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Abstract
A major advancement in the use of radio telemetry has been the development of au-
tomated radio tracking systems (ARTS), which allow animal movements to be tracked 
continuously. A new ARTS approach is the use of a network of simple radio receiv-
ers (nodes) that collect radio signal strength (RSS) values from animal-borne radio 
transmitters. However, the use of RSS-based localization methods in wildlife tracking 
research is new, and analytical approaches critical for determining high-quality loca-
tion data have lagged behind technological developments. We present an analytical 
approach to optimize RSS-based localization estimates for a node network designed 
to track fine-scale animal movements in a localized area. Specifically, we test the ap-
plication of analytical filters (signal strength, distance among nodes) to data from real 
and simulated node networks that differ in the density and configuration of nodes. 
We evaluate how different filters and network configurations (density and regular-
ity of node spacing) may influence the accuracy of RSS-based localization estimates. 
Overall, the use of signal strength and distance-based filters resulted in a 3- to 9-fold 
increase in median accuracy of location estimates over unfiltered estimates, with the 
most stringent filters providing location estimates with a median accuracy ranging 
from 28 to 73 m depending on the configuration and spacing of the node network. 
We found that distance filters performed significantly better than RSS filters for net-
works with evenly spaced nodes, but the advantage diminished when nodes were 
less uniformly spaced within a network. Our results not only provide analytical ap-
proaches to greatly increase the accuracy of RSS-based localization estimates, as well 
as the computer code to do so, but also provide guidance on how to best configure 
node networks to maximize the accuracy and capabilities of such systems for wildlife 
tracking studies.
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1  |  INTRODUC TION

Advances in electronic tracking technologies have revolutionized our 
ability to monitor animal movements and behavior over extended 
periods of time in both terrestrial and aquatic environments. The 
use of radio, satellite, global positioning system (GPS), and acoustic 
tracking devices has expanded research on fundamental ecological 
topics, such as habitat requirements, dispersal, migratory routes, for-
aging, and home-range characteristics (McIntyre et al., 2017; Powell 
et al., 2016; Séchaud et al., 2021; Snijders et al., 2014; Stanley et al., 
2021). Each technology has strengths and limitations, and trade-offs 
exist for current tracking systems depending on research questions 
and study species (Bridge et al., 2011). For example, GPS tags are 
widely used given their accuracy and ability to provide locations 
anywhere in the world, but their high energy demands require bal-
ancing weight of the battery with the lifespan of the tracking device, 
frequency of location fixes, and the size of the animal that can safely 
wear the tag. Alternatively, very high-frequency (VHF) radio telem-
etry systems utilize lightweight tracking devices that are relatively 
inexpensive, allowing for large sample sizes on even the smallest of 
animals (e.g., large insects). However, radio telemetry location data 
are often restricted to small areas where receivers, which are typ-
ically hand-held devices, can detect signals, limiting the range and 
time periods over which animals can be tracked. Despite these lim-
itations, radio telemetry remains at the forefront of wildlife tracking 
studies, particularly for small animals (<30 g), which constitute the 
majority of flying animals (Bridge et al., 2011).

A major advancement in the use of VHF radio telemetry has 
been the development of automated radio tracking systems (ARTS), 
which allow animals to be tracked continuously and simultaneously 
across potentially large geographic areas. There are different types 
of ARTS systems, but generally they consist of multiple radio receiv-
ers distributed across the landscape detecting radio signals from 
animal-borne VHF radios and logging information on the received 
radio signals for subsequent retrieval and analysis (Kays et al., 2011). 
Adoption of automated systems has been slow as they are complex 
systems that are often difficult to construct and optimize, can re-
quire considerable up-front costs to establish, and for which the 
processing of collected data requires additional analysis with cus-
tom computer code. A system that has gained popularity in recent 
years by overcoming some of these drawbacks is the Motus Wildlife 
Tracking System (Motus) (Taylor et al., 2017) that provides a platform 
for linking tracking stations from multiple research groups across 
large geographic areas (e.g., North and Central America). The collec-
tive network uploads received radio signals from animal-borne radio 
signals to a central database for researchers to track their study 
animals across the entire Motus network (Cooper & Marra, 2020; 
Gómez et al., 2017). Typically, Motus networks are used to track 

long-distance movements by detecting when an animal is in the 
proximity of a receiver, and do not produce high location accuracy. 
An alternative ARTS system for obtaining accurate animal locations 
uses multiple directional Yagi antenna mounted on top of elevated 
towers to generate a bearing to the animal-borne radio signal from 
each tower (Larkin et al., 1996). Detections from multiple towers 
are then used to estimate locations via triangulation (Smetzer et al., 
2021; Ward et al., 2013; Zenzal et al., 2018). However, these systems 
can be complex to set up and optimize, and small errors in bearing 
estimates can lead to large location errors. A relatively recent ap-
proach for monitoring fine-scale movements of terrestrial wildlife 
is the use of a network of radio receivers (or nodes) with omni di-
rectional antennae that are distributed across a landscape and the 
radio signal strength (RSS) of a transmitter detected by nodes in the 
network is used to estimate the animal’s location (Krull et al., 2018; 
Wallace et al., 2021). A benefit of this approach is the use of rela-
tively simple and inexpensive radio receivers, which has the poten-
tial to greatly increase the adoption of this technology, but the use of 
RSS-based localization methods in wildlife tracking research is new 
and still under development.

The approach of using RSS measurements from multiple re-
ceivers to estimate a specific location has had widespread use in 
indoor wireless networks from tracking and monitoring patients in 
medical facilities to determining the location of packages in a ware-
house (Lee & Buehrer, 2019). Signal strength of radio waves decays 
exponentially with distance, and RSS-based localizations utilize the 
relationship between RSS (measured in decibels, dB) and distance 
from signal source, allowing for accurate localizations in dense net-
works at small spatial scales (Patwari et al., 2005; Paul & Sato, 2017; 
Sharma & Prakash, 2018). However, multiple factors can affect the 
accuracy of RSS-based localizations, including noise in the environ-
ment (e.g., background radio noise, rain, humidity) (Bannister et al., 
2008; Luomala & Hakala, 2019) and multipathing effects such as 
shadowing (i.e., object blocking a signal) or reflection (i.e., signals 
bouncing off an object), which results in the unpredictable atten-
uation of RSS values (Liberti & Rappaport, 1992; Whitehouse et al., 
2007). These challenges have resulted in a diversity of RSS-based 
localization techniques aimed at improving localization accuracy in 
indoor environments (Kagi & Mathapati, 2021; Yang et al., 2019). 
However, the application of RSS-based localization techniques has 
rarely been applied in structurally complex outdoor environments 
where vegetation and other structures are prevalent, obstructing 
or reflecting signals such that RSS values rapidly attenuate, greatly 
decreasing the range of informative RSS values. Thus, the applica-
tion of RSS-based localization to outdoor landscape-level settings 
requires development of new analytical approaches that optimize 
signal-to-noise information from a network of nodes to maximize ac-
curacy of location estimates.

T A X O N O M Y  C L A S S I F I C A T I O N
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In this paper, we build upon the foundations of RSS-based local-
ization techniques used for indoor wireless networks and develop 
approaches that optimize RSS-based localization estimates for node 
networks designed to track fine-scale animal movements at land-
scape scales in structurally complex environments. Specifically, we 
tested how the application of analytical filters (signal strength, dis-
tance among nodes) influenced the error of RSS-based localization 
estimates from real and simulated node networks that differed in the 
density and configuration of nodes. Initial tests of a node network 
set up to track Såli (Micronesian starlings, Aplonis opaca) and brown 
tree snakes (BTS, Boiga irregularis) on the island of Guam indicated 
that inclusion of information from all nodes in a large network (>70 
nodes) provided poor location estimate accuracy (e.g., >200 m local-
ization error) using an RSS-based approach. We, therefore, devel-
oped an analytical approach that objectively identifies and selects 
nodes that are likely to provide the highest quality information for 
RSS-based localizations, and excludes all other nodes from analysis. 
We predicted that nodes with the highest RSS values reflect those 
closest to a radio signal source (i.e., animal location), and thus are 
likely to provide the highest quality information. Therefore, filtering 
nodes based on RSS values and the distance between nodes would 
help to remove noise and limit the information used in localization 
estimates to that which was most accurate. Additionally, we tested 
whether configuration and spacing of nodes influences localization 
error. Based on preliminary analysis of data from our Guam network, 
we suspected that signals in the center of a network had less local-
ization error than signals at the edge, and so we also tested whether 
the location of a signal within a network affects the error of loca-
tion estimates. We applied our method to simulated node networks 
of 100, 175, and 250 m spacing between nodes, a simulated node 
network with a random spacing of nodes, and test data from our 
physical network in Guam. The results of this work not only provide 
analytical approaches to greatly increase the accuracy of RSS-based 
localization estimates for tracking the movements of animals at land-
scape levels, but also the computer code to do so, and guidance on 
how best to configure node networks to maximize the accuracy and 
capabilities of such systems for wildlife tracking studies.

2  |  MATERIAL S AND METHODS

2.1  |  Guam node network

We established a network of 72 nodes across approximately 226 ha 
in an urban environment on Andersen Air Force Base on Guam to 
monitor the movements of Såli and BTS. Each node (CTT Node v. 2, 
manufactured by Cellular Tracking Technologies, Rio Grande, New 
Jersey, USA) consists of a small radio receiver with an integrated 
solar panel and an omni-directional whip antenna. Nodes continu-
ously scan for uniquely coded IDs emitting from radio transmitters 
at 433 MHz frequency and log tag ID, signal strength (RSS; range 
−30 to −120), and a time stamp that is regularly calibrated to GPS 
satellite time. Nodes periodically (e.g., 30 min) transmit the logged 

information to base stations (CTT SensorStations, v.2, Cellular 
Tracking Technologies, Rio Grande, New Jersey, USA) dispersed 
throughout the node network. Each base station compiles informa-
tion received from multiple nodes, then transmits the compiled data 
to internet-based servers for long-term storage and remote access. 
To reduce interference of radio signals with structures in the urban 
environment, we placed nodes on top of streetlight utility poles, 
approximately 9 m in height. We attempted to place nodes within 
200–250 m of one another but were constrained by the availabil-
ity and location of telephone poles in the environment. The average 
distance between a node and the six closest nodes was 216.68 m ± 
36.75 SD, range: 160.59 to 358.06 m. While our Guam network used 
equipment manufactured by CTT, any manufacturer (e.g., Sigma 
Eight Inc., Lotek Wireless) that offers radio receivers with data log-
ging capability and highly accurate clocks could be used to develop 
an ARTS node network (e.g., Wallace et al., 2021). Key considera-
tions in selecting nodes for a network design include the accuracy 
of the clock, consistency of radio receiver sensitivity, along with the 
ease of communication to a base station or internet-based server for 
easy data acquisition, and nodes with low energy demands that can 
reliably be powered by solar panels.

2.2  |  Establishing the relationship between 
RSS and distance

To use RSS-based localization techniques, a relationship between 
RSS values and distance needs to be established. While a log-
distance propagation model incorporating a path-loss exponent is 
the standard approach used to characterize the relationship between 
distance and RSS values in indoor environments (Dharmadhikari 
et al., 2018), this approach often results in high localization errors in 
structurally complex environments where signal bounce and shad-
owing complicate signal propagation patterns (Lee & Buehrer, 2019). 
In this situation, regression-based approaches have shown consid-
erable improvement in characterizing the relationship between RSS 
values and distance and reducing localization errors (Yang et al., 
2011, 2019). Therefore, we utilized an exponential decay function to 
model the relationship between distance and RSS values. To popu-
late the model, we used information collected from our Guam node 
network. We measured the signal strength of a radio transmitter at 
set distances (1, 10, 20, 50, 75, 100, and 125 m) from a random set 
of individual nodes, ensuring a range of distances (range: 1–2500 m) 
from all nodes in the network. We attached a coded tag that pro-
duces a unique digital signal with a 3-second pulse interval (CTT 
PowerTags, Cellular Tracking Technologies, Rio Grande, New Jersey, 
USA) to a small shampoo bottle filled with liquid (to simulate the 
mass of a small bird) and then attached the bottle to an approxi-
mately 3-m non-conductive pole using flagging tape and oriented 
the transmitter antenna horizontal to the ground to mimic the posi-
tion of a transmitter on a perched bird. At each test location, we held 
the pole in a stationary position for a 5-min time period by placing 
the bottom of the pole on the ground and orienting the pole so that 
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the transmitter was at a right angle from the node of interest. For 
each test, we recorded the start and end time and the GPS location 
in UTMs (WGS84, zone = 55), verifying that the GPS accuracy was 
<5 m (Paxton et al., 2022).

To process the test data, we downloaded the data from CTT 
servers and removed the first and last minute of each test to ensure 
that time stamps between nodes and the GPS unit matched. We then 
averaged the signal strength values of each node for the 3-min time 
period (n = 2–59 detections per node) to reduce the influence of out-
lier RSS values resulting from signal bounce and multipathing. We 
calculated the Euclidean distance between each node and transmit-
ter test location to determine the true distance between all pairwise 
combinations of nodes and test locations. We then ran an exponen-
tial decay model using a non-linear least square (nls) approach in R 
(R Core Team, 2020) to examine the relationship between recorded 
RSS values and the true distance of the node from each test location:

where K = horizontal asymptote of RSS values, a = intercept, S = decay 
factor. The model was first run including the self-starter function 
‘SSasymp’ to help determine starting values for parameters in the 
final model. To avoid overfitting the model and to allow flexibility in 
the application of the model output for localization estimates in a dy-
namic network where nodes may change (e.g., node failure, expanding 
network area), we did not include additional explanatory variables in 
the model, such as node identification to account for node variabil-
ity. However, researchers can calibrate nodes prior to deployment to 
account for between-node variability in detection sensitivity of RSS 
values, which may reduce some error (Bircher et al., 2020).

2.3  |  RSS-based localization estimates and 
test datasets

To estimate locations, we used an RSS-based trilateration (multilat-
eration >3 nodes) approach described in Lee and Buehrer (2019). 
Trilateration uses the signal strength received by a node and the 
exponential relationship between RSS values and distance de-
scribed in Equation 1 to estimate distance of each node to the signal 
source. In a geometrical sense, the estimated distance represents 
the radius of a circle centered at the node with the circumference 
of the circle defining the range of possible locations of the source 
signal. Theoretically, when three or more nodes detect a signal at the 
same time, the common intersection of the circles represents the 
location of the signal, but factors such as noise, signal bounce, and 
obstructions prevent perfect convergence. We, therefore, imple-
mented the trilateration approach using a non-linear least squares 
model (‘nls’ function in program R) (R Core Team, 2020) that uses 
a Gauss–Newton algorithm to optimize the location estimate of a 
received signal. The model minimizes differences between pairwise 
Euclidean distances of all nodes and the estimated distance of the 
signal from each node. We specified starting location values for the 

model based on the location of the node with the strongest signal, 
and estimated distance of the signal from each node based on the 
average RSS to distance relationship (Equation 1) from simulated or 
true RSS values received by each node.

To assess the influence of node spacing on the error of RSS-
based localization estimates, we simulated three node configura-
tions within a 12.5 km2 grid. Nodes were evenly distributed within 
the grid with distances between nodes at 100 m (n = 100 nodes), 
175 m (n = 64 nodes), and 250 m (n = 36 nodes). Additionally, to 
understand whether a non-uniform, random distribution of nodes 
within a network influences localization error, we created thirty-six 
250 m2 grids within the 12.5 km2 grid and randomly placed a node 
anywhere within each grid.

We then tested how grid spacing (distance among nodes), reg-
ularity (consistency of spacing among nodes), and location within a 
node network (distance from edge) affects the error of RSS-based 
localization estimates. We first created a set of 100 random points 
within the 12.5  km2  simulation grid to use as test locations, and 
then calculated the true distance between the 100 test locations 
and each node in the network for each simulated node configura-
tion. We then generated an RSS value for every paired node and test 
location, per simulation, based on our Guam network’s relationship 
between RSS and distance. Specifically, we used the true distance 
between a test location and a node to randomly select an RSS value 
associated with that distance in our Guam test dataset. This pro-
cess allowed us to incorporate variability in signal strength values 
for a given distance based on noise in our Guam network. We re-
peated this step 1000 times for each test location (n = 100) creating 
100,000 simulations per node configuration. To compare simulated 
results with a real-world dataset, we randomly selected 54 locations 
within our Guam network and measured the signal strength of a sta-
tionary radio transmitter from each node in our network using the 
same procedures as described above (Paxton et al., 2022).

2.4  |  Location estimation filters

We used two filtering approaches prior to RSS-based localization 
estimates. The first was a simple RSS filter, where only nodes that 
received an RSS signal above a certain threshold were included in 
the trilateration analysis. We tested RSS cutoff values of −80, −85, 
−90, and −95 (dB) to provide a reasonable range of filters to assess 
the balance between location accuracy and data loss. The relation-
ship between RSS values and distance is stronger at higher RSS 
values, and thus, error is expected to decrease with more stringent 
RSS filters. However, trilateration requires at least three nodes to 
estimate a location, so as the RSS filter becomes more stringent, the 
number of locations that meet the criteria (i.e., ≥3 nodes with RSS 
values above the filter level) will likely decrease for some network 
configurations. In most cases, the nodes receiving the strongest RSS 
values are expected to be the nodes closest to the transmitter, but 
given a real-world landscape with structures and vegetation that can 
cause bounce and attenuation of the signal strength, an RSS filtering 

(1)RSS ∼ a ∗ exp ( − S ∗ distance) + K
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approach may not necessarily ensure that the closest nodes are cho-
sen. Therefore, we assessed a second approach where we identified 
the node receiving the strongest RSS value, assumed to be the node 
closest to the radio transmitter, and then selected all nodes within 
the network that were within some distance of the node receiving 
the strongest RSS signal. For this analysis, we tested distance filters 
that were a multiple of the average grid spacing (i.e., 1.25×, 2×, 3×, 
and 4× distance of the average network spacing) to account for net-
works with different node spacing.

We evaluated the ability of filters to decrease location estima-
tion error by applying the filters described above prior to conducting 
each trilateration analysis. Localization error of trilateration location 
estimates was assessed by calculating the difference in distance (m) 
between the true and estimated location with lower values indicat-
ing higher accuracy of localization estimates. We also evaluated the 
role that location within a network played in location estimation 
error by examining the relationship between error of estimated test 
locations and the distance of each test location to the nearest edge 
of the network.

All simulations and analyses were conducted in the R Statistical 
Software Environment version 4.0.3 (R Core Team, 2020).

3  |  RESULTS

A test dataset of 135 known radio transmitter locations distributed 
throughout the Guam network resulted in 3390 data points with 
RSS values and associated known distances to nodes in the network. 
Modeling a negative exponential decay model (Equation 1) to the 
dataset showed a rapid decline in RSS values as the distance be-
tween nodes and the test transmitter increased (Figure 1), with the 
relationship expressed as:

The error of location estimates using trilateration of all data 
(i.e., no filter) was high for all simulated node configurations and 
the Guam network test data, with the median difference between 
true and estimated locations ranging from about 172 to 249 m 
(Figure 2, Table 1). The inclusion of all nodes in a network for tri-
lateration estimates tended to pull location estimates to the cen-
ter of a network (Figure 3), indicating that estimated locations 
were primarily an average of all the node locations included in the 
analysis.

Filtering data prior to trilateration using either an RSS value 
or distance filter greatly reduced the error of location estimations 
(Figures 2 and 3). Filters resulted in a subset of nodes being used in 
the trilateration analysis (Table 1), localizing estimates to a restricted 
portion of the network, and decreasing localization error for all sim-
ulated node configurations and the Guam network test dataset as 
filters became more stringent. The median difference between true 
and estimated locations for the most stringent filters (i.e., Distance 
1.25×, RSS −80) ranged from about 29 to 73 m, a 3.4-  to 8.6-fold 
decrease in localization error from unfiltered trilateration estimates 
(Figure 2, Table 1).

The error of location estimates increased as the distance be-
tween nodes in a network increased, even with stringent filters, 
such that the 100 m node configuration had the lowest localization 
error, followed by the 175 and 250 m node configurations. Non-
overlapping 95% confidence intervals (CI) indicated that differences 
in localization error of most filters were significant between node 
configurations (Figure 2, Table 1). In addition, less uniform spacing 
of nodes in a network also increased localization error, with a non-
uniformly spaced 250 m simulated network having 1.6 times more 

RSS = 47.23 ∗ exp ( − 0.005 ∗ distance) − 105.16

F I G U R E  1 Negative exponential decay 
model showing the relationship between 
receiver signal strength (RSS) values and 
the distance of a test transmitter from 
each node based on 135 random locations 
of a test transmitter within a network 
of 72 nodes on Guam. The equation 
RSS = 47.23*exp(−0.005*Distance) − 
105.16 describes the exponential decay 
of RSS values with each unit of change in 
distance

RSS = 47.23 * exp(−0.005*Distance) − 105.16
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localization error than a uniformly spaced 250 m simulated network 
when using the most stringent distance filter (Figure 2, Table 1).

Node configuration influenced whether the application of RSS 
or distance filters resulted in less localization error. For example, the 
100 and 175 m node configurations had no difference in the aver-
age error of the most stringent RSS and distance filters (based on 
overlapping CI; Table 1). However, for the 250 m node configuration, 
the most stringent distance filter, on average, provided less error of 
location estimates compared to the most stringent RSS filter (based 
on non-overlapping CI; Table 1). Moreover, 86% of simulated loca-
tions could not be estimated when the most stringent RSS filter was 
applied, compared to only a 5% loss of simulated location estimates 
for the most stringent distance filter (Table 1). Overall, the distance-
based filters had little to no loss of location estimates. However, the 
relative decrease in localization error of a distance-based versus 
RSS-based filter diminished when the spacing of nodes was irregu-
lar (i.e., 250 m random spacing node configuration). In a test of our 
Guam network, which had very irregular spacing among nodes, the 
most stringent RSS filter, on average, had 20 m lower localization 
error than the most stringent distance filter, although there was con-
siderable overlap in their CI (Table 1).

The location of a radio signal within a network strongly influ-
enced localization error when no filters were applied. Generally, lo-
calization error increased as the distance of a radio signal to the edge 
of a network decreased (Figure 4). The average localization error of 
a signal 600 m from the edge of a simulated network was less than 
50 m, whereas the average localization error for a signal on the edge 
of a network was ~300 m. However, the application of both RSS and 
distance filters prior to trilateration analysis greatly reduced the 
error of location estimates associated with signals near the edge, and 
overall flattened the relationship between error and distance from 
edge (Figure 4), although the application did not entirely remove all 
edge effects.

4  |  DISCUSSION

The ongoing advancements and innovations of hardware to track an-
imals is generating increasingly powerful systems that can produce 
unprecedented amounts of data on animal movement. Approaches 
for analyzing the resulting data are critical for extracting the highest 
quality and quantity data possible; however, analytical approaches 
often lag behind technological developments. We present an ana-
lytical approach to optimize RSS-based localization estimates using 
simple, objective, and efficient methods that greatly increase the ac-
curacy of location estimates. The results of our simulations and eval-
uation of a field-based network demonstrate the power of applying 
node-excluding filters prior to RSS-based trilateration analysis to 
reduce the error of location estimates within a network of nodes. 
Our approach helps to minimize inherent limitations of localization 
algorithms in estimating locations in noisy, outdoor environments 
to track fine-scale animal movements. Overall, the use of signal 
strength and distance-based filters resulted in an approximately 3- 
to 9-fold decrease in median error of location estimates over unfil-
tered estimates, with the most stringent filters providing location 
estimates with a median localization error ranging from about 29 
to 73 m depending on the configuration and spacing of the node 
network. In addition, our simulations of node networks that varied in 
the density and regularity of node spacing provide insights into how 
node configuration influences accuracy of location estimates, im-
portant information that researchers would need to consider when 
designing effective networks in different environments and for dif-
ferent research questions.

Our work clearly shows that inclusion of information from all 
nodes in a network for RSS-based localization estimates does not 
improve the accuracy of location estimates, at least in noisy outdoor 
environments. In fact, the most stringent filters, which produced 
the lowest errors in location estimations, included RSS information 

F I G U R E  2 Boxplots showing localization error (difference in meters between the true and estimated location) of trilateration location 
estimates for simulated node configurations that vary in the density of nodes (100, 175, 250 m) and consistency of spacing among nodes 
(uniform, random). Prior to trilateration, we applied either no filter, distance-based filters (a) which included only nodes within a specified 
distance of the node that received the strongest radio signal, or receiver signal strength (RSS)-based filters (b) which included only nodes 
that received radio signals greater than the defined RSS value. Additionally, the percentage of locations that could not be estimated 
(information loss) is indicated below each boxplot. Boxplot whiskers depict the 10th and 90th percentiles and boxes show the 25th and 75th 
percentiles with the median value indicated, outliers shown as circles
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from the least number of nodes. The inclusion of signal strength in-
formation from all nodes in a large network creates challenges for 
RSS-based localization estimates because radio signals quickly at-
tenuate at increasing distances from a transmission source, result-
ing in the relationship between RSS and distance rapidly degrading 
(Whitehouse et al., 2007). Thus, many of the nodes farther from 
a radio signal source will have low RSS values that are poorly cor-
related with geographic distance, increasing the probability of intro-
ducing outlier distance estimates into localization algorithms, and 
creating high uncertainty in location estimates (Li et al., 2014). This 

results in estimated locations being more reflective of the node loca-
tions included in the analysis rather than the actual animal location, 
and shifts estimated locations toward the center of the network. 
When no filters are applied, the inclination of the trilateration al-
gorithm to estimate locations at the center of the network is clearly 
illustrated in Figure 3 (no filter) and is likely the cause for the strong 
edge effect observed with non-filtered trilateration estimates. Thus, 
location estimates from only a subset of nodes help constrain the 
area within the network for localization and use only the highest 
quality information for the trilateration estimations.

TA B L E  1 Summary of localization error (difference in meters between the true and estimated location) of trilateration location estimates 
for a field-based node network on the Island of Guam and simulated node configurations that vary in the density of nodes (100, 175, 250 m) 
and consistency of spacing among nodes (uniform, random)

Filter
% Location 
loss

Mean no. 
nodes

Mean 
error

Lower 95% CI 
error

Upper 95% CI 
error

Median 
error

Min 
error

Max 
error

Nodes 100 m uniform spacing

No Filter 0 112.82 222.58 203.12 242.05 240.62 19.34 458.70

Distance 4× (400 m) 0 36.28 34.30 30.71 37.90 30.97 1.12 94.21

Distance 1.25× (125 m) 0 4.75 29.46 26.37 32.55 29.34 1.53 89.36

RSS −95 dB 0 39.79 199.75 180.92 218.58 200.76 13.10 469.07

RSS −80 dB 1 8.33 33.54 28.95 38.12 27.86 2.23 104.03

Nodes 175 m uniform spacing

No Filter 0 41.65 242.73 224.88 260.57 248.43 7.09 456.74

Distance 4× (700 m) 0 25.28 43.56 39.23 47.88 40.71 3.30 110.15

Distance 1.25× (220 m) 0 4.59 36.37 32.22 40.51 32.77 3.53 88.16

RSS −95 dB 0 14.22 194.28 179.39 209.16 199.39 20.10 340.47

RSS −80 dB 42 3.61 42.72 38.10 47.34 38.78 10.06 113.68

Nodes 250 m uniform spacing

No Filter 0 23.19 238.99 221.04 256.94 255.53 13.62 432.60

Distance 4× (1000 m) 0 19.49 137.34 126.70 147.98 132.55 7.78 273.28

Distance 1.25× (315 m) 0 4.39 41.87 36.37 47.36 34.80 2.74 123.49

RSS −95 dB 0 7.53 167.08 152.47 181.69 163.36 35.36 365.02

RSS −80 dB 86 3.07 67.69 59.10 76.27 59.53 5.75 191.36

Nodes 250 m random spacing

No Filter 0 22.77 239.07 222.36 255.78 249.35 23.03 462.61

Distance 4× (1000 m) 0 19.34 144.46 136.27 152.64 140.93 17.30 320.36

Distance 1.25× (315 m) 5 4.42 64.73 61.39 68.25 55.10 4.72 276.78

RSS −95 dB 0 7.50 170.76 159.61 181.91 167.80 19.13 375.78

RSS −80 dB 83 3.10 74.61 71.54 78.34 66.93 9.75 221.02

Guam nodes ~215 m random spacing

No Filter 0 22.83 180.77 155.08 206.45 171.57 24.38 417.06

Distance 4× (1000 m) 0 20.98 141.94 125.02 158.85 140.05 16.90 285.12

Distance 1.25× (315 m) 0 7.37 82.69 68.20 97.19 73.19 4.94 266.35

RSS −95 dB 0 11.44 115.19 91.95 138.42 85.29 14.51 345.86

RSS −80 dB 40 3.72 62.23 47.16 77.29 49.85 11.27 167.60

Notes: Prior to trilateration, we applied either no filter, distance-based filters which included only nodes within a specified distance of the node that 
received the strongest radio signal, or receiver signal strength (RSS)-based filters which included only nodes that received radio signals greater than 
the defined RSS value. Only results for no filter and the least and most stringent RSS and distance filters for each node configuration are shown. 
Additionally, the mean number of nodes included in trilateration estimates is indicated, along with the percentage of locations that could not be 
estimated with trilateration (location loss).
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A key goal of this research was to develop an objective approach 
to remove nodes with low-quality information that can be automati-
cally applied to all localization estimates, particularly given the need 
to process large quantities of data generated from these types of 
node networks (e.g., signal detection every 1–15 s, depending on tag 
programing specifications). For example, a telemetry tag that emits 
a pulse every second would have up to 86,400 potential localization 
estimations per 24 h. The use of RSS values as a filter is a simple 
and intuitive approach given the known relationship between accu-
racy of distance estimates and RSS values. However, we found that a 
distance-based approach was more powerful in our simulations than 
an RSS-based approach. A distance-based approach likely had lower 
localization error because a distance filter maintains a configuration 
of all nodes around the location to be estimated, better balancing the 
optimization approach utilized by RSS-based localization algorithms. 
Moreover, the use of a distance-based approach resulted in little to 
no reduction in the number of locations that could be estimated be-
cause when nodes are evenly spaced this approach typically main-
tains the minimum of three nodes needed for trilateration. In a grid 
with nodes spaced 250 m apart, there were, on average, four nodes 
included in the trilateration analysis when the most stringent dis-
tance filter (i.e., 1.25×) was applied, while a 2× distance filter had an 
average of 9 nodes included in localization estimates. Even if some 

of the nodes maintained by the distance filter have low RSS values, 
their influence is localized to the neighborhood of interest, and thus 
does not skew location estimates to other regions of the network. 
In contrast, the use of a minimum RSS filter does not always main-
tain a configuration of nodes that surrounds the neighborhood of 
an unknown location, nor does an RSS filter necessarily retain a 
minimum number of nodes. In the simulations for a grid with nodes 
spaced 250 m apart, 85% of locations could not be estimated (i.e., 
<3 nodes) with the most stringent RSS filter (−80 dB), and of those 
locations that could be estimated, the average number of nodes was 
just above 3 nodes.

While a distance filter performed significantly better than an RSS 
filter in networks with evenly spaced nodes, the advantage dimin-
ished when nodes were less uniformly spaced within a network. The 
simulated 250 m uniform grid had an approximately 1.6-fold (26 m 
difference in accuracy) lower localization error for distance-based 
versus RSS-based filters, but for the 250 m random grid the advan-
tage was only approximately 1.2-fold lower (10 m difference in lo-
calization error). Applying filters to test data generated in our Guam 
node network, which has uneven spacing of nodes, resulted in the 
RSS filter actually performing better, on average, than the distance 
filter. However, overlapping CI between the most stringent distance 
and RSS filters indicated that the difference in localization error 

F I G U R E  3 Representation of the 250 m simulated node configuration with 36 nodes (red asterisks) uniformly spaced within a 12.5 km2 
grid, along with the 100 random test locations (black circles) each connected by a line to their estimated location (blue squares) based on 
trilateration. Prior to trilateration, we applied either no filter (a), distance-based filters using only nodes within 1000 m (b) or 315 m (c) of 
the node that received the strongest radio signal, or receiver signal strength (RSS)-based filters using only nodes that received radio signals 
greater than −95 dB (d) or −80 dB (e)

F I G U R E  4 Relationship between the distance of each test location from the nearest edge of the network and localization error 
(difference in meters between the true and estimated location) of trilateration location estimates for simulated networks with uniformly 
spaced nodes every 100 m (circles) or 250 m (triangles). Prior to trilateration, we applied either no filter, distance-based filters (a) which 
included only nodes within a specified distance of the node that received the strongest radio signal, or receiver signal strength (RSS)-based 
filters (b) which included only nodes that received radio signals greater than the specified RSS value. Loess lines were fit to the relationship 
between accuracy and distance to edge for each filter and node configuration (solid lines for 100 m, dashed lines for 250 m)
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was small (CI RSS −80: 47.16–77.29 m; CI Distance 1.25×: 68.20–
97.19 m). The reduced advantage of distance-based filters for node 
networks with uneven spacing may be due to the optimization of 
the trilateration algorithm, where uneven spacing of nodes adds ad-
ditional noise to the system, thus reducing the accuracy of location 
estimates (Bhat & Santhosh, 2020).

The relationship between RSS and distance will likely differ 
among environments and influence the accuracy of location es-
timates. While indoor wireless sensor networks using RSS-based 
localization estimates can provide near GPS-level accuracy (Lee & 
Buehrer, 2019), outdoor environments are complex, and many fac-
tors can degrade the accuracy of RSS-based localization estimates, 
including the distances from which signals are detected, the height 
that nodes can be deployed, overall levels of background noise, and 
the structure of the environment in terms of objects or vegetation 
that will potentially cause obstruction or signal bounce (Whitehouse 
et al., 2007). Moreover, the behavior and spatial orientation of the 
focal species of interest will influence the error of localization esti-
mates. For example, the signal from a bird that spends most of its 
time at the top of tall trees will likely have less attenuation of sig-
nal strength with distance than a signal from a snake that is on the 
ground in dense understory (Rutz et al., 2015). All of these factors 
will influence the optimal spatial configuration of nodes needed for 
a given environment and study species. Additionally, our simulations 
highlight the importance of considering edge effects when designing 
a network, given that error of localization estimates increased near 
network edges. Identifying the key areas where researchers want 
to collect data and ensuring those areas are in the core area of a 
network, and not at edges, will increase accuracy of location esti-
mates. Therefore, it is important that the configuration of a network 
is carefully planned prior to deployment of nodes with consideration 
given to the level of resolution of tracking data needed to address 
the objectives of a research project. We recommend researchers 
first conduct testing with a reduced configuration of nodes in their 
study area to quantify the relationship between RSS and distance 
within their environment. Researchers can then conduct simulations 
of alternative network configurations utilizing their RSS to distance 
relationship to identify an optimal design for their study system, and 
evaluate which filters provide the lowest localization error for their 
network. The methods for simulating and testing node networks 
outlined in this paper, along with the R code to simulate and process 
data, provide tools that researchers can use to optimize networks for 
trilateration localization methods.

RSS-based localization estimates for node networks tracking 
animal movements are attractive for their simplicity, with the only 
information needed being the location of nodes, signal strength of 
a received radio signal, and the time that a signal is received. Thus, 
using an RSS-based localization method requires minimal hardware 
(Zekavat et al., 2019), allowing for relative ease of deployment of 
large multi-node networks with minimal upfront costs to simulta-
neously track the movements of multiple animals within the geo-
graphic area of a network. Our approach of using filters to limit 
which nodes are used in RSS-based localization estimates greatly 

improved accuracy, but further improvement in location accuracy 
could be gained by coupling other analytical strategies with our 
methods. For example, leveraging the autocorrelation of a sequence 
of locations through time (e.g., lack of independence of previous and 
subsequent locations) could reduce outlier location estimates by 
constraining estimates to biologically plausible outcomes based on 
information from successive locations (Baktoft et al., 2017; Fleming 
et al., 2016). Additionally, non-linear localization techniques could 
be used to accommodate noise in an environment by mapping, or 
fingerprinting, signal strength patterns across an entire network and 
then using the resulting map of radio signals for each location to 
train machine learning algorithms to estimate locations (Harbicht 
et al., 2017). Location fingerprinting has been widely used in in-
door wireless networks and can increase localization accuracy by 
accounting for the effects of obstructions or bounce in a radio signal 
map, along with variation in receiver sensitivity (Campos & Lovisolo, 
2019). However, the complexity of such an approach may only be 
worthwhile in long-term networks that can be carefully monitored 
to ensure consistency of signal patterns across the node network. 
Moreover, other localization algorithms, such as time-difference-of-
arrival (TDOA), can also be applied to data collected from node net-
works and may increase the accuracy of localization estimates over 
RSS-based methods (Baktoft et al., 2017; MacCurdy et al., 2019; 
Piersma et al., 2014). However, TDOA-based localization methods, 
which estimate a signal’s position based on differences in the time 
of arrival of a signal at each receiver, require receivers to be syn-
chronized and capable of measuring time at least to the millisecond, 
increasing the complexity, cost, and energy requirements of receiv-
ers (Buehrer & Venkatesh, 2019). Ultimately, the level of accuracy in 
location estimates scales the research questions that can be asked. 
As the technology and analytical approaches continue to be devel-
oped, and as experience with node networks increase, the use of 
these type of automated radio tracking systems will likely increase 
in ecological research and allow for many important ecological ques-
tions to be explored.
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