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Abstract
A	major	advancement	in	the	use	of	radio	telemetry	has	been	the	development	of	au-
tomated	radio	tracking	systems	(ARTS),	which	allow	animal	movements	to	be	tracked	
continuously.	A	new	ARTS	approach	is	the	use	of	a	network	of	simple	radio	receiv-
ers	 (nodes)	 that	 collect	 radio	 signal	 strength	 (RSS)	 values	 from	 animal-	borne	 radio	
transmitters.	However,	the	use	of	RSS-	based	localization	methods	in	wildlife	tracking	
research	is	new,	and	analytical	approaches	critical	for	determining	high-	quality	loca-
tion	data	have	lagged	behind	technological	developments.	We	present	an	analytical	
approach	to	optimize	RSS-	based	localization	estimates	for	a	node	network	designed	
to	track	fine-	scale	animal	movements	in	a	localized	area.	Specifically,	we	test	the	ap-
plication	of	analytical	filters	(signal	strength,	distance	among	nodes)	to	data	from	real	
and	simulated	node	networks	that	differ	in	the	density	and	configuration	of	nodes.	
We	evaluate	how	different	 filters	and	network	configurations	 (density	and	regular-
ity	of	node	spacing)	may	influence	the	accuracy	of	RSS-	based	localization	estimates.	
Overall,	the	use	of	signal	strength	and	distance-	based	filters	resulted	in	a	3-		to	9-	fold	
increase	in	median	accuracy	of	location	estimates	over	unfiltered	estimates,	with	the	
most	 stringent	 filters	providing	 location	estimates	with	 a	median	 accuracy	 ranging	
from	28	to	73	m	depending	on	the	configuration	and	spacing	of	the	node	network.	
We	found	that	distance	filters	performed	significantly	better	than	RSS	filters	for	net-
works	with	 evenly	 spaced	nodes,	 but	 the	 advantage	diminished	when	nodes	were	
less	uniformly	spaced	within	a	network.	Our	results	not	only	provide	analytical	ap-
proaches	to	greatly	increase	the	accuracy	of	RSS-	based	localization	estimates,	as	well	
as	the	computer	code	to	do	so,	but	also	provide	guidance	on	how	to	best	configure	
node	networks	to	maximize	the	accuracy	and	capabilities	of	such	systems	for	wildlife	
tracking studies.
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1  |  INTRODUC TION

Advances	in	electronic	tracking	technologies	have	revolutionized	our	
ability	 to	monitor	 animal	movements	 and	behavior	 over	 extended	
periods	 of	 time	 in	 both	 terrestrial	 and	 aquatic	 environments.	 The	
use	of	radio,	satellite,	global	positioning	system	(GPS),	and	acoustic	
tracking	devices	has	expanded	research	on	fundamental	ecological	
topics,	such	as	habitat	requirements,	dispersal,	migratory	routes,	for-
aging,	and	home-	range	characteristics	(McIntyre	et	al.,	2017;	Powell	
et	al.,	2016;	Séchaud	et	al.,	2021;	Snijders	et	al.,	2014;	Stanley	et	al.,	
2021).	Each	technology	has	strengths	and	limitations,	and	trade-	offs	
exist	for	current	tracking	systems	depending	on	research	questions	
and	study	species	 (Bridge	et	al.,	2011).	For	example,	GPS	tags	are	
widely	 used	 given	 their	 accuracy	 and	 ability	 to	 provide	 locations	
anywhere	in	the	world,	but	their	high	energy	demands	require	bal-
ancing	weight	of	the	battery	with	the	lifespan	of	the	tracking	device,	
frequency	of	location	fixes,	and	the	size	of	the	animal	that	can	safely	
wear	the	tag.	Alternatively,	very	high-	frequency	(VHF)	radio	telem-
etry	systems	utilize	 lightweight	tracking	devices	that	are	relatively	
inexpensive,	allowing	for	large	sample	sizes	on	even	the	smallest	of	
animals	(e.g.,	large	insects).	However,	radio	telemetry	location	data	
are	often	restricted	to	small	areas	where	receivers,	which	are	typ-
ically	hand-	held	devices,	can	detect	signals,	 limiting	 the	range	and	
time	periods	over	which	animals	can	be	tracked.	Despite	these	lim-
itations,	radio	telemetry	remains	at	the	forefront	of	wildlife	tracking	
studies,	particularly	for	small	animals	(<30	g),	which	constitute	the	
majority	of	flying	animals	(Bridge	et	al.,	2011).

A	 major	 advancement	 in	 the	 use	 of	 VHF	 radio	 telemetry	 has	
been	the	development	of	automated	radio	tracking	systems	(ARTS),	
which	allow	animals	to	be	tracked	continuously	and	simultaneously	
across	potentially	large	geographic	areas.	There	are	different	types	
of	ARTS	systems,	but	generally	they	consist	of	multiple	radio	receiv-
ers	 distributed	 across	 the	 landscape	 detecting	 radio	 signals	 from	
animal-	borne	VHF	 radios	and	 logging	 information	on	 the	 received	
radio	signals	for	subsequent	retrieval	and	analysis	(Kays	et	al.,	2011).	
Adoption	of	automated	systems	has	been	slow	as	they	are	complex	
systems	 that	are	often	difficult	 to	construct	and	optimize,	 can	 re-
quire	 considerable	 up-	front	 costs	 to	 establish,	 and	 for	 which	 the	
processing	of	 collected	data	 requires	 additional	 analysis	with	 cus-
tom	computer	code.	A	system	that	has	gained	popularity	in	recent	
years	by	overcoming	some	of	these	drawbacks	is	the	Motus	Wildlife	
Tracking	System	(Motus)	(Taylor	et	al.,	2017)	that	provides	a	platform	
for	 linking	 tracking	 stations	 from	multiple	 research	 groups	 across	
large	geographic	areas	(e.g.,	North	and	Central	America).	The	collec-
tive	network	uploads	received	radio	signals	from	animal-	borne	radio	
signals	 to	 a	 central	 database	 for	 researchers	 to	 track	 their	 study	
animals	 across	 the	entire	Motus	network	 (Cooper	&	Marra,	2020;	
Gómez	 et	 al.,	 2017).	 Typically,	Motus	 networks	 are	 used	 to	 track	

long-	distance	 movements	 by	 detecting	 when	 an	 animal	 is	 in	 the	
proximity	of	a	receiver,	and	do	not	produce	high	location	accuracy.	
An	alternative	ARTS	system	for	obtaining	accurate	animal	locations	
uses	multiple	directional	Yagi	antenna	mounted	on	top	of	elevated	
towers	to	generate	a	bearing	to	the	animal-	borne	radio	signal	from	
each	 tower	 (Larkin	 et	 al.,	 1996).	 Detections	 from	multiple	 towers	
are	then	used	to	estimate	locations	via	triangulation	(Smetzer	et	al.,	
2021;	Ward	et	al.,	2013;	Zenzal	et	al.,	2018).	However,	these	systems	
can	be	complex	to	set	up	and	optimize,	and	small	errors	in	bearing	
estimates	can	 lead	 to	 large	 location	errors.	A	 relatively	 recent	ap-
proach	 for	monitoring	 fine-	scale	movements	 of	 terrestrial	wildlife	
is	the	use	of	a	network	of	radio	receivers	 (or	nodes)	with	omni	di-
rectional antennae that are distributed across a landscape and the 
radio	signal	strength	(RSS)	of	a	transmitter	detected	by	nodes	in	the	
network	is	used	to	estimate	the	animal’s	location	(Krull	et	al.,	2018;	
Wallace	et	al.,	2021).	A	benefit	of	this	approach	is	the	use	of	rela-
tively	simple	and	inexpensive	radio	receivers,	which	has	the	poten-
tial	to	greatly	increase	the	adoption	of	this	technology,	but	the	use	of	
RSS-	based	localization	methods	in	wildlife	tracking	research	is	new	
and	still	under	development.

The	 approach	 of	 using	 RSS	 measurements	 from	 multiple	 re-
ceivers	 to	 estimate	 a	 specific	 location	 has	 had	widespread	 use	 in	
indoor	wireless	networks	from	tracking	and	monitoring	patients	in	
medical	facilities	to	determining	the	location	of	packages	in	a	ware-
house	(Lee	&	Buehrer,	2019).	Signal	strength	of	radio	waves	decays	
exponentially	with	distance,	and	RSS-	based	localizations	utilize	the	
relationship	between	RSS	 (measured	 in	decibels,	 dB)	 and	distance	
from	signal	source,	allowing	for	accurate	localizations	in	dense	net-
works	at	small	spatial	scales	(Patwari	et	al.,	2005;	Paul	&	Sato,	2017;	
Sharma	&	Prakash,	2018).	However,	multiple	factors	can	affect	the	
accuracy	of	RSS-	based	localizations,	including	noise	in	the	environ-
ment	(e.g.,	background	radio	noise,	rain,	humidity)	(Bannister	et	al.,	
2008;	 Luomala	 &	Hakala,	 2019)	 and	multipathing	 effects	 such	 as	
shadowing	 (i.e.,	 object	 blocking	 a	 signal)	 or	 reflection	 (i.e.,	 signals	
bouncing	off	 an	object),	which	 results	 in	 the	unpredictable	 atten-
uation	of	RSS	values	(Liberti	&	Rappaport,	1992;	Whitehouse	et	al.,	
2007).	These	challenges	have	 resulted	 in	a	diversity	of	RSS-	based	
localization	techniques	aimed	at	 improving	localization	accuracy	in	
indoor	 environments	 (Kagi	 &	Mathapati,	 2021;	 Yang	 et	 al.,	 2019).	
However,	the	application	of	RSS-	based	localization	techniques	has	
rarely	been	applied	 in	 structurally	 complex	outdoor	environments	
where	 vegetation	 and	 other	 structures	 are	 prevalent,	 obstructing	
or	reflecting	signals	such	that	RSS	values	rapidly	attenuate,	greatly	
decreasing	the	range	of	 informative	RSS	values.	Thus,	the	applica-
tion	of	RSS-	based	 localization	 to	outdoor	 landscape-	level	 settings	
requires	 development	 of	 new	 analytical	 approaches	 that	 optimize	
signal-	to-	noise	information	from	a	network	of	nodes	to	maximize	ac-
curacy	of	location	estimates.
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In	this	paper,	we	build	upon	the	foundations	of	RSS-	based	local-
ization	 techniques	used	 for	 indoor	wireless	networks	and	develop	
approaches	that	optimize	RSS-	based	localization	estimates	for	node	
networks	 designed	 to	 track	 fine-	scale	 animal	movements	 at	 land-
scape	scales	in	structurally	complex	environments.	Specifically,	we	
tested	how	the	application	of	analytical	filters	(signal	strength,	dis-
tance	among	nodes)	influenced	the	error	of	RSS-	based	localization	
estimates	from	real	and	simulated	node	networks	that	differed	in	the	
density	and	configuration	of	nodes.	Initial	tests	of	a	node	network	
set	up	to	track	Såli	(Micronesian	starlings,	Aplonis opaca)	and	brown	
tree	snakes	(BTS,	Boiga irregularis)	on	the	island	of	Guam	indicated	
that	inclusion	of	information	from	all	nodes	in	a	large	network	(>70 
nodes)	provided	poor	location	estimate	accuracy	(e.g.,	>200	m	local-
ization	 error)	 using	 an	RSS-	based	 approach.	We,	 therefore,	 devel-
oped	an	analytical	approach	that	objectively	 identifies	and	selects	
nodes	that	are	likely	to	provide	the	highest	quality	information	for	
RSS-	based	localizations,	and	excludes	all	other	nodes	from	analysis.	
We	predicted	that	nodes	with	the	highest	RSS	values	reflect	those	
closest	 to	a	 radio	 signal	 source	 (i.e.,	 animal	 location),	 and	 thus	are	
likely	to	provide	the	highest	quality	information.	Therefore,	filtering	
nodes	based	on	RSS	values	and	the	distance	between	nodes	would	
help	to	remove	noise	and	limit	the	information	used	in	localization	
estimates	to	that	which	was	most	accurate.	Additionally,	we	tested	
whether	configuration	and	spacing	of	nodes	influences	localization	
error.	Based	on	preliminary	analysis	of	data	from	our	Guam	network,	
we	suspected	that	signals	in	the	center	of	a	network	had	less	local-
ization	error	than	signals	at	the	edge,	and	so	we	also	tested	whether	
the	 location	of	a	signal	within	a	network	affects	the	error	of	 loca-
tion	estimates.	We	applied	our	method	to	simulated	node	networks	
of	100,	175,	and	250	m	spacing	between	nodes,	a	simulated	node	
network	with	 a	 random	 spacing	 of	 nodes,	 and	 test	 data	 from	our	
physical	network	in	Guam.	The	results	of	this	work	not	only	provide	
analytical	approaches	to	greatly	increase	the	accuracy	of	RSS-	based	
localization	estimates	for	tracking	the	movements	of	animals	at	land-
scape	levels,	but	also	the	computer	code	to	do	so,	and	guidance	on	
how	best	to	configure	node	networks	to	maximize	the	accuracy	and	
capabilities	of	such	systems	for	wildlife	tracking	studies.

2  |  MATERIAL S AND METHODS

2.1  |  Guam node network

We	established	a	network	of	72	nodes	across	approximately	226	ha	
in	an	urban	environment	on	Andersen	Air	Force	Base	on	Guam	to	
monitor	the	movements	of	Såli	and	BTS.	Each	node	(CTT	Node	v.	2,	
manufactured	by	Cellular	Tracking	Technologies,	Rio	Grande,	New	
Jersey,	 USA)	 consists	 of	 a	 small	 radio	 receiver	with	 an	 integrated	
solar	panel	and	an	omni-	directional	whip	antenna.	Nodes	continu-
ously	scan	for	uniquely	coded	IDs	emitting	from	radio	transmitters	
at	433	MHz	 frequency	and	 log	 tag	 ID,	 signal	 strength	 (RSS;	 range	
−30	to	−120),	and	a	time	stamp	that	 is	regularly	calibrated	to	GPS	
satellite	time.	Nodes	periodically	 (e.g.,	30	min)	transmit	the	logged	

information	 to	 base	 stations	 (CTT	 SensorStations,	 v.2,	 Cellular	
Tracking	 Technologies,	 Rio	 Grande,	 New	 Jersey,	 USA)	 dispersed	
throughout	the	node	network.	Each	base	station	compiles	informa-
tion	received	from	multiple	nodes,	then	transmits	the	compiled	data	
to	internet-	based	servers	for	long-	term	storage	and	remote	access.	
To	reduce	interference	of	radio	signals	with	structures	in	the	urban	
environment,	 we	 placed	 nodes	 on	 top	 of	 streetlight	 utility	 poles,	
approximately	9	m	 in	height.	We	attempted	to	place	nodes	within	
200–	250	m	of	one	another	but	were	constrained	by	 the	availabil-
ity	and	location	of	telephone	poles	in	the	environment.	The	average	
distance	between	a	node	and	the	six	closest	nodes	was	216.68	m	± 
36.75	SD,	range:	160.59	to	358.06	m.	While	our	Guam	network	used	
equipment	 manufactured	 by	 CTT,	 any	 manufacturer	 (e.g.,	 Sigma	
Eight	Inc.,	Lotek	Wireless)	that	offers	radio	receivers	with	data	log-
ging	capability	and	highly	accurate	clocks	could	be	used	to	develop	
an	ARTS	node	network	 (e.g.,	Wallace	et	al.,	2021).	Key	considera-
tions	in	selecting	nodes	for	a	network	design	include	the	accuracy	
of	the	clock,	consistency	of	radio	receiver	sensitivity,	along	with	the	
ease	of	communication	to	a	base	station	or	internet-	based	server	for	
easy	data	acquisition,	and	nodes	with	low	energy	demands	that	can	
reliably	be	powered	by	solar	panels.

2.2  |  Establishing the relationship between 
RSS and distance

To	 use	 RSS-	based	 localization	 techniques,	 a	 relationship	 between	
RSS	 values	 and	 distance	 needs	 to	 be	 established.	 While	 a	 log-	
distance	 propagation	model	 incorporating	 a	 path-	loss	 exponent	 is	
the	standard	approach	used	to	characterize	the	relationship	between	
distance	 and	 RSS	 values	 in	 indoor	 environments	 (Dharmadhikari	
et	al.,	2018),	this	approach	often	results	in	high	localization	errors	in	
structurally	complex	environments	where	signal	bounce	and	shad-
owing	complicate	signal	propagation	patterns	(Lee	&	Buehrer,	2019).	
In	 this	situation,	 regression-	based	approaches	have	shown	consid-
erable	improvement	in	characterizing	the	relationship	between	RSS	
values	 and	 distance	 and	 reducing	 localization	 errors	 (Yang	 et	 al.,	
2011,	2019).	Therefore,	we	utilized	an	exponential	decay	function	to	
model	the	relationship	between	distance	and	RSS	values.	To	popu-
late	the	model,	we	used	information	collected	from	our	Guam	node	
network.	We	measured	the	signal	strength	of	a	radio	transmitter	at	
set	distances	(1,	10,	20,	50,	75,	100,	and	125	m)	from	a	random	set	
of	individual	nodes,	ensuring	a	range	of	distances	(range:	1–	2500	m)	
from	all	nodes	 in	the	network.	We	attached	a	coded	tag	that	pro-
duces	 a	 unique	 digital	 signal	 with	 a	 3-	second	 pulse	 interval	 (CTT	
PowerTags,	Cellular	Tracking	Technologies,	Rio	Grande,	New	Jersey,	
USA)	 to	 a	 small	 shampoo	 bottle	 filled	with	 liquid	 (to	 simulate	 the	
mass	 of	 a	 small	 bird)	 and	 then	 attached	 the	 bottle	 to	 an	 approxi-
mately	 3-	m	non-	conductive	 pole	 using	 flagging	 tape	 and	oriented	
the	transmitter	antenna	horizontal	to	the	ground	to	mimic	the	posi-
tion	of	a	transmitter	on	a	perched	bird.	At	each	test	location,	we	held	
the	pole	in	a	stationary	position	for	a	5-	min	time	period	by	placing	
the	bottom	of	the	pole	on	the	ground	and	orienting	the	pole	so	that	
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the	transmitter	was	at	a	right	angle	from	the	node	of	 interest.	For	
each	test,	we	recorded	the	start	and	end	time	and	the	GPS	location	
in	UTMs	(WGS84,	zone	=	55),	verifying	that	the	GPS	accuracy	was	
<5	m	(Paxton	et	al.,	2022).

To	 process	 the	 test	 data,	 we	 downloaded	 the	 data	 from	 CTT	
servers	and	removed	the	first	and	last	minute	of	each	test	to	ensure	
that	time	stamps	between	nodes	and	the	GPS	unit	matched.	We	then	
averaged	the	signal	strength	values	of	each	node	for	the	3-	min	time	
period	(n =	2–	59	detections	per	node)	to	reduce	the	influence	of	out-
lier	RSS	values	 resulting	 from	signal	bounce	and	multipathing.	We	
calculated	the	Euclidean	distance	between	each	node	and	transmit-
ter	test	location	to	determine	the	true	distance	between	all	pairwise	
combinations	of	nodes	and	test	locations.	We	then	ran	an	exponen-
tial	decay	model	using	a	non-	linear	least	square	(nls)	approach	in	R	
(R	Core	Team,	2020)	to	examine	the	relationship	between	recorded	
RSS	values	and	the	true	distance	of	the	node	from	each	test	location:

where K =	horizontal	asymptote	of	RSS	values,	a =	intercept,	S =	decay	
factor.	 The	 model	 was	 first	 run	 including	 the	 self-	starter	 function	
‘SSasymp’	 to	 help	 determine	 starting	 values	 for	 parameters	 in	 the	
final	model.	To	avoid	overfitting	the	model	and	to	allow	flexibility	 in	
the	application	of	the	model	output	for	localization	estimates	in	a	dy-
namic	network	where	nodes	may	change	(e.g.,	node	failure,	expanding	
network	area),	we	did	not	include	additional	explanatory	variables	in	
the	model,	 such	as	node	 identification	 to	account	 for	node	variabil-
ity.	However,	researchers	can	calibrate	nodes	prior	to	deployment	to	
account	 for	between-	node	variability	 in	detection	sensitivity	of	RSS	
values,	which	may	reduce	some	error	(Bircher	et	al.,	2020).

2.3  |  RSS- based localization estimates and 
test datasets

To	estimate	locations,	we	used	an	RSS-	based	trilateration	(multilat-
eration >3	nodes)	 approach	 described	 in	 Lee	 and	Buehrer	 (2019).	
Trilateration	 uses	 the	 signal	 strength	 received	 by	 a	 node	 and	 the	
exponential	 relationship	 between	 RSS	 values	 and	 distance	 de-
scribed	in	Equation	1	to	estimate	distance	of	each	node	to	the	signal	
source.	 In	 a	 geometrical	 sense,	 the	 estimated	 distance	 represents	
the	radius	of	a	circle	centered	at	the	node	with	the	circumference	
of	the	circle	defining	the	range	of	possible	 locations	of	the	source	
signal.	Theoretically,	when	three	or	more	nodes	detect	a	signal	at	the	
same	 time,	 the	 common	 intersection	of	 the	 circles	 represents	 the	
location	of	the	signal,	but	factors	such	as	noise,	signal	bounce,	and	
obstructions	 prevent	 perfect	 convergence.	 We,	 therefore,	 imple-
mented	the	trilateration	approach	using	a	non-	linear	 least	squares	
model	 (‘nls’	 function	 in	program	R)	 (R	Core	Team,	2020)	 that	uses	
a	Gauss–	Newton	 algorithm	 to	optimize	 the	 location	 estimate	of	 a	
received	signal.	The	model	minimizes	differences	between	pairwise	
Euclidean	distances	of	all	nodes	and	the	estimated	distance	of	the	
signal	from	each	node.	We	specified	starting	location	values	for	the	

model	based	on	the	location	of	the	node	with	the	strongest	signal,	
and	estimated	distance	of	the	signal	from	each	node	based	on	the	
average	RSS	to	distance	relationship	(Equation	1)	from	simulated	or	
true	RSS	values	received	by	each	node.

To	 assess	 the	 influence	 of	 node	 spacing	 on	 the	 error	 of	 RSS-	
based	 localization	 estimates,	 we	 simulated	 three	 node	 configura-
tions	within	a	12.5	km2	grid.	Nodes	were	evenly	distributed	within	
the	grid	with	distances	between	nodes	at	100	m	 (n =	100	nodes),	
175	m	 (n =	64	nodes),	 and	250	m	 (n =	36	nodes).	Additionally,	 to	
understand	whether	 a	 non-	uniform,	 random	distribution	of	 nodes	
within	a	network	influences	localization	error,	we	created	thirty-	six	
250	m2	grids	within	the	12.5	km2	grid	and	randomly	placed	a	node	
anywhere	within	each	grid.

We	then	tested	how	grid	spacing	 (distance	among	nodes),	 reg-
ularity	(consistency	of	spacing	among	nodes),	and	location	within	a	
node	network	(distance	from	edge)	affects	the	error	of	RSS-	based	
localization	estimates.	We	first	created	a	set	of	100	random	points	
within	 the	 12.5	 km2	 simulation	 grid	 to	 use	 as	 test	 locations,	 and	
then calculated the true distance between the 100 test locations 
and	each	node	 in	 the	network	 for	each	simulated	node	configura-
tion.	We	then	generated	an	RSS	value	for	every	paired	node	and	test	
location,	per	simulation,	based	on	our	Guam	network’s	relationship	
between	RSS	and	distance.	Specifically,	we	used	the	true	distance	
between	a	test	location	and	a	node	to	randomly	select	an	RSS	value	
associated	with	 that	 distance	 in	 our	Guam	 test	 dataset.	 This	 pro-
cess	allowed	us	 to	 incorporate	variability	 in	 signal	 strength	values	
for	a	given	distance	based	on	noise	 in	our	Guam	network.	We	re-
peated	this	step	1000	times	for	each	test	location	(n =	100)	creating	
100,000	simulations	per	node	configuration.	To	compare	simulated	
results	with	a	real-	world	dataset,	we	randomly	selected	54	locations	
within	our	Guam	network	and	measured	the	signal	strength	of	a	sta-
tionary	radio	transmitter	from	each	node	in	our	network	using	the	
same	procedures	as	described	above	(Paxton	et	al.,	2022).

2.4  |  Location estimation filters

We	used	 two	 filtering	 approaches	 prior	 to	 RSS-	based	 localization	
estimates.	The	first	was	a	simple	RSS	filter,	where	only	nodes	that	
received	an	RSS	signal	above	a	certain	 threshold	were	 included	 in	
the	trilateration	analysis.	We	tested	RSS	cutoff	values	of	−80,	−85,	
−90,	and	−95	(dB)	to	provide	a	reasonable	range	of	filters	to	assess	
the	balance	between	location	accuracy	and	data	loss.	The	relation-
ship	 between	 RSS	 values	 and	 distance	 is	 stronger	 at	 higher	 RSS	
values,	and	thus,	error	is	expected	to	decrease	with	more	stringent	
RSS	 filters.	However,	 trilateration	 requires	at	 least	 three	nodes	 to	
estimate	a	location,	so	as	the	RSS	filter	becomes	more	stringent,	the	
number	of	 locations	that	meet	the	criteria	(i.e.,	≥3	nodes	with	RSS	
values	above	the	filter	 level)	will	 likely	decrease	for	some	network	
configurations.	In	most	cases,	the	nodes	receiving	the	strongest	RSS	
values	are	expected	to	be	the	nodes	closest	to	the	transmitter,	but	
given	a	real-	world	landscape	with	structures	and	vegetation	that	can	
cause	bounce	and	attenuation	of	the	signal	strength,	an	RSS	filtering	

(1)RSS ∼ a ∗ exp ( − S ∗ distance) + K
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approach	may	not	necessarily	ensure	that	the	closest	nodes	are	cho-
sen.	Therefore,	we	assessed	a	second	approach	where	we	identified	
the	node	receiving	the	strongest	RSS	value,	assumed	to	be	the	node	
closest	to	the	radio	transmitter,	and	then	selected	all	nodes	within	
the	network	that	were	within	some	distance	of	the	node	receiving	
the	strongest	RSS	signal.	For	this	analysis,	we	tested	distance	filters	
that	were	a	multiple	of	the	average	grid	spacing	(i.e.,	1.25×,	2×,	3×,	
and	4×	distance	of	the	average	network	spacing)	to	account	for	net-
works	with	different	node	spacing.

We	evaluated	the	ability	of	filters	to	decrease	 location	estima-
tion	error	by	applying	the	filters	described	above	prior	to	conducting	
each	trilateration	analysis.	Localization	error	of	trilateration	location	
estimates	was	assessed	by	calculating	the	difference	in	distance	(m)	
between	the	true	and	estimated	location	with	lower	values	indicat-
ing	higher	accuracy	of	localization	estimates.	We	also	evaluated	the	
role	 that	 location	 within	 a	 network	 played	 in	 location	 estimation	
error	by	examining	the	relationship	between	error	of	estimated	test	
locations	and	the	distance	of	each	test	location	to	the	nearest	edge	
of	the	network.

All	simulations	and	analyses	were	conducted	in	the	R	Statistical	
Software	Environment	version	4.0.3	(R	Core	Team,	2020).

3  |  RESULTS

A	test	dataset	of	135	known	radio	transmitter	locations	distributed	
throughout	 the	Guam	 network	 resulted	 in	 3390	 data	 points	with	
RSS	values	and	associated	known	distances	to	nodes	in	the	network.	
Modeling	 a	 negative	 exponential	 decay	model	 (Equation	1)	 to	 the	
dataset	 showed	 a	 rapid	 decline	 in	 RSS	 values	 as	 the	 distance	 be-
tween	nodes	and	the	test	transmitter	increased	(Figure	1),	with	the	
relationship	expressed	as:

The	 error	 of	 location	 estimates	 using	 trilateration	of	 all	 data	
(i.e.,	no	filter)	was	high	for	all	simulated	node	configurations	and	
the	Guam	network	test	data,	with	the	median	difference	between	
true	 and	 estimated	 locations	 ranging	 from	 about	 172	 to	 249	m	
(Figure	2,	Table	1).	The	inclusion	of	all	nodes	in	a	network	for	tri-
lateration	estimates	tended	to	pull	location	estimates	to	the	cen-
ter	 of	 a	 network	 (Figure	 3),	 indicating	 that	 estimated	 locations	
were	primarily	an	average	of	all	the	node	locations	included	in	the	
analysis.

Filtering	 data	 prior	 to	 trilateration	 using	 either	 an	 RSS	 value	
or	distance	 filter	greatly	 reduced	the	error	of	 location	estimations	
(Figures	2	and	3).	Filters	resulted	in	a	subset	of	nodes	being	used	in	
the	trilateration	analysis	(Table	1),	localizing	estimates	to	a	restricted	
portion	of	the	network,	and	decreasing	localization	error	for	all	sim-
ulated	node	configurations	and	the	Guam	network	 test	dataset	as	
filters	became	more	stringent.	The	median	difference	between	true	
and	estimated	locations	for	the	most	stringent	filters	(i.e.,	Distance	
1.25×,	RSS	−80)	ranged	from	about	29	to	73	m,	a	3.4-		 to	8.6-	fold	
decrease	in	localization	error	from	unfiltered	trilateration	estimates	
(Figure	2,	Table	1).

The	 error	 of	 location	 estimates	 increased	 as	 the	 distance	 be-
tween	 nodes	 in	 a	 network	 increased,	 even	 with	 stringent	 filters,	
such	that	the	100	m	node	configuration	had	the	lowest	localization	
error,	 followed	 by	 the	 175	 and	 250	m	 node	 configurations.	 Non-	
overlapping	95%	confidence	intervals	(CI)	indicated	that	differences	
in	 localization	error	of	most	 filters	were	significant	between	node	
configurations	(Figure	2,	Table	1).	 In	addition,	 less	uniform	spacing	
of	nodes	in	a	network	also	increased	localization	error,	with	a	non-	
uniformly	spaced	250	m	simulated	network	having	1.6	times	more	

RSS = 47.23 ∗ exp ( − 0.005 ∗ distance) − 105.16

F I G U R E  1 Negative	exponential	decay	
model	showing	the	relationship	between	
receiver	signal	strength	(RSS)	values	and	
the	distance	of	a	test	transmitter	from	
each	node	based	on	135	random	locations	
of	a	test	transmitter	within	a	network	
of	72	nodes	on	Guam.	The	equation	
RSS	=	47.23*exp(−0.005*Distance)	−	
105.16	describes	the	exponential	decay	
of	RSS	values	with	each	unit	of	change	in	
distance

RSS = 47.23 * exp(−0.005*Distance) − 105.16
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localization	error	than	a	uniformly	spaced	250	m	simulated	network	
when	using	the	most	stringent	distance	filter	(Figure	2,	Table	1).

Node	configuration	 influenced	whether	 the	application	of	RSS	
or	distance	filters	resulted	in	less	localization	error.	For	example,	the	
100	and	175	m	node	configurations	had	no	difference	in	the	aver-
age	error	of	 the	most	stringent	RSS	and	distance	 filters	 (based	on	
overlapping	CI;	Table	1).	However,	for	the	250	m	node	configuration,	
the	most	stringent	distance	filter,	on	average,	provided	less	error	of	
location	estimates	compared	to	the	most	stringent	RSS	filter	(based	
on	non-	overlapping	CI;	Table	1).	Moreover,	86%	of	simulated	loca-
tions	could	not	be	estimated	when	the	most	stringent	RSS	filter	was	
applied,	compared	to	only	a	5%	loss	of	simulated	location	estimates	
for	the	most	stringent	distance	filter	(Table	1).	Overall,	the	distance-	
based	filters	had	little	to	no	loss	of	location	estimates.	However,	the	
relative	 decrease	 in	 localization	 error	 of	 a	 distance-	based	 versus	
RSS-	based	filter	diminished	when	the	spacing	of	nodes	was	irregu-
lar	(i.e.,	250	m	random	spacing	node	configuration).	In	a	test	of	our	
Guam	network,	which	had	very	irregular	spacing	among	nodes,	the	
most	 stringent	RSS	 filter,	 on	 average,	 had	20	m	 lower	 localization	
error	than	the	most	stringent	distance	filter,	although	there	was	con-
siderable	overlap	in	their	CI	(Table	1).

The	 location	 of	 a	 radio	 signal	within	 a	 network	 strongly	 influ-
enced	localization	error	when	no	filters	were	applied.	Generally,	lo-
calization	error	increased	as	the	distance	of	a	radio	signal	to	the	edge	
of	a	network	decreased	(Figure	4).	The	average	localization	error	of	
a	signal	600	m	from	the	edge	of	a	simulated	network	was	less	than	
50	m,	whereas	the	average	localization	error	for	a	signal	on	the	edge	
of	a	network	was	~300	m.	However,	the	application	of	both	RSS	and	
distance	 filters	 prior	 to	 trilateration	 analysis	 greatly	 reduced	 the	
error	of	location	estimates	associated	with	signals	near	the	edge,	and	
overall	flattened	the	relationship	between	error	and	distance	from	
edge	(Figure	4),	although	the	application	did	not	entirely	remove	all	
edge	effects.

4  |  DISCUSSION

The	ongoing	advancements	and	innovations	of	hardware	to	track	an-
imals	is	generating	increasingly	powerful	systems	that	can	produce	
unprecedented	amounts	of	data	on	animal	movement.	Approaches	
for	analyzing	the	resulting	data	are	critical	for	extracting	the	highest	
quality	and	quantity	data	possible;	however,	analytical	approaches	
often	 lag	behind	 technological	developments.	We	present	an	ana-
lytical	approach	to	optimize	RSS-	based	localization	estimates	using	
simple,	objective,	and	efficient	methods	that	greatly	increase	the	ac-
curacy	of	location	estimates.	The	results	of	our	simulations	and	eval-
uation	of	a	field-	based	network	demonstrate	the	power	of	applying	
node-	excluding	 filters	 prior	 to	 RSS-	based	 trilateration	 analysis	 to	
reduce	 the	error	of	 location	estimates	within	a	network	of	nodes.	
Our	approach	helps	to	minimize	inherent	limitations	of	localization	
algorithms	 in	 estimating	 locations	 in	 noisy,	 outdoor	 environments	
to	 track	 fine-	scale	 animal	 movements.	 Overall,	 the	 use	 of	 signal	
strength	and	distance-	based	filters	resulted	in	an	approximately	3-		
to	9-	fold	decrease	in	median	error	of	location	estimates	over	unfil-
tered	 estimates,	with	 the	most	 stringent	 filters	 providing	 location	
estimates	with	 a	median	 localization	 error	 ranging	 from	 about	 29	
to	 73	m	depending	 on	 the	 configuration	 and	 spacing	 of	 the	 node	
network.	In	addition,	our	simulations	of	node	networks	that	varied	in	
the	density	and	regularity	of	node	spacing	provide	insights	into	how	
node	 configuration	 influences	 accuracy	 of	 location	 estimates,	 im-
portant	information	that	researchers	would	need	to	consider	when	
designing	effective	networks	in	different	environments	and	for	dif-
ferent	research	questions.

Our	 work	 clearly	 shows	 that	 inclusion	 of	 information	 from	 all	
nodes	 in	a	network	 for	RSS-	based	 localization	estimates	does	not	
improve	the	accuracy	of	location	estimates,	at	least	in	noisy	outdoor	
environments.	 In	 fact,	 the	 most	 stringent	 filters,	 which	 produced	
the	lowest	errors	in	location	estimations,	included	RSS	information	

F I G U R E  2 Boxplots	showing	localization	error	(difference	in	meters	between	the	true	and	estimated	location)	of	trilateration	location	
estimates	for	simulated	node	configurations	that	vary	in	the	density	of	nodes	(100,	175,	250	m)	and	consistency	of	spacing	among	nodes	
(uniform,	random).	Prior	to	trilateration,	we	applied	either	no	filter,	distance-	based	filters	(a)	which	included	only	nodes	within	a	specified	
distance	of	the	node	that	received	the	strongest	radio	signal,	or	receiver	signal	strength	(RSS)-	based	filters	(b)	which	included	only	nodes	
that	received	radio	signals	greater	than	the	defined	RSS	value.	Additionally,	the	percentage	of	locations	that	could	not	be	estimated	
(information	loss)	is	indicated	below	each	boxplot.	Boxplot	whiskers	depict	the	10th	and	90th	percentiles	and	boxes	show	the	25th	and	75th	
percentiles	with	the	median	value	indicated,	outliers	shown	as	circles
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from	the	least	number	of	nodes.	The	inclusion	of	signal	strength	in-
formation	from	all	nodes	 in	a	 large	network	creates	challenges	for	
RSS-	based	 localization	 estimates	 because	 radio	 signals	 quickly	 at-
tenuate	at	 increasing	distances	 from	a	transmission	source,	 result-
ing	in	the	relationship	between	RSS	and	distance	rapidly	degrading	
(Whitehouse	 et	 al.,	 2007).	 Thus,	 many	 of	 the	 nodes	 farther	 from	
a	radio	signal	source	will	have	 low	RSS	values	that	are	poorly	cor-
related	with	geographic	distance,	increasing	the	probability	of	intro-
ducing	 outlier	 distance	 estimates	 into	 localization	 algorithms,	 and	
creating	high	uncertainty	in	location	estimates	(Li	et	al.,	2014).	This	

results	in	estimated	locations	being	more	reflective	of	the	node	loca-
tions	included	in	the	analysis	rather	than	the	actual	animal	location,	
and	 shifts	 estimated	 locations	 toward	 the	 center	 of	 the	 network.	
When	no	 filters	 are	 applied,	 the	 inclination	of	 the	 trilateration	 al-
gorithm	to	estimate	locations	at	the	center	of	the	network	is	clearly	
illustrated	in	Figure	3	(no	filter)	and	is	likely	the	cause	for	the	strong	
edge	effect	observed	with	non-	filtered	trilateration	estimates.	Thus,	
location	estimates	 from	only	a	subset	of	nodes	help	constrain	 the	
area	within	 the	 network	 for	 localization	 and	 use	 only	 the	 highest	
quality	information	for	the	trilateration	estimations.

TA B L E  1 Summary	of	localization	error	(difference	in	meters	between	the	true	and	estimated	location)	of	trilateration	location	estimates	
for	a	field-	based	node	network	on	the	Island	of	Guam	and	simulated	node	configurations	that	vary	in	the	density	of	nodes	(100,	175,	250	m)	
and	consistency	of	spacing	among	nodes	(uniform,	random)

Filter
% Location 
loss

Mean no. 
nodes

Mean 
error

Lower 95% CI 
error

Upper 95% CI 
error

Median 
error

Min 
error

Max 
error

Nodes	100	m	uniform	spacing

No Filter 0 112.82 222.58 203.12 242.05 240.62 19.34 458.70

Distance	4×	(400	m) 0 36.28 34.30 30.71 37.90 30.97 1.12 94.21

Distance	1.25×	(125	m) 0 4.75 29.46 26.37 32.55 29.34 1.53 89.36

RSS	−95	dB 0 39.79 199.75 180.92 218.58 200.76 13.10 469.07

RSS	−80	dB 1 8.33 33.54 28.95 38.12 27.86 2.23 104.03

Nodes	175	m	uniform	spacing

No Filter 0 41.65 242.73 224.88 260.57 248.43 7.09 456.74

Distance	4×	(700	m) 0 25.28 43.56 39.23 47.88 40.71 3.30 110.15

Distance	1.25×	(220	m) 0 4.59 36.37 32.22 40.51 32.77 3.53 88.16

RSS	−95	dB 0 14.22 194.28 179.39 209.16 199.39 20.10 340.47

RSS	−80	dB 42 3.61 42.72 38.10 47.34 38.78 10.06 113.68

Nodes	250	m	uniform	spacing

No Filter 0 23.19 238.99 221.04 256.94 255.53 13.62 432.60

Distance	4×	(1000	m) 0 19.49 137.34 126.70 147.98 132.55 7.78 273.28

Distance	1.25×	(315	m) 0 4.39 41.87 36.37 47.36 34.80 2.74 123.49

RSS	−95	dB 0 7.53 167.08 152.47 181.69 163.36 35.36 365.02

RSS	−80	dB 86 3.07 67.69 59.10 76.27 59.53 5.75 191.36

Nodes	250	m	random	spacing

No Filter 0 22.77 239.07 222.36 255.78 249.35 23.03 462.61

Distance	4×	(1000	m) 0 19.34 144.46 136.27 152.64 140.93 17.30 320.36

Distance	1.25×	(315	m) 5 4.42 64.73 61.39 68.25 55.10 4.72 276.78

RSS	−95	dB 0 7.50 170.76 159.61 181.91 167.80 19.13 375.78

RSS	−80	dB 83 3.10 74.61 71.54 78.34 66.93 9.75 221.02

Guam	nodes	~215	m	random	spacing

No Filter 0 22.83 180.77 155.08 206.45 171.57 24.38 417.06

Distance	4×	(1000	m) 0 20.98 141.94 125.02 158.85 140.05 16.90 285.12

Distance	1.25×	(315	m) 0 7.37 82.69 68.20 97.19 73.19 4.94 266.35

RSS	−95	dB 0 11.44 115.19 91.95 138.42 85.29 14.51 345.86

RSS	−80	dB 40 3.72 62.23 47.16 77.29 49.85 11.27 167.60

Notes: Prior	to	trilateration,	we	applied	either	no	filter,	distance-	based	filters	which	included	only	nodes	within	a	specified	distance	of	the	node	that	
received	the	strongest	radio	signal,	or	receiver	signal	strength	(RSS)-	based	filters	which	included	only	nodes	that	received	radio	signals	greater	than	
the	defined	RSS	value.	Only	results	for	no	filter	and	the	least	and	most	stringent	RSS	and	distance	filters	for	each	node	configuration	are	shown.	
Additionally,	the	mean	number	of	nodes	included	in	trilateration	estimates	is	indicated,	along	with	the	percentage	of	locations	that	could	not	be	
estimated	with	trilateration	(location	loss).
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A	key	goal	of	this	research	was	to	develop	an	objective	approach	
to	remove	nodes	with	low-	quality	information	that	can	be	automati-
cally	applied	to	all	localization	estimates,	particularly	given	the	need	
to	process	 large	quantities	of	data	generated	 from	 these	 types	of	
node	networks	(e.g.,	signal	detection	every	1–	15	s,	depending	on	tag	
programing	specifications).	For	example,	a	telemetry	tag	that	emits	
a	pulse	every	second	would	have	up	to	86,400	potential	localization	
estimations	per	24	h.	The	use	of	RSS	values	as	a	 filter	 is	 a	 simple	
and intuitive approach given the known relationship between accu-
racy	of	distance	estimates	and	RSS	values.	However,	we	found	that	a	
distance-	based	approach	was	more	powerful	in	our	simulations	than	
an	RSS-	based	approach.	A	distance-	based	approach	likely	had	lower	
localization	error	because	a	distance	filter	maintains	a	configuration	
of	all	nodes	around	the	location	to	be	estimated,	better	balancing	the	
optimization	approach	utilized	by	RSS-	based	localization	algorithms.	
Moreover,	the	use	of	a	distance-	based	approach	resulted	in	little	to	
no	reduction	in	the	number	of	locations	that	could	be	estimated	be-
cause	when	nodes	are	evenly	spaced	this	approach	typically	main-
tains	the	minimum	of	three	nodes	needed	for	trilateration.	In	a	grid	
with	nodes	spaced	250	m	apart,	there	were,	on	average,	four	nodes	
included	 in	 the	 trilateration	 analysis	when	 the	most	 stringent	 dis-
tance	filter	(i.e.,	1.25×)	was	applied,	while	a	2×	distance	filter	had	an	
average	of	9	nodes	included	in	localization	estimates.	Even	if	some	

of	the	nodes	maintained	by	the	distance	filter	have	low	RSS	values,	
their	influence	is	localized	to	the	neighborhood	of	interest,	and	thus	
does	not	skew	location	estimates	to	other	regions	of	the	network.	
In	contrast,	the	use	of	a	minimum	RSS	filter	does	not	always	main-
tain	 a	 configuration	of	nodes	 that	 surrounds	 the	neighborhood	of	
an	 unknown	 location,	 nor	 does	 an	 RSS	 filter	 necessarily	 retain	 a	
minimum	number	of	nodes.	In	the	simulations	for	a	grid	with	nodes	
spaced	250	m	apart,	85%	of	 locations	could	not	be	estimated	(i.e.,	
<3	nodes)	with	the	most	stringent	RSS	filter	(−80	dB),	and	of	those	
locations	that	could	be	estimated,	the	average	number	of	nodes	was	
just	above	3	nodes.

While	a	distance	filter	performed	significantly	better	than	an	RSS	
filter	 in	networks	with	evenly	spaced	nodes,	the	advantage	dimin-
ished	when	nodes	were	less	uniformly	spaced	within	a	network.	The	
simulated	250	m	uniform	grid	had	an	approximately	1.6-	fold	(26	m	
difference	 in	 accuracy)	 lower	 localization	error	 for	distance-	based	
versus	RSS-	based	filters,	but	for	the	250	m	random	grid	the	advan-
tage	was	only	approximately	1.2-	fold	 lower	(10	m	difference	in	 lo-
calization	error).	Applying	filters	to	test	data	generated	in	our	Guam	
node	network,	which	has	uneven	spacing	of	nodes,	resulted	in	the	
RSS	filter	actually	performing	better,	on	average,	than	the	distance	
filter.	However,	overlapping	CI	between	the	most	stringent	distance	
and	 RSS	 filters	 indicated	 that	 the	 difference	 in	 localization	 error	

F I G U R E  3 Representation	of	the	250	m	simulated	node	configuration	with	36	nodes	(red	asterisks)	uniformly	spaced	within	a	12.5	km2 
grid,	along	with	the	100	random	test	locations	(black	circles)	each	connected	by	a	line	to	their	estimated	location	(blue	squares)	based	on	
trilateration.	Prior	to	trilateration,	we	applied	either	no	filter	(a),	distance-	based	filters	using	only	nodes	within	1000	m	(b)	or	315	m	(c)	of	
the	node	that	received	the	strongest	radio	signal,	or	receiver	signal	strength	(RSS)-	based	filters	using	only	nodes	that	received	radio	signals	
greater	than	−95	dB	(d)	or	−80	dB	(e)

F I G U R E  4 Relationship	between	the	distance	of	each	test	location	from	the	nearest	edge	of	the	network	and	localization	error	
(difference	in	meters	between	the	true	and	estimated	location)	of	trilateration	location	estimates	for	simulated	networks	with	uniformly	
spaced	nodes	every	100	m	(circles)	or	250	m	(triangles).	Prior	to	trilateration,	we	applied	either	no	filter,	distance-	based	filters	(a)	which	
included	only	nodes	within	a	specified	distance	of	the	node	that	received	the	strongest	radio	signal,	or	receiver	signal	strength	(RSS)-	based	
filters	(b)	which	included	only	nodes	that	received	radio	signals	greater	than	the	specified	RSS	value.	Loess	lines	were	fit	to	the	relationship	
between	accuracy	and	distance	to	edge	for	each	filter	and	node	configuration	(solid	lines	for	100	m,	dashed	lines	for	250	m)
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was	small	 (CI	RSS	−80:	47.16–	77.29	m;	CI	Distance	1.25×: 68.20– 
97.19	m).	The	reduced	advantage	of	distance-	based	filters	for	node	
networks	with	uneven	 spacing	may	be	due	 to	 the	optimization	of	
the	trilateration	algorithm,	where	uneven	spacing	of	nodes	adds	ad-
ditional	noise	to	the	system,	thus	reducing	the	accuracy	of	location	
estimates	(Bhat	&	Santhosh,	2020).

The	 relationship	 between	 RSS	 and	 distance	 will	 likely	 differ	
among	 environments	 and	 influence	 the	 accuracy	 of	 location	 es-
timates.	 While	 indoor	 wireless	 sensor	 networks	 using	 RSS-	based	
localization	estimates	can	provide	near	GPS-	level	accuracy	 (Lee	&	
Buehrer,	2019),	outdoor	environments	are	complex,	and	many	fac-
tors	can	degrade	the	accuracy	of	RSS-	based	localization	estimates,	
including	the	distances	from	which	signals	are	detected,	the	height	
that	nodes	can	be	deployed,	overall	levels	of	background	noise,	and	
the	structure	of	the	environment	in	terms	of	objects	or	vegetation	
that	will	potentially	cause	obstruction	or	signal	bounce	(Whitehouse	
et	al.,	2007).	Moreover,	the	behavior	and	spatial	orientation	of	the	
focal	species	of	interest	will	influence	the	error	of	localization	esti-
mates.	For	example,	 the	signal	 from	a	bird	that	spends	most	of	 its	
time	at	the	top	of	tall	 trees	will	 likely	have	 less	attenuation	of	sig-
nal	strength	with	distance	than	a	signal	from	a	snake	that	is	on	the	
ground	in	dense	understory	(Rutz	et	al.,	2015).	All	of	these	factors	
will	influence	the	optimal	spatial	configuration	of	nodes	needed	for	
a	given	environment	and	study	species.	Additionally,	our	simulations	
highlight	the	importance	of	considering	edge	effects	when	designing	
a	network,	given	that	error	of	localization	estimates	increased	near	
network	edges.	 Identifying	 the	 key	 areas	where	 researchers	want	
to	 collect	 data	 and	ensuring	 those	 areas	 are	 in	 the	 core	 area	of	 a	
network,	and	not	at	edges,	will	 increase	accuracy	of	 location	esti-
mates.	Therefore,	it	is	important	that	the	configuration	of	a	network	
is	carefully	planned	prior	to	deployment	of	nodes	with	consideration	
given	to	the	level	of	resolution	of	tracking	data	needed	to	address	
the	 objectives	 of	 a	 research	 project.	We	 recommend	 researchers	
first	conduct	testing	with	a	reduced	configuration	of	nodes	in	their	
study	area	 to	quantify	 the	 relationship	between	RSS	and	distance	
within	their	environment.	Researchers	can	then	conduct	simulations	
of	alternative	network	configurations	utilizing	their	RSS	to	distance	
relationship	to	identify	an	optimal	design	for	their	study	system,	and	
evaluate	which	filters	provide	the	lowest	localization	error	for	their	
network.	 The	 methods	 for	 simulating	 and	 testing	 node	 networks	
outlined	in	this	paper,	along	with	the	R	code	to	simulate	and	process	
data,	provide	tools	that	researchers	can	use	to	optimize	networks	for	
trilateration	localization	methods.

RSS-	based	 localization	 estimates	 for	 node	 networks	 tracking	
animal	movements	are	attractive	for	their	simplicity,	with	the	only	
information	needed	being	the	location	of	nodes,	signal	strength	of	
a	received	radio	signal,	and	the	time	that	a	signal	is	received.	Thus,	
using	an	RSS-	based	localization	method	requires	minimal	hardware	
(Zekavat	 et	 al.,	 2019),	 allowing	 for	 relative	 ease	 of	 deployment	 of	
large	multi-	node	 networks	with	minimal	 upfront	 costs	 to	 simulta-
neously	 track	 the	movements	 of	multiple	 animals	within	 the	 geo-
graphic	 area	 of	 a	 network.	 Our	 approach	 of	 using	 filters	 to	 limit	
which	 nodes	 are	 used	 in	 RSS-	based	 localization	 estimates	 greatly	

improved	 accuracy,	 but	 further	 improvement	 in	 location	 accuracy	
could	 be	 gained	 by	 coupling	 other	 analytical	 strategies	 with	 our	
methods.	For	example,	leveraging	the	autocorrelation	of	a	sequence	
of	locations	through	time	(e.g.,	lack	of	independence	of	previous	and	
subsequent	 locations)	 could	 reduce	 outlier	 location	 estimates	 by	
constraining	estimates	to	biologically	plausible	outcomes	based	on	
information	from	successive	locations	(Baktoft	et	al.,	2017;	Fleming	
et	 al.,	 2016).	Additionally,	 non-	linear	 localization	 techniques	 could	
be	used	 to	accommodate	noise	 in	an	environment	by	mapping,	or	
fingerprinting,	signal	strength	patterns	across	an	entire	network	and	
then	 using	 the	 resulting	map	 of	 radio	 signals	 for	 each	 location	 to	
train	 machine	 learning	 algorithms	 to	 estimate	 locations	 (Harbicht	
et	 al.,	 2017).	 Location	 fingerprinting	 has	 been	 widely	 used	 in	 in-
door	wireless	 networks	 and	 can	 increase	 localization	 accuracy	 by	
accounting	for	the	effects	of	obstructions	or	bounce	in	a	radio	signal	
map,	along	with	variation	in	receiver	sensitivity	(Campos	&	Lovisolo,	
2019).	However,	 the	complexity	of	 such	an	approach	may	only	be	
worthwhile	 in	 long-	term	networks	that	can	be	carefully	monitored	
to	ensure	consistency	of	signal	patterns	across	 the	node	network.	
Moreover,	other	localization	algorithms,	such	as	time-	difference-	of-	
arrival	(TDOA),	can	also	be	applied	to	data	collected	from	node	net-
works	and	may	increase	the	accuracy	of	localization	estimates	over	
RSS-	based	methods	 (Baktoft	 et	 al.,	 2017;	MacCurdy	 et	 al.,	 2019;	
Piersma	et	al.,	2014).	However,	TDOA-	based	localization	methods,	
which	estimate	a	signal’s	position	based	on	differences	in	the	time	
of	 arrival	of	 a	 signal	 at	 each	 receiver,	 require	 receivers	 to	be	 syn-
chronized	and	capable	of	measuring	time	at	least	to	the	millisecond,	
increasing	the	complexity,	cost,	and	energy	requirements	of	receiv-
ers	(Buehrer	&	Venkatesh,	2019).	Ultimately,	the	level	of	accuracy	in	
location	estimates	scales	the	research	questions	that	can	be	asked.	
As	the	technology	and	analytical	approaches	continue	to	be	devel-
oped,	 and	 as	 experience	with	node	networks	 increase,	 the	use	of	
these	type	of	automated	radio	tracking	systems	will	likely	increase	
in	ecological	research	and	allow	for	many	important	ecological	ques-
tions	to	be	explored.
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