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There is increasing awareness of the ubiquitous role of oxidative stress in neurodegenerative disease
states. A continuing challenge is to be able to distinguish between oxidative changes that occur early in
the disease from those that are secondary manifestations of neuronal degeneration. This perspective
highlights the role of oxidative stress in Alzheimer’s, Parkinson’s, and Huntington’s diseases, amyotrophic
lateral sclerosis, and multiple sclerosis, neurodegenerative and neuroinflammatory disorders where there
is evidence for a primary contribution of oxidative stress in neuronal death, as opposed to other diseases
where oxidative stress more likely plays a secondary or by-stander role. We begin with a brief review of
the biochemistry of oxidative stress as it relates to mechanisms that lead to cell death, and why the
central nervous system is particularly susceptible to such mechanisms. Following a review of oxidative
stress involvement in individual disease states, some conclusions are provided as to what further research
should hope to accomplish in the field.
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1. Introduction

Oxidative stress is defined as the imbalance between bio-
chemical processes leading to the production of reactive oxygen
species (ROS)1 and those responsible for the removal of ROS,
the so-called antioxidant cascade. Research over the past few
decades has revealed the widespread involvement of oxidative
stress in a number of disease states, most notably those that
have increased incidence with age. Indeed, the free radical theory
of aging (1) is a central tenet that shapes our understanding of

the biochemical changes that occur toward the end of life. ROS
are known to damage all cellular biomacromolecules (lipids,
sugars, proteins, and polynucleotides), and this damage can lead
to secondary products that can be just as damaging as the initial
ROS. The central nervous system is particularly vulnerable to
oxidative insult on account of the high rate of O2 utilization,
the relatively poor concentrations of classical antioxidants and
related enzymes, and the high content of polyunsaturated lipids,
the biomacromolecules most susceptible to oxidation. In
addition, there are regionally high concentrations of redox-active
transition metals capable of the catalytic generation of ROS.
Thus, it is not surprising that oxidative stress is a common
discussion point for neurodegenerative disease, where damage
to neurons can reflect both an increase in oxidative processes
and a decrease in antioxidant defenses.

For three age-related neurodegenerative diseases, Alzheimer’s
disease (AD), Parkinson’s disease (PD), and amyotrophic lateral
sclerosis (ALS), in addition to the more common sporadic forms,
there are rare familial forms, the hereditary bases of which
continue to be defined by advances in molecular genetics. The
sporadic forms of these diseases are predominately of unknown
origin but are thought to reflect a complex combination of
hereditary, environmental, and lifestyle factors. The same is true
for multiple sclerosis (MS), a progressive autoimmune demy-
elinating disease. In contrast, Huntington’s disease (HD) is a
strictly autosomal, dominantly inherited, progressive neurode-
generative disorder. Regardless of etiology, there is irrefutable
evidence for some component of oxidative stress in all of these
neurodegenerative diseases, but the central question is whether
oxidative stress is a consequence of degenerative processes
initiated by some other factor, for example, genetic, or whether
oxidative stress is an early event that contributes integrally to
the etiology of the disease. Often both primary and secondary
oxidative stress components occur simultaneously. Indeed, it
has been relatively straightforward to document an association
of oxidative stress with neurodegeneration, by finding increased
levels of oxidative stress markers in tissues during disease
progression or immunocytochemical evidence for oxidative
damage to biomacromolecules in affected brain regions seen at
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autopsy. What is less clear is the nature of the relationship and
mechanism between the state of oxidative stress and cell death.
This perspective will both summarize the evidence for a primary
role of oxidative stress in particular neurological diseases and
offer insight into various mechanisms that tie oxidative stress
to cell death.

2. Oxidative Stress and Neurodegenerative
Disease––General Considerations

There are four key common threads that run across the
spectrum of neurodegenerative disease, although not every
disease has all features. First, there is increasing awareness of
the interplay between a neuroinflammatory component and
chronic oxidative stress. In recent years, the upsurge in research
on nitric oxide (NO) as a common second messenger in
inflammatory signaling has resulted in recognition of its
enzymatic release from macrophages (or activated microglia in
the CNS), along with superoxide. Accumulating levels of
diffusible NO and superoxide give rise to peroxynitrite. Per-
oxynitrite and related reactive nitrogen species (RNS) are
capable of both oxidation and nitration chemistries (2), resulting
in a condition known as “nitrosative stress”, and there is growing
acceptance that ROS and RNS act together to mediate damage
in degenerative disease (3–6). Not only do microglial-derived
ROS and RNS create a stress upon ambient neurons, but
conversely, oxidants can stimulate pro-inflammatory gene
transcription in glia, creating a vicious cycle. A second common
feature is the accumulation of unfolded or misfolded proteins
in brain cells, leading some workers to refer to AD, PD, HD,
and ALS as “protein conformational diseases”. The third
common feature, most prominent in AD, PD, and MS, is
dyshomeostasis of both redox-active (e.g., copper and iron) and
redox-inactive (e.g., zinc) metal ions (7–9). The fourth common
feature is abnormal functioning of mitochondria (10), which
play a critical role in metabolism and regulate the entire life
cycle of the cell (e.g., in mediating apoptosis). These features
are not independent; for example, that small-molecule products
of oxidative stress can mediate protein misassembly (11).

Because oxidative phosphorylation in mitochondria is the
major source of ROS, there is an intrinsic link between
mitochondrial abnormalities in neurodegenerative disease and

the involvement of oxidative stress. To protect itself under
normal physiological conditions, the inner membrane of mito-
chondria incorporates a number of free radical scavengers and
enzymatic ROS removal systems. However, in certain patho-
logical states, it is apparent that mitochondrial defenses can
become compromised, due to either genetic mutations or an
increase in radical production. Although it is usually difficult
to distinguish whether mitochondrial defects are the primary
cause of toxicity or instead, reflect secondary collateral damage,
a growing body of evidence seems to indicate that mitochon-
drial-derived oxidative stress is a primary event associated with
neurodegeneration (12). Moreover, there is increasing awareness
of the concept of mitochondrial ROS production causing self-
inflicted damage to the respiratory chain, which can result in
increased ROS production and a cycle of further mitochondrial
protein damage. Also, the lack of protective histones in
mitochondrial DNA (mtDNA) together with limited repair
capacity render mtDNA an easy target for ROS.

AD and PD, in particular, are diseases for which there is the
most compelling evidence for a role of mitochondrial aberra-
tions, metabolic imbalance and resulting oxidative stress, both
superimposed on hereditary factors and likely playing a larger
role in the spontaneously occurring forms of these two diseases
(13–15). Evidence for oxidative stress in AD and PD is
consonant with the finding that the areas of the brain affected
by these diseases contain abnormally high levels of redox-active
metals, particularly iron. An excess of redox-active metals is
presumed to be at least partially responsible for the oxidative
damage seen to proteins, polyunsaturated lipids, and DNA/RNA
in both AD (16, 17) and PD (18).

3. Overview of Oxidative Stress Biochemistry and
Neurotoxicity

Mitochondrial production of ROS initially arises as super-
oxide anion radical from the side reaction of O2 intercepting
single electrons from the electron transport chain (Scheme 1).
Superoxide can also arise from mutationally altered or damaged
metalloenzymes involved in oxidative metabolism, and it is the
principal source of defensive pro-oxidants generated in the
respiratory burst of neutrophils. Superoxide can subsequently
be transformed to H2O2, and the latter, through Fenton reaction

Scheme 1
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with reduced transition metal ions [usually Fe(II) or Cu(I)], can
be transformed to hydroxyl radical. Rereduction of the resulting
oxidized transition metal ions [Fe(III) or Cu(II)] can be effected
by cellular reductants such as vitamin C or thiols and perhaps
even vitamin E. This process is one type of what is known as
“redox cycling”, another being the short circuiting of the normal
respiratory reduction of O2 to water by one-electron organic
redox agents that reduce O2 instead to superoxide and are, in
turn, re-reduced by flavin reductases at the expense of consum-
ing cellular reducing equivalents.

Although copper, iron, manganese, and other trace redox-
active transition metals are essential in most biological systems,
their accumulation in tissues excess of the capacity of the cellular
complement of metalloproteins (catalytic, transport, and storage)
results in increased concentration of the free metal ions. Usually,
it is these free metal ions, or equilibrium low-affinity complexes
with amino acids, which mediate oxidative stress reactions
(19, 20), and only trace levels are needed to catalyze redox
cycling. Redox-inactive metal ions such as zinc may then be
pathogenic by virtue of their ability to displace redox-active
metal ions from sites where redox activity of the latter is
sequestered. However, metal ions bound adventitiously to
proteins or polynucleotides that retain free coordination sites
can also contribute to ROS production. In the latter regard, it is
important to keep in mind that because of numerous antioxidant
defense mechanisms, neurotoxic levels of ROS would likely
arise only through catalytic redox cycling processes rather than
from stoichiometric reductions of metals by the biomolecules
to which they bind. Regardless of redox potential, transition
metals, through their coordination properties, may additionally
contribute to neurodegeneration through their deleterious effects
on protein and peptide structure, such as pathological aggrega-
tion phenomena. Thus, redox-active transition metals can
sometimes exert dual neurotoxic properties.

The hydroxyl radical is considered the chief instigator of
oxidative stress damage and reacts nondiscriminately with all
biomacromolecules (Scheme 1) at diffusion-controlled rates, that
is, within nanometer distances from its site of generation. In
contrast to the hydroxyl radical, the superoxide radical is
relatively unreactive, except at lower pH, where it exists as the
hydroperoxy radical. Under normal conditions, damage by ROS
is kept in check by an efficient antioxidant cascade, including
both enzymatic and nonenzymatic entities. Important in the
former regard are cytosolic copper-zinc superoxide dismutase
(CuZnSOD, SOD1) and mitochondrial manganese superoxide
dismutase (MnSOD), which convert superoxide to O2 and H2O2.
The latter, also the normal by-product of oxygen reduction by
oxidases such as monoamine oxidase, is removed by catalase
(CAT, Scheme 1) and peroxidases, which have ubiquitous tissue
distribution. Given that the reaction catalyzed by SOD converts
the less reactive superoxide to H2O2, the direct precursor of
the more reactive hydroxyl radical, it is not immediately obvious
why SOD is viewed as an antioxidant enzyme. The reasons
appear to be that (i) in the absence of SOD, nonenzymatic
dismutation of superoxide, although still fast, can result in
generation of highly reactive singlet oxygen; (ii) superoxide
can serve as the reductant of oxidized metal ions for the
production of hydroxyl radical from H2O2, which, coupled with
the Fenton reaction, is known as the Haber–Weiss process; (iii)
superoxide can liberate redox-active free iron from iron sulfur
proteins such as aconitase; and (iv) superoxide can react with
NO to form highly reactive peroxynitrite. Although it is unclear
whether superoxide could outcompete other cellular reductants
(glutathione, NADPH, and ascorbate) in the reduction of

oxidized transition metal ions (21), the enumerated factors
together appear to explain why SOD overexpression is neuro-
protective (22, 23).

It is important to consider the major chemical consequences
of unchecked ROS production with respect to damage inflicted
to biomacromolecules. An overarching principle is that the
finding of oxidative markers in diseased tissues reflects a balance
between the rate of their formation and the rate at which the
damaged biomacromolecules undergo turnover (or repair). As
such, increases in oxidative markers could represent a decreased
efficiency of the ubiquitin-proteasome and other systems for
removal of damaged biomolecules, as well as increased oxida-
tive damage.

Oxidation of protein side chains (24, 25) by ROS and RNS
species such as peroxynitrite usually results either in introduction
of hydroxyl groups or in the generation of protein-based
carbonyls detectable by 2,4-dinitrophenylhydrazine (DNPH)
(26, 27). Oxidative damage to proteins can also occur due to
alternate oxidants (e.g., HOCl) and circulating oxidized amino
acids such as tyrosine radical generated by metalloenzymes such
as myeloperoxidase (28). In addition, a substantial fraction of
protein damage that occurs under conditions of oxidative stress
may represent adduction of secondary products of the oxidation
of sugars, termed glycoxidation, or of the oxidation of poly-
unsaturated lipids (14), termed lipoxidation. Considering the
short diffusion distance of the hydroxyl radical, it seems likely
that most H2O2-dependent protein oxidation reflects reaction
of H2O2 with reduced metal ions coordinated adventitiously to
the protein. Examples of such “site-specific” oxidations
(24, 29, 30) include oxidation of His imidazole to its 2-imida-
zolone derivative, and the oxidative deaminations of Lys and
Arg side chains, although mechanistic details have yet to be
ascertained. Notwithstanding, besides cysteine (oxidized to its
disulfide), the most susceptible residue to H2O2 is methionine,
whose oxidation to methionine sulfoxide (MetO) is reversible
in most cells through the action of stereospecific methionine
sulfoxide reductases that catalyze the thioredoxin-dependent
reduction of MetO back to Met (31, 32). Such cyclic oxida-
tion–reduction of Met residues lead to consumption of ROS at
the expense of cellular reducing agents and thus serve as a
buffering mechanism that increases the resistance of proteins
to oxidative damage.

Oxidative stress conditions and the occurrence of iron- or
copper-mediated Fenton chemistry also result in oxidative
damage to nucleic acids, in particular RNA. 8-Hydroxygua-
nosine (8OHG) is a marker of nucleic acid oxidation commonly
observed in the cytoplasm of neurons (33). Polyunsaturated
lipids in lipoproteins and membranes are also highly susceptible
to oxidative stress damage. The availability of a particularly
weak bis-allylic C–H bond in polyunsaturated lipids allows for
propagation of a free radical chain autoxidation process known
as lipid peroxidation, with alkylperoxy radicals as chain carriers.
If there is extensive membrane oxidation, neurotoxicity could
theoretically arise in part from compromises in membrane
function, affecting maintenance of membrane potential, synaptic
signaling, etc. Such a compromise has only been documented
so far for mitochondria (34, 35). For whole cells, it will be
difficult to distinguish whether altered membrane properties
reflect ROS-mediated structural damage or a secondary effect
of ROS-mediated intracellular signaling pathways (36).

The unsaturated hydroperoxides generated from peroxidation
of polyunsaturated lipids undergo, in part, conversion to stable
products such as isoprostanes that have been used as in vivo
biomarkers of oxidative stress in neurodegeneration (37, 38).
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However, the lipid hydroperoxides also undergo chain cleavage,
mediated by reduced metals or ascorbate (39), to a host of mono-
and bifunctional reactive aldehydes (40, 41), some containing
the methyl terminus and thus freely diffusible, and others
containing the carboxyl terminus (42, 43), either as the free acid
or esterified to cholesterol or phospholipid. These aldehydes
readily modify proteins (14) and DNA (44), and an intense effort
over the past few decades has been directed at ascertaining the
nature of these adducts. Although the latter are clearly at least
candidate biomarkers of disease, evidence is also accumulating
for their being causally involved in many pathophysiological
effects associated with oxidative stress in cells and tissues in
vivo (45). The greatest effort has been directed at 4-hydroxy-
2-nonenal (HNE), a readily diffusible and selective electrophile
(40, 46). There is now substantial evidence for increased HNE
generation (and lipid peroxidation in general) in neurodegen-
erative disease, in particular AD and PD (see below). In addition
to its ability to modify and cross-link proteins (47, 48), HNE
readily modifies DNA bases (49–53). A cousin of HNE, 4-oxo-
2-nonenal (ONE), is a more recently discovered direct product
of lipid oxidation (39, 54), is more reactive with proteins (47)
and DNA (55, 56), and is also more neurotoxic (57).

The R,�-unsaturation in many lipoxidation products, including
4-hydroxy-2-enals such as HNE, 4-oxo-2-enals such as ONE,
simple 2-enals such as acrolein and 2-octenal, 2,4-dienals, and
epoxyenals and epoxyenones, makes them particularly suscep-
tible to conjugate addition reactions. The adducts thus formed,
especially on Cys and His residues, become protein-bound
aldehydes that can be derivatized by DNPH. Recent research
suggests that DNPH-detectable protein-based carbonyls, a key
benchmark of oxidative stress, may reflect mainly the conse-
quence of covalent binding of R,�-unsaturated aldehydes
emanating from lipid oxidation rather than metal-catalyzed
oxidative degradation of protein side chains (58).

For those diseases where characteristic brain lesions represent
deposition of specific proteins (see below), the immunoreactivity
of these lesions to oxidative stress antibodies suggests that the
irreversible deposition of protein reflects in part a “cementing”
of possibly reversibly formed aggregates by covalent cross-
linking associated with oxidative stress, including bifunctional
lipid oxidation products (59). Because recent studies suggest
that the small oligomeric intermediates in the aggregation
process may be most neurotoxic, it will be important to ascertain
how modification by lipoxidation-derived aldehydes may modu-
late the aggregation process and the resulting toxicity.

If one accepts a role of oxidative stress and ROS production
as a causal contributor to neurodegenerative disease, the question
arises as to what chemical steps initiate the biochemical cascade
leading to neuronal death. This question is best addressed
through studies on cells in culture, although the exact mechanism
could vary somewhat with cell type. In general, although H2O2

could damage cells through direct oxidation of lipids, proteins,
and DNA, and thus one might expect a generalized necrotic
cell death at higher concentrations, most studies using lower
concentrations of H2O2 have revealed a concentration-dependent
induction of mitochondrial-driven apoptosis (60, 61). Recent
research focused on identifying what upstream events might be
involved in H2O2 toxicity has revealed (i) a marked reduction
of Krebs cycle dehydrogenase activities (62), (ii) activation of
JNK1/2 mainly via N-methyl-D-aspartate (NMDA) receptor-
mediated influx of extracellular Ca2+ (63), and (iii) activation
of the growth factor receptor/Ras/MEK/ERK signaling pathway
(64). In cultured rat cortical neurons, H2O2-induced membrane

depolarization and Ca2+ influx was shown to require activation
of the 5-HT3 receptor (65).

The evidence that H2O2 at low concentration activates
signaling pathways has broadened awareness that H2O2 may
be involved in regulating a variety of physiological responses
(66), including sensing of oxidative stress. There is much current
interest in identifying the protein receptors involved in this
signaling (67), and antioxidant enzymes may be playing a signal
transduction role in addition to their function in removing ROS
(68). Moreover, when one considers the potential role of other,
mostly gaseous, small molecules that are endogenously pro-
duced, including O3 (ozone), CO, CO2, H2S, and NO2, as well
as possible “cross-talk” among them through chemical inter-
conversions, the coordinated regulation of these species suggests
that they all may be used in cell signaling, at least at low,
subtoxic concentrations (69). How all of these mechanisms
identified in vitro translate into in vivo physiology will be an
important subject of future research.

As far as lipid oxidation products such as HNE, ONE, and
acrolein are concerned, most evidence suggests that low
concentrations are also toxic to cells, including neuroblastoma
cells (57), through an apoptotic pathway (70, 71). The chemical
basis of action of the aldehydes that results in apoptosis is
unknown, but recent research indicates that HNE is a signaling
molecule at subtoxic concentrations (70, 72–74), modulating
MAP kinases, PKC isoforms, cell cycle regulators, receptor
tyrosine kinases, and caspases and activating the JNK-c-Jun/
AP-1 pathway (75). Subtoxic concentrations of HNE were also
observed to induce expression of various antioxidant/detoxifi-
cation enzymes (76).

It is not unreasonable to think that some biological activities
of HNE and other lipid oxidation products could reflect a
noncovalent interaction with an appropriate receptor, and there
is evidence that HNE is a ligand for at least the nuclear receptor
peroxisome proliferator-activated receptor-�/δ (77). However,
because HNE is capable of covalent protein modification, it
seems likely that most signaling actions of HNE reflect covalent
modification of proteins designed to sense oxidative stress, for
example, through modification of particularly susceptible resi-
dues, such as Cys sulfhydryls and His imidazoles. Of the many
reported observations of HNE signaling, some cases have now
identified covalent adduct formation to accompany the signaling
event (78–80), including one case where the modified residue
was identified (81). This area of research is likely to be very
active for the next several years, and because HNE will form
adducts of any particular target protein examined, it will be
important to determine whether the identified adduct is actually
functionally related to the signaling event.

4. Neuropathology of AD

In addition to a selective neuronal degeneration, AD is
characterized pathologically by the presence of two hallmark
lesions in the brain, extracellular senile plaques (SP) and
intraneuronal neurofibrillary tangles (NFT). SP contain amy-
loid-� (A�) peptide, primarily A� (1–42), whereas NFT are
composed mainly of the microtubule-associated protein τ present
as paired helical filaments (PHF). Research on the causes of
AD over the past two decades has focused mainly on the hope
of finding biochemical clues revealed by the multiplicity of
genetic mutations that account for the familial cases of AD,
although these are early onset, rapidly progressing forms of AD
that could differ from the late onset sporadic disease. The
familial AD cases involve mutations in the genes encoding the
amyloid-� precursor protein (A�PP) and/or the presenilins,
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proteolytic enzymes that process A�PP. It was initially presumed
that these mutations would lead to either an overproduction of
A�PP and/or altered A�PP proteolytic processing, leading to
increased A�(1–42). Indeed, transgenic mice overexpressing
A�PP or one or more of the human mutant AD-related proteins
exhibit many of the neuropathologic and behavioral features of
the human disease, including the development of SP, and, for
a mouse also expressing mutant τ protein (82), NFT. Although
these animal models have been, and continue to be, used to
develop and test potential treatments for the disease, the absence
of notable neurotoxicity has called into question the actual
relevance to human AD. Adding to this controversy is recent
data indicating that some pathogenic mutations lead to decreased
rather than increased levels of A� (83–85). Thus, although the
central theme in AD research for many years held that the onset
and progression of AD is initiated by aggregation of A� into
toxic fibrillar deposits within the extracellular space of the brain,
much evidence suggests that the mature SP is nontoxic (86).
More recent efforts to link A� and synaptic compromise in AD
have instead focused on the soluble oligomers of A�, presumed
intermediates in the aggregation process (87–90), but it is
unclear, even for these, whether the neurotoxic effects observed
in vitro are relevant to in vivo disease.

In contrast to SP, τ pathology and NFT do correlate with
symptom presentation in patients (91). Although τ normally
functions to regulate microtubule assembly (and transport) and
thereby maintain normal axonal caliber, in AD τ is “hyper-
phosphorylated”, at up to 22 different sites, at the stage where
it loses its microtubule-binding and -stabilizing function and
aggregates into PHF (92). τ hyperphosphorylation reflects both
an abnormal action of kinases, as well as decreased phosphatase
activity (93). Hyperphosphorylated τ not only fails in its normal
function in stabilizing microtubules, but it also exhibits a “gain
of toxic function” due to its sequestering normal τ, resulting in
the disruption of microtubules (94, 95). Intraneuronal accumula-
tion of PHF-τ could reflect inhibitory binding of oxidatively
damaged protein to the proteasome, and dysfunction of the latter
may be sufficient to induce neuronal degeneration and death in
AD (96). Although it is unclear to what extent NFT deposition
might potentially be reversible (assuming aggregation reflects
only noncovalent interprotein interactions), it has been our
contention that the persistent insolubilization and permanency
of NFT aggregates represents, at least in part, cementing of the
aggregates by processes associated with oxidative stress (97, 98).

Overall, there remains considerable debate not only as to
whether neuronal loss in AD reflects more the appearance of
SP or of NFT or indeed whether either of these late stage
proteinacious deposits is intimately tied to neurotoxicity. SP
and NFT may be more the effect than the cause of the disease
(99). Indeed, a theory currently gaining increased favor is that
deposition of SP and NFT is a compensatory response of the
brain to counteract various toxic intermediates (100), possibly
either by their sequestration into the deposits or by serving as
a sacrificial trap for ROS or “buffer” for reactive carbonyl
products of lipid and sugar oxidation (101, 102).

5. Role of Oxidative Stress in AD

Neuronal degeneration in the CNS of AD patients is associ-
ated with oxidative damage to all biomacromolecule types (103):
(i) DNA and RNA oxidation is marked by increased levels of
8-hydroxy-2-deoxyguanosine (8OHdG) and 8-hydroxyguanosine
(8OHG) (16, 17) and increased DNA oxidation and decreased
repair in CSF (104, 105). (ii) Protein oxidation is marked by
elevated levels of protein carbonyls and nitrotyrosine (106–108).

(iii) Lipid peroxidation is marked by higher levels of malon-
dialdehyde and isoprostanes, as well as protein modification by
HNE (38, 109–113) and by acrolein (114). (iv) Sugar oxidation
is marked by increased protein glycation and glycoxidation
(115–120). The finding that most of the covalent modifications
induced by products of oxidative stress are seen in apparently
normalneurons inADandatpre-NFTPHF-τstages(111,121–123)
suggests that these modifications play at least partially a
causative rather than merely by-stander role in the neurofibrillary
pathology in AD. A state of oxidative stress underlying damage
to vulnerable neurons in AD is further provided by immuno-
cytochemical evidence for the upregulation in vulnerable
neurons of antioxidant enzymes such as heme oxygenase-1 (HO-
1) (124–126), SOD (127, 128), glucose-6-phosphate dehydro-
genase (129, 130), and increased levels of reduced sulfhydryls
(130, 131). Although increased oxidative damage in AD may
thus represent an insufficient antioxidant response (132), there
is evidence to suggest that oxidative markers are more prevalent
in initial rather than later stages of the disease, possibly reflecting
more successful compensating antioxidant effects of later events,
for example, of SP deposition (see above) (133).

It has been known for some time that A� peptides are toxic
to neurons in cell culture. Free radical mechanisms and ROS
generation have been suggested to be responsible (134), and
antioxidants protect against A� neurotoxicity (135). Human
A�(1–42) was shown to be more neurotoxic than A�(1–40),
whereas the reverse sequence was shown to be non-neurotoxic.
This indicated that secondary and tertiary structural features
played an integral role in toxicity and not just the nature of the
amino acid side chains. An important question has been whether
ROS generation derives chemically from pure A� peptide in
solution or whether ROS generation might result from a cascade
of cellular events following recognition of A� aggregates by
cell-surface receptors, such as the receptor for advanced
glycation end products (RAGE) (136). In the former case, it
was considered at one extreme that the free peptide in solution
might spontaneously generate radicals through a shear mech-
anism (137). However, the consensus of most subsequent studies
focused on the involvement of redox-active transition metal ions
in radical production (138) and A� neurotoxicity (139).

Any discussion surrounding the role of oxidative stress in
AD is intimately tied to the findings of a major dyshomeostasis
of metal ions in AD brain, in particular redox-active metals.
Zinc, iron, and copper are significantly elevated in AD pathology
(140–144). Histochemical analysis of AD brain reveals the
presence of nonenzymatic redox activity that appears to
represent copper as well as iron (145). Dysregulation of iron
homeostasis in AD, consistent with the finding that the iron
regulatory protein IRP-2 is specifically colocalized in AD
pathology (146), may be a consequence of induction of HO-1
(124–126), the enzyme responsible for conversion of heme to
iron and biliverdin. Thus, although HO-1 induction may reflect
an effort to increase the generation of the antioxidant biliverdin,
increased turnover of mitochondrial heme proteins with release
of redox-active iron and copper (147) could actually increase
rather than decrease oxidative stress (148). Such a scenario is
consistent with the notion that mitochondrial abnormalities
(149–151) and metal accumulations, likely acting in synergistic
combination, are major producers of ROS possibly responsible
for both local and global oxidative stress in AD that may
underlie neuronal toxicity.

Data pointing to imbalances in trace metal homeostasis in
AD has led over the years to efforts to identify disease-relevant
metal ion interactions with both A�PP and A�. Initial studies
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showed that metals could induce aggregation of A� peptides
(138, 152, 153), possibly explaining the enrichment of these
metals in SP (154). Thus, it was considered that metal chelators
might not only prevent A� aggregation and deposition of A�
senile plaques but might also solubilize A� aggregates by
extracting out the metals (155, 156). However, studies to
ascertain whether chelators might function in this regard revealed
a complex interplay of effects on metal ion homeostasis. Thus,
in the case of clioquinol, a drug that underwent initial clinical
trials for treatment of AD, benefits appear to arise from
counteracting the intracellular copper-depleting effects of A�PP
(157).

The suggestion of redox metal interactions with proteins
implicated in AD initially focused on A�PP. However, in studies
claiming that A�PP could reduce Cu(II) to Cu(I) (158, 159),
which could in turn reduce O2 to ROS, the ligand used to detect
Cu(I) was bathocuproine disulfonate, known to bind to Cu(II)
and make it a much stronger than normal oxidizing agent (160).
A high-affinity binding domain for copper (and zinc) was first
described through NMR studies to be a tetrahedral “blue
copper”-like site favoring reduction of Cu(II) to Cu(I) (161),
but crystallography has more recently defined the site to be a
typical type II “nonblue” site favoring Cu(II) (162). Although
it thus seems unlikely that A�PP could reduce Cu(II) under
physiological conditions, binding of copper to A�PP would no
doubt modulate its redox properties (163), and Cu-mediated
cleavage of A�PP occurs in the presence of H2O2 (164). At
this point in time, the evidence for an oxidative stress role of
A�PP-Cu redox chemistry is incomplete. Instead, evidence that
A�PP overexpression causes increased Cu efflux suggests a role
of A�PP in Cu homeostasis (165), where deficient intracellular
Cu could potentially lead to insufficient SOD1 activity.

Recent focus on the interactions of the redox metal ions with
proteins implicated in AD has shifted from A�PP to A�
peptides. It was shown that Cu(II) markedly potentiated A�
neurotoxicity in cell culture (166), presumably by promoting
generation of H2O2 (167), and that redox-inert Zn(II) could
suppress these effects by competing for Cu(II) binding sites
(168). However, the source of reducing equivalents permitting
aerobic generation of H2O2 by Cu(II)-A� in vitro (167) remained
unclear, and if the A� peptide itself were the sacrificial reductant,
H2O2 generation could be at best stoichiometric. It seems to
have been determined later that buffer constituents were the
source of the reducing equivalents and that A�-Cu(II) complexes
of proper stoichiometry could catalyze reduction of O2 to H2O2

at the expense of oxidizing cholesterol, vitamin C, L-DOPA,
and dopamine (169).

Manipulations of the amino acids in A�, including His
imidazole N-methylation, have been conducted to learn more
about the redox control of Cu coordination and the role of
particular side chains in ROS generation and neurotoxicity
(170–178). At the same time, however, other studies have found
evidence for a ROS detoxication role of A� (100). Thus, despite
the plethora of studies, more work will be needed if the field is
going to reach a consensus on the role of A� as being neurotoxic
or neuroprotective (179), how either activity is modulated by
metal complexation (180), and how dynamics of A� aggregation
alter neurotoxic vs neuroprotective properties as a function of
time course of the disease. It must be appreciated that A�-
mediated ROS generation could be unique to in vitro cellular
systems, since there is no evidence that A� causes oxidative
stress in vivo (17). Nevertheless, oxidative stress is pervasive
in AD, and proteomic-based identification of oxidized proteins

in AD brain regions may offer insight to the molecular
mechanisms involved (181).

6. Role of Oxidative Stress in the Pathogenesis of PD
and Model Toxins

PD, a progressive neurodegenerative disorder characterized
by movement and postural dysfunction, stems from a selective
loss of catecholaminergic neurons of the substantia nigra pars
compacta in the midbrain. The degeneration of the melanin-
pigmented nigral neurons, accompanied by depletion of dopam-
ine in the striatum, is the neuropathological basis of the
movement disorders seen. Despite a well-described clinical and
pathological phenotype, which is essentially identical for both
the sporadic and the rare familial forms of PD, the molecular
mechanisms of pathogenesis remain unknown; mitochondrial
dysfunction, oxidative damage, environmental factors, and
genetic predisposition might all be involved. Because oxidative
stress is intimately linked to other components of the degenera-
tive process, it is difficult to determine whether oxidative stress
leads to, or is a consequence of, these events (182, 183).

There is substantial evidence that a defect in mitochondrial
complex I, resulting in a 30–40% decrease in complex I activity
in the substantia nigra, may be a central cause of sporadic PD
(184). The decreased activity may reflect an underproduction
of certain complex I subunits (185, 186), complex I misassem-
bly, or self-inflicted oxidative damage (187). Evidence that a
complex I deficiency and oxidative stress might underlie PD
pathology is that selective inhibitors of complex I, such as
rotenone and MPP+ (1-methyl-4-phenylpyridinium), recapitu-
late much of the pathology of PD (188). Further evidence for
oxidative stress in PD is the finding of oxidative damage to
DNA (183, 189, 190) and protein (191, 192) observed in the
nigro-striatal region of PD brain, as well as immunocytochemical
evidence for protein nitration (193), glycation (194), and HNE
modification (195, 196).

Understanding the molecular mechanisms by which genetic
mutations cause familial forms of PD holds great promise for
unraveling the basis of neuronal degeneration in all forms of
PD. Linkage analysis has led to the discovery of pathogenic
mutations in six genes that may account for as many as 5–10%
of the cases of PD: two autosomal dominant (coding for
R-synuclein and dardarin), three autosomal recessive (including
parkin (197)), and a sixth present in a single family with
uncertain connection to PD (198). A possible role of subtle
genetic factors in sporadic PD or misfunctioning of the same
proteins for non-Mendelian reasons remains a point of
consideration.

Besides the loss of pigmented nigral neurons, PD is charac-
terized histopathologically by the presence of Lewy bodies,
detergent-insoluble (199) eosinophilic intraneuronal filamentous
inclusions found predominantly in the substantia nigra and locus
coeruleus. Structurally similar Lewy bodies are also found in
cortical neurons in PD and in diffuse Lewy body disease. The
principal protein constituent of Lewy bodies is fibrillar R-sy-
nuclein. The physiological functioning of normal R-synuclein
appears to involve synapse maintenance and plasticity, and
overexpression of normal R-synuclein only modestly affects cell
viability. On the other hand, most studies show that overex-
pression of mutant R-synuclein proteins is neurotoxic, most
commonly by induction of apoptosis (200, 201). R-Synuclein
fibrillization appears to be tied to τ fibrillization in vitro (202)
and in diffuse Lewy body disease (203), and emerging evidence
indicates that there is frequent disease overlap between classical
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tauopathies (e.g., NFT formation in AD) and synucleinopathies
(e.g., Lewy body formation in PD) (204).

Point mutations in R-synuclein that characterize the rare
heritable forms of PD have been seen to increase the rate of
formation of either fibrils or protofibril intermediates (205).
Deposition of Lewy bodies in sporadic PD may then possibly
reflect posttranslational modifications of R-synuclein by products
of oxidative stress that affect peptide behavior in the same way
as do the mutations. Oxidative stressors such as Cu(II) (206),
Fe/H2O2 (207), cytochrome c/H2O2 (208), or nitrating reagents
(209) induce aggregation/fibrillization of the protein, and human
Lewy bodies and other R-synuclein inclusions are positive to
antinitrotyrosine antibodies (210). However, oxidation of the
four Met residues in R-synuclein to MetO can completely inhibit
fibrillization of the peptide if there are no metals around (211).
Evidence for a direct association of R-synuclein aggregation
with neurotoxicity comes from a transgenic Drosophila model
of PD, where (i) a deletion R-synuclein mutant unable to
aggregate was nontoxic and (ii) an aggregation-prone truncation
variant resulted in inclusions and enhanced neurotoxicity (212).
The question remains, however, whether soluble misfolded
forms or insoluble aggregates of R-synuclein are most tied to
toxicity or, indeed, whether, like the NFT of AD, aggregates
of R-synuclein are instead a protective adaptation to disease
(213).

There is increased evidence in PD for dysfunction of the
ubiquitin–proteasome system, which would exacerbate the pro-
aggregatory effect of mutations in (or oxidative modifications
of) R-synuclein due to cellular accumulation of indigestible
misfolded or abnormal proteins, a condition known as “pro-
teolytic stress” (214, 215). This relates to two of the other
genetic defects associated with familial PD, E3 ubiquitin ligase
(parkin) and ubiquitin C-terminal hydrolase L1 (216). The
ubiquitin–proteasome process can also be impaired by products
of oxidative damage, such as HNE (182), providing one
mechanism for the occurrence of proteolytic stress in sporadic
PD (217). Pharmacological inhibition of the proteasome in
cultured catecholaminergic neurons (218) leads to apoptotic
death and, in primary neurons, also to the formation of
cytoplasmic ubiquitinated Lewy body-like inclusions that contain
R-synuclein (219). Recent studies suggest that accumulation of
unfolded and/or misfolded proteins in the ER lumen results in
“ER stress” in PD (220). Although there are compensatory
biochemical responses, in cases of severe and/or prolonged ER
stress, cellular signals leading to cell death are activated.

PD is perhaps the most well-recognized neurodegenerative
disease associated with elevated brain levels of metals. Abnor-
mally high levels of iron seen at autopsy are associated with
nigral degeneration in PD and increase with the severity of
neuropathologic changes (9, 221). Although increased iron could
signal a primary role of oxidative stress in PD pathology, iron
overload could alternatively be a consequence of sequestration
by eosinophilic protein aggregates. Iron has also recently been
implicated in the promotion of R-synuclein aggregation either
directly or via increasing levels of oxidative stress, suggesting
an important role for iron in Lewy body formation (222). There
is growing recognition of a hypothesis that oxidative stress,
augmented iron deposition, and mitochondrial insufficiency
constitute a single neuropathologic “lesion” (223). To whatever
extent a labile pool of redox-active iron may be present, brain-
permeable iron chelators (224) may ameliorate dopaminergic
degeneration arising from iron’s pro-oxidant or pro-aggregatory
properties.

Assuming an oxidative stress-derived toxicity in PD, efforts
to reveal what mechanisms could explain the selective demise
of dopaminergic neurons have focused on the toxic conse-
quences of dopamine oxidation. Indeed, dopamine is toxic to
PC12 cells via oxidative stress, leading to apoptosis (225). It
must be realized that metabolic deamination of dopamine and
its O-methyl metabolite by MAO results in H2O2 as a by-
product. Also, dopamine oxidation to dopamine quinone,
stimulated by tyrosinase, is accompanied by the inactivation of
tyrosine hydroxylase (226). Dopamine (aut)oxidation also
probably explains the observed inactivation of parkin by
dopamine (227), and dopamine quinone has been found to
covalently modify Cys residues of the dopamine transporter
(228). Dopamine quinone is a reactive electrophile but at
physiological pH spontaneously cyclizes to an aminocatechol
that readily autoxidizes to give dopaminochrome. The latter
process occurs naturally in substantia nigral cells, where the
aminochrome is a precursor of the characteristic pigment
neuromelanin. However, dopaminochrome has also been shown
to be responsible (229) for the inhibition of R-synuclein
fibrillization seen for dopamine (230), suggesting that dopamine
depletion in PD would enhance R-synuclein aggregation.
Dopaminochrome and its one-electron-reduced semiquinone
constitute an active redox cycling pair that is toxic to dopam-
inergic neurons in culture, resulting in hydroxyl radical produc-
tion, mitochondrial damage, and necrotic cell death (231).
Dopaminochrome-mediated redox cycling also plays a role in
the selective catecholaminergic toxicity of copper (232) and iron
(233), initiated by the uptake of the metal ion complexes of
dopamine via the catecholamine transporter.

Dopamine oxidation can also lead to formation of 6-hydroxy-
dopamine (6-OHDA), a known neurotoxin, from reaction of
dopamine quinone with H2O2 (or alkyl hydroperoxides) medi-
ated by peroxidase (234) or Fe(II) (235). Indeed, injection of
6-OHDA into rat substantia nigra produced the first toxin animal
model of PD (236), where neuronal death reflects an apoptotic
mechanism (237). 6-OHDA is an active redox-cycling agent
(via its derived quinone and semiquinone), and studies on its
biochemical mechanism of toxicity in PC12 cells have found
catalase attenuation of neurotoxicity, suggesting that the latter
is evoked by H2O2 (238). However, factors other than H2O2

also appear to be involved, because catalase did not inhibit the
caspase activation contribution to 6-OHDA neurotoxicity (239).
Overall, dopamine oxidation is a viable endogenous mechanism
of toxicity likely to be important in PD. Such consideration
points to the potential toxic role of dopamine accumulation [e.g.,
that could result as a consequence of mutant R-synuclein
interfering with vesicular storage (240)] or of long-term treat-
ment of PD patients with levodopa or other dopamine analogues
(241).

Mechanistic features underlying oxidative stress in PD can
also be revealed from studying related syndromes and animal
models of the disease. The discovery in the early–mid 1980s
that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an
impurity present in the preparation of a demerol-like “designer
drug”, induces a PD condition in humans has led to the most
well-accepted animal model of PD. The ultimate toxin, MPP+,
generated from MAO-catalyzed oxidation of MPTP within the
brain, is concentrated into dopaminergic cells by the dopamine
reuptake pump (and is partly sequestered into dopamine
vesicles), and it is further concentrated inside mitochondria and
inhibits complex I of the respiratory chain (242). The mechanism
leading to cell death in vivo is still debated (243) and may reflect
a combination of energy deprivation, apoptosis, and oxidative
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stress observed in various in vitro models (244). Because MPP+
is an analogue of the toxic herbicide paraquat, thought to kill
cells by a redox cycling-mediated burst of ROS production, there
was an early effort to demonstrate a paraquat-like neuronal death
as the primary mechanism of MPTP dopaminergic neurotoxicity.
Subsequent studies, however, showed that MPP+ is incapable
of redox cycling (245), and a recent study demonstrated the
obligatory role of inhibition of complex I in MPTP neurotoxicity
in mice (246). How oxidative stress comes about is still
incompletely defined but may arise from iron-catalyzed autoxi-
dation of dopamine released from vesicle stores by MPP+,
thereby connecting with PD pathogenesis (247). The MPTP
animal model of PD has fueled continued suggestions of a
possible environmental role [e.g., herbicide exposure (248)] in
sporadic PD, a topic where there is a great need for further
careful investigation.

Related to the role of iron in PD is that exposure to excessive
levels of the essential trace metal manganese (present in Mn
SOD and glutamine synthetase) results in extrapyramidal
syndromes resembling PD. Recent data indicate that Mn-induced
parkinsonism (termed manganism) differs from PD in that
accumulation of Mn and damage occurs mainly in the basal
ganglia (pallidum and striatum), rather than in the pars compacta
of the substantia nigra (249, 250). Manganese neurotoxicity
exhibits many signs of oxidative stress, playing a causal role in
the neurotoxic syndrome, but whether Mn directly elicits ROS
production remains unclear. Manganese(II) itself is essentially
inactive in the Fenton reaction with H2O2 but can reduce
superoxide to H2O2, which can then react with Cu(I) or Fe(II).
Manganese(III) can exert toxicity to catecholaminergic neurons
through oxidation of dopamine (251, 252). Although not easily
explained, Mn(II) together with Mn(III) or Fe(III) appears to
be especially active in ROS generation (253). However, because
other data suggests only a minor involvement of ROS generation
in Mn neurotoxicity (254), the main role of Mn may be
interference with general redox-active metal homeostasis in
tissues, for example, by displacement of redox-active iron from
sites that limit its ROS-stimulating activity.

Lastly, oxidative stress has been demonstrated to occur in
response to high doses of substituted amphetamines such as
methamphetamine (METH) and 3,4-methlyenedioxymetham-
phetamine (MDMA), two stimulants with very high abuse
liability in the United States that effect loss of both dopaminergic
and serotonergic terminals in the brain. In addition to oxidative
stress, excitotoxicity and mitochondrial dysfunction appear to
play a major role in the neurotoxicity (255, 256). There is
evidence that oxidative stress arises from peroxidative generation
of dopamine quinone from dopamine released by METH into
the cytoplasm from synaptic vesicles via reverse transport
through the dopamine transporter (257, 258). RNS (peroxyni-
trite) also appear to play a major role in METH-induced
dopaminergic neurotoxicity (259).

It is clear that PD results from a complex interplay among
genetic and environmental factors, superimposed on which are
aspects of mitochondrial dysfunction and oxidative stress. Future
research will need to better address cause and effect aspects in
the interdependence among these factors, to permit a mechanistic
approach to therapeutic strategies.

7. Role of Oxidative Stress in ALS

Amyotrophic lateral sclerosis (ALS) is an adult onset neu-
rodegenerative disease that occurs as both a minor familial form
(fALS) and a sporadic form (sALS) accounting for 90% of the
disease cases. The major genetic defect in fALS (accounting

for 2% of all cases) is caused by mutations in the gene encoding
the ubiquitous enzyme Cu/Zn-superoxide dismutase (SOD-1),
more than 100 of which have been identified. Evidence for a
role of oxidative stress comes from studies of postmortem tissue
from sALS and fALS patients, showing an accumulation of
oxidative damage to proteins, lipids, and DNA (260–262).
Although the time course of accumulation of oxidative damage
has not been determined, it has recently been shown that HNE
levels are significantly elevated in the sera and spinal fluid of
living sALS patients, correlating with the extent but not with
the progression of the disease (263).

Most studies in the last decade, directed at elucidating
mechanistic aspects of ALS pathogenesis, have focused on
mouse models that express the mutant human SOD1 forms, since
these animals experience age-dependent motor neuron degenera-
tion with staged cellular and biochemical damage to nerve fibers
and spinal cord tissue as well as increased protein and lipid
oxidation. It was initially suggested that the toxicity of mutant
SOD1 may be due to oxidative stress stemming from lack of
sufficient SOD activity. However, because the different mutant
enzymes were invariably found to retain normal SOD activity,
it was instead proposed that the mutant enzymes exerted a “gain
of function” activity, where some other deleterious copper-
catalyzed enzymatic activity could be occurring in addition to
SOD activity. Such copper-catalyzed reactions, for example,
peroxidase-like activity or enhanced processing of NO to give
RNS such as peroxynitrite, were demonstrated in vitro, but it
is currently unclear whether these activities are responsible for
toxicity in vivo. In fact, other studies suggest a lack of aberrant
copper chemistry exerted by mutant SOD1 forms, including the
finding that toxicity is not reduced in mutant SOD1 mice either
lacking the chaperone for insertion of copper into SOD1 (CCS)
(264) or where SOD1 binding of copper is negated by mutation
of the key histidine ligands to alanine (265). A mutant SOD1
mouse model overexpressing CCS exhibited accelerated neu-
rological deficits, but this appeared to reflect a mitochondri-
opathy not involving oxidative stress (266). Although the
mitochondriopathy already evident in motor neurons of G93A-
SOD1 mice does display features of a necrotic neuronal death
associated with oxidative stress damage (267), this appears
distinct from the apoptotic-like mechanism that appears to
contribute to motor neuron degeneration in human sALS and
fALS. Overall, studies of ROS generation and oxidative damage
in vivo have produced mixed results, and trials of antioxidant
therapies have been disappointing (268). It is thus unclear, as
in AD, to what extent potential therapeutic strategies based on
the mouse models will translate to treatment of the human
disease.

Studies over the past 5 years have pointed to the multifactorial
nature of pathogenesis in ALS. In addition to oxidative stress
(268), these include excitotoxicity, aggregate formation, inflam-
mation, growth factor deficiency, and neurofilament disorgani-
zation. This multitude of contributing factors indicates that ALS
is a complex disease, possibly explaining why amelioration of
only one factor (e.g., use of antioxidants to combat oxidative
stress) might be ineffectual. The most popular current theory
linking the mutant SOD1 forms to neurological deficits seen in
mouse models expressing them is that the different point
mutations create a misfolding defect (269), leading to small
amyloid-like aggregates that appear in late stages of the disease.
Neurotoxicity is now being considered to arise from a toxic
effect of the aggregated misfolded protein, similar to the
neurotoxicity that arises in other amyloidoses (270). On the basis
of studies showing that a number of fALS SOD1 mutants have
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increased affinity for copper (271), one must also consider the
possibility that altered copper coordination may be associated
with a misfolding tendency rather than with altered redox
chemistry. In any event, it will be difficult to ascertain whether
the final mutant SOD1 aggregates, or some soluble precursor,
are responsible for toxicity to motor neurons. A “gain-of-
interaction” between mutant SOD1 and other critical neuronal
proteins such as dynein (272) may contribute to a defect in
retrograde axonal transport that in turn may underlie motor
neuron degeneration.

Mutations in SOD1 that lead to misfolding of the protein
target it for degradation by proteasomes (273). Although
proteasomal degradation of the mutant proteins is efficient,
altered solubility and aggregation of mutant SOD1 could
eventually impair and ultimately overwhelm this system (274).
If misfolding is the cause of SOD1-ALS pathogenesis, a
hypothesis-driven approach to drug design might be to find drugs
that stabilize SOD1 against misfolding.

In summary of the data accumulated to date, it seems that
there may be continued support for the possibility of a dual
biochemical basis underlying ALS, oxidative stress, and oligo-
merization of misfolded proteins (presumably either mutant or
posttranslationally modified wild-type proteins) (275). However,
oxidative stress is most likely an indirect consequence of protein
aggregation or cytopathic protein–protein interactions, rather
than aberrant copper chemistry of SOD1. Indeed, the oxidative
damage observed in ALS may reflect ROS and RNS that
accompany a neuroinflammatory reaction, possibly arising in
combination from mitochondrial dysfunction plus pathophysi-
ologic activation of both astrocytes and microglia (276). As far
as a potential link between fALS and sALS is concerned, it is
possible that oxidative stress-induced modifications of SOD1
in sALS mimic the toxic properties of the mutant enzymes in
fALS. In this regard, it is interesting to find that replacement
of an oxidation-prone Trp residue in G93A-SOD1 with a Phe
residue decreases cytotoxicity of the mutant protein in a motor
neuronal cell culture model and decreases the propensity of the
mutant to form cytoplasmic inclusions (277).

8. Role of Oxidative Stress in MS

MS is a chronic inflammatory demyelinating disease of the
central nervous system that is generally believed to be of
autoimmune origin (278, 279), although the underlying cause
is still unclear. MS is characterized pathologically by selective
and coordinated inflammatory destruction of the myelin sheath,
with ensuing damage to the underlying axon (280). The
fluctuating aspect of MS between periods of exacerbation and
remission would suggest that this disease has little in common
with progressive age-related neurodegenerative diseases. How-
ever, there is growing awareness that disease progression in MS
is associated with axonal degeneration, and accumulating data
indicate that oxidative stress plays a major role in the patho-
genesis of MS (281–284). Increased levels of secondary products
of oxidative stress and/or decreased levels of antioxidant
enzymes and small molecule antioxidants are seen in blood and
CSF during the active phases of MS (285–289).

Oxidative stress may arise from the increased levels of ROS
and RNS attendant the inflammatory reaction, mostly reflecting
the respiratory burst system of activated microglia. Activated
mononuclear cells of MS patients produce high amounts of ROS
(290) and RNS, and oxidative damage to DNA, including
mtDNA (291), develops in association with inflammation in
chronic active plaques (290). ROS and RNS generated by
macrophages have been implicated as mediators of demyelina-

tion (292) and axonal injury in both experimental autoimmune
encephalomyelitis (EAE––the generally accepted animal model
for the study of MS) and MS (293, 294).

Independent of inflammation, evidence for mechanisms
leading to neuronal degeneration in MS include mitochondrial
dysfunction and an excitotoxic component. In EAE, nitration
of mitochondrial proteins, which preceded infiltration of inflam-
matory cells, resulted in loss of mitochondrial membrane
potential and apoptotic cell death (295). Also, excitotoxicity has
been shown to be an integral aspect of neuronal compromise
in both EAE (296) and MS (297), mostly leading to apoptotic
cell death. Data showing the increased expression of glutamate
transporters in MS (298) provides evidence that glutamate
excitotoxicity may be a component in the etiology of the disease.
There is some evidence for increases in iron and other metals
in MS, especially in the vicinity of lesions. Evidence for the
role of disrupted iron metabolism and iron-mediated oxidative
stress in the pathogenesis of MS and EAE has been recently
reviewed (299).

Evidence for a pathogenic role of ROS in MS pathology has
led to the employment of several antioxidant strategies in an
effort to ameliorate EAE (293, 300, 301). With the acceptance
of the possibility that active oxidative stress contributes to the
disease process, there is increasing focus on developing therapies
directed at upregulating antioxidant enzyme systems (302, 303)
or production of endogenous antioxidants (304). On the other
hand, because compensatory ROS- and RNS-sequestering
mechanisms are also upregulated in MS, it is unclear to what
extent the increased ROS and RNS are causing a problem. Also,
despite the encouraging results obtained with antioxidants, it
has been claimed that some antioxidants may be acting through
a nonantioxidant mechanism. Other recent data have raised
questions about whether oxidative stress plays a functional role
in MS pathology. For example, elevated levels of isoprostanes
in CSF have been found in healthy siblings who never get the
disease as well as in their MS brethren (305). Also, although
plasma lipid peroxidation is elevated in MS patients as compared
to controls, there may be no relation between the degree of
oxidative stress in plasma and the progression of disability in
MS (306). Although more epidemiological and clinical trials
clearly need to be performed to corroborate a causal role of
oxidative stress in MS, the possibility that antioxidant strategies
might be efficacious in the fight against MS progression (284)
should not be excluded. There is also increasing awareness that
an antioxidant and other possible pleiotropic effects of statins
may be beneficial in MS (307, 308).

9. Role of Oxidative Stress in HD

HD is an autosomal dominantly inherited progressive neu-
rodegenerative disorder, affecting people in middle age. HD is
characterized by the progressive development of involuntary
choreiform movements, cognitive impairment, neuropsychiatric
symptoms, and premature death. The etiology of HD is
unknown, but increasing evidence suggests important roles of
altered gene transcription, mitochondrial dysfunction, excito-
toxicity, and oxidative stress. The protein product, huntingtin,
of the mutant gene causing HD is widely distributed in both
neurons and extraneuronal tissues. The mutation results in
expansion of a polyglutamine repeat near the N terminus, leading
to a conformational change of the protein and abnormal
protein–protein interactions. Mutant huntingtin (mhtt) has been
found to bind to numerous proteins, changing their behavior. It
has been suggested that binding of mhtt to transcription factors
results in reduced levels of acetylated histones and, in turn, a
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decreased expression of genes that may play critical roles in
neuronal survival (309). Also, huntingtin normally interacts with
trafficking motors, and expression of mhtt results in disruption
of microtubules and vesicular trafficking (310). In HD-affected
areas of the caudate and cortex, mhtt has been immunochemi-
cally detected as a constituent of high molecular weight
complexes and inclusion bodies. Thus, it is now generally
accepted that in HD, alteration and/or sequestration of cellular
targets by mhtt are likely to contribute to neuronal dysfunction
and death, although the mechanism remains incompletely
defined (310).

The mutant htt also impairs motility of mitochondria, and
defects in mitochondrial trafficking are observed before other
signs of toxicity. The induction by mhtt of mitochondria energy
defects suggests a possible increased production of free radicals
in vivo that could result in damage to predominantly mtDNA
due to its proximity. Damage to DNA could in turn result in
compromised defense and increased susceptibility to further
damage. In asking whether mitochondrial damage is a primary
or secondary event in toxicity (310), a large body of evidence
supports an early and critical involvement of defects in
mitochondrial energy metabolism as the initial disease trigger
(311). Neuronal demise can then reflect a combination of
downstream mechanisms, including excitotoxicity, apoptosis,
and oxidative damage (312). Although evidence for oxidative
stress in HD is less pronounced than in other neurodegenerative
diseases, HD patients exhibit decreased activity of catalase in
skin fibroblast cultures (313).

In summary, the best current theory to be addressed by
potential therapeutic strategies holds that mhtt leads to abnormal
protein–protein interactions including those that cause disruption
of mitochondrial functioning, and that, in combination with
consequential oxidative stress, there is proteasomal malfunction
(314) and other downstream excitotoxic and inflammatory events
that together result in neuronal death. Like other neurodegen-
erative disorders, HD thus appears to reflect operation of
multiple different toxic mechanisms, which are confluent and
depend on each other (315).

10. Conclusions

In the neurodegenerative diseases assessed above, AD, PD,
ALS, HD, and MS, common issues are evident. First, is
oxidative stress a cause or is it an effect? This is a complex
academic issue, and unless oxidative stress is only a late-stage
by-stander, the answer is of little relevance to asking the question
of whether oxidative stress provides a therapeutic target for
disease intervention. Second, what are the causes of oxidative
stress? Prime suspects, common to all of these diseases, are
mitochondrial abnormalities and redox metal ion dyshomeo-
stasis. Third, what is the relationship between oxidative stress
and other aspects of disease pathogenesis?

For most, if not all of the diseases, the answers to these
questions are complex, mostly unresolved, and are evolving over
time. Of prime importance is the growing awareness that all
neurodegenerative diseases are to some extent multifactorial,
and oxidative stress is inevitably intertwined with other disease
mechanisms. For example, accumulation of self-aggregating
proteins such as A�, τ, R-synuclein, and huntingtin may be
involved both upstream and downstream of oxidative stress. The
roles of inflammation, excitotoxicity, and genetics, including
the possible role of more subtle genetic contributions to sporadic
disease, are all important to keep in mind, and environmental
contributions, including diet and lifestyle, should not be ignored
(316).

Although oxidative stress is a common denominator of many
disease states, the timing of maximum redox imbalance with
regard to disease progression is likely quite different for different
diseases. Oxidative stress is typically viewed as cytotoxic; yet,
the mechanisms that underlie this toxicity are just beginning to
be explored in a manner that pertains to normal pathophysiology.
Most previously investigated cytotoxic paradigms or efforts to
define oxidative stress-induced cell death have utilized supra-
physiological excesses of an oxidant (or biologic induction of
oxidants) that result in a rapid and predictable killing of cells.
While useful data can be gleaned from such experiments, the
relevance to disease is unclear, and often, investigators may be
led to conclusions that should not be extrapolated beyond the
limited experimental design. This defines a major challenge for
further research.

In this perspective, it is concluded that the cell death process
in neurodegenerative disease is associated with mechanisms
involved at least in part with chronic oxidative stress. Unfor-
tunately, oxidative damage seen in acute models of disease is
likely more severe than the chronic (and perhaps steady state)
levels of oxidative damage that likely characterize the actual
disease processes (317). As such, while antioxidants appear to
be effective in model systems, their effectiveness in treating
disease has yet to be convincingly shown, although targeting
oxidative stress, whether primary or secondary, should be
expected to at least slow down disease processes.

Indeed, if oxidative stress is causally involved, it suggests
possibilities for intervention into disease progression through
the individual or combined (318–320) use of antioxidants, metal
chelators, and agents designed to boost endogenous enzymatic
and nonenzymatic defense processes. However, because most
antioxidants considered for therapeutic intervention also have
metal-reducing capacity, devising a successful regimen of
antioxidants to retard the progression of these diseases remains
a complicated goal.
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