end if;

After every read attempt it must be assured that the epoch has not changed. Otherwise the
result has to be discarded and a resynchronization is necessary.

15 if Reader.Epoch /= Buffer.Header.Epoch then
16 Result := Epoch_Changed;
17 -- Resynchronization necessary;
18 end if;

6

A EXAMPLE SHMSTREAM MEMORY REGION

A Example SHMStream memory region

6D 9B 9A B7 B6 12 73 48 -- "SHMStream20=" marker

01 00 00 00 00 00 00 00 -- epoch 1

EF BE EF BE EF BE 00 00 -- 0xBEEFBEEFBEEF protocol

02 00 00 00 00 00 00 00 -- two bytes per packet

08 00 00 00 00 00 00 00 -- the buffer contains eight packets

00 00 00 00 00 00 00 00 -- reserved, zero

0a 00 00 00 00 00 00 00 -- ten packets written or to be written

09 00 00 00 00 00 00 00 -- nine packets written

09 09 0a 02 03 03 04 04 -- second packet is overwritten

05 05 06 06 07 07 08 08 -- packet three to nine are readable

7

	Principles of Operation
	Shared Memory Interface
	Speculative Access
	Ring Buffer
	Overrun Detection and Resynchronization
	Reset Detection

	Data Layout
	Writer
	Initialization
	Writing
	Deactivation

	Reader
	Synchronization
	Reading

	Example SHMStream memory region

