
Mobicents USSD Gateway

User Guide

Amit Bhayani <amit.bhayani (at) gmail.com>

Bartosz Baranowski <baranowb (at) gmail.com>

Mobicents USSD Gateway: User Guide
by Amit Bhayani and Bartosz Baranowski

Copyright © 2012 TeleStax, Inc.

Abstract

This is guide to USSD Gateway application. It also introduces shortly notion of USSD services.

iii

Preface ... iv

1. Document Conventions ... iv

1.1. Typographic Conventions .. iv

1.2. Pull-quote Conventions ... vi

1.3. Notes and Warnings ... vi

2. Provide feedback to the authors! ... vii

1. Introduction to Mobicents JAIN SLEE USSD Gateway Application 1

1.1. USSD Gateway .. 2

2. Setup ... 4

2.1. Pre-Install Requirements and Prerequisites .. 4

2.1.1. Hardware Requirements ... 4

2.1.2. Software Prerequisites .. 4

2.2. Mobicents JAIN SLEE USSD Gateway Source Code .. 4

2.2.1. Release Source Code Building ... 5

2.2.2. Development Trunk Source Building .. 5

2.3. Folder structure of Mobicents JAIN SLEE USSD Gateway 6

2.4. Rule engine configuration .. 6

2.5. Local file configuration .. 9

2.6. Guvnor configuration ... 9

2.6.1. Creating resources ... 10

2.6.2. Creating rules .. 12

3. Design Overview .. 14

4. HTTP Transfer Mechanism .. 15

4.1. HTTP Message Structure .. 15

4.1.1. HTTP payload for MAP_PROCESS_UNSTRUCTURED_SS_REQUEST 16

4.1.2. HTTP payload for MAP_PROCESS_UNSTRUCTURED_SS_RESPONSE

.. 18

4.1.3. HTTP payload for MAP_UNSTRUCTURED_SS_REQUEST 18

4.1.4. HTTP payload for MAP_UNSTRUCTURED_SS_RESPONSE 19

5. Traces and Alarms .. 20

5.1. Tracers ... 20

A. Revision History .. 21

Index ... 22

iv

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced

Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a

key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of

three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

v

This denotes words or phrases encountered on a system, including application names; dialogue

box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.

For example:

Choose System > Preferences > Mouse from the main menu bar to launch Mouse

Preferences. In the Buttons tab, click the Left-handed mouse check box and click

Close to switch the primary mouse button from the left to the right (making the

mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications > Accessories >

Character Map from the main menu bar. Next, choose Search > Find… from the

Character Map menu bar, type the name of the character in the Search field and

click Next. The character you sought will be highlighted in the Character Table.

Double-click this highlighted character to place it in the Text to copy field and

then click the Copy button. Now switch back to your document and choose Edit

> Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to

avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu of

the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file system.

For example, to remount the /home file system, the command is mount -o

remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version

and release. Each word is a placeholder, either for text you enter when issuing a command or

for text displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

Preface

vi

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

maintaining these server-pools has been abstracted to a group of modules called

Multi-Processing Modules (MPMs). Unlike other modules, only one module from

the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as

follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Preface

vii

Note

A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring Important boxes won't cause data loss but may cause irritation

and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data

loss.

2. Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make this manual

better, we would love to hear from you! Please submit a report in the the Issue Tracker [http://

code.google.com/p/ussdgateway/issues/list], against the product Mobicents JAIN SLEE USSD

Gateway Application, or contact the authors.

When submitting a bug report, be sure to mention the manual's identifier:

USSDGateway_Application_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when

describing it. If you have found an error, please include the section number and some of the

surrounding text so we can find it easily.

http://code.google.com/p/ussdgateway/issues/list
http://code.google.com/p/ussdgateway/issues/list
http://code.google.com/p/ussdgateway/issues/list

1

Chapter 1. Introduction to

Mobicents JAIN SLEE USSD

Gateway Application
USSD stands for Unstructured Supplementary Service Data what is a capability of GSM mobile

phone much like the Short Message Service (SMS). But there is a difference between USSD and

SMS handling.

SMS uses store and forward method of message delivery. Short Message is delivered first to

Sender's Short Message Service Center (SMSc) which will try to deliver the message to recipient.

So SMS does not guarantee that message will be delivered instantly.

USSD information is sent from mobile handset directly to application platform handling service. So

USSD suppose to establish a real time session between mobile handset and application handling

the service. The concept of real time session is very useful for constructing an interactive menu

driven application.

A user who is dialing USSD service number initiates dialog with USSD handling application

deployed on the Mobicents Platform as depicted on the figure below. The "Network Node" depicted

could be MSC, HLR or VLR. The Mobicents Platform integrates with "Network Node" using MAP

protocol.

General interworking diagram

The detailed description of the allowed MMIs or phone number which user can dial is presented

in 3GPP TS 22.090. In the user's home network the following number range is defined for USSD

services: 1, 2 or 3 digits from the set (*, #) followed by 1X(Y), where X=any

number 0-4, Y=any number 0-9, then, optionally "*" followed by any number of any

characters, and concluding with # SEND

For example user can dial *#122# to reach a specific USSD service which is deployed in the home

network. The application in its order can reply with menu.

Introduction to Mobicents

JAIN SLEE USSD

Gateway Application

2

One of the biggest benefits is that this service is always available even when user is currently

in roaming.

Below diagram depicts typical MAP message flow for implementing data transfer between

"Network Node" and Mobicents platform to implement menu driven application. For more

information on mobile- (and network-) initiated USSD operations and the use of MAP USSD

services, refer to [3GPPTS 24.090] in the References section.

Message flow

Mobile initiated USSD service starts when user dials USSD string *#122#.

• The Network sends TCAP Begin message with Component

MAP_PROCESS_UNSTRUCTURED_SS_REQUEST to the Mobicents platform. The

Mobicents platform invokes USSD application logic .

• Application request additional information from user (action one or action two) via

MAP_UNSTRUCTURED_SS_REQUEST encapsulated in TCAP Continue message. At this

time TCAP Dialogue starts.

• Application receives user's selection of the action.

• Application performs its logic and sends a response back to the user. At this time application

do not want to get additional information from the user and it sends response using

MAP_PROCESS_UNSTRUCTURED_SS_REQUEST and terminates TCAP dialogue.

1.1. USSD Gateway

Existing MSC, VLR, and HLR network elements are proprietary and run on non-standard operating

environments located in trusted operator's zones that make it difficult to build and deploy new

Introduction to Mobicents

JAIN SLEE USSD

Gateway Application

3

applications. Also, these network elements do not provide the tools and interfaces needed to

access and retrieve data from content providers over Internet. The USSD Gateway connects to

the MSC, VLR, or HLR and enables the flow of USSD messages to be extended to an open,

standards-based application server located in the IP network. The AS also provides the tools and

interfaces to enable access to the content providers through the Internet.

Mobicents implementation of USSD Gateway is first and only open source USSD Gateway

available as of today. The Mobicents USSD Gateway makes use of HTTP and SMPP* protocol

between gateway and Value Added Service Modules or third party applications. Mobicents USSD

Gateway receives the USSD request from subscriber handset/device via GSM Signaling network,

these requests are translated to SIP or SMPP* depending on the rules set by the user and then

routed to corresponding Value Added Service (VAS) or 3rd party application.

JBoss Drools is used to derive the protocol between Gateway and USSD Application and also the

information of the server (for example IP, port etc) where these applications are deployed.

SMPP

SMPP protocol is in roadmap and will be implemented in next release

4

Chapter 2. Setup

2.1. Pre-Install Requirements and Prerequisites

Ensure that the following requirements have been met before continuing with the install.

2.1.1. Hardware Requirements

The Application doesn't change the Mobicents JAIN SLEE Hardware Requirements, refer to

Mobicents JAIN SLEE documentation for more information.

Note

Note that application makes use of Resource Adaptors - this implies that RAs

requirements must be taken into consideration!

Also be aware that each Resource Adaptor may have some specific hardware

requirements!

2.1.2. Software Prerequisites

The Application requires Mobicents JAIN SLEE properly set, with:

• HTTP Client

• MAP

Resource Adaptors deployed.

Note

Note MAP Resource Adaptor - has some specific software requirements! Please

refer to MAP RA document in JSLEE Guide

2.2. Mobicents JAIN SLEE USSD Gateway Source Code

Setup

5

2.2.1. Release Source Code Building

1. Downloading the source code

Important

GIT is used to manage its source code. Instructions for using GIT, including

install, can be found at http://git-scm.com/documentation

Use GIT to clone repository, the base URL is https://code.google.com/p/ussdgateway/,

then to checkout specific release version(tag) use git checkout tag_name, lets consider

release-1.0.0-SNAPSHOT.

[usr]$ git clone https://code.google.com/p/ussdgateway/

[usr]$ cd ussdgateway

[usr]$ git checkout release-1.0.0-SNAPSHOT

2. Building the source code

Important

Maven 2.0.9 (or higher) is used to build the release. Instructions for using

Maven2, including install, can be found at http://maven.apache.org

Use Maven to build the binary.

 [usr]$ cd ussdgateway-1.0.0-SNAPSHOT

 [usr]$ mvn install

Once the process finishes you should have the ussdgateway-1.0.0-SNAPSHOT/core/

bootstrap/target/mobicents-ussd-gateway directory, if Mobicents JAIN SLEE is

installed and environment variable JBOSS_HOME is pointing to its underlying JBoss

Application Server directory, then the mobicents-ussd-gateway will also be deployed in the

container.

2.2.2. Development Trunk Source Building

Similar process as for Section 2.2.1, “Release Source Code Building”, the only change is don't

switch to specific tag.

http://git-scm.com/documentation
http://maven.apache.org

Setup

6

2.3. Folder structure of Mobicents JAIN SLEE USSD

Gateway

Installing Mobicents USSD Gateway creates a mobicents-ussd-gateway directory that contains

gateway configuration, libraries required for boot and running, example rules definition file (.drl)

etc. You need to know your way around the distribution layout to locate the drools file's to add

new rules. The figure "view of Mobicens USSD Gateway" illustrates the installation directory of

the Gateway.

Mobicents USSD Gateway

2.4. Rule engine configuration

Important

USSD Gateway uses Drools as rule engine to perform decisions, it

is important to understand JBoss Drools [http://downloads.jboss.com/drools/

docs/5.0.1.26597.FINAL/drools-expert/html_single/]

Engine is fed with DRL files having reference to fact. DRL file contains set of rules which perform

operations on facts passed into engine. USSD Gateway DRL file defines rules to match initial

USSD string to set of values identifying protocol and address of peer to which messages should

be forwarded.

Fact is simple POJO class. USSD Gateway fact looks like

http://downloads.jboss.com/drools/docs/5.0.1.26597.FINAL/drools-expert/html_single/
http://downloads.jboss.com/drools/docs/5.0.1.26597.FINAL/drools-expert/html_single/
http://downloads.jboss.com/drools/docs/5.0.1.26597.FINAL/drools-expert/html_single/

Setup

7

package org.mobicents.ussdgateway.rules;

import java.io.Serializable;

/**

 * Acts as Fact for Rules

 *

 */

public class Call implements Serializable {

 // Initial string, its like #123*

 private String ussdString;

 private boolean isHttp;

 private boolean isSmpp;

 // to be used with other protocols

 private String genericUrl;

 public Call(String ussdString) {

 this.ussdString = ussdString;

 }

 public String getUssdString() {

 return ussdString;

 }

 public boolean isHttp() {

 return isHttp;

 }

 public void setHttp(boolean isHttp) {

 this.isHttp = isHttp;

 }

 public boolean isSmpp() {

 return isSmpp;

 }

 public void setSmpp(boolean isSmpp) {

 this.isSmpp = isSmpp;

 }

 /**

 * @return the genericUrl

 */

 public String getGenericUrl() {

 return genericUrl;

 }

 /**

 * @param genericUrl

 * the genericUrl to set

 */

 public void setGenericUrl(String genericUrl) {

 this.genericUrl = genericUrl;

 }

Setup

8

 @Override

 public String toString() {

 return "Call [ussdString=" + ussdString + ", isHttp=" + isHttp + ", isSmpp=" + isSmpp + ",

 genericUrl="

 + genericUrl + "]";

 }

}

Rule engine can be fed with static .drl file or use Guvnor to dynamically create and maintain .drl

Rule engine (Drools) is configured with USSDGatewayChangeSet.xml file. Its content alters how

rule set is loaded and maintained within engine. There are two ways of maintaining rules:

locally

rules are loaded from designated file as explained in Section 2.5, “Local file configuration”.

Configuration file should look as follows:

<change-set xmlns='http://drools.org/drools-5.0/change-set'

 xmlns:xs='http://www.w3.org/2001/XMLSchema-instance'

 xs:schemaLocation='http://drools.org/drools-5.0/change-set.xsd'>

 <add>

 <resource

 source='file:/home/vic/mobicents-jainslee-2.7.0.FINAL-jboss-5.1.0.GA/

jboss-5.1.0.GA/server/default

 /deploy/mobicents-ussd-gateway/rules/'

 type='DRL' />

 </add>

</change-set>

points to subdirectory in current application which is scanned for rule files.

remotely

rules are managed by Guvnor. Guvnor configuration is explpained in Section 2.6, “Guvnor

configuration” Configuration file should look as follows:

<change-set xmlns='http://drools.org/drools-5.0/change-set'

 xmlns:xs='http://www.w3.org/2001/XMLSchema-instance'

 xs:schemaLocation='http://drools.org/drools-5.0/change-set.xsd'>

 <add>

 <resource source='http://localhost:8080/drools-guvnor/

 org.drools.guvnor.Guvnor/package/ussdGateway/LATEST.drl' type='DRL' />

 </add>

Setup

9

</change-set>

points to Guvnors latest rule file. Note that path after package MUST match your custom

created package inside Guvnor .

2.5. Local file configuration

Rule file name is USSDGateway.drl. File content looks as follows:

package org.mobicents.ussdgateway.rules

import org.mobicents.ussdgateway.rules.Call;

rule "USSDGateway1"

 when

 $c : Call(ussdString == "*123#")

 then

 $c.setHttp(true);

 $c.setGenericUrl("http://localhost:8080/ussddemo/test");

end

import of fact POJO

definition of rule

condition to enter rule clause. It accesses fact property ussdString and matches it against

#123* value, if it matches engine jumps to then part

rule part which sets defined HTTP peer as destination for messages

end of rule USSDGateway1 rule

The folder rules is scanned every 60 seconds and if any changes made to USSDGateway.drl

or new .drl file added, engine will automatically deploy changed/new file and re-create the

Knowledge Base

2.6. Guvnor configuration

Important

USSD Gateway Application uses Gunvor to manage system wide rule set in

consistent way, it is important to understand Guvnor [http://downloads.jboss.com/

drools/docs/5.0.1.26597.FINAL/drools-guvnor/html_single/]

http://downloads.jboss.com/drools/docs/5.0.1.26597.FINAL/drools-guvnor/html_single/
http://downloads.jboss.com/drools/docs/5.0.1.26597.FINAL/drools-guvnor/html_single/
http://downloads.jboss.com/drools/docs/5.0.1.26597.FINAL/drools-guvnor/html_single/

Setup

10

Guvnor is deployed along with USSD Gateway Application. To access it simply go to http://

<your server>/drools-guvnor/ . This will bring initial info screen or login screen - depends

on configuration.

If you have not configured the security you can directly login without providing any user id or

password.

2.6.1. Creating resources

Note

Guvnor requires upload for fact model and creation of some resources before it

can perform its tasks.

In case Guvnor has not been used(it is a new repository) you will get a message asking if you

would you like to install a sample repository? Its upto you to install the sample repository. If you say

yes, you would get sample repository which you can refer to have better understanding of Guvnor

Once you log-in follow the bellow steps:

1. Create a category specific to USSD gateway.

Go to Administration > Category > New Category . Enter Category name as UssdGateway .

Guvnor category

2. Create package for fact model.

Rules need a fact model (object model) to work off, so next you will want to go to the

Package management feature. Go to Knowledge Bases > Create New > New Package . Type

ussdGateway (note that this name MUST match package in USSDGatewayChangeSet.xml file).

Setup

11

Guvnor package

3. Upload fact model.

To upload a model, use ussdgateway-domain-x.y.z.jar which has the fact model (Call.java

API) that you will be using in your rules. When you are in the model editor screen, you can

upload a jar file, choose the package name from the list that you created in the previous step.

Go to Knowledge Base > Create New > Upload POJO Model Jar . On the screen enter name

as UssdPojo , select package ussdGateway and add the description, click Ok .

Guvnor fact model upload

Browse in newly open window and point to ${JBOSS.HOME}/server/default/deploy/

mobicents-ussd-gateway/lib/ussdgateway-domain-x.y.z.jar .

Setup

12

4. Edit your package configuration.

Now edit your package configuration (you just created) to import the fact types you just

uploaded (add import statements), and save the changes. Go to Knowledge Bases and click

on ussdGateway package. Click on Save and validate configuration button.

This concludes configuration of Guvnor . Note that this has to be done only once.

2.6.2. Creating rules

Guvnor allows to create rules and edit previously existing ones. Changes done with Guvnor are

automaticly propagated to all clients. To create rule follow procedure below:

1. Create rule.

Go to Knowledge Bases> Create New > New Rule. Enter Name as ussd123Sip, click on

UssdGateway Initial Category. Select DRL Rule (Technical rule - text editor), actually you can

use any editor here that you are comfortable with. Select ussdGateway as package. Enter

description and click Ok.

Guvnor new rule

2. Edit rule.

Setup

13

Guvnor edit rule

3. Accept rule.

Click on Validate to validate the Rules you just defined. Once done with rule editing, you can

check in the changes (save) by clicking on Save Changes

4. Rebuild and validate package

After you have edited some rules in ussdGateway package, you can click on the ussdGateway

package, open the package, and build the whole package.

Guvnor new rule

14

Chapter 3. Design Overview
USSD Gateway is JAIN SLEE 1.1 Application. It is capable of forwarding USSD messages to

desired peer.

Following diagram depicts top design overview:

USSD Gateway Design overview

USSD Gateway provides Load Balancing and Fault Tolerance of applications. Two 3rd Party

Application Servers can be paired to provide Fault-Tolerance on the Gateway and GSM Network

level.

Important

Currently gateway supports following protocols for proxying:

• HTTP

15

Chapter 4. HTTP Transfer

Mechanism
USSD Gateway supports implementation of HTTP 1.1 standards and acts as HTTP Client invoking

(HTTP POST) the HTTP Application deployed on 3rd Party Application Server. The HTTP Request

carries XML payload with USSD specific information.

HTTP callback makes 3rd Party Application agnostic to Operating System, Programming

Language and Framework.

3rd Party Application can be either of following technologies on any OS

• Apache Tomcat, JBoss AS, Oracle Application Server, IBM Websphere etc for JSP/Servlet on

Java

• PHP

• Microsoft IIS for ASP

HTTP errors are supported and recognized by the USSD Gateway

4.1. HTTP Message Structure

Below diagram gives example message sequence for interacting with USSD Gateway HTTP API

HTTP Transfer Mechanism

16

Mobicents HTTP message flow

4.1.1. HTTP payload for

MAP_PROCESS_UNSTRUCTURED_SS_REQUEST

XML Payload sent to 3rd Party Application by USSD Gateway for received

MAP_PROCESS_UNSTRUCTURED_SS_REQUEST will be

 <?xml version="1.0" encoding="UTF-8" ?>

 <dialog type="BEGIN" id="1234">

 <destinationReference nai="1" npi="6" number="204208300008002"/>

 <originationReference nai="1" npi="1" number="31628968300"/>

 <processUnstructuredSSRequest invokeId="0" dataCodingScheme="15" string="*234#">

 <msisdn nai="1" npi="1" number="79273605819"/>

 <alertingPattern size="1">

 <value value="6"/>

 </alertingPattern>

 </processUnstructuredSSRequest>

 </dialog>

The XML structure is similar to actual SS7 MAP messages. <dialog> acts as parent tag. type

attribute defines the state of Dialog. Following fours states are defined

• BEGIN : Indicates this is first message in new USSD dialog identified by attribute id. Through

out the life of this dialog the id remains same.

• CONTINUE : Indicates this is continuing dialog

• END : Indicates this is end of dialog. Both Application as well as USSD Gateway can end dialog

• ABORT : Indicates dialog is aborted. Both Application as well as USSD Gateway can abort

dialog. Abort never carries any message

destinationReference and originationReference are optional and will be included only if

MAP Dialog has these values.

Next is the actual MAP message of dialog. For USSD Gateway six type of messages are defined

processUnstructuredSSRequest

This message is always sent by USSD GW to Application as HTTP POST request. Application

should always send back processUnstructuredSSResponse indicating that this is last

message of this dialog or can also send unstructuredSSRequest indicating that Application

expect's more response from user (menu structure)

<msisdn> tag is optional and included only if actual MAP message received by USSD Gateway

carries this value. This is MSISDN of user who originated this request.

HTTP Transfer Mechanism

17

No MSISDN

If <msisdn> is not included in processUnstructuredSSRequest,

originationReference will be included in dialog and this will be the MSISDN

of user originating request.

<alertingPattern> is also optional.

processUnstructuredSSResponse

This message is always sent by Application to USSD GW as response to received

processUnstructuredSSRequest or unstructuredSSResponse. This should always be the

last message in dialog.

unstructuredSSRequest

This message is always sent by Application to USSD GW in response to

received processUnstructuredSSRequest or unstructuredSSResponse. This indicates that

application is expecting some response from user.

unstructuredSSResponse

This message is always sent by USSD GW to Application in HTTP POST request. This is

response to unstructuredSSRequest sent by Application earlier.

unstructuredSSResponse

unstructuredSSNotifyRequest : Not implemented yet

unstructuredSSResponse

unstructuredSSNotifyResponse : Not implemented yet

All message type has mandatory invokeId attribute helping to relate the response to request.

For example processUnstructuredSSResponse will have same invokeId as carried by

processUnstructuredSSRequest. Hence if application is multi level menu, it should store

invokeId received in processUnstructuredSSRequest in HTTP Session to use later. Also for

every new request in same dialog, invokeId should be incremented by 1. For example when

application sends unstructuredSSRequest to received processUnstructuredSSRequest with

invokeId==0, it should set the invokeId==1 in unstructuredSSRequest

Attributes dataCodingScheme and string are also mandatory and represents the actual USSD

Message. dataCodingScheme is the encoding parameter of the USSD Message.

USSD String length

In GSM 0902 160 octets is stated as the maximum length for the USSD string.

However due to underlying signalling layers the maximum length of the USSD

string depending on the message and can be less than 160

HTTP Transfer Mechanism

18

4.1.2. HTTP payload for

MAP_PROCESS_UNSTRUCTURED_SS_RESPONSE

XML Payload sent to USSD Gateway by 3rd Party Application to send

MAP_PROCESS_UNSTRUCTURED_SS_RESPONSE will be

<?xml version="1.0" encoding="UTF-8" ?>

<dialog type="END" id="1234">

 <processUnstructuredSSResponse invokeId="0" dataCodingScheme="15" string="Thank You!"/>

</dialog>

Dialog END

Notice that processUnstructuredSSResponse is last message in dialog and

should always be carried in dialog type END

Important

dialog id and invokeId will be same as received in

processUnstructuredSSRequest

4.1.3. HTTP payload for MAP_UNSTRUCTURED_SS_REQUEST

XML Payload sent to USSD Gateway by 3rd Party Application to send

MAP_UNSTRUCTURED_SS_REQUEST will be

<?xml version="1.0" encoding="UTF-8" ?>

<dialog type="CONTINUE" id="1234">

 <unstructuredSSRequest invokeId="1" dataCodingScheme="15" string="USSD String : Hello

 World
 1. Balance
 2. Texts Remaining"/>

</dialog>

HTTP Transfer Mechanism

19

Important

dialog id will be same as received in processUnstructuredSSRequest. However

invokeId is incremented by 1

4.1.4. HTTP payload for

MAP_UNSTRUCTURED_SS_RESPONSE

XML Payload sent to 3rd Party Application by USSD Gateway for received

MAP_UNSTRUCTURED_SS_RESPONSE will be

<?xml version="1.0" encoding="UTF-8" ?>

<dialog type="CONTINUE" id="1234">

 <unstructuredSSResponse invokeId="0" dataCodingScheme="15" string="1"/>

</dialog>

20

Chapter 5. Traces and Alarms

5.1. Tracers

USSD Gateway USSD Gateway Application creates following tracers:

Table 5.1. USSD Gateway Application Tracer and Log Categories

Sbb Tracer name LOG4J category

ParentSbb USSD-Parent javax.slee.SbbNotification[service=ServiceID[name=mobicents-

ussdgateway,vendor=org.mobicents,

version=1.0],sbb=SbbID[name=ParentSbb,

vendor=org.mobicents,version=1.0]].USSD-

Parent

SipSbb USSD-CHILD-SipSbb javax.slee.SbbNotification[service=ServiceID[name=mobicents-

ussdgateway,vendor=org.mobicents,

version=1.0],sbb=SbbID[name=SipSbb,

vendor=org.mobicents,version=1.0]].USSD-

CHILD-SipSbb

HttpClientSbb USSD-CHILD-

HttpClientSbb

javax.slee.SbbNotification[service=ServiceID[name=mobicents-

ussdgateway,vendor=org.mobicents,

version=1.0],sbb=SbbID[name=HttpClientSbb,

vendor=org.mobicents,version=1.0]].USSD-

CHILD-HttpClientSbb

Important

Spaces where introduced in LOG4J category column values, to correctly render

the table. Please remove them when using copy/paste.

21

Appendix A. Revision History
Revision History

Revision 1.0 Wed June 2 2010 BartoszBaranowski

Creation of the Mobicents JAIN SLEE USSD Gateway Application User Guide.

22

Index
F
feedback, vii

	Mobicents USSD Gateway
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Provide feedback to the authors!

	Chapter 1. Introduction to Mobicents JAIN SLEE USSD Gateway Application
	1.1. USSD Gateway

	Chapter 2. Setup
	2.1. Pre-Install Requirements and Prerequisites
	2.1.1. Hardware Requirements
	2.1.2. Software Prerequisites

	2.2. Mobicents JAIN SLEE USSD Gateway Source Code
	2.2.1. Release Source Code Building
	2.2.2. Development Trunk Source Building

	2.3. Folder structure of Mobicents JAIN SLEE USSD Gateway
	2.4. Rule engine configuration
	2.5. Local file configuration
	2.6. Guvnor configuration
	2.6.1. Creating resources
	2.6.2. Creating rules

	Chapter 3. Design Overview
	Chapter 4. HTTP Transfer Mechanism
	4.1. HTTP Message Structure
	4.1.1. HTTP payload for MAP_PROCESS_UNSTRUCTURED_SS_REQUEST
	4.1.2. HTTP payload for MAP_PROCESS_UNSTRUCTURED_SS_RESPONSE
	4.1.3. HTTP payload for MAP_UNSTRUCTURED_SS_REQUEST
	4.1.4. HTTP payload for MAP_UNSTRUCTURED_SS_RESPONSE

	Chapter 5. Traces and Alarms
	5.1. Tracers

	Appendix A. Revision History
	Index

