
Tests a given condition. If the
Condition is true, performs the
actions in a given sequence of
blocks; otherwise, the blocks
are ignored.

Tests a given condition. If the
result is true, performs the actions
in the -then sequence of blocks;
otherwise, performs the actions in
The -else sequence of blocks.

Tests a given condition. If the
result is true, performs the actions
 in the -then sequence of blocks;
otherwise tests the statement in
the -else if section. If the result is
true, performs the actions in the
-then sequence of blocks;
 otherwise, performs the actions
in the -else sequence of blocks.

Runs the blocks in the do section for each
numeric value in the range starting at from and
ending at to, incrementing number by the value
of by each time. Use the given variable name,
number to refer to the current value. You can
change the name number to something else if you wish.

Sometimes in a procedure or
 another block of code, you may
need to do something and return
something, but for various reasons
you may choose to use this block
instead of creating a new procedure.

Tests the -test condition. If true,
performs the action given in -do ,
then tests again. When test is false,
the block ends and the action given
in -do is no longer performed.

Tests a given condition. If the
statement is true, performs the
actions in the then-return sequence
of blocks and returns the then-return
value; otherwise, performs the
actions in the else-return sequence
of blocks and returns the else-return
value.

Runs the blocks in the do section for each item in the
list. Use the given variable name, item, to refer to the
current list item. You can change the name item to
something else if you wish.

Returns the start value given to the current screen.

This value is given from using
“open another screen with start value”
or
“close screen with value”.

Provides a "dummy socket" for fitting a block that has
a plug on its left into a place where there is no socket,
such as one of the sequence of blocks in the do part
of a procedure or an if block. The block you fit in will be
 run, but its returned result will be ignored. This can be
useful if you define a procedure that returns a result, but
want to call it in a context that does not accept a result.

Opens the screen with the provided name.

Opens another screen and passes a value to it.

Returns the plain text that was passed to this screen
when it was started by another app. If no value was
passed, it returns the empty text. For multiple screen
apps, use get start value rather than get plain start text.

Closes the current screen.
Closes the current screen and returns a value to the
 screen that opened this one.

Closes the application.

Performs logical negation, returning false if
the input is true, and true if the input is false.

Closes the current screen and passes text to the app
that opened this one. This command is for returning
text to non-App Inventor activities, not to App Inventor
screens. For App Inventor Screens, as in multiple
screen apps, use “Close Screen with Value”, not
“Close Screen with Plain Text”.

Represents the constant value true. Use it for
setting boolean property values of components,
or as the value of a variable that represents
a condition.

Represents the constant value false. Use it for
setting boolean property values of components,
or as the value of a variable that represents
a condition.

Tests whether any of a set of logical conditions are true.
The result is true if one or more of the tested conditions
are true. When you plug a condition into the test socket,
another socket appears so you can add another
condition. The conditions are tested left to right, and the
testing stops as soon as one of the conditions is true.
If there are no conditions to test, then the result is false.

Tests whether its arguments are equal. Tests to see whether two arguments are not equal.

Tests whether all of a set of logical conditions are true.
The result is true if and only if all the tested conditions
are true. When you plug a condition into the test socket,
another socket appears so you can add another
condition. The conditions are tested left to right, and the
testing stops as soon as one of the conditions is false.
If there are no conditions to test, then the result if true.

Tests whether the first number is greater than the
second number and returns true or false.

Can be used as any positive or negative number
(decimals included). Double clicking on the "0" in
the block will allow you to change the number.

Tests whether two numbers are equal and
returns true or false.

Tests whether two numbers are not equal and
returns true or false.

Returns the result of adding any amount of blocks
that have a number value together. Blocks with a
number value include the basic number block, length
of list or text, variables with a number value, etc.
This block is a mutator and can be expanded to allow
more numbers in the sum.

Tests whether the first number is greater than or
equal to the second number and returns true or false.

Tests whether the first number is less than the
second number and returns true or false.

Tests whether the first number is less than or equal
to the second number and returns true or false.

Returns the result of the first number raised to the
power of the second.

Returns the result of subtracting the second
number from the first.

Returns the result of multiplying any amount of
blocks that have a number value together. It is a
mutator block and can be expanded to allow more
numbers in the product.

Returns the result of dividing the first number by
the second.

Returns the smallest value of a set of numbers. If
there are unplugged sockets in the block, min will
also consider 0 in its set of numbers. This block is
a mutator and a dropdown.

Returns a random integer value between the given
values, inclusive. The order of the arguments
doesn't matter.

Returns a random value between 0 and 1.

Use this block to generate repeatable sequences of
random numbers. You can generate the same
sequence of random numbers by first calling random
set seed with the same value. This is useful for
testing programs that involve random values.

Returns the negative of a given number.

Returns the largest value of a set of numbers. If
there are unplugged sockets in the block, max
will also consider 0 in its set of numbers. This
block is a mutator and a dropdown.

Returns the square root of the given number.

Returns the absolute value of the given number.

Returns the smallest integer that's greater than or
equal to the given number.

Returns the natural logarithm of a given number,
that is, the logarithm to the base e (2.71828...).

Returns e (2.71828...) raised to the power of the
given number.

Returns the given number rounded to the closest
integer. If the fractional part is < .5 it will be rounded
down. It it is > .5 it will be rounded up. If it is exactly
equal to .5, numbers with an even whole part will be
rounded down, and numbers with an odd whole part
will be rounded up. (This method is called round to
even.)

Returns the result of dividing the first number by the
second and discarding any fractional part of the result.

Returns the greatest integer that's less than or
equal to the given number.

Modulo(a,b) is the same as remainder(a,b) when
a and b are positive. More generally, modulo(a,b) is
defined for any a and b so that (floor(a/b)× b) +
modulo(a,b) = a. For example, modulo(11, 5) = 1,
modulo(-11, 5) = 4, modulo(11, -5) = -4,
modulo(-11, -5) = -1. Modulo(a,b) always has the
same sign as b, while remainder(a,b) always has the
 same sign as a.

Remainder(a,b) returns the result of dividing a by b
and taking the remainder. The remainder is the
fractional part of the result multiplied by b.

Returns the arcsine of the given number in degrees.

Returns the sine of the given number in degrees. Returns the cosine of the given number in degrees.

Returns the tangent of the given number in degrees.

Returns the value in degrees of the given number
in radians. The result will be an angle in the
range [0, 360)

Returns the arccosine of the given number in degrees. Returns the arctangent of the given number in degrees.

Returns the arctangent
of y/x, given y and x.

Takes a text string that represents a positive integer
in binary and returns a string that represents the
same number in decimal.

Returns the value in radians of the given number
in degrees. The result will be an angle in
the range [-π , +π)

Formats a number as a decimal with a given number
of places after the decimal point. The number of
places must be a non-negative integer. The result is
produced by rounding the number (if there were too
many places) or by adding zeros on the right (if there
were too few).

Returns true if the given object is a number, and
false otherwise.

Contains a text string. This string can contain any
characters (letters, numbers, or other special
characters). On App Inventor it will be considered a
Text object.

Takes a text string that represents a positive integer
in decimal and returns a string that represents the
same number in binary.

Takes a text string that represents a positive integer
in decimal and returns a string that represents the
same number in hexadecimal.

Takes a text string that represents a positive integer
in hexadecimal and returns a string that represents the
same number in decimal.

Returns whether or not the first string is
lexicographically equal to the second string.

Appends all of the inputs to make a single string. If
no inputs, returns an empty string.

Returns the number of characters including spaces
in the string. This is the length of the given text string.

Returns whether or not the string contains any
characters (including spaces). When the string
length is 0, returns true otherwise it returns false.

Returns a copy of its text string argument converted
to all upper case

Returns whether or not the first string is
lexicographically greater then the second string. A
string is considered lexicographically greater than
another if it is alphabetically greater than the other
string. Essentially, it would come after it in the
dictionary. All uppercase letters are considered smaller
or to occur before lowercase letters. cat would be > Cat.

Removes any spaces leading or trailing the input
string and returns the result.

Returns whether or not the first string is
lexicographically smaller then the second string. A
string is considered lexicographically smaller than
another if it is alphabetically smaller than the other
string. Essentially, it would come after it in the
dictionary. All uppercase letters are considered smaller
or to occur before lowercase letters. Cat would be < cat.

Divides the given text into two pieces using the location of
the first occurrence of at as the dividing point, and returns a
two-item list consisting of the piece before the dividing point
and the piece after the dividing point. Splitting
apple,banana,cherry with a comma as the splitting point
returns a list of two items: the first is the text apple and the
second is the text banana,cherry. Notice that the comma
after apple doesn't appear in the result, because that is
the dividing point.

Returns a copy of its text string argument converted
to all lower case

Returns the character position where the first
character of piece first appears in text, or 0 if not
present. For example, the location of ana in havana
banana is 4.

Returns true if piece appears in text; otherwise,
returns false.

Divides the given text at any occurrence of a space,
producing a list of the pieces.

Divides the given text into a two-item list, using the
first location of any item in the list at as the
dividing point.

Splitting i love apples bananas apples grapes by
the list [ba,ap] would result in a list of two items
the first being i love and the second ples bananas
apples grapes.

Divides text into pieces using at as the dividing
points and produces a list of the results. Splitting
one,two,three,four at , (comma) returns the list
one two three four. Splitting one-potato,two-potato,
three-potato,four at -potato, returns the list one
two three four.

Divides the given text into a list, using any of the
items in at as the dividing point, and returns a list
of the results.

Splitting appleberry,banana,cherry,dogfood with
at as the two-element list whose first item is a
comma and whose second item is rry returns a list
of four items: [applebe, banana, che, dogfood,]

Creates a list from the given blocks. If you don't
supply any arguments, this creates an empty list,
which you can add elements to later. This block is a
mutator. Clicking the blue plus sign will allow you
to add additional items to your list.

Extracts part of the text
starting at start position
and continuing for length
characters.

Returns a new text string obtained by replacing all
occurrences of the substring with the replacement.
Replace all with She loves eating. She loves writing.
She loves coding as the text, She as the segment,
and Hannah as the replacement would result in
Hannah loves eating. Hannah loves writing. Hannah
loves coding.

Creates an empty list with no elements.

If list has no items, returns true; otherwise,
returns false.

Adds the given items to the end of the list. The
difference between this and append to list is that
append to list takes the items to be appended as a
single list while add items to list takes the items as
individual arguments. This block is a mutator.

If thing is one of the elements of the list, returns true;
otherwise, returns false. Note that if a list contains
Sublists, the members of the sublists are not
themselves members of the list. For example, the
members of the list (1 2 (3 4)) are 1, 2, and the
list (3 4); 3 and 4 are not themselves members of
the list.

Returns the number of items in the list

Inserts an item into the list at the given position

Picks an item at random from the list. Returns the position of the thing in the list. If not in
the list, returns 0.

Selects the item at the given index in the given list.
The first list item is at index 1.

Makes a copy of a list, including copying all sublists.

Inserts replacement into the given list at position
index. The previous item at that position is removed.

Removes the item at the given position.

Adds the items in the second list to the end of
the first list.

Interprets the list as a table in row-major format and
returns a CSV (comma-separated value) text
representing the table. Each item in the list should
itself be a list representing a row of the CSV table.
Each item in the row list is considered to be a field,
and is quoted with double-quotes in the resulting
CSV text. In the returned text, items in rows are
separated by commas and rows are separated by
CRLF (\r\n).

If thing is a list, returns true; otherwise, returns false.
Interprets the list as a row of a table and returns a
CSV (comma-separated value) text representing the
Row. Each item in the row list is considered to be a
field, and is quoted with double-quotes in the resulting
CSV text. Items are separated by commas. For example,
converting the list (a b c d) to a CSV row produces
("a", "b", "c", "d"). The returned row text does not have a
line separator at the end.

Parses a text as a CSV (comma-separated value)
formatted row to produce a list of fields.
For example, converting ("a", "b", "c", "d") to a list
 produces (a b c d).

Make color takes in a list of 3 or 4 numbers. These numbers in
this list represent values in an RGB code. RGB codes are used
to make colors on the Internet. An RGB color chart is available
here. This first number in this list represents the R value of the
code. The second represents the G. The third represents the B.
The fourth value is optional and represents the alpha value or
how saturated the color is. The default alpha value is 100.
Experiment with different values and see how the colors
change using this block.

Parses a text as a CSV (comma-separated value)
formatted table to produce a list of rows, each of
which is a list of fields.
Rows can be separated by newlines (\n) or CRLF (\r\n).

Used for looking up information in a dictionary-like structure epresented
as a list. This operation takes three inputs, a key, a list pairs, and a
notFound result, which by default, is set to "not found". Here pairs must
be a list of pairs, that is, a list where each element is itself a list of two
elements. Lookup in pairs finds the first pair in the list whose first element
is the key, and returns the second element. For example, if the list is
((a apple) (d dragon) (b boxcar) (cat 100)) then looking up 'b' will return
'boxcar'. If there is no such pair in the list, then the lookup in pairs will
return the notFound result. If pairs is not a list of pairs, then the operation
will signal an error.

This is a basic color block. It has a small square shape and
has a color in the middle that represents the color stored
internally in this block. If you click on the color in the middle,
a pop-up appears on the screen with a table of 70 colors that
you can choose from. Clicking on a new color will change the
current color of your basic color block. Each basic color block
that you drag from the Colors drawer to the Blocks Editor
screen will display a table with the same colors when clicked.

This block follows the same rules as get. Only
variables in scope will be available in the dropdown.
Once a variable v is selected, the user can attach a
new block and give v a new value.

Split color does the opposite of make color. It takes
in a color: a color block, variable holding a color, or
property from one of the components representing a
color and returns a list of the RGB values in that
color's RGB code.

This block is used to create global variables. It takes
in any type of value as an argument. Clicking on name
will change the name of this global variable. Global
variables are used in all procedures or events so this
block will stand alone. Global variables can be changed
while an app is running and can be referred to and
changed from any part of the app even within procedures
and event handlers. You can rename this block at any
time and any associated blocks referring to the old name
will be updated automatically.

This block provides a way to get any variables you
may have created.

This block is a mutator that allows you to create new variables that are
only used in the procedure you run in the DO part of the block. This way
all variables in this procedure will all start with the same value each time
the procedure is run. NOTE: This block differs from the block described
below because it is a DO block. You can attach statements to it.
Statements do things. That is why this block has space inside for
statement blocks to be attached. You can rename the variables in this
block at any time and any corresponding blocks elsewhere in your
program that refer to the old name will be updated automatically

This block is a mutator that allows you to create new variables that are
only used in the procedure you run in the RETURN part of the block. This
way all variables in this procedure will all start with the same value each
time the procedure is run. NOTE: This block differs from the block
described above because it is a RETURN block. You can attach
expressions to it. Expressions return a value. That is why this block has a
socket for plugging in expressions. You can rename the variables in this
block at any time and any corresponding blocks elsewhere in your
 program that refer to the old name will be updated automatically

Collects a sequence of blocks together into a group. You can then use
the sequence of blocks repeatedly by calling the procedure. If the
procedure has arguments, you specify the arguments by using the block's
mutator button. If you click the blue plus sign, you can drag additional
arguments into the procedure. When you create a new procedure block,
App Inventor chooses a unique name automatically. You can click on the
name and type to change it. Procedure names in an app must be unique.
App Inventor will not let you define two procedures in the same app with
the same name. You can rename a procedure at any time while you are
building the app, by changing the label in the block. App Inventor will
automatically rename the associated call blocks to match. Calling this
procedure returns a result.

Collects a sequence of blocks together into a group. You can then use
the sequence of blocks repeatedly by calling the procedure. If the
procedure has arguments, you specify the arguments by using the block's
mutator button. If you click the blue plus sign, you can drag additional
arguments into the procedure. When you create a new procedure block,
App Inventor chooses a unique name automatically. You can click on the
name and type to change it. Procedure names in an app must be unique.
App Inventor will not let you define two procedures in the same app with
the same name. You can rename a procedure at any time while you are
building the app, by changing the label in the block. App Inventor will
automatically rename the associated call blocks to match.

When you create a procedure, App Inventor
automatically generates a call block and places it in
the Variables drawer. You use the call block to invoke
the procedure.

After creating this procedure, a call block that needs to
be plugged in will be created. This is because the result
from executing this procedure will be returned in that
call block and the value will be passed on to whatever
block is connected to the plug.

Produces text like a text block. The difference is that
the text is not easily discover-able by examining the
app's APK. Use when creating apps to distribute that
include confidential information, for example, API keys.
This provides only low level security against expert
adversaries.

	Dia 1
	Dia 2
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18
	Dia 19
	Dia 20
	Dia 21
	Dia 22
	Dia 23
	Dia 24
	Dia 25
	Dia 26
	Dia 27
	Dia 28
	Dia 29
	Dia 30
	Dia 31

