Bioelectromagnetics Supplement 7:586—S97 (2005)

Review

Do Magnetic Fields Cause Increased Risk of
Childhood Leukemia via Melatonin Disruption?

Denis L. Henshaw'* and Russel J. Reiter?

"H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
2Departmem‘ of Cellular and Structural Biology,
University of Texas Health Science Center, San Antonio, USA

Epidemiological studies have reported associations between exposure to power frequency magnetic
fields and increased risk of certain cancer and noncancer illnesses. For childhood leukemia, a
doubling of risk has been associated with exposures above 0.3/0.4 uT. Here, we propose that the
melatonin hypothesis, in which power frequency magnetic fields suppress the nocturnal production
of melatonin in the pineal gland, accounts for the observed increased risk of childhood leukemia.
Such melatonin disruption has been shown in animals, especially with exposure to electric and/or rapid
on/off magnetic fields. Equivocal evidence has been obtained from controlled laboratory magnetic
field exposures of volunteers, although the exposure conditions are generally atypical of neighborhood
exposures. In contrast, support for the hypothesis is found in the body of studies showing magnetic
field disruption of melatonin in human populations chronically exposed to both electric and magnetic
fields associated with electricity distribution. Further support comes from the observation that
melatonin is highly protective of oxidative damage to the human haemopoietic system. Aspects of the
hypothesis are amenable to further investigation. Bioelectromagnetics Supplement 7:S86—S97,
2005 © 2005 Wiley-Liss, Inc.
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INTRODUCTION

Various reports [NIEHS, 1999; NRPB, 2001a;
CHD, ch. 8, 2002] have discussed the pooled analyses
of epidemiological studies by Ahlbom et al. [2000] and
Greenland et al. [2000], indicating an approximate
doubling of risk associated with magnetic field
exposures above 0.3/0.4 uT and such fields have been
classed as a possible carcinogen [IARC, 2002]. In
addition, there is a body of epidemiological evidence
suggesting increased risk of certain other cancer and
noncancer illnesses associated with magnetic field
exposures. Currently, the strongest evidence appears
to relate to increased risk of amyotrophic lateral
sclerosis, ALS [NRPB, 2001b; CHD, ch. 15, 2002],
brain cancer, and leukemia in adults with recent evid-
ence suggesting a link with miscarriage [CHD, chs. §,
10, and 13, 2002].

The melatonin hypothesis has been widely
discussed in terms of exposure to light-at-night,
magnetic fields, and breast cancer [Cohen et al., 1978;
Stevens, 1987]. However, melatonin disruption by
magnetic fields might also account for increased risk
of the otherwise disparate range of reported adverse
health outcomes. Here we apply the hypothesis
specifically to childhood leukemia, namely that expo-
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sure to magnetic fields associated with the electricity
supply causes increased risk via the disruption of the
nocturnal production of melatonin in the pineal gland.

Melatonin (N-acetyl-5-methoxytryptamine) has
been identified in a wide range of organisms from
bacteria to human beings. Its principal source in man is
as the chief secretory product of the pineal gland. This
follows a marked circadian rhythm, the majority of
production occurring at night regulated by nonrod,
noncone receptors in the eye sensing the absence of
light.

Melatonin is remarkably nontoxic and has been
found to be a radical scavenger and antioxidant, more
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effective than either vitamins C or E in vivo [Tan et al.,
2003]. The indoleamine has been found to protect cells,
tissues, and organs against oxidative damage induced
by a variety of free radical generating agents and
processes, for example, the carcinogen safrole, lipopo-
lysaccharide, kainic acid, Fenton reagents, potassium
cyanide, ischemia-reperfusion, and ionizing radiation
[Reiter et al., 1997]. Melatonin is an antioxidant,
effective in protecting nuclear DNA, membrane lipids,
and cytosolic proteins from oxidative damage [Allegra
etal.,2003]. It has been reported to alter the activities of
enzymes which improve the total antioxidative defence
capacity of the organism [Rodriguez et al., 2004].

Obviously, melatonin’s ability to protect DNA
from oxidative damage has implications for many types
of cancer, including leukemia, considering that DNA
damage due to free radicals is believed to be the initial
oncostatic event in a majority of human cancers [Cerutti
et al., 1994]. In addition to cancer, free radical damage
in the central nervous system is a significant component
of a variety of neurodegenerative diseases of the aged
including Alzheimer’s disease and Parkinsonism. In
experimental animal models of both of these condi-
tions, melatonin has proven highly effective in forestall-
ing their onset and reducing their severity [Reiter et al.,
2001]. Thus, a reduction in melatonin due to any means
may be consequential in a number of diseases.

THE MELATONIN HYPOTHESIS

The chief source of melatonin in man arises from
its synthesis in the pineal gland, the majority production
occurring at night triggered by a signal from the eye
indicating light falling below a threshold ~10 lux.
Recent experiments indicate the presence of nonrod,
noncone receptor cells in the eye which are uniquely
responsible for communicating light information to the
pineal gland, thereby synchronizing regulation of the
pineal with the day—night cycle [Freedman et al., 1999;
Lucas et al., 1999, 2001, 2003; Foster and Hankins,
2002; Hattar et al., 2003; Sekaran et al., 2003; Foster
and Kreitzman, 2004].

Cohen et al. [1978] suggested that reduced pineal
melatonin production, brought about by environmental
lighting, might increase human breast cancer risk.
This suggestion was followed by Stevens [1987] who
noted that breast cancer was a disease of modern life
associated with industrialization. He proposed that
the use of electric power might increase the risk of
breast cancer. The risk theoretically arose from reduced
production of nocturnal melatonin brought about by
exposure to two principal agents, namely light-at-night
(LAN) from domestic as well as street lighting and
magnetic fields associated with the electricity supply.

Melatonin and Childhood Leukemia S87

Strong support for LAN affecting breast cancer risk has
come from experiments in animals exposed to constant
light [Stevens and Davis, 1996]. Additionally, support
in humans comes from the observation of reduced
hormone related cancer rates in the blind and partially
sighted and increased breast cancer rates in nightshift
workers [Hahn, 1991; Feychting et al., 1998; Verkasalo
et al., 1999; Hansen, 2001a,b; Swerdlow, 2003].

MAGNETIC FIELD SUPPRESSION
OF MELATONIN

Suppression in Animals

Effects on melatonin by magnetic fields have been
studied in a number of animal species. Kato and
Shigemitsu [1997] found 6 weeks of exposure to a
circularly polarized but not to horizontal or vertically
plane-polarized fields, at intensities above 1.4 T,
suppresses plasma and pineal melatonin concentration
in Wistar—King rats. The authors also found that the
ability to suppress melatonin depended on the degree of
ellipticity and field intensity. Polarized fields induce
higher currents in the body compared with their plane-
polarized counterparts. This may be of importance,
given that human populations are commonly exposed to
polarized fields [Ainsbury, 2004]. Wilson et al. [1981]
also showed that 65 kV/m electric fields were effective
in suppressing melatonin in rats exposed for 30 days.
Reiter et al. [1998] found inconsistent suppression
of nocturnal pineal melatonin synthesis and serum
melatonin in rats exposed to pulsed DC magnetic fields.
The authors suggested that an observed drop on serum
melatonin could theoretically be explained by an
increased uptake of melatonin by tissues that were
experiencing augmented levels of free radicals as a
consequence of MF exposure [Reiter, 1998].

In hamsters, Wilson et al. [1999] found reduced
pineal melatonin from a combination of exposure to
steady state and on/off magnetic fields for 16 days.
Yellon [1994] found melatonin suppression by mag-
netic fields in adult Djungarian hamsters but not in
adult Siberian hamsters [Yellon and Truong, 1998].
Brendel et al. [2000] found both 50 and 16 2/3 Hz
magnetic fields effective in suppressing melatonin
production in isolated pineal gland from Djungarian
hamsters in vitro.

In baboons, Rogers et al. [1995a] found that a
combination of exposure to slow onset electric and
magnetic fields were ineffective at suppressing mela-
tonin, but when these fields were applied in a rapid on/
off mode, after 9 days exposure melatonin levels were
reduced to between 4% and 15% of those pre-exposure
[Rogers et al., 1995b]. The authors suggested that
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while organisms may adapt to constant conditions, they
may be less able to adapt to conditions that are rapidly or
randomly changing.

Loscher et al. [1993, 1994] and Loscher and
Mevissen [1997] carried out a series of experiments
which reported direct experimental evidence of the
hypothesis of Stevens [1987], showing that chronic
exposure to 60 Hz magnetic fields resulted in increased
incidence of mammary gland tumors in female Sprague—
Dawley rats. The authors pointed out that since mela-
tonin physiologically suppresses oestrogen production
by ovary and prolactin production by the pituitary
[Reiter, 1991], a melatonin reduction would in turn
result in increased oestrogen and prolactin production
and thereby induce increased turnover of the breast
epithelial stem cells at risk of malignant transformation.
In addition, in view of the oncostatic effect of melatonin
on breast cancer growth [Blask, 1993], the development
and growth of breast cancer, once initiated, would be
facilitated by reduced melatonin levels. Loscher and
Mevissen showed increased incidence of mammary
tumors with magnetic field exposure in rats treated
with the chemical carcinogen 7,12-dimethylbenz[a]
anthracene (DMBA). The data were consistent with a
monotonic increase in risk from 1 to 100 puT where a
50% increase in tumor risk was observed. Later
evidence suggests that this result is species dependent,
owing to varying sensitivities to DMBA [Anderson
et al., 2000; Fedrowitz et al., 2004].

In relation to human breast cancer, Ishido et al.
[2001] amongst others have shown that in vitro 1.2 puT
magnetic fields suppress the antiproliferative action of
physiologically relevant concentrations of melatonin
in inhibiting the growth of MCF-7 breast cancer cells.
Epidemiological studies have generally suggested a
small increased risk of breast cancer with magnetic field
exposures [Erren, 2001], although higher risks have
been reported when both residential and occupational
exposures are taken into account [Kliukiene et al.,
2004].

Suppression in Humans

The central question is whether exposure to
typical neighborhood power frequency magnetic fields
to which human populations are exposed either reduces
or otherwise disrupts the nocturnal production of
melatonin in the pineal gland. This has been addres-
sed in both laboratory and observational (population)
studies.

Laboratory controlled acute exposures. Consider-
able effort has been exerted on studies in which
volunteers were exposed to laboratory generated
magnetic fields well above those usually encountered

by the general population and melatonin assayed either
by levels in blood (plasma melatonin) or by measure-
ment of the melatonin metabolite 6-hydroxymelatonin
sulphate (6-OHMS) in urine [Graham et al., 1996a,b;
Selmaoui et al., 1996, 1997; Wood et al., 1998; Crasson
et al., 2001; Griefahn et al., 2001; Hong et al., 2001;
Kurokawa et al., 2003; Selmaoui and Touitou, 2003;
Warman et al., 2003a,b]. The rationale for volunteer
studies is that exposures can be well characterized and
control for factors such as light exposure is better
achieved in laboratory conditions. Some studies also
attempted to mimic neighborhood fields by artificially
imposing on/off and transient features [Crasson et al.,
2001; Kurokawa et al., 2003].

Graham et al. [1996a,b] reported that men with
pre-existing low levels of melatonin showed signifi-
cantly greater suppression of melatonin when they were
exposed to light and also when exposed to 20 uT
magnetic fields for 8 h on 1 night. However, this finding
was not confirmed in their later study. With the
exception of Wood et al. [1998] discussed below, the
other short term exposure volunteer studies have failed
to provide statistically significant evidence of melato-
nin suppression, although some show effects short of
statistical significance [Selmaoui et al., 1996; Crasson
et al., 2001; Hong et al., 2001].

However, while these volunteer studies have been
carefully designed and well controlled, they never-
theless have a number of drawbacks: (i) the relatively
small number of volunteers limits the ability statisti-
cally to resolve changes in melatonin secretion against
the natural variations between individuals; (ii) ex-
posures have tended to be for short periods compared
with chronic exposures in real populations when the
evidence in animals suggests that several days or weeks
of exposure are required before effects on melatonin
secretion become manifest; (iii) laboratory generated
exposures may not contain features such as transients or
rapid on/off changes in magnetic fields which have been
shown effective in demonstrating melatonin suppres-
sion in animals; and (iv) volunteer studies have not
included exposure to electric fields which may also be a
factor in melatonin disruption.

Longer term and chronic exposures. In contrast to
the volunteer studies with short term exposure, there is
now a body of studies involving either longer term or
chronic magnetic field exposures which taken together
show evidence of nocturnal melatonin disruption.
These are listed in Table 1, numbered 1-14: [Wilson
et al., 1990; Pfluger and Minder, 1996; Burch et al.,
1998, 1999a,b, 2000, 2002; Wood et al., 1998; Graham
et al., 2000; Juutilainen et al., 2000; Davis et al., 2001;
Levallois et al., 2001; Weydahl et al., 2001; Touitou



etal.,2003]. The two latter Studies, 13 and 14, looked at
the effects of geomagnetic disturbances. Apart from 4
and 14, which measured plasma melatonin only, all
other studies assayed 6-OHMS in morning urine samples.
Study 12 additionally measured plasma melatonin.

Three volunteer Studies: 1, 4, and 8 are included
which involved longer, as apposed to one time acute
exposure. In Study 1, while overall melatonin disruption
was not seen in electric-blanket users, an approximate
25% reduction in overnight 6-OHMS was seen in seven
individuals who slept with CPW electrc blankets that
produced 50% higher magnetic fields and that switched
on and off at twice the rate of conventional blankets.
In Study 4, exposure to 20 uT 50 Hz fields during a
certain time window caused a mean 1 h delay in nightly
melatonin onset in a subset of subjects, with square
wave fields producing a more marked effect compared
with sinusoidal fields. In Study 8, repeated nightly
exposure to circularly polarized 28.3 uT 60 Hz fields
was associated with reduced consistency of 6-OHMS
levels and the results were suggestive of a cumulative
effect.

Study 12 found no evidence of nocturnal melato-
nin disruption in men who lived and worked near extra
high voltage substations, but the sample size of 15 is
small compared with other studies involving chronic
exposure. The remaining chronic exposure studies in
Table 1 all report evidence of nocturnal melatonin
disruption with suppression values ranging up to 50% at
low average field exposures. For example, the geo-
metric mean exposure in Study 6 was in the range 0.04—
0.27 pT and in Study 9 compared melatonin secretion
between average exposures >0.2 and <0.2 pT. The
findings in relation to geomagnetic disturbances are
particularly noteworthy because of the level and
transient nature of the fields. Study 13 reported a
statistically significant 20% reduction in 6-OHMS
levels for disturbance levels >30 compared with <30 nT
and study 14 found an approximate 50% reduction in
plasma melatonin for a 330 nT span in disturbances.

It can be inferred that in seven Studies, 2, 3, 5, 6,
10, 11, and 12, there was additional exposure to power-
line electric fields, although exposure values are only
given in Study 10. Of potential interest is that electric
fields induce currents in both the eye humor and the
pineal gland well in excess of endogenous currents
[Furse and Gandhi, 1998]. Some studies specifically
involve exposure to transient or switched fields, 1,4, 13,
and 14, while Study 7 in women sewing mechine
operators would have likely involved exposure to on/off
fields.

Overall, in Table 1, 11 studies show evidence of
melatonin disruption by power frequency magnetic
fields and 2 by geomagnetic field disturbances. In
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some cases there is evidence of a dose response
effect and disruption for exposures to fields below
0.3-0.4 uT.

CHILDHOOD LEUKAEMIA AND MELATONIN

Currently there is no appropriate animal model for
acute lymphoblastic leukemia (ALL), the predominant
leukemia subtype in children. In contrast, acute
myeloid leukemia in CBA mice is an established model
for adult leukemia. Anisimov et al. [2004] have shown
that in addition to other tumors, leukemia can be
induced in CBA mice exposed to constant light, a
finding interpreted as due to melatonin suppression.

Melatonin Protects Against Oxidative Damage
to the Human Hemopoietic System

The potential importance of melatonin suppres-
sion to leukemiarisk arises from the observation that the
indoleamine is highly protective of oxidative damage to
the human haemopoietic system. Vijayalaxmi et al.
[1996] administered 300 mg of melatonin to four
healthy volunteers. Immediately and 1 and 2 h later,
blood samples were taken and irradiated with 1.5 Gy
137Cs gamma radiation. Compared with blood samples
taken immediately, those taken at 2 h had significantly
decreased (50%—70%) chromosome aberrations and
micronuclei. The authors concluded that the observa-
tions might have important implications for the
protection of human lymphocytes from genetic damage
induced by free radical producing mutagens and
carcinogens. The authors investigated the mechanism
of melatonin protection in terms of both direct scaveng-
ing in the cell nucleus of radiation-induced free
radicals, including the hydroxyl radical, and action at
the cell membrane and in the cytosol to trigger
activation of existing DNA repair enzymes and/or
activation of a set of genes that lead to de novo protein
synthesis associated with DNA repair [Vijayalaxmi
et al., 1998]. In a further experiment, Vijayalaxmi et al.
[1999] irradiated mice with 8.15 Gy gamma radiation;
mice were either untreated or pretreated with 125 and
250 mg melatonin. In the untreated mice, 45% were
alive after 30 days, but 85% were still alive among those
pretreated with 250 mg melatonin.

There is another issue, which relates more directly
to leukemia and melatonin suppression. A variety of
bone marrow cells have been shown to produce mela-
tonin [Tan et al., 1999; Conti et al., 2000; Carrillo-Vico
et al., 2004]. While its specific function in these cells
remain unknown, if their melatonin levels are depressed
by magnetic field exposure, as has been shown to be the
case for pineal melatonin in a variety of studies, it could
have clear implications for leukemia. A reduction in
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melatonin in the leucocytic precursor cells would be
expected to enhance free radical-mediated DNA
damage, thereby increasing the likelihood of these
cells developing tumors.

Melatonin Protects Against Oxidative Damage
to the Fetus in Animals

There is compelling evidence that the initiating
event(s) in childhood (ALL) appear to take place in
utero [Greaves, 2002]. It is therefore of interest to note
that in animals melatonin has been shown to be highly
protective of oxidative damage to the fetus [Wakatsuki
et al., 1999a,b, 2001; Okatani et al., 2000]. Nakamura
et al. [2001] showed that in pregnant women, serum
melatonin shows a diurnal rhythm which increases after
24 weeks gestation until term, and levels are related to
the feto-placental unit. Okatani et al. [1998] showed
that there is efficient maternal-fetal transfer of melato-
nin near term. These observations may reflect a role
for melatonin in protecting the human fetus against
oxidative damage.

DISCUSSION

Melatonin Suppression by Magnetic Fields

A feature of experiments in animals is that
prolonged expose, from days to weeks was required to
suppress melatonin and in rats effects were induced
at relatively low fields [Kato and Shigemitsu, 1997].
There was also a suggestion that the effects of electric
fields and/or rapid onset/offset magnetic fields may be
particularly effective in suppressing melatonin. Such
features characterize many of the exposures in Table 1
and transients magnetic fields are characteristic of
neighborhood exposures generally [Kaune et al., 2000].

The findings from acute laboratory exposure
contrast sharply with those in animals and in long term
or chronically exposed populations, but as already
discussed laboratory exposures have a number of
drawbacks. Another issue is the control fields to which
volunteers were exposed. For example, Warman et al.
[2003b] employed acute exposes up to 300 pT and
found no real evidence of melatonin disruption.
However, their control level is given as <0.2 puT, which
could be seen as the region where chronic exposure still
results in nocturnal melatonin suppression. The situa-
tion might parallel that for visible light where linearity
of pineal response extends from ~10 to 200 lux but
higher exposures up to 50 000 lux have little influence
on melatonin levels [Zeitzer et al., 2000].

The longer term and chronic exposure studies
in Table 1 lend support for melatonin disruption as
assayed from the melatonin metabolite 6-OHMS in

urine. However, the exposure conditions differ between
studies, which were carried out at different times of the
year and at widely different locations. As such it is
difficult to compare studies with respect to factors such
as latitude, season, and light-at-night, all of which may
affect melatonin secretion. This suggests that a program
of further human population studies could usefully be
carried out, but with better defined and agreed protocols
[see also recommendations in Warman et al., 2003a].
This should include better characterization of EMF
exposures including electric fields, polarization, and
transients.

Central to future work is the specific effect of EMF
exposure on melatonin in children. In the unborn human
fetus melatonin synthesis does not occur. Instead,
melatonin may be supplied by transplacental transfer
from the mother [Okatani et al., 1998]. Interestingly,
maternal melatonin production increases throughout
pregnancy [Nakamura et al., 2001]. Newborns do not
produce significant amounts of melatonin until 6 months
after birth [Tauman et al., 2002]. Thus, during fetal
development and in early life there is a relative defi-
ciency of melatonin. In a longitudinal study of 46 boys
and 38 girls, Griefahn et al. [2003] showed that despite
the huge interindividual differences, melatonin produc-
tion remains constant in the same individual during
childhood and adolescence (from age 3 to 18). The
authors attribute other reports of a decrease in plasma
melatonin in the young to an increase in body size rather
than to decreasing pineal secretion.

Mechanisms of EMF Interaction
With Melatonin

While there is evidence that chronic exposure
to magnetic and/or electric fields associated with the
electricity supply disrupts melatonin in humans,
the detailed steps involved have not been established.
In animal species, some experiments suggest retinal
involvement in responding to magnetic fields, while
others also suggest involvement of the pineal itself
[Semmetal., 1980; Raybourn, 1983; Reuss et al., 1983;
Welker et al., 1983; Olcese et al., 1985]. In general,
pulsed, static, and time-varying magnetic fields have
been shown to reduce various parameters of melatonin
production in the mammalian pineal gland and, in some
reports, circulating levels of melatonin in the blood, but
in a rather inconsistent way.

Those aspects of melatonin biosynthesis which
have been reported to be influenced by magnetic fields
include a reduction in the activity of the rate-limiting
enzyme in melatonin production, that is, N-acetyltrans-
ferase (NAT), and a suppression in the activity of the
melatonin-forming enzyme, hydroxyindole-O-methyl-
transferase (HIOMT) (Fig. 1). Additionally, the ser-
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Fig. 1. Interactions of the post-ganglionic sympathetic neuron
with the pinealocyte and the synthesis of melatonin. Each of the
numbered sites has been reported to be influenced by magnetic
fields; 1-5 are reportedly reduced and 6 and 7 are increased.

otonin concentrations within the pineal gland have
been found to be elevated. These combined changes
are consistent with a reduction in the conversion of
serotonin to melatonin [Reiter, 1993]. While each of
these observations have been reported, these parameters
have not been measured in a single experiment and
different outcomes have been achieved in different
studies [Warman et al., 2003a]. The findings are further
confounded by the fact that, as indicated above,
melatonin synthesis occurs in a number of organs in
addition to the pineal gland, including in the bone
marrow which gives rise to leukocytes. Also, melatonin
in an organism is not in equilibrium; thus, much higher
levels of melatonin are found in some bodily fluids, for
example, in cerebrospinal fluid and bile. Whether these
levels are influenced by magnetic fields has not been
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tested. Finally, how magnetic fields mechanistically
influence the conversion of serotonin to melatonin
within the pineal gland has never been adequately
determined.

Several theoretical explanations have been ad-
vanced, including (a) magnetic fields are detected by
photoreceptors in the eye and interpreted as “‘light”
with the resultant inhibition of melatonin; (b) an action
of the fields at the level of the biological clock, that is,
the suprachiasmatic nuclei, which causes it to send an
appropriate signal to the pineal gland thereby either
reducing the amount of melatonin or altering its rhythm;
and (c) a direct interaction of the magnetic fields with
the melatonin synthetic machinery in the pinealocytes
themselves (Fig. 2).

More recently, another potential mechanism has
been proposed which involves the generation of free
radicals by magnetic fields, thereby reducing melatonin
levels due to the fact that the indole is more rapidly used
as it scavenges radicals. This would lead to a depression
in blood and tissue melatonin levels without interfering
with its synthesis [Reiter, 1998]. Of additional interest,
birds are know to be able to detect very small changes in
the Earth’s DC magnetic field, and Ritz et al. [2004]
have shown that robins can detect fields as low as 0.084
KT, consistent with a resonance effect on singlet-triplet
transitions in a radical pair reaction.

While each of these above proposed mechanisms
may be logical, experimental support for any one of
them in humans is incomplete.

If, in fact, melatonin levels or free radical gene-
ration are altered by magnetic fields, a potential
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relationship between these fields and cancer, including
leukemia, would be possible. A reduction in melatonin
has been linked to cancer initiation as well as to
cancer progression. As an antioxidant, in many studies
melatonin has been shown to protect DNA from
oxidative damage; once damaged, DNA may mutate
and carcinogenesis may occur. With depressed melatonin
levels this possibility is enhanced. Likewise, lower than
normal melatonin levels may exaggerate the growth of
tumors since (a) melatonin inhibits the uptake of fatty
acid growth factors by cancer cells; (b) melatonin
inhibits telomerase activity in cancer cells thereby
reducing telomere length and increasing the likelihood
of cancer cells undergoing apoptosis [Leon-Blanco
et al., 2004]; and (c) melatonin inhibits synthesis of
endothelin-1, a potent angiogenic factor which pro-
motes blood vessel growth in tumors [Bagnato and
Natal, 2004]. While all these explanations are possibi-
lities, no studies have established a definitive link
between magnetic field exposure, melatonin, and cancer,
including leukemia. Overall, therefore, the hypothesis
that magnetic fields cause increased risk of childhood
leukemia via melatonin disruption is plausible but key
aspects remain to be tested.

FUTURE EPIDEMIOLOGICAL AND
LABORATORY INVESTIGATIONS

Many of the aspects of the hypothesis presented
here can be investigated either epidemiologically or in
experimental laboratory studies. It is clear from Table 1
that there is scope for further human studies of
melatonin disruption in populations exposed to both
electric and magnetic fields. The noninvasive nature of
the 6-OHMS assay is such that it could be applied
specifically to children. At the same time it would be
useful to probe in more detail the role of melatonin in
the fetus and neonate.

Following the work of Vijayalaxmi et al. [1996,
1998, 1999] and Ishido et al. [2001] cited above,
experiments could be carried out using cells of the
human haemopoietic system in the presence of both
melatonin and magnetic fields. This would test whether
magnetic fields act directly in inhibiting the protective-
ness of melatonin on the haemopoietic system.

Finally, the incidence of childhood leukemia has
increased steadily in recent decades in most developed
countries [Steliarova-Foucher et al., 2004]. The causes
of childhood leukemia are largely unknown. However,
if magnetic fields cause increased risk via melatonin
disruption, then certainly exposure to light-at-night
should do likewise. While previously unconsidered, the
latter could then turn out to be an important factor in the
aetiology of the disease.
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